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Abstract—The privacy properties of security protocols can
be specified with alpha-beta privacy as a reachability problem.
Our main contribution is to show that, for a class of protocols
satisfying certain syntactic conditions, it is correct to restrict the
intruder model to a typed model, where the intruder only sends
well-typed messages. Our result holds for an unbounded number
of transitions and supports stateful protocols that can read from
and write to memory.

Index Terms—Privacy, Security Protocols, Formal Methods

I. INTRODUCTION

a) Type Flaws: Type-flaw attacks occur when a security
protocol uses several messages that have different meaning but
have a similar shape so that an intruder can exploit it and send
a message of one type where a message of another type is ex-
pected. For example, one message of the protocol is a signature
on a nonce for challenge-response, say sign(inv(pk(x)), N)
(where inv denotes the private key to the public key pk(x)
of agent x), and another message is a signature on an en-
crypted message like sign(inv(pk(y)), crypt(pk(z),M,R)). It
is actually easy to prevent type-flaw attacks by good protocol
design: messages should not sign or encrypt raw data, but
rather include a few bits of information that specify what is
the meaning of the message. In the example, the signatures
should contain at least some kind of tag that distinguishes the
different types of signed statements. Such a countermeasure is
not only almost for free, it is completely in line with prudent
engineering principles [1], [2].

b) Benefits of Typing: Formal verification of security
protocols generally gets easier if we can rule out type-flaw
attacks and analyze everything in a typed model where the
intruder is restricted to sending well-typed messages. Then,
many security problems become decidable (and, e.g., one can
guarantee termination of tools like ProVerif [3]).

c) Typing Results: This motivates a relative soundness
result of the form: “if a protocol that obeys certain type-
flaw resistance requirements has an attack, then it has a well-
typed attack.” It is then sound to verify such a protocol in
the typed model. This is particularly relevant in practice, if
many existing protocols without modification already satisfy
type-flaw requirements.

d) The Proof Idea: Most of the existing typing results,
e.g., [4], [5], [6], [7], [8], use a constraint-based method
for analyzing security protocols that is based on a symbolic
approach, which we call here the lazy intruder: this technique

avoids exploring all the messages that the intruder could
generate at a given point, but instead uses a variable with
the constraint that this variable represents any message that
the intruder can generate from their current knowledge. This
variable is only instantiated when the choice matters for
the attack. One can then show that in a type-flaw resistant
protocol, these instantiations are always well-typed, and that
all remaining variables (that do not matter for the attack in
the end) can be instantiated with something well-typed as
well. Thus, if an attack exists, there exists a well-typed one.
Although this method yields a decision procedure only for a
bounded number of sessions, since the argument applies to an
attack of arbitrary length, the typing result is not bounded to a
fixed number of sessions and can be used in approaches/tools
that do not use the lazy intruder (like ProVerif).

e) Typing for Privacy: A trend in protocol verification
is the support for privacy-type properties such as unlinkability
or vote-secrecy, i.e., secrecy of a choice over a small domain
of intruder-known values. This is challenging for verification
tools and thus many tools require a restriction like diff-
equivalence [9], [10] where, roughly speaking, conditions—
and thus control flow—cannot depend on the private choice.1

It is thus very desirable to simplify the tools’ lives by a typing
result, but that is harder to obtain for privacy as well. For
instance, a typing result needs to exclude that the intruder
can gain any insight about a condition (and thus possibly
private choices) by sending an ill-typed message. This is in fact
related again to the problem of control flow (that classical diff-
equivalence sidesteps): the intruder may not know in general
what exactly is happening in the protocol, while in standard
protocol verification the intruder is only unclear about the
concrete value of some cryptographically strong secrets.

f) (α, β)-privacy: Another difficulty for typing (and ver-
ification in general) is that most approaches for privacy are
based on observational equivalence notions, i.e., whether the
intruder can distinguish between two variants of a process, e.g.,
unlinkability as the distinction between the scenario where
every agent performs only one session and the scenario where
they perform any number of sessions. This makes even the
statement of a typing result rather involved. Gondron, Möder-
sheim and Viganò [12] proposed the notion of (α, β)-privacy

1There are, however, recent extensions of these concepts that considerably
relax these restrictions [11].
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that instead is based on a classical state-transition system,
where each state has enough information to evaluate privacy
questions. In a nutshell, the modeler can specify for each
transaction (an atomic step of the protocol) a formula α that
expresses information publicly released, e.g., in unlinkability
one may simply release only the domain constraint that the
actor belongs to a set of actors who can execute the protocol.
Further, the semantics models the inference process of the
intruder, who tries to analyze the messages observed and to
relate them to the steps of the protocol, possibly learning the
value of conditions. This yields a formula β for every state,
and privacy is then defined as: β does not allow to exclude
a model of α. A decision procedure for (α, β)-privacy for
a bounded number of transitions, based on the lazy intruder
technique, is given in [13].

g) Contributions: In this paper, we define a set of
requirements for protocols and algebraic theories we can
support, and prove that under these requirements the procedure
from [13] performs only well-typed instantiations of variables
and well-typed intruder experiments. This allows us to prove
a typing result for (α, β)-privacy: “if there is an attack, then
there is a well-typed one.” As in previous typing results,
this is independent of the number of transitions considered.
This result is, to our knowledge, not only more general than
previous typing results for privacy, since the requirements are
less restrictive and a larger class of protocols is considered, but
it also has a more declarative proof. We discuss this generality
and the relation to other existing works in §VII. Before we do
so, we summarize (α, β)-privacy and the decision procedure
from [13] in §II, define the class of type-flaw resistant proto-
cols that our result supports in §III, present the typing result
on the constraint level in §IV and the full typing result for
an unbounded number of transitions in §V, and report our
experiments on case studies in §VI. All the proofs, together
with additional details for the semantics and the models of the
case study protocols, are given in the appendix.

II. PRELIMINARIES

A. Term Algebra and All That

We consider terms over an alphabet Σ, containing function
and relation symbols with their arity, and interpret the terms
in the quotient algebra modulo a congruence relation ≈. Func-
tions can be either public or private (accessible/not accessible
to the intruder). For our purpose, the congruence allows for
constructors and destructors like encryption and decryption,
where decryption failure yields a distinguished constant ff.
Definition III.3 describes the precise class of algebraic theories
that our result supports. Formulas (typically α, β, or ϕ) are in
Herbrand logic [14], which is like standard First-Order Logic
where the universe is said quotient algebra.

We use standard definitions like: fv(·) returning the free
variables of a term or formula; linear terms (every variable
occurs at most once); the interpretation I mapping all variables
to the universe, and n-ary relations to a set of n-tuples of
the universe; the models relation I |= ϕ expressing that I is

a satisfying interpretation for ϕ; ≡ for logic equivalence of
formulas (and for defining formulas).

B. (α, β)-Privacy

The main idea of (α, β)-privacy is that every state of
the world contains a formula α that represents what the
intruder is allowed to know and the formula β represents what
the intruder has actually observed. A state violates (α, β)-
privacy iff some model of α can be ruled out by the intruder
knowledge in β, i.e., the intruder has learned more than
what is allowed. We use a sub-alphabet Σ0 ⊂ Σ containing
the payload symbols, which are used to express the privacy
goals. The complement Σ\Σ0 contains the technical symbols,
which are used to represent the intruder knowledge (e.g., the
cryptographic messages observed).

Definition II.1 ((α, β)-privacy [13]). Given two formulas α
over Σ0 and β over Σ with fv(α) ⊆ fv(β), we say that (α, β)-
privacy holds iff for every I |= α there exists I ′ |= β such that
I and I ′ agree on the variables in fv(α) and on the relation
symbols in Σ0.

C. Protocol Specification

To describe a state-transition system where the formulas
α and β reflect what has been released and observed so far,
respectively, we use the notion of (α, β)-transaction from [12],
[13], where a transaction is an atomic step of a protocol partici-
pant that mainly consists of receiving a message, checking and
modifying their long-term local state, and sending an answer.
The transactions give rise to an infinite-state transition system
and the question is whether every reachable state satisfies
(α, β)-privacy.

We distinguish three sorts of variables: privacy variables
Vprivacy (typically denoted x, y), each chosen from a finite
domain D of public constants in Σ0; intruder variables
Vintruder (typically denoted X,Xi), which come from mes-
sages received and reading the memory; and recipe variables
(typically denoted R,Ri), used in the symbolic constraints to
represent the choices made by the intruder.

Definition II.2 (Protocol specification, adapted from [13]). A
protocol specification consists of

• a number of transaction processes Pl, which are left
processes according to the syntax below, describing the
atomic transactions that protocol participants can exe-
cute;

• a number of memory cells, e.g., cell(·), together with
a ground context C[·] for each memory cell defining the
initial value of the memory, so that initially cell(t) = C[t].

2



We define left, center, and right processes as follows:

Pl Left process
::= mode x ∈ D.Pl Non-deterministic choice
| rcv(X).Pl Receive
| try X := d(t,X) in Pl Destructor application
| Pc Center process

Pc Center process
::= X := cell(t).Pc Cell read
| if ϕ then Pc else Pc Conditional statement
| νn1, . . . , nk.Pr Fresh constants

Pr Right Process
::= snd(t).Pr Send
| cell(t) := t.Pr Cell write
| ⋆ ϕ.Pr Release
| 0 Terminate (nil process)

where mode is either ⋆ or ⋄, ϕ is a quantifier-free Herbrand
formula, and d is a destructor. Destructors cannot occur else-
where in terms. For simplicity, we have denoted destructors as
binary functions, but we may similarly use unary destructors.
We may omit writing else 0 and trailing 0’s.

We require that a transaction P is a closed left process, i.e.,
fv(P ) = ∅. We define the free variables fv(P ) of a process P
as expected, where the non-deterministic choices, receives, cell
reads and fresh constants are binding. Moreover, for destructor
applications:

fv(try X := d(k, Y ) in P ) = fv(d(k, Y )) ∪ (fv(P ) \ {X})

Finally, a bound variable cannot be instantiated a second time
and the only place destructors are allowed is in a destructor
application with try.

A transaction is thus partitioned into three distinguished
sub-processes: the left part for receiving messages, making
non-deterministic choices and applying destructors; the center
part for performing checks on messages and memory; and the
right part for modifying memory and sending messages.

The left part allows for choosing values of privacy variables
like ⋆ x ∈ {0, 1} which means that x will be one of the two
values and a priori the intruder does not know which; α is
augmented with the conjunct x ∈ {0, 1}, so the intruder is
allowed to know the domain of x. Unless further information
about x is released, it is then a violation if the intruder learns
more about x, e.g., x .

= x′. We use .
= to denote equality

between terms in formulas, and that is interpreted as equality
modulo the congruence relation. The construct ⋄ x ∈ D is
used when the choice of x is not privacy-relevant in itself:
if the intruder learns anything about x it does not count as a
privacy violation.

Moreover, we can apply destructors to messages; all destruc-
tors return either a subterm of the message being decomposed
or ff for failure. In the case of failure, the process behaves
as 0. In [13], there can be a process for handling failure,
e.g., sending an error message, while we can only support
transactions that silently stop in case of destructor failure.

Moreover, try in [13] is part of the center process, while we
require it as part of the left process, i.e., before branching,
so that any destructor failure means that the entire transaction
goes directly to 0. We discuss in more details why we make
these changes in Remark III.1.

In our examples, we will use for instance the operators crypt
and dcrypt for asymmetric encryption and decryption, and
pair, proj1 and proj2 for pairing and projection. The relation
between constructors and destructors is described by equations
like dcrypt(inv(k), crypt(k,m, r)) ≈ m, where inv is a private
constructor mapping public to private keys. The precise class
of properties we support is found in Definition III.3.

In the right process, the release means that the respective
formula ϕ becomes a new conjunct of the α formula in the
successor state. All other constructs are standard. Note that
we do not need a locking mechanism for reading and writing
memory cells, because all transactions are atomic and cannot
have race conditions among each other.
Example II.1. The following transaction illustrates several
features of (α, β)-transactions.

⋆ x ∈ {0, 1, 2}.
rcv(M).

try K := dcrypt(inv(pk(a)),M) in

if x
.
= 0 then ⋆ x

.
= 0. snd(no)

else ⋆ x ̸ .= 0. snd(scrypt(K,x))

A privacy variable x is chosen from a known domain, a
message M is received and decrypted with the private key
of agent a. If decryption is successful, there is a branching on
the value of x. Different messages are sent in the two branches,
and the intruder is able to find out whether the condition was
true or not based on the reply observed, which would be a
privacy violation, if that information were not released in each
of the branches. ◁

D. α and β and Frames

The formula α of a reached state is simply the conjunction
of all ϕ for which ⋆ ϕ has been executed, while β is more
complicated. For this we first need to define frames.

A frame is a notion that is commonly used to characterize
the knowledge of the intruder: we have a set of distinguished
constants called labels that do not occur in normal messages;
a frame F maps such labels to messages. The labels allow for
describing intruder actions like encryption and decryption by
a recipe r: a term built from labels and public functions. Here,
F (r) is the term that results by replacing all labels in r with
the corresponding message from F ; we ensure throughout the
paper that F (r) is only used when all labels in r occur in the
domain of F .

We speak of an experiment for a frame F when the intruder
checks whether two recipes r1 and r2 over the domain of F
give the same result, i.e., whether F (r1) ≈ F (r2). We say
two frames F1 and F2 are statically equivalent, written F1 ∼
F2, iff there is no experiment to distinguish them, i.e., every
experiment will either give the same result in both frames, or
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different results in both frames. (This implicitly requires that
the frames have the same domain.)

Even though we assume that the intruder knows which trans-
actions are being executed, they do not know a priori the value
of the privacy variables. For instance, the intruder may observe
a concrete message crypt(k, 0, r) but only know that it has the
form crypt(k, x, r) if that is the sent message according to the
transaction. We thus distinguish here the concrete knowledge
concr and the structural knowledge struct . As a consequence,
the intruder may not know the concrete value of any message
being sent or received in a transaction, and thus may not
know at a condition if ϕ, whether ϕ is true, and thus which
branch is taken. Thus the intruder needs to make a case split
in their analysis of what is happening. As a consequence, the
intruder has in general a set {(ϕ1, struct1), . . . , (ϕn, structn)}
of possibilities how the process could have executed, where
ϕi are the conditions for arriving at the ith case, and struct i
is the structure that the received messages would have in that
case. There is only one concrete knowledge concr , however,
as these are the truly observed messages. Note that the ϕi
partition the space of models for the privacy variables: in each
interpretation, exactly one ϕi is true.

The formula β is now α ∧ ψ ∧
∨n

i=1 ϕi ∧ struct i ∼ concr ,
where ψ is the conjunction

∧
x ∈ Dx over every variable that

was chosen with ⋄ (recall that the domains of variables chosen
with ⋆ are part of α). β thus expresses that the intruder knows
that some ϕi is true and in that case the structural knowledge
of that case is statically equivalent to the concrete knowledge.

E. Deciding (α, β)-Privacy

In [13], Fernet, Mödersheim and Viganò prove the correct-
ness of a procedure that decides the problem for a given (sym-
bolic) state and thus also for reachability with a given bound
on the number of transitions. We only sketch the decision
procedure from [13] here and in the following sections we
then give those parts in detail that are relevant for the proof
of the typing result.

The procedure uses an extension of the notion of frames
called FLICs, which represent both sent messages and received
messages, where the ordering is relevant. The messages can
contain intruder variables that represent arbitrary messages
from the intruder that the procedure has not yet determined.

Definition II.3 (FLIC and simple FLIC [13]). A framed lazy
intruder constraint (FLIC) A is a sequence of mappings of
the form −l 7→ t or +R 7→ t, where each label l and recipe
variable R occurs at most once, each term t is built from
function symbols, privacy variables, and intruder variables.
The first occurrence of each intruder variable must be in a
message sent.

We write −l 7→ t ∈ A if −l 7→ t occurs in A, and similarly
+R 7→ t ∈ A. The domain dom(A) is the set of labels of A
and vars(A) are the privacy and intruder variables that occur
in A; similarly, we write rvars(A) for the recipe variables.

The message A(r) produced by r in A is:

A(l) = t if −l 7→ t ∈ A
A(R) = t if +R 7→ t ∈ A

A(f(r1, . . . , rn)) = f(A(r1), . . . ,A(rn))

For recipes that use labels or recipe variables not defined in
the FLIC, the result is undefined.

A FLIC A is called simple iff every message sent is an
intruder variable, and each intruder variable is sent only once,
i.e., every message sent is of the form +Ri 7→ Xi and the Xi

are pairwise distinct.

The FLIC is regarded as a constraint that asks for an
instantiation of the intruder and privacy variables such that
every message sent by the intruder can be derived from
messages received by the intruder up to that point. At the core
of the decision procedure is the lazy intruder: a set of rules
to transform the FLICs into a finite set of equivalent FLICs
in simple form; all remaining messages that the intruder has
to send are distinct intruder variables, i.e., the intruder can
choose arbitrary messages in these places.

The first step in executing a transaction is the symbolic
execution of the different parts of the process, using FLICs and
the lazy intruder whenever there are non-simple constraints to
solve. Once the transaction has been fully executed, the next
step is performing the intruder experiments on the messages
observed by the intruder. This can lead to deductions about the
privacy variables, if the intruder can rule out particular cases
or particular instantiations of the privacy variables. This may,
in fact, give an attack.

Finally, as a last step there is also analysis performed on top
of this: the entire procedure up to this point considers recipes
with constructors only. The destructors are then applied in
a saturating way: the messages received by the intruder may
yield subterms if they can be successfully decrypted, and there
is a strategy to perform all relevant analyses (i.e., that add to
the intruder knowledge) in finitely many steps.

III. TYPED MODEL

The idea of the present paper is that we define a class
of type-flaw resistant protocols and show for those protocols
that the procedure given by [13] never performs any ill-typed
substitutions. As a consequence, we show that, if there is
an attack, then there is an attack that uses only well-typed
messages. This is in fact proved for an arbitrary reachable
state in a type-flaw resistant protocol, i.e., our typing result
holds without any bound on the number of transitions. We will
make two adaptations to the procedure: we extend semantics to
support pattern matching, and we formulate analysis as built-
in transitions instead of explicit application of destructors; we
also show that these transformations are correct. For the typing
result in §IV, we show that, for a type-flaw resistant protocol,
the lazy intruder always returns well-typed solutions to the
constraints. The intruder experiments of comparing pairs of
recipes are never a typing issue. In §V, we obtain our main
result for the transition system.
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We first define a simple type system and we will require that
the protocol specifies a type for each message. For a message
received in a transaction, the type annotation expresses the
intended type that should be used by the honest participants.
We cannot a priori enforce that the intruder respects these
types, i.e., the intruder is able to send ill-typed messages.
Our main result is to show that, for the class of protocols
we call type-flaw resistant, we can actually consider only
well-typed choices by the intruder without loss of generality
for finding privacy violations. The goal is to show that, if
there exists a reachable state that violates privacy, then there
exists a similar state that is reachable only using well-typed
messages. We prove this by using the notion of symbolic states
with constraints, where the ground solutions to the constraints
define the ground states. We show that in the entire exploration
of symbolic constraints, no ill-typed substitution of variables
occurs, and that simple constraints always admit a well-typed
solution. Thus, there is nothing the intruder can achieve using
ill-typed messages that would not be similarly achieved with
well-typed ones.

A. Type System

Types are defined similarly to terms. Instead of a set of
variables, we use a set of atomic types, e.g., {agent, nonce}.
The composed types are defined using the functions in Σ, with
the restriction to constructors of non-zero arity, i.e., we forbid
destructors and constants in composed types. The type system
assigns an atomic or composed type to every message with
the following requirements:

Definition III.1 (Typing function). A typing function Γ is s.t.:
• Γ(c) is atomic for every function c ∈ Σ of arity 0.
• Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for every con-

structor f ∈ Σ of arity n > 0.
• Γ(x) is a type (atomic or composed) for every variable
x ∈ V .

Our type system does not include terms containing destruc-
tors, because they represent terms that need to be evaluated
and we rather want to give a type to the result. In a protocol
specification, destructors can only occur as part of a destructor
application of the form try Y := d(k,X) in . . . where either
the result is ff and the transaction stops, or Y is bound to the
respective subterm of X , and thus shall have the respective
(destructor-free) type.

The fact that instantiations of variables are well-typed is
defined with the notion of a substitution being well-typed.

Definition III.2 (Well-typed substitution). A substitution σ
is well-typed iff for every x ∈ dom(σ), we have Γ(x) =
Γ(σ(x)).

We need to ensure that the intruder is always able to
make a well-typed choice, therefore they must be able to
compose arbitrarily many messages of each type, even before
receiving any message from honest agents. Hence, we require
that, for each atomic type, there is an infinite set of public
constants of that type, i.e., the intruder initially knows an

unbounded number of constants of each atomic type. Suppose
all function symbols were public, then the intruder would also
immediately have access to an unbounded number of terms
of every composed type. In fact, [7] observes that, even if all
functions are public, one can still model a private function f
of arity n by a public function f ′ of arity n + 1, where the
additional argument is filled with a distinct secret constant.
Thus, private functions like f are just syntactic sugar. We adopt
this suggestion and, for the rest of the paper, continue to use
public and private functions, where we use a subset Σpub ⊆ Σ
to identify the public functions.

We first define the precise class of algebraic theories that
our result supports. Here we slightly deviate from standard
approaches for constructor-destructor theories that consider
directly the congruence induced by a set of rewrite rules,
because this can lead to “garbage terms”, i.e., a failed destruc-
tor application like dcrypt(inv(k), n) that does not reduce to
anything. In our congruence, such terms yield ff.

Definition III.3 (Algebraic theory, adapted from [13]). A
constructor/destructor rule is a rewrite rule of one of the
following forms:

• Decryption: d(k, c(k′, X1, . . . , Xn)) → Xi where d is
a destructor, c is a constructor, the Xj are variables,
c(k′, X1, . . . , Xn) is linear, i ∈ {1, . . . , n}, fv(k) =
fv(k′) and neither k nor k′ contains a constant.

• Projection: di(c(X1, . . . , Xn)) → Xi where i ∈
{1, . . . , n}, di is a public destructor called a projector,
c is a constructor of arity n, the Xj are variables and
c(X1, . . . , Xn) is linear. There must be such a rule for
every i ∈ {1, . . . , n} and c is then called transparent.

• Private extraction: d(c(t1, . . . , tn)) → t0 where d is
a private destructor called a private extractor, c is a
constructor, c(t1, . . . , tn) is linear and t0 is a subterm
of one of the ti.

Let E be a set of such rules, where we require that every
destructor d occurs in exactly one rule of E and E forms a
convergent term-rewriting system. Moreover, each constructor
c cannot occur both in decryption and projection rules.

Define ≈ to be the least congruence relation on ground
terms such that

d(k, t) ≈


ti if t ≈ c(k′, t1, . . . , tn) and for some σ,

(d(k, c(k′, t1, . . . , tn))→ ti) ∈ σ(E)

ff otherwise

and for unary destructors the definition is the same but k, k′

are omitted. Moreover, we require for every decryption rule
d(k, c(k′, X1, . . . , Xn)) → Xi that k = k′ or k ≈ f(k′) or
k′ ≈ f(k) for some public function f .

The theory allows for modeling usual cryptographic prim-
itives such as asymmetric and symmetric cryptography, sig-
natures and serialization of messages. We require that the
algebraic theory is a constructor-destructor theory, not includ-
ing properties like associative-commutative operators needed
for Diffie-Hellman. The theory reveals destructor failure, so
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honest agents can tell if a destructor like decryption fails and in
this case just abort the transaction. Compared to the definition
in [13], we have included the requirement of linearity for the
constructor terms in the rewrite rules and excluded constants
in decryption keys, and this will be used when proving the
typing result for state transitions (see Definition V.2).

In a protocol specification, we write type annotations with
a colon, i.e., t : τ specificies that Γ(t) = τ . We further define
what it means for a protocol specification to “type check”.
This does not yet include all the requirements for type-flaw
resistance but simply ensures that the type annotations are
consistent throughout the specification.

Definition III.4 (Type checking). For every constant c, one
has to specify Γ(c), i.e., the type of that constant. For every
memory cell cell(·), one has to specify Γ(cell) which is the
type of the argument for cell reads. The type annotations of
constants and memory cells are global to the specification,
while type checking a transaction uses local type annotations
for the variables bound in that transaction. Every transaction
must satisfy the following:

• For every choice x ∈ D, we have that D is a set of
public constants of the same atomic type τ , and we then
set Γ(x) = τ .

• For every message received rcv(X : τ), we have that τ
is a type and we then set Γ(X) = τ .

• For every destructor application try Y := d(t,X), where
the rewrite rule for d is d(k, c(k′, X1, . . . , Xn)) → Xi,
there exist types for the free variables of the left-hand
side such that Γ(d(k, c(k′, X1, . . . , Xn)) = Γ(d(t,X)).
We then set Γ(Y ) = Γ(Xi).

• For every cell read X := cell(s), we have Γ(s) = Γ(cell)
and we then set Γ(X) = Γ(C[s]), where C[·] is the
ground context for the initial value of cell(·). For every
cell write cell(s) := t, we have Γ(s) = Γ(cell) and
Γ(t) = Γ(C[s]).

• For every equality s .
= t in a formula, we have Γ(s) =

Γ(t).
• For every step νn1 : τ1, . . . , nk : τk, the τi are atomic

types and we then set Γ(ni) = τi.

In the rest of the paper, we will only consider protocol
specifications such that the type checking requirements above
are satisfied.

We finally introduce several requirements on protocols,
which we use to ensure that the intruder knows the types of
the messages in their knowledge and to control the shapes of
messages that can occur during the protocol execution.

Definition III.5 (Requirements). For some control flow re-
quirements on transactions, consider the tree that is induced
by the conditionals of the transactions (i.e., every if-then-else
is a node with the respective subprocesses as children). We
say two execution paths are statically distinguishable for the
intruder, iff a different number of messages are sent along the

paths.2 Every transaction must satisfy the following:

• For any two execution paths that are not statically
distinguishable (and thus have the same number of sent
messages), and under any instantiation of the intruder
variables (including ill-typed instantiations), the ith mes-
sage sent in either path has the same type.

• In every cell write cell(s) := t, the term t does not contain
intruder variables.

• When a decryption destructor is applied to a variable,
this variable does not occur in other destructor applica-
tions.

• If several projectors or several private extractors are
applied to the same variable, then the rewrite rules for
these destructors are defined over the same constructor
term.

• For every message sent snd(t) and every subterm t′ of
t, if t′ is composed with a constructor c occurring in a
decryption rule d(k, c(k′, X1, . . . , Xn)) → Xi, we have
that t′ is an instance of c(k′, X1, . . . , Xn).

Remark III.1. In a protocol that satisfies the requirements of
Definition III.5, we have the invariant that the intruder knows
the type of every message in their knowledge. Initially, the
property holds because the intruder has not observed any
message yet. Then whenever a transaction is receiving, the
message is determined by the intruder and thus, if the intruder
before the transaction knows the type of every message in
their knowledge, then they know the types of the messages
the transaction receives. They also know the type of every
other variable in the transaction, because privacy variables are
chosen from homogeneous domains, the type of messages in
the memory cells never changes (only the content can), and the
result of a destructor application has the type of a subterm of
the input (if it does not fail anyway). Since destructor applica-
tions are in left processes and behave as 0 in case of failures,
if any destructor fails then the entire transaction behaves as 0,
i.e., it terminates immediately. Thus the intruder can determine
the type of every message sent in a given execution path.
Moreover, the intruder can observe how many messages the
process sends and rule out all those execution paths that are
not compatible with that. By the requirements, the remaining
execution paths, being not statically distinguishable, must have
the same type for corresponding messages for any given input
messages from the intruder. Thus, the intruder may not know
which of the remaining execution paths is the case, but they
still know which types the respective messages have, so also
after the transaction the intruder knows the type of every
message in their knowledge. ◁

An example for a protocol that does not satisfy the first
requirement immediately, i.e., that messages on two paths
either are statically distinguishable or have the same type, is
the model of Private Authentication found in [15]: here an
agent B receives a message and performs a check on it. If

2One could use here a finer distinction criterion, but with a coarser relation
one errs on the safe side as it excludes more protocols from being admitted.
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the check succeeds, then B sends an encrypted reply as an
answer. Otherwise, B sends a random nonce as a decoy to hide
whether the check succeeded. Thus there are two paths where
the messages sent have different types, and indeed the point
is to hide from the intruder which message was really sent.
In the original model by Abadi and Fournet [16], however,
B instead of a random nonce as decoy sends an encrypted
message with a fresh key and random contents of the same
type as the positive case. In that formulation, the protocol
satisfies our requirement. The only example we can think of
that would resist a similar transformation are onion-routing
protocols where the intruder should not be able to tell the
number of encryption layers of a given message. For protocols
that do not rely on hiding the taken branch from the intruder,
one can of course easily make the messages of the branches
statically distinguishable and thus can also use messages of
different types.

The restriction on cell writes is significant, because it
essentially means that we cannot update the memory with an
arbitrary message sent by the intruder. Indeed, if the intruder
was able to send some message to a transaction that writes
this message in memory without doing any checks on it, then
we could not maintain the invariant that the intruder always
knows the types of the messages they observe.

The other requirements in Definition III.5 are not directly
about the intruder knowing the types of the messages. We
consider the requirements on the use of destructors as a
reasonable restriction that ensures compatible destructor appli-
cations: whenever a variable is decomposed, we can instantiate
the variable with a unique corresponding constructor term,
because for this decryption there is a unique rewrite rule or
for these projections/private extractions all rewrite rules are
defined over the same term. The requirement on the use of
constructor terms in messages sent will be useful when proving
the well-typedness of analysis: if a subterm in a message sent
is composed with a constructor that can be decomposed, it
should be an instance of the constructor term in the corre-
sponding rewrite rule. For instance, if we model signatures
with the rewrite rule open(K, sign(inv(K),M)) → M , then
signatures sent by honest agents must have a key starting
with inv and cannot use a variable in this place, e.g., we do
not allow sending sign(X,m), because sign(X,m) is not an
instance of sign(inv(K),M).

B. Message Patterns

To show the typing result, it is convenient to replace the
try mechanism for handling destructors by pattern matching.
In fact, the original (α, β)-privacy does not have a notion
of pattern matching, because in a general untyped model, it
is unclear how to define the semantics of such a construct
in a suitable way. However, for a specification that satisfies
the above restrictions, the intruder knows the type of every
message, and thus also knows whether a given message will
agree with a given pattern. Hence, we make a conservative
extension of the receive construct with pattern matching (under
the restrictions of Definition III.5).

Instead of rcv(X) for an intruder variable X , we now allow
also rcv(t) where t is a linear pattern term: it contains fresh
intruder variables, where each intruder variable can only occur
once, and no constants. The meaning is that the agent only
accepts an incoming ground message m, if m is an instance
of t and then binds the variables of t with the respective
subterms of m. (This ignores how an agent would be able to
check that m is an instance of t.) We give a formal definition
in Appendix A as a conservative extension of the semantics
on ground states of (α, β)-privacy in [12]. In a nutshell,
the original semantics transforms rcv(X).P for an incoming
intruder message m into P [X 7→ m] while the extended
semantics transforms rcv(t).P for message m into σ(P ) if
σ = mgu(m

.
= t) ̸= ⊥ and into 0 otherwise.3

The idea is now that we can replace try by pattern matching
and a condition, because the intruder already knows the type of
every message in their knowledge and thus knows whether the
messages they send will have the correct structures for every
destructor application to succeed. (Of course, a message with
the correct structure can still fail if it does not have the right
key for instance.) Consider, for instance,

rcv(X).try Y := dscrypt(k,X) in try Z := proj1(Y ) in P.

If the intruder sends for X any term that is not of the
form scrypt(K, pair(M,N)) (for some K, M , and N ) the
destructors are going to fail. Thus we can split the try’s
into a structural check that we can describe by a linear
pattern like scrypt(K, pair(M,N)) and a condition on the
pattern variables. This transformation allows us to get rid
of destructors in processes entirely. For the example, the
transformation is

rcv(scrypt(K, pair(M,N))).if K
.
= k then P ′

where P ′ = P [Y 7→ pair(M,N), Z 7→M ]. More generally:

Definition III.6 (Removing destructors). Let P be a trans-
action, from a protocol satisfying Definition III.5, that con-
tains a destructor application for decryption, i.e., P =
C[try Y := d(t,X) in P ′] for some process context
C[·] that does not contain any destructor applications. Let
d(k, c(k′, X1, . . . , Xn)) → Xi be the corresponding rewrite
rule with all variables freshly renamed. Let σ = [X 7→
c(k′, X1, . . . , Xn), Y 7→ Xi]. Then we replace the transaction
P with σ(C[if t .= k then P ′]).

In case of projectors or private extractors, X may ap-
pear in m destructor applications: we have try Y j :=
dj(X) in . . ., j ∈ {1, . . . ,m}, and rewrite rules of the
form dj(c(t1, . . . , tn)) → tj . Then we remove all destructor
applications for X since there are no keys, and we apply the
substitution [X 7→ c(t1, . . . , tn), Y

1 7→ t1, . . . , Y m 7→ tm] to
the transaction.

3The actual definition is more complicated since we model a symbolic
execution by the intruder where we have several possibilities rcv(t).Pi

and different frames structi representing the intruder knowledge in each
possibility, the intruder choosing one recipe r over the domain of structi
and m = structi(r).
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This transformation is repeated until the transaction does
not contain any destructor application anymore. The result is
denoted Ppat .

Example III.1. Consider a protocol in which a server chooses
an agent and makes a binary decision, then they receive a mes-
sage, try to decrypt it and send an encrypted reply containing
the decision and a nonce from the received message. We omit
type annotations for brevity but we will continue with this
example later. We now apply the transformation to find the
message patterns in the following transaction P :

⋆ x ∈ Agent. ⋆ y ∈ {yes, no}.
rcv(M).

try N := dcrypt(inv(pk(s)),M) in

try N1 := proj1(N) in

try N2 := proj2(N) in

if y
.
= yes then

νr.snd(crypt(pk(x), pair(yes, N1), r))

else νr.snd(crypt(pk(x), pair(no, N2), r))

The first step is to remove try N := dcrypt(. . . ) with the
substitution [M 7→ crypt(X,Y, Z), N 7→ Y ], and the second
step is to remove both projections with the substitution [Y 7→
pair(Y1, Y2), N1 7→ Y1, N2 7→ Y2]. We now have Ppat :

⋆ x ∈ Agent. ⋆ y ∈ {yes, no}.
rcv(crypt(X, pair(Y1, Y2), Z)).

if inv(pk(s))
.
= inv(X) then

if y
.
= yes then

νr.snd(crypt(pk(x), pair(yes, Y1), r))

else νr.snd(crypt(pk(x), pair(no, Y2), r)) ◁

Lemma III.1. A protocol satisfying Definition III.5 and its
transformation to use pattern matching according to Defini-
tion III.6 yield the same set of reachable ground states (up to
logical equivalence of the contained formulas α and β).

We now define how to compute the message patterns from
a protocol specification using the Ppat version of transactions:

Definition III.7 (Protocol message patterns). For a protocol
transaction P , we define patterns(P ) as the set of terms
occurring in Ppat . For a memory cell cell(·), we define the
message pattern cellpat as the message C[X], where C[·] is
the ground context for the initial value of cell(·) and X is a
variable of type Γ(cell), i.e., the argument type for the cell.
For a protocol Spec, we define patterns(Spec) as the union of
the patterns(P ) for every transaction P and of the cellpat for
every cell(·) in the specification (up to α-renaming of variables
so they are distinct in each transaction/cell).

Example III.2. Continuing Example III.1, we write the type
annotations in transaction P , where we assume that we have
three atomic types agent, decision and nonce. Every constant

in the set Agent and the constant s are of type agent, and the
constants yes, no are of type decision.

⋆ x ∈ Agent. ⋆ y ∈ {yes, no}.
rcv(M : crypt(pk(agent), pair(nonce, nonce), nonce)).

try N := dcrypt(inv(pk(s)),M) in

try N1 := proj1(N) in

try N2 := proj2(N) in

if y
.
= yes then

νr : nonce.snd(crypt(pk(x), pair(yes, N1), r))

else νr : nonce.snd(crypt(pk(x), pair(no, N2), r))

This corresponds to the message patterns

patterns(P ) = Agent ∪ {x, y, r, yes, no, inv(pk(s))}
∪ {inv(X), crypt(X, pair(Y1, Y2), Z),

crypt(pk(x), pair(yes, Y1), r),

crypt(pk(x), pair(no, Y2), r)}

where x is of type agent, y is of type decision, X is of type
pk(agent) and r, Y1, Y2, Z are of type nonce. ◁

C. Type-Flaw Resistance

The core part in the proof of our typing result is that
variables can always be instantiated with messages of the same
type. We first define the set of sub-message patterns, which
includes all subterms, well-typed instantiations and key terms.
To prove our result we will use the fact that every message in
the symbolic execution of the protocol is in this set of sub-
message patterns.

Definition III.8 (Sub-message patterns). The set of sub-
message patterns, SMP(M), of a set of terms M is the least
set closed under the following rules:

1) If t ∈M , then t ∈ SMP(M).
2) If t ∈ SMP(M) and t′ is a subterm of t, then t′ ∈

SMP(M).
3) If t ∈ SMP(M) and σ is a well-typed substitution, then

σ(t) ∈ SMP(M).
4) If t ∈ SMP(M), k and t′ are terms such that for some

destructor d we have d(k, t)→ t′ as an instance of the
rewrite rule for d, then k ∈ SMP(M).

With rule 4, we ensure that relevant decryption keys are in
SMP(M), because they may occur in the symbolic constraints
when performing analysis steps.

We have now everything in place to formally define type-
flaw resistance, which ensures that composed messages of
different types cannot be unified.

Definition III.9 (Type-flaw resistance). A set of terms M is
type-flaw resistant iff for all s, t ∈ SMP(M)\V we have that
Γ(s) = Γ(t) if s and t are unifiable.

A protocol Spec is type-flaw resistant iff it satisfies Defini-
tion III.5 and the set patterns(Spec) is type-flaw resistant.
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Remark III.2. Even though the set SMP(patterns(Spec)) is
infinite in general, the condition for type-flaw resistance can
be checked automatically using a finite representation. ◁

Example III.3. The protocol from Example III.2 is not type-
flaw resistant, because in the message patterns we have the
input pattern crypt(X, pair(Y1, Y2), Z) and an output pattern,
e.g., crypt(pk(x), pair(yes, Y1), r), which can be unified even
though they have different types: the mgu [X 7→ pk(x), Y1 7→
yes, Y2 7→ yes, Z 7→ r] is not well-typed since Γ(Yi) ̸= Γ(yes).

One can make the protocol type-flaw resistant by using for-
mats, for instance by replacing the function pair with f1 in the
input and with f2 in the outputs, where the fi are transparent
functions (this requires also replacing the projectors in the
process). ◁

IV. TYPING RESULT FOR CONSTRAINT SOLVING

Like many other works for checking security goals, the
decision procedure for (α, β)-privacy [13] uses symbolic con-
straints to represent the messages sent by the intruder. To
solve the constraints, the variables standing for the intruder-
generated messages are instantiated in a demand-driven way,
and this part of the procedure is called the lazy intruder.
Our main result Theorem V.1 says that, for type-flaw resistant
protocols, whenever the intruder is sending a message, we can
without loss of generality consider that the message is well-
typed. Thus, for the typing result to hold, we need to make
sure that the solutions computed with the lazy intruder always
perform well-typed instantiations.

The lazy intruder rules defined below compute the different
recipes that can be used by the intruder in order to solve the
constraints in the FLICs. As a preparation, we give here the
definition of a choice of recipes and how to apply it to a simple
FLIC, i.e., once the intruder is instantiating some recipes,
the FLICs are updated to instantiate the recipe variables and
corresponding intruder variables. Note that applying a choice
of recipes is only defined for simple FLICs: whenever there
are constraints to solve, this is done with the lazy intruder for
just one FLIC and afterwards the results are applied to all the
FLICs in the symbolic states (they are always simple).

Definition IV.1 (Choice of recipes [13]). A choice of recipes
for a simple FLIC A is a substitution ρ mapping recipe
variables to recipes, where dom(ρ) ⊆ rvars(A).

Let [R 7→ r] be a choice of recipes for A that maps only one
recipe variable, where A = A1.+R 7→ X.A2. Let R1, . . . , Rn

be the fresh variables in r, i.e., {R1, . . . , Rn} = rvars(r) \
rvars(A), taken in a fixed order (e.g., the order in which they
first occur in r). Let X1, . . . , Xn be fresh intruder variables.
The application of [R 7→ r] to the FLIC A is defined as [R 7→
r](A1.+R 7→ X.A2) = A′.σ(A2) where A′ = A1.+R1 7→
X1. · · · .+Rn 7→ Xn and σ = [X 7→ A′(r)].

For the general case, let ρ be a choice of recipes for A.
Then we define ρ(A) recursively where one recipe variable
is substituted at a time, and we follow the order in which the
recipe variables occur in A: if ρ = [R 7→ r]ρ′, where R occurs
in A before any R′ ∈ dom(ρ′), then ρ(A) = ρ′([R 7→ r](A)).

Every application [R 7→ r](A) corresponds to a substitution
σ = [X 7→ A′(r)] (as defined above), and we denote with σA

ρ

the idempotent substitution aggregating all these substitutions
σ from applying ρ to A.

Example IV.1. Consider the FLIC A = +R 7→ M . Let ρ be
the choice of recipes [R 7→ crypt(pk(s), pair(R1, R2), R3)].
Then we remove the mapping for R and M , and we in-
troduce new mappings with fresh intruder variables, so we
have ρ(A) = +R1 7→ X1.+R2 7→ X2.+R3 7→ X3. The
substitution [M 7→ crypt(pk(s), pair(X1, X2), X3) is also
applied, but here there were no messages received containing
M anyway. ◁

The decision procedure actually considers at first an in-
truder who cannot apply destructors (and thus cannot analyze
messages) but only constructors. The analysis is actually
performed as a later step. Thus, the constraint solving with
the lazy intruder works in the free algebra.

The lazy intruder reduces symbolic constraints expressed
as a FLIC until all messages to send are distinct intruder
variables. This reduction is defined as a set of rules, covering
the different ways the intruder is able to send a message.

Definition IV.2 (Lazy intruder rules [13]). The relation ⇝
is a relation on triples (ρ,A, σ), where A is a FLIC, ρ is a
choice of recipes such that dom(ρ) ∩ rvars(A) = ∅ and σ is
a substitution such that dom(σ) ∩ vars(A) = ∅.

• Unification: (ρ,A1.−l 7→ s.A2.+R 7→ t.A3, σ) ⇝
(ρ′, σ′(A1.−l 7→ s.A2.A3), σ

′) if A1.−l 7→ s.A2 is
simple, s, t /∈ V and σ′ ̸= ⊥, where ρ′ = [R 7→ l]ρ
and σ′ = mgu(σ ∧ s .

= t).
• Composition: (ρ,A1.+R 7→ f(t1, . . . , tn).A2, σ) ⇝

(ρ′,A1.+R1 7→ t1. · · · .+Rn 7→ tn.A2, σ) if A1 is
simple, f ∈ Σpub and σ ̸= ⊥, where the Ri are fresh
recipe variables and ρ′ = [R 7→ f(R1, . . . , Rn)]ρ.

• Guessing (ρ,A1.+R 7→ x.A2, σ) ⇝ (ρ′, σ′(A1.A2), σ
′)

if A1 is simple, x ∈ Vprivacy , c ∈ dom(x) and σ′ ̸= ⊥,
where ρ′ = [R 7→ c]ρ and σ′ = mgu(σ ∧ x .

= c).
• Repetition (ρ,A1.+R1 7→ X.A2.+R2 7→ X.A3, σ) ⇝

(ρ′,A1.+R1 7→ X.A2.A3, σ) if A1.+R1 7→ X.A2 is
simple and σ ̸= ⊥, where ρ′ = [R2 7→ R1]ρ.

The Unification rule means that to produce an outgoing term
t, the intruder can use any term s previously received, if s and
t are unifiable and s and t are not variables. If t is a variable it
means that, at least at this moment, we have no constraints on
t and the intruder can send any message they can construct.
The lazy intruder technique avoids the blind and pointless
exploration by simply leaving the variable as is as long as it is
not substituted. If s is a variable, it means that s is a message
sent by the intruder earlier that a transaction returned directly
and thus also does not need to be considered. The Unification
rule is in fact where the typing result is latching in: if the
protocol is type-flaw resistant and s and t are not variables
but unifiable, then they must have the same type and their
most-general unifier thus be well-typed.
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The other rules are just briefly explained: Composition
means that the intruder can produce f(t1, . . . , tn) if f is public
and the ti are producible. When the intruder has to produce a
privacy variable x, the Guessing rule models any guess that the
intruder can take for it (right or wrong). The Repetition rule
says that if the constraint for the intruder is to send the same
message as a previous one, we can take the same recipe as the
previous one. The soundness, completeness, and termination of
the procedure, i.e., that from a given FLIC,⇝ reaches finitely
many simple FLICs that cover the same set of solutions as the
given FLIC, is proved in [13].

To see that the lazy intruder never performs ill-typed solu-
tions, first observe that every lazy intruder rule preserves the
well-typedness of the substitution σ of variables performed in
previous lazy intruder reduction steps. Let terms(A) = {t |
−l 7→ t ∈ A or +R 7→ t ∈ A} be the set of terms occurring
in a FLIC A.

Lemma IV.1. Let Spec be a type-flaw resistant protocol, A
be a FLIC such that terms(A) ⊆ SMP(patterns(Spec)), ρ
be a choice of recipes such that dom(ρ) ∩ rvars(A) = ∅, σ
be a well-typed substitution such that dom(σ)∩vars(A) = ∅,
and (ρ′,A′, σ′) be such that (ρ,A, σ)⇝ (ρ′,A′, σ′). Then σ′

is well-typed.

The reduction with⇝ defines how to simplify FLICs. In the
transition system, only the choices of recipes coming out of
this simplification are used: the lazy intruder solves constraints
and then the results are applied to a symbolic state.

Definition IV.3 (Lazy intruder results [13]). Let A be a
FLIC and σ be a substitution. Let ε be the identity sub-
stitution. We define LI (A, σ) = {ρ | (ε, σ(A), σ) ⇝∗

(ρ,A′, _),A′ is simple}.

Example IV.2. Suppose that the transaction from Exam-
ple III.1 has been executed once already, where the in-
truder has sent crypt(pk(s), pair(X1, X2), X3) for the in-
put, and that the transaction is executed a second time.
Let A = +R1 7→ X1.+R2 7→ X2.+R3 7→ X3.−l 7→
crypt(pk(x), pair(yes, X1), r).+R 7→ M be a simple FLIC.
The label l corresponds to the reply from the server and the
mapping +R 7→M is the second input.

Let σ = [M 7→ crypt(pk(s), pair(Y1, Y2), Y3)] rep-
resent constraints to solve. With the lazy intruder rules,
we get the results LI (A, σ) = {ρ1, ρ2}, where ρ1 =
[R 7→ crypt(pk(s), pair(R4, R5), R6)] and ρ2 = [R 7→
l]. That is to say, either the intruder composes a mes-
sage themselves or they reuse the message they re-
ceived. Then applying the choice of recipes is done on
the simple FLICs: ρ1(A) = +R1 7→ X1.+R2 7→
X2.+R3 7→ X3.−l 7→ crypt(pk(x), pair(yes, X1), r).+R4 7→
X4.+R5 7→ X5.+R6 7→ X6 and the substitution [M 7→
crypt(pk(s), pair(X4, X5), X6)] is also applied in the process.
This is done similarly for the FLIC where the message received
contains no.

For the case where ρ2 is applied instead, in the FLICs
the last mapping is simply removed and then the substitu-

tion would be different in each possibility since the label
maps to different messages: in one possibility we substitute
[M 7→ crypt(pk(x), pair(yes, X1), r)] and in the other [M 7→
crypt(pk(x), pair(no, X2), r)]. ◁

We extend the notion of well-typed substitutions to well-
typed choices of recipes:

Definition IV.4 (Well-typed choice of recipes). Let A be a
simple FLIC and ρ be a choice of recipes for A. We say that
ρ is well-typed w.r.t. A iff for every +R 7→ X ∈ A, we have
Γ(X) = Γ(ρ(A)(ρ(R))).

Example IV.3. Continuing Example IV.2, note that
ρ2 = [R 7→ l] is not well-typed w.r.t. A, because we have
Γ(M) = crypt(pk(agent), pair(nonce, nonce), nonce) but
Γ(ρ2(A)(l)) = crypt(pk(agent), pair(decision, nonce), nonce).
This is exactly the type-flaw vulnerability illustrated in
Example III.3. If formats are added to achieve type-
flaw resistance, i.e., pair in the input is replaced with
f1 and pair in the output is replaced with f2, then
ρ2 = [R 7→ l] would not be returned by the lazy
intruder. However, the lazy intruder composing the message
themselves would still be a solution and the result would
be ρ1 = [R 7→ crypt(pk(s), f1(R4, R5), R6)]. We then have
ρ(A)(ρ(R)) = crypt(pk(s), f1(X4, X5), X6), where the
variables X4, X5, X6 are of type nonce, so ρ1 is well-typed
w.r.t. A. ◁

We can now conclude that the lazy intruder results are doing
only well-typed instantiations.

Theorem IV.1 (Lazy intruder well-typedness). Let Spec be
a type-flaw resistant protocol, A be a simple FLIC such that
terms(A) ⊆ SMP(patterns(Spec)) and let σ be a well-typed
substitution. Then every ρ ∈ LI (A, σ) is well-typed w.r.t. A.

V. TYPING RESULT FOR STATE TRANSITIONS

In the transition system considered, each state is symbolic
in that the privacy and intruder variables are used to represent
infinitely many ground states that are instances of the symbolic
states. In each symbolic state, we have formulas to represent
the payload and the intruder deductions, a set of possibilities
and a set of pairs (label, recipe) to keep track of the intruder
experiments (comparisons between two recipes) already per-
formed. In each possibility, there is a process for the steps of a
transaction that remain to be executed, a formula representing
the conditions under which the possibility can be reached, a
FLIC (lifting the frame that would be in a ground state), some
disequalities formula over intruder variables (for the cases
where the intruder is not solving constraints), a formula for
the releases done in that possibility and finally a sequence of
memory updates.

Definition V.1 (Symbolic state [13]). A symbolic state is a
tuple (α0, β0,P,Checked) such that:

• α0 is a Σ0-formula, the common payload;
• β0 is a Σ0-formula, the intruder reasoning about possi-

bilities and privacy variables;

10



• P is a set of possibilities, which are each of the form
(P, ϕ,A,X , α, δ), where P is a process, ϕ is a Σ0-
formula, A is a FLIC, X is a disequalities formula, α is
a Σ0-formula called partial payload, and δ is a sequence
of memory updates of the form cell(s) := t for messages
s and t;

• Checked is a set of pairs (l, r), where l is a label and r
is a recipe;

where disequalities formulas are of the following form:

X := X ∧ X | ∀X⃗. ¬X0 Disequalities formula
X0 := X0 ∧ X0 | s

.
= t Equalities formula

A symbolic state is finished iff all the processes in P are 0.
Let dom(S) be the domain of the FLICs in S (the domain is
the same in every FLIC).

[13] defines a relation ⇒ on symbolic states, which de-
scribes how the intruder evaluates the processes in the different
possibilities, and how they contrast this evaluation with their
observations. They continue to show the correctness of this
relation with respect to the semantics on ground states.

Since we have made an extension for pattern matching for
ground states, we now define how to handle this construct
for symbolic states, extending the relation ⇒ and proving
correctness for this case. To that end, we use the lazy intruder
to consider all choices of recipes producing a linear pattern:
the intruder can either use a label that produces a message of
the same type, or compose the pattern themselves. We ensure
that if a label is a solution in one FLIC, it is a solution in every
FLIC. This is why the linearity requirement in rewrite rules is
crucial, since the type information cannot distinguish variables
of the same type. For instance, if a message rcv(f(X,X)) was
expected, it might be that in one FLIC a label l maps to f(t, t)
for some message t of type τ , and in another FLIC the label l
maps to f(t, s) where s ̸ .= t but s is still of type τ . We instead
consider only linear patterns, so in the example we might
have rcv(f(X,Y )) (the transaction could still check whether
X

.
= Y after the receive). Similarly, we forbid constants in

patterns because otherwise we cannot, using only the type
information, know which value matches a pattern.

Definition V.2 (Receiving message patterns). We extend the
semantics of receive steps to support linear patterns, with the
following transition:

{(rcv(t).P1, ϕ1,A1,X1, α1, δ1), . . . ,

(rcv(t).Pn, ϕn,An,Xn, αn, δn)}
⇒ {(σ1(P1), ϕ1,A′

1, σ1(X1), α1, σ1(δ1)), . . . ,

(σn(Pn), ϕn,A′
n, σn(Xn), αn, σn(δn))}

where R is a fresh recipe variable and X and a fresh intruder
variable, ρ ∈ LI (A1.+R 7→ X, [X 7→ t]), A′

i = ρ(Ai.+R 7→
X), and σi = σAi.+R 7→X

ρ – and every σi(Xi) is satisfiable.

Moreover, there is also the following transition if t /∈
Vintruder :

{(rcv(t).P1, ϕ1,A1,X1, α1, δ1), . . . ,

(rcv(t).Pn, ϕn,An,Xn, αn, δn)}
⇒ {(0, ϕ1,A1,X1, α1, δ1), . . . , (0, ϕn,An,Xn, αn, δn)}

When receiving a pattern, the intruder can either reuse
a label or compose the message themselves. The different
choices of recipes are computed with the lazy intruder, and
since a label maps to messages of the same type in every
FLIC, if using a label is a solution in one FLIC, then it is
a solution in every FLIC: the linear pattern t contains only
fresh variables and no constants, so it can be unified with any
message of the same type.

Example V.1. Continuing Example III.1, the transaction Ppat

starts by receiving the pattern rcv(crypt(X, pair(Y1, Y2), Z).
The intruder may compose that message themselves with
the recipe crypt(RX , pair(RY1 , RY2), RZ). Another solution,
assuming they have observed earlier a message −l 7→
crypt(pk(s), pair(n1, n2), r) sent by an honest agent, is to use
the label l to instantiate the pattern (if there are multiple
possibilities, this same label could map in other FLICs to other
messages of the same type, e.g., where the nonces are different,
and the substitutions are done in each process). ◁

This conservative extension means that even when receiving
patterns, we keep FLICs simple. The rest of the semantics
is the same as in [13] (we give the full definitions in Ap-
pendix A).

Lemma V.1. Given a type-flaw resistant specification, then
the set of reachable states in the symbolic semantics represents
exactly the reachable states of the ground semantics.

During the exploration of reachable states, the intruder
can perform experiments by comparing the outcome of two
recipes. An important notion is that of normal symbolic
state, meaning that the intruder has performed all relevant
experiments and cannot distinguish the different possibilities
anymore.

Definition V.3 (Pairs and normal symbolic state [13]). Let
S = (_, _,P,Checked) be a symbolic state. The set of pairs
of recipes to compare in S is

Pairs(S) = {(l, ρ(R)) | l ∈ dom(S), (_, _,A, _, _, _) ∈ P,
ρ ∈ LI (A.+R 7→ A(l), ε), ρ(R) ̸= l}
\ Checked

We say that S is normal iff S is finished and Pairs(S) = ∅.

The lazy intruder is used in two ways for the experiments:
(i) to compute recipes that can be compared to labels, and
(ii) to solve constraints whenever the outcome of an experi-
ment depends on messages sent earlier. Since we have already
shown that the lazy intruder results are well-typed, we have
the guarantee that in a experiment with a pair (l, r), the label
l and the recipe r produce messages of the same type and all
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transitions to determine the outcome of an experiment are only
doing well-typed instantiations. Thus, there is nothing more to
show for intruder experiments.

It remains to show that analysis also never introduces ill-
typed instantiations. In a normal symbolic state, the intruder
can perform analysis by decrypting messages in their knowl-
edge, if they know the appropriate key. The analysis is always
done in normal states, i.e., after the experiments.

In [13], the analysis is performed through destructor or-
acles, which are defined as transactions available to the
intruder: for every public destructor d, the correspond-
ing oracle is the transaction rcv(K).rcv(M).try N :=
d(K,M) in snd(N).snd(K). This transaction receives a can-
didate key and a message, tries to decrypt the message with
the key and sends back the result if the decryption succeeded.
(The oracles for projectors are omitted here as the handling is
similar. Private extractors are not accessible to the intruder so
there are no oracles for them.)

These destructor oracles do not work directly with
the typing result: since they are defined as transactions,
the computation of the sub-message patterns set SMP
would need to include the patterns from the destructor
oracles. This prevents us from achieving type-flaw
resistance even for reasonable protocols and when
formats are used. For instance, consider a protocol that
uses several times crypt but with contents of different
types, e.g., crypt(pk(agent), f1(agent), nonce) and
crypt(pk(agent), f2(nonce), nonce). To compute the message
patterns, we have to consider the transformed destructor oracle
that uses pattern matching instead of try; for dcrypt, this would
yield the transaction rcv(K).rcv(crypt(X,Y, Z)).if K

.
=

inv(X) then snd(Y ).snd(K). We have the pattern
crypt(X,Y, Z), because the decryption does not care
about the actual content of the message but just about
whether the key is correct. If we assume that there are
multiple instances of this transaction where only the type
annotations change (to cover all possible types), we would
have crypt(X1, Y1, Z1) and crypt(X2, Y2, Z2) in SMP ,
with for instance Γ(Xi) = pk(agent), Γ(Zi) = nonce,
Γ(Y1) = f1(agent) and Γ(Y2) = f2(nonce). These two
message patterns are unifiable but have different types, so
type-flaw resistance is not achieved.

However, the procedure from [13] does not blindly apply
destructor oracles but always restrict the step rcv(M) to using
a label l as recipe for message M , where l maps to a message
composed with the top-level constructor corresponding to the
oracle. Therefore, we can be more precise and specialize the
processes coming out of the destructor oracles: instead of a
general pattern like crypt(X,Y, Z), we only consider instances
of that pattern with messages that the intruder has observed,
e.g., crypt(pk(a), f1(A), R), so that all terms in the FLICs
remain in the set SMP .

We define analysis steps as part of the transition system
instead of special transactions. We will show that, for a type-
flaw resistant protocol, this alternative way of performing
analysis is equivalent to using destructor oracles. The benefit

of our formulation of analysis is that we ensure all messages
are instances of the protocol message patterns, and thus we
can obtain the typing result.

Definition V.4 (Analysis transition). Let S be a reachable
symbolic state in a type-flaw resistant protocol. The transition
for analysis is:

{(0, ϕ1,A1,X1, α1, δ1), . . . , (0, ϕn,An,Xn, αn, δn)}
⇒•{(P1, ϕ1,A1,X1, α1, δ1), . . . , (Pn, ϕn,An.,Xn, αn, δn)}

if S is normal and there exist a label l ∈ dom(S) and a public
destructor d ∈ Σpub such that l may be analyzed with d, i.e.,
for every i ∈ {1, . . . , n}, −l 7→ c(k′i, t

1
i , . . . , t

m
i ) ∈ Ai where

d(ki, c(k
′
i, t

1
i , . . . , t

m
i ))→ tji (for some j ∈ {1, . . . ,m}) is an

instance of the rewrite rule for d and for every i ∈ {1, . . . , n},
let Pi = rcv(X).if X

.
= ki then snd(tji ).snd(ki). In case c is

transparent, we define Pi = snd(t1i ). · · · .snd(tmi ).

Remark V.1. The processes Pi that we put in each possibility
are exactly the instances of the corresponding destructor ora-
cle, after transformation to pattern matching and substitution
of the message to analyze with the respective message that the
label maps to in each FLIC. ◁

Example V.2. Continuing Example III.1, suppose the intruder
is an agent with their own private key, they have sent the
message crypt(pk(s), pair(X1, X2), X3) to the server and re-
ceived a reply. The intruder knowledge is represented with two
possibilities, where one of them contains the following FLIC:

−l1 7→ inv(pk(i)).+R1 7→ X1.+R2 7→ X2.+R3 7→ X3.

−l2 7→ crypt(pk(x), pair(yes, X1), r)

The other possibility contains a similar FLIC with
pair(no, X2) in the reply. Applying the transition for anal-
ysis means that we execute the process rcv(X).if X

.
=

inv(pk(x)) then snd(pair(yes, X1)).snd(inv(pk(x)) (respec-
tively snd(pair(no, X2))). Assuming the intruder does not
know any other private key, the lazy intruder would return
the label l1 for instantiating the message X , which means
X = inv(pk(i)).

This yields two symbolic states, one in which decryption
succeeded and one in which it failed. If it succeeded, the
intruder would learn x

.
= i and receive the decrypted pair;

projecting the pair, the intruder would learn whether y .
= yes.

If it failed, they would learn x ̸ .= i but nothing about y. ◁

We can now consider two transition relations on states.
=⇒ is induced by the original semantics from [13], i.e.,
processing a transaction with the evaluation of the process
and then normalizing a state, where the transactions include
the destructor oracle rules. In contrast, we define in this paper
a new relation =⇒• that replaces the destructor oracle rules
by the analysis transitions ⇒• of Definition V.4.4 The formal
definitions of these relations are given in Appendix A.

4In this form, both transition systems admit infinite sequences of analysis
steps (e.g., attempting repeatedly to decrypt the same message), but [13] shows
that there is a terminating strategy to saturate the intruder knowledge after
every transaction. This strategy can here be applied in the same way, but this
is orthogonal to our result.
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We have made two changes changes to the procedure
of [13]: first, we have replaced explicit destructor applications
with pattern matching (Definitions III.6 and V.2) and second,
we have replaced destructor oracles with analysis transitions
(Definition V.4). In Lemmas III.1 and V.1, we have already
shown that, for type-flaw resistant protocols, using pattern
matching instead of explicit destructor applications is correct.
Thus for every transaction P in the protocol specification, we
now consider that the transaction Ppat is executed instead of
P . That way, we ensure that the messages in the symbolic
constraints are always in the set of sub-message patterns SMP
of the protocol. For type-flaw resistant protocols, the analysis
transitions are equivalent to destructor oracles, and thus the
two transition relations are the same:

Lemma V.2. Given a type-flaw resistant protocol, =⇒= =⇒•.

Moreover, for type-flaw resistant protocols, all instantiations
performed by the transition =⇒• are well-typed. Thus we
conclude and obtain our main typing result, which holds for
an unbounded number of transitions:

Theorem V.1 (Typing result). Given a type-flaw resistant
protocol, it is correct to restrict the intruder model to well-
typed recipes/messages for verifying privacy.

VI. CASE STUDIES

We use the protocols modeled in [13], [15] as case studies
for our typing result: we show for each how to achieve type-
flaw resistance requirements or why that is not possible in a
reasonable way in case of one of the protocols. We summarize
our results here; the models, together with more details, are
in Appendix C.

a) Basic Hash [17]: In this RFID protocol, a tag sends to
a reader a pair of messages containing a nonce and a MAC,
using a secret key shared between tag and reader. Then the
reader tries to recompute the MAC with every secret key they
know to identify the tag (this behavior of the reader is modeled
with a private extractor that retrieves the tag name from the
MAC). Basic Hash is type-flaw resistant, where for the type
annotations, we consider that we have the following atomic
types: tag, used for the names of the tags and the privacy
variable representing some tag name; nonce, used for the fresh
number created by the tag; and ok, used for the reply from
the reader when identification succeeds.

b) OSK [18]: This protocol is out of the scope of our
typing result. In OSK, similarly to Basic Hash, a reader tries
to identify a tag. However, in OSK, both the tag and the reader
use memory cells as ratchets (initialized with a shared secret),
instead of a MAC. The processes contain steps like S :=
cell[x].cell[x] := h(S) representing a turn of the ratchet with
the application of a hash function, and thus the updates change
the type of the content stored in memory, which is not allowed
by Definition III.4.

c) BAC [19]: This standard RFID protocol is used to
read data from passports. A tag and a reader perform a
challenge-response, where the tag sends a nonce and an

encrypted message containing that nonce, and the reader
receives both and verifies that the nonces match. In the model
from [15], there is a non-empty catch branch and thus it
violates our requirements. However, the interesting aspect of
the try in this case—namely that it can reveal whether it is
the right agent—is independent of whether it is an encryption
in the first place (which the intruder knows). Thus with
the pattern matching notation introduced in this paper, we
can equivalently formulate this as a pattern match and an
if condition with a non-empty else branch and achieve the
requirements of type-flaw resistance.5

d) Private Authentication: This protocol from [16] mod-
els agents that encrypt messages using a public-key infrastruc-
ture. The initiator sends a message containing their name and
a nonce, and the responder either sends back a message with
a fresh nonce or sends a decoy message. The model of [15]
violates our requirements in three regards. First, the decoy
message is a fresh nonce, while a normal reply is an encrypted
message. It is intended that the intruder in general cannot
tell which one is the case, violating our requirement that in
this case the messages must have the same type. However,
the original model from [16] actually ensures that the decoy
message is of the same type as the regular message: it is an
encryption of a fresh nonce with a fresh key. Following this,
the requirement is actually met, as the intruder now in each
case knows the type of each message (just not whether its
content and key are dummy or regular). Second, there are
non-empty catch branches which however can now be solved
using our pattern matching notation as in the case of BAC.
Third, the message from the initiator and the reply from the
responder are unifiable but do not have the same type. Like
for Runex, we can use formats to solve this third issue and
thus achieve type-flaw resistance.

In Table I, we report the execution time of the noname
tool, where we compare the models from [13], [15] to our
models that include reasonable adaptations to achieve type-
flaw resistance. In all cases, we only considered the variants
of the protocols that do not have any privacy violation (at
least until the bounds verified). For Private Authentication,
the variant where agents always want to talk to other agents is
denoted AF0, while the variant where agents might not want
to talk to some other agents is denoted AF.

For BAC and Private Authentication, we have been able to
solve the issue of non-empty catch branches by using pattern
matching. Thus, one may wonder if we could not do that in
general and drop some restrictions on our typing result. In fact
here is an example that we would not be able to transform to
pattern matching:

rcv(X).

try Y := dscrypt(k,X) in snd(h(Y ))

catch snd(sign(inv(pk), X))

5Currently the noname tool of [15] does not support the pattern matching
notation, but it can be simulated using private extractors.
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TABLE I
EVALUATION OF EXECUTION TIME FOR CASE STUDIES

Protocol Bound Untyped Type-flaw resistant Ratio

Basic Hash 4 1.87s 1.87s 1

BAC 4 1.08s 1.08s 1

AF0 2 5.88s 4.05s 1.45
AF0 3 4min38.12s 2min45.84s 1.68
AF 2 10.24s 7.63s 1.34
AF 3 12min47.76s 8min51.26s 1.45

Untyped = models from [13], [15]
Type-flaw resistant = models described in this paper
Machine used: laptop with i7-4720HQ @ 2.60GHz, 8GB RAM
GHC 9.8.1, cvc5 1.1.1

where the message in the catch is a signed (error) message
on the input X . Even if the intruder knows a priori that a
particular message is not decipherable, obtaining the signature
on it may be relevant in an attack that cannot be done in a
well-typed way.

VII. RELATED WORK AND CONCLUSION

Why a typing result? There are in our view four benefits:
robust engineering, efficiency, decidability, and simplifying
interactive theorem proving. First, robust engineering: we
spend a few extra bits (if not already present) to explicitly say
what messages mean and thereby “solve” type-flaw attacks.
In fact, the intruder can still take an encrypted message and
send it in a place where a nonce is expected (thus still sending
an “ill-typed” message), but due to the clear annotation of the
meaning, every honest agent will always treat this bitstring as
a nonce and never try to decrypt it. Hence, if there is an attack,
the same attack would work if the intruder had indeed sent a
random nonce, and it is thus sound to consider an intruder
model with only well-typed messages.

This leads to efficiency. The first typing result was by
Heather et al. [2] and supports the Casper tool based on
the model checker FDR2 to explore the state space. This
requires bounds on the number of steps honest agents and
the intruder can perform; restricting the intruder to well-typed
messages drastically cuts down the search space. Similarly, the
model checker SATMC of the AVISPA Tool and AVANTSSAR
Platform requires a typed model [20], [21], [22]. The result
of Heather et al. [2] and several that followed are based on
inserting tags into messages. This has a disadvantage when we
consider existing protocols, say TLS, that do use some tagging
but do not follow the precise tagging scheme of the typing
result in question—then that result is simply not applicable.
We follow the approach of Hess and Mödersheim [7] and
model the concrete formatting of messages in a protocol
implementation by using transparent functions, where different
functions represent disjoint formats in the implementation.
This style of typed model is compatible, e.g., with TLS 1.2.
Several results have shown how to apply typing result to
larger classes of protocols and properties, e.g., Arapinis and

Duflot [4] show how to extend beyond secrecy goals, and Hess
and Mödersheim [7] how to extend to stateful protocols.

For several typing results, including the present one, the
proof is based on a constraint-based representation of protocol
executions, sometimes called the lazy intruder. The core of
the proof is to show that the constraint solving procedure
for the lazy intruder constraints never performs an ill-typed
substitution when applied to a constraint that originates from
a type-flaw resistant protocol. Originally, the lazy intruder was
however devised not as a proof technique but as a symbolic
model-checking technique, namely in tools like OFMC and
CL-Atse of AVISPA and AVANTSSAR [23], [24], [25], [21],
[22], and the noname tool for (α, β)-privacy [13]. It is in the
nature of the matter that these tools, for a type-flaw resistant
protocol, will not consider any ill-typed messages, so the
restriction to a typed model does not further cut down the
size of the state space they explore.

The mentioned model-checking approaches are concerned
with bounded number of steps of the honest agents. However,
for verifying protocol security without such bounds, one of
the most popular tools is ProVerif [26], based on abstract
interpretation, basically abstracting the fresh messages into a
coarser set of abstract values, while maintaining unbounded
steps of both honest agents and intruder. This is in general
still undecidable, but with a typed model, it becomes decidable
as shown in [3]: essentially, we will have finitely many
equivalence classes and thereby a finite set of well-typed
messages that can occur in the saturation of Horn clauses that
represent “what can happen”. A similar tool based on abstract
interpretation is PSPSP [27], which relies on a typed model
and computes a finite fixedpoint for stateful protocols. While
the abstraction is in general an over-approximation, PSPSP
implements a decision procedure for the resulting abstraction
under a typed model.

There are currently no tools and methods for (α, β)-privacy
that perform verification for an unbounded number of sessions;
therefore we currently cannot demonstrate how a typed model
can help here and possibly allow for a decision procedure here,
as well, but this seems very likely.

Finally, concerning interactive theorem proving, the first
results in Isabelle/HOL by Paulson [28] in fact use a typed
model (without any typing result). It underlines how the typed
model allows for easier reasoning than dealing with ill-typed
messages in manual proofs. Similarly, the compositionality
result of Hess et al. [29] in Isabelle relies on typed model.
We envision that a similar compositionality result is possible
for (α, β)-privacy and will also largely benefit from a typed
model.

A major challenge, and in fact the focus of this paper, is
to give a typing result for privacy-type properties, where the
most common approaches work with models based on trace-
equivalence. Chrétien et al. [8], [30] are, to our knowledge, the
only major results for this question, and thus also the related
work closest to ours. Since our approach is based on (α, β)-
privacy, it plays a quite different game but results in [12, §V]
suggest that the two notions have similar expressive power.
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Our work is more general than Chrétien et al. in the
following three regards. First, they require that protocols are
deterministic and they do not support if-then-else branching.
In contrast, we allow non-deterministic choice of privacy
variables by honest agents and if-then-else with conditions
that can refer to all messages in scope (including privacy vari-
ables). This generalization is significant because it allows for
protocols where the privacy also depends on the control flow,
e.g., where the intruder does not know whether a recipient
accepted a message (and sent a legitimate answer) or not (and
sent a dummy answer). Note also that a common restriction
for verification tools is the notion of diff-equivalence which (at
least in its original form) forbids dependence on conditions.

A second generalization is the handling of constructors and
destructors. [30] does not model destructors in the processes
(only in the intruder model) and rather obtains decryption by
pattern matching. We instead support the explicit application
of destructors by honest agents that (α, β)-privacy uses in try-
catch statements, where we only require the catch branch to be
the nil process, i.e., honest agents just abort when decryption
fails. We in fact turn this into a pattern-matching problem,
but it is part of the method (and its soundness proof) rather
than being part of the model. Note that we assume that failure
of a destructor is detectable; this is significant as an intruder
may learn something from this failure. It seems reasonable to
assume for the constructor-destructor theories supported here
as most standard cryptographic implementations of primitives
like AES and RSA indeed reveal if decryption failed. An inter-
esting question is how to handle more algebraic properties like
those of exponentiation with inverses that does not allow to
detect failure to “decrypt” in general. However, such algebraic
properties are not supported by any of the mentioned typing
results.

A final generalization is that our approach supports protocol
with long-term state (the memory cells). An interesting aspect
of this is that there are several results concerning decidability
based on typing and bounding the number of fresh nonces; one
may wonder if this is also applicable in our case. However,
there is an obstacle since our argument requires an infinite
supply of constants of all types for the intruder to solve the
disequalities that arise, among other things, from handling the
long-term state. We thus leave this question to future work.

Another closely related problem is that of compositionality,
which is also regarded as a relative soundness result: given
that several protocols are secure in isolation, can we show
that also their composition is secure? It works indeed also
by similar methods, namely transforming an attack against
the composed system to an attack against one component.
Since here one of the key problems is when the attacker
can use messages from one component in another component,
and a solution can be similarly some form of tagging, one
could call compositionality a form of “typing” for a family of
protocols. In fact, typing can thus be a stepping stone for a
compositionality result [7] and we plan to investigate if this
is possible for (α, β)-privacy.
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APPENDIX

A. Semantics

We give here the rules for executing a transaction and
normalizing symbolic states (i.e., performing intruder exper-
iments). The semantics below are taken directly from [13],
except for the extension to receiving message patterns that
we explicitly say is introduced in this paper. We add brief
text explanations to the semantics, and we also give our
formulation of the relations inducing the overall state transition
system.

1) Execution of a Transaction: The following rules define
the symbolic execution done by the intruder. For each rule, we
give two versions: the rule for ground states, and the rule for
symbolic states. A ground state contains a formula γ called the
truth formula, which records the actual value of every privacy
variable. This formula γ is not known by the intruder, but it
uniquely determines in the ground state one possibility. This
possibility, which is underlined in the rules, represents the
possibility that really is the case, i.e., the concrete observations
by the intruder are an instance of the structural frame in that
case.

a) Non-Deterministic Choice: A privacy variable is cho-
sen from a set of public constants. This step happens at the
same time in every possibility, since the choices are in the left
part of processes.

On the ground level, the rule is:

{(mode x ∈ D.P1, ϕ1, struct1, δ1), . . . ,

(mode x ∈ D.Pn, ϕn, structn, δn)}
→ {(P1, ϕ1, struct1, δ1), . . . , (Pn, ϕn, structn, δn)}

where γ is augmented with x
.
= c, and if mode = ⋆ (resp.

mode = ⋄) then α (resp. β0) is augmented with x ∈ D.
On the symbolic level, the rule is:

{(mode x ∈ D.P1, ϕ1,A1,X1, α1, δ1), . . . ,

(mode x ∈ D.Pn, ϕn,An,Xn, αn, δn)}
⇒ {(P1, ϕ1,A1,X1, α1, δ1), . . . , (Pn, ϕn,An,Xn, αn, δn)}

and if mode = ⋆ (resp. mode = ⋄) then α0 (resp. β0) is
augmented with x ∈ D.

b) Receive: A message is received. Again, this step
happens at the same time in every possibility, since the receives
are in the left part of processes.

On the ground level, there is a transition for every recipe r
over the domain of the frames struct i:

{(rcv(X).P1, ϕ1, struct1, δ1), . . . ,

(rcv(X).Pn, ϕn, structn, δn)}
→ {(P1[X 7→ struct1(r)], ϕ1, struct1, δ1), . . . ,

(Pn[X 7→ structn(r)], ϕn, structn, δn)}

On the symbolic level, a simple constraint is added to every
FLIC because at this point any message from the intruder
would do. It is only later in the process that there can be
non-simple constraints on the message, which would then be
solved with the lazy intruder.

{(rcv(X).P1, ϕ1,A1,X1, α1, δ1), . . . ,

(rcv(X).Pn, ϕn,An,Xn, αn, δn)}
⇒ {(P1, ϕ1,A1.+R 7→ X,X1, α1, δ1), . . . ,

(Pn, ϕn,An.+R 7→ X,Xn, αn, δn)}

where R is a fresh recipe variable.
c) Extension to Pattern Matching: In this paper, we

extend the semantics to allow receive steps where instead of a
variable, the processes contain a linear pattern t that contains
only fresh variables and no constants.

On the ground level, the intruder chooses some recipe and
then the pattern is instantiated with the message produced in
the respective frame, or the process behaves as 0 if the message
does not match the pattern. The following transition can be
taken for every recipe r over the domain of the struct i:

{(rcv(t).P1, ϕ1, struct1, δ1), . . . ,

(rcv(t).Pn, ϕn, structn, δn)}
→ {(P ′

1, ϕ1, struct1, δ1), . . . , (P
′
n, ϕn, structn, δn)}

where for every i ∈ {1, . . . , n}, σi = mgu(t
.
= struct i(r)),

and P ′
i = σi(Pi) if σi ̸= ⊥ or P ′

i = 0 otherwise.
On the symbolic level, we have introduced the rule in

Definition V.2 and give it here again for convenience:

{(rcv(t).P1, ϕ1,A1,X1, α1, δ1), . . . ,

(rcv(t).Pn, ϕn,An,Xn, αn, δn)}
⇒ {(σ1(P1), ϕ1,A′

1, σ1(X1), α1, σ1(δ1)), . . . ,

(σn(Pn), ϕn,A′
n, σn(Xn), αn, σn(δn))}

where R is a fresh recipe variable and X and a fresh intruder
variable, ρ ∈ LI (A1.+R 7→ X, [X 7→ t]), A′

i = ρ(Ai.+R 7→
X), and σi = σAi.+R 7→X

ρ – and every σi(Xi) is satisfiable.
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Moreover, there is also the following transition if t /∈
Vintruder :

{(rcv(t).P1, ϕ1,A1,X1, α1, δ1), . . . ,

(rcv(t).Pn, ϕn,An,Xn, αn, δn)}
⇒ {(0, ϕ1,A1,X1, α1, δ1), . . . , (0, ϕn,An,Xn, αn, δn)}

d) Cell Read: A memory cell is read, and the process
is substituted according to the value read. The evaluation is
done in exactly one possibility at a time, because there is no
guarantee that other possibilities have the same cell read at
this point (the cell reads are in the center part of processes,
so there could have been branching already). The memory δ
contains the sequence cell(s1) := t1. · · · .cell(sk) := tk for the
given cell, and the initial value is given with ground context
C[·].

On the ground level, the rule is:

{(X := cell(s).P, ϕ, struct , δ)} ⊎ P
→ {(if s .

= s1 then P [X 7→ t1] else

. . .

if s
.
= sk then P [X 7→ tk] else

P [X 7→ C[s]], ϕ, struct , δ)} ∪ P

On the symbolic level, the rule is the same:

{(X := cell(s).P, ϕ,A,X , α, δ)} ⊎ P
⇒ {(if s .

= s1 then P [X 7→ t1] else

. . .

if s
.
= sk then P [X 7→ tk] else

P [X 7→ C[s]], ϕ,A,X , α, δ)} ∪ P

e) Cell Write: A memory cell is written, and the update
is prepended to the sequence of memory updates in the
possibilities. Again the evaluation is done in exactly one
possibility at a time, since the cell writes are in the right part
of processes.

On the ground level, the rule is:

{(cell(s) := t.P, ϕ, struct , δ)} ⊎ P
→ {(P, ϕ, struct , cell(s) := t.δ)} ∪ P

On the symbolic level, the rule is the same:

{(cell(s) := t.P, ϕ,A,X , α, δ)} ⊎ P
⇒ {(P, ϕ,A,X , α, cell(s) := t.δ)} ∪ P

f) Destructor Application: A destructor is applied to a
message. On the ground level, try-catch is syntactic sugar
around if-then-else, so there is only the rule for conditional
statements.

On the symbolic level, try-catch is handled in a particular
way. Note that in the protocol specification, only variables
are decomposed, but since other evaluations rules perform
substitutions, the rule must account for messages that are
not necessarily variables. The evaluation is done in exactly
one possibility at a time, since the destructor applications are

in the center part of processes in the grammar from [13]
(it is introduced in this paper that we consider them in the
left part and with always empty catch branches). The rule is
where the lazy intruder may be used to solve constraints: the
rewrite rule corresponding to the destructor is looked up, and a
unifier representing the constraints is computed. The symbolic
execution may then lead to multiple successor symbolic states,
representing different choices of recipes by the intruder. In
each, the possibility is split between the two branches, in one
case decryption succeeded and in the other it failed.

Let d(k, c(k′, X1, . . . , Xn)) → Xi (for some i ∈
{1, . . . , n}) be the rewrite rule for d, assuming the variables
in k, k′ and the Xj have been renamed with fresh intruder
variables. Let σ = mgu(t1

.
= k ∧ t2

.
= c(k′, X1, . . . , Xn) ∧

X
.
= Xi).
• Case σ = ⊥:

{(try X := d(t1, t2) in P1 catch P2, ϕ,A,X , α, δ)} ⊎ P
⇒ {(P2, ϕ,A,X , α, δ)} ∪ P

• Case σ ̸= ⊥: Let {ρ1, . . . , ρm} = LI (A, σ) and σ0 be the
substitution of privacy variables for which the decryption
succeeds.

{(try X := d(t1, t2) in P1 catch P2, ϕ,A,X , α, δ)} ⊎ P
⇒ ρi({(P1, ϕ ∧ σ0,A,X , α, δ),

(P2, ϕ ∧ ¬σ0,A,X , α, δ)} ∪ P)

Moreover:

{(try X := d(t1, t2) in P1 catch P2, ϕ,A,X , α, δ)} ⊎ P
⇒ {(P2, ϕ,A,X ∧ ∀Ȳ . ¬σ, α, δ)} ∪ P

where Ȳ = ivars(σ) \ ivars(A). The function ivars
gives the intruder variables of a FLIC, i.e., ivars(A) =
vars(A)∩Vintruder ; we extend this function to substitu-
tions.
g) Conditional Statement: A process has a conditional

statement, which leads to branching. Again the evaluation is
done in exactly one possibility at a time, since the conditional
statements are in the center part of processes.

On the ground level, a possibility is split into two, one for
the case that the condition is true and the process goes into
the then branch, and one for the else branch. By construction,
if the marked possibility is split then there is only one branch
that is consistent with the current truth γ and it is marked
accordingly.

{(if ψ then P1 else P2), ϕ, struct} ⊎ P
→ {(P1, ϕ ∧ ψ, struct), (P2, ϕ ∧ ¬ψ, struct)} ∪ P

On the symbolic level, this is handled similarly to destructor
applications, where the unifier is computed from the condition.

• If the condition is a relation:

{(if R(t1, . . . , tn) then P1 else P2, ϕ,A,X , α, δ)} ⊎ P
⇒ {(P1, ϕ ∧R(t1, . . . , tn),A,X , α, δ),

(P2, ϕ ∧ ¬R(t1, . . . , tn),A,X , α, δ)} ∪ P
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• If the condition is an equality: We first compute the
unifier σ = mgu(s

.
= t) and then the transitions are

just like for destructor application.
• If the condition uses conjunction or negation: the

branches are nested or swapped until one of the previous
cases is reached.
h) Send: A message is sent, which adds a new label

to record that message in the intruder knowledge. This rule
can only be applied if all possibilities start either with snd(·)
or 0; otherwise another rule must be applied. Note that this
rule eliminates all possibilities which are terminating and
thus not sending a message. This corresponds to the static
distinguishability of paths: the intruder can tell whether they
observe a message or the transaction is finished.

On the ground level, every struct i is augmented by the
message sent in the respective possibility:

{(snd(t1).P1, ϕ1, struct1, δ1), . . . ,

(snd(tk).Pk, ϕk, structk, δk)} ⊎ P
→ {(P1, ϕ1, struct1.l 7→ t1, δ1), . . . ,

(Pk, ϕk, structk.l 7→ tk, δk)}

where β0 ← β0 ∧
∨k

i=1 ϕi, l is a fresh label and all the
processes in P must be the 0 process.

On the symbolic level, a new mapping is added to the
FLICs.

{(snd(t1).P1, ϕ1,A1,X1, α1, δ1), . . . ,

(snd(tk).Pk, ϕk,Ak,Xk, αk, δk)} ⊎ P
⇒ {(P1, ϕ1,A1.−l 7→ t1,X1, α1, δ1), . . . ,

(Pk, ϕk,Ak.−l 7→ tk,Xk, αk, δk)}

where β0 ← β0 ∧
∨k

i=1 ϕi, l is a fresh label and all the
processes in P must be the 0 process.

i) Release: A formula is released, which happens done
in exactly one possibility at a time, since the releases are in
the right part of processes.

On the ground level, the formula released by the marked
possibility is added to the payload or the truth (depending on
the mode), and formulas released by other possibilities are
ignored.

{(mode ψ.P, ϕ, struct)} ⊎ P → {(P, ϕ, struct)} ∪ P

and α← α ∧ ψ if mode = ⋆ or γ ← γ ∧ ψ if mode = ⋄.
On the symbolic level, the formula released is added to the

partial payload of the possibility. [13] say that their decision
procedure does not support releases with mode = ⋄, and thus
the rule is only defined for releases with mode = ⋆.

{(⋆ ψ.P, ϕ,A,X , α, δ) ⊎ P ⇒ {(P, ϕ,A,X , α ∧ ψ, δ)} ∪ P

j) Terminate: A process is terminating, which leads to
a finished state. Note that this rule eliminates all possibilities
which are sending a message and thus not terminating. It is
the counterpart of the Send rule.

On the ground level, the rule is:

{(0, ϕ1, struct1, δ1), . . . , (0, ϕk, structk, δk)} ⊎ P
→ {(0, ϕ1, struct1, δ1), . . . , (0, ϕk, structk, δk)}

where every process in P starts with a send step and β0 ←
β0 ∧

∨k
i=1 ϕi.

On the symbolic level, the rule is the same:

{(0, ϕ1,A1,X1, α1, δ1), . . . , (0, ϕk,Ak,Xk, αk, δk)} ⊎ P
⇒ {(0, ϕ1,A1,X1, α1, δ1), . . . , (0, ϕk,Ak,Xk, αk, δk)}

where every process in P starts with a send step and β0 ←
β0 ∧

∨k
i=1 ϕi.

2) Normalization of a Symbolic State: After the symbolic
execution of a transaction, the decision procedure normalizes
symbolic states by performing all relevant intruder experi-
ments, i.e., comparing recipes to check whether they produce
the same message. Given two recipes, in each FLIC the unifier
of the messages produced is computed. If the outcome of
the experiment depends only on privacy variables, then the
symbolic state is split to consider in one case that the recipes
produced the same message and in the other case that they
produce different. Otherwise there is some unifier that requires
solving constraints, and this is done with the lazy intruder.

We define isPriv(σ) iff dom(σ) ⊆ Vprivacy and
isPriv(⊥) = false.

a) Privacy Split:

S ↣ S[β0 ← β0 ∧
n∧

i=1

(
ϕi ⇒

{
σi if isPriv(σi)
false otherwise

)
P ← {(0, ϕi ∧ σi,Ai,Xi, αi, δi) |

i ∈ {1, . . . , n}, isPriv(σi)}
Checked ← Checked ∪ {(l, r)}]

S ↣ S[β0 ← β0 ∧
n∧

i=1

(
ϕi ⇒

{
¬σi if isPriv(σi)
true otherwise

)
P ← {(0, ϕi ∧ ¬σi,Ai,Xi, αi, δi) |

i ∈ {1, . . . , n}, isPriv(σi)}
∪ {(0, ϕi,Ai,Xi, αi, δi) |
i ∈ {1, . . . , n}, not isPriv(σi)}

Checked ← Checked ∪ {(l, r)}]

if S is finished, (l, r) ∈ Pairs(S) and for every i ∈
{1, . . . , n}, isPriv(σi) or LI (Ai, σi) = ∅, where σi =
mgu(Ai(l)

.
= Ai(r)).

b) Recipe Split:

S ↣ ρ1(S), . . . ,S ↣ ρk(S),S ↣ S[Xi ← Xi ∧ ¬σi]

if S is finished, (l, r) ∈ Pairs(S) and there exists i ∈
{1, . . . , n} such that not isPriv(σi) and LI (Ai, σi) =
{ρ1, . . . , ρk}, where σi = mgu(Ai(l)

.
= Ai(r)).
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3) Transition Relations: The relations ⇒ and ↣ defined
above correspond to the evaluation of processes and nor-
malization of symbolic state, respectively. In the transition
system for the protocol execution, symbolic states are reached
by executing one transaction and then normalizing. Given a
transaction P and a finished symbolic state S, let init(P,S)
denote the symbolic state where all the 0 processes in S are
replaced with P .

The transition system using destructor oracles from [13]
is defined with the relation =⇒, where given two normal
symbolic states S and S ′, we have S =⇒ S ′ iff there exists
a transaction P (including the destructor oracles) such that
init(P,S)⇒∗↣∗ S ′.

In contrast, the transition system using built-in analysis
transitions from this paper is defined with the relation =⇒•,
where given two normal symbolic states S and S ′, we have
S=⇒•S ′ iff either there exists a transaction P such that
init(P,S)⇒∗↣∗ S ′ or S⇒• ⇒∗↣∗ S ′. This corresponds to
either executing exactly one transaction (where there are no de-
structor oracles) or performing exactly one analysis transition
(followed by execution of the processes and normalization, as
is done for transactions).

B. Proofs

We start with the proof that using pattern matching is correct
w.r.t. destructor applications. This proof refers to the semantics
for ground states, while our later proofs will work directly on
symbolic states.

Lemma III.1. A protocol satisfying Definition III.5 and its
transformation to use pattern matching according to Defini-
tion III.6 yield the same set of reachable ground states (up to
logical equivalence of the contained formulas α and β).

Proof. The ground semantics defined in [13] (which we give
in Appendix A) of try X := d(k, t) in P catch Q is syntactic
sugar for a conditional if ϕ then P [X 7→ d(k, t)] else catch Q
where Q = 0 in our paper and ϕ is a formula expressing that
the destructor application is successful. By construction, if ϕ
is true, then d(k, t) yields the respective subterm of t.

Since in this work, Q = 0 and try is only allowed in the left
part of processes (i.e., before branching), then a sequence of
try can be written as a single if condition ϕ (the conjunction
of the conditions of the individual try) and that can again be
split ϕ = ϕ1 ∧ϕ2 into conditions ϕ1 on the structure (that the
transformed process handles as a pattern) and a condition on
the values ϕ2.

In the transformed specification, if the pattern is satisfied,
then the pattern variables are bound to the corresponding
subterms of t as the destructor terms d(k, t) mentioned above.
This also leads to the same possibilities in both models: in
the original process, each possibility splits into two, namely
whether ϕ is satisfied or not. In the transformed specification,
if ϕ1 holds there is also a split into two by whether ϕ2 holds
or not. Otherwise, if ¬ϕ1 holds, there is no split (we arrive
at 0 for sure). Now in each model, the intruder knows the
typing of the messages and thus whether ϕ1 holds. Thus, if

ϕ1 holds, the intruder in the original model can simplify the
conditions ϕ and ¬ϕ to ϕ2 and ¬ϕ2, respectively, yielding
exactly the same conditions as in the new model. Conversely,
if ¬ϕ1 holds, then the intruder in the original model can rule
out the ¬ϕ case and knows that ϕ2 holds, exactly as in the
new model.

We now prove that the lazy intruder rules only return well-
typed solutions when used on a type-flaw resistant protocol.

Lemma IV.1. Let Spec be a type-flaw resistant protocol, A
be a FLIC such that terms(A) ⊆ SMP(patterns(Spec)), ρ
be a choice of recipes such that dom(ρ) ∩ rvars(A) = ∅, σ
be a well-typed substitution such that dom(σ)∩vars(A) = ∅,
and (ρ′,A′, σ′) be such that (ρ,A, σ)⇝ (ρ′,A′, σ′). Then σ′

is well-typed.

Proof. To show that the constraint solving always makes
well-typed instantiations of intruder and privacy variables, we
proceed by distinguishing which lazy intruder rule has been
applied.

Unification: Then A = A1.−l 7→ s.A2.+R 7→ t.A3, ρ′ =
[R 7→ l]ρ and σ′ = mgu(σ ∧ s .

= t). We have that s, t ∈
SMP(patterns(Spec)) \ V . Since Spec is type-flaw resistant
and s and t are unifiable, Γ(s) = Γ(t). Thus, σ′ is well-typed.

Guessing: Then A = A1.+R 7→ x.A2, ρ′ = [R 7→ c]ρ
and σ′ = mgu(σ ∧ x .

= c), for some c ∈ dom(x). The guess
c is a constant in the domain of the privacy variable x so
Γ(x) = Γ(c). Thus, σ′ is well-typed.

Composition or Repetition: Then σ′ = σ, i.e., no intruder
or privacy variables are instantiated. Thus, σ′ is well-typed.

Note that since σ′ is well-typed and SMP(patterns(Spec))
is closed under well-typed instantiations, then terms(A′) ⊆
SMP(patterns(Spec)).

Theorem IV.1 (Lazy intruder well-typedness). Let Spec be
a type-flaw resistant protocol, A be a simple FLIC such that
terms(A) ⊆ SMP(patterns(Spec)) and let σ be a well-typed
substitution. Then every ρ ∈ LI (A, σ) is well-typed w.r.t. A.

Proof. By induction and using Lemma IV.1, for every σ′ such
that (ε, σ(A), σ) ⇝∗ (ρ,A′, σ′) and A′ is simple, we have
that σ′ is well-typed. For every +R 7→ X ∈ A, we have
σ′(A′(ρ(R))) = σ′(X), so Γ(A′(ρ(R))) = Γ(X). Moreover,
ρ(A)(ρ(R)) and A′(ρ(R)) are unifiable, because they only
differ in the variables introduced by applying ρ to A. Since
there are infinitely many variables of each type, then without
loss of generality the fresh intruder variables introduced by
ρ can be taken of the appropriate types such that Γ(X) =
Γ(ρ(A)(ρ(R))). Thus, ρ is well-typed w.r.t. A.

As an intermediate result, we show that, given a set of FLICs
with the same domain and constraints, solving the constraints
to send a message pattern in one FLIC is equivalent to solving
the constraints in any other FLIC.

Lemma A.1. Let Spec be a type-flaw resistant protocol and
A1, . . . ,An be FLICs such that:
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• dom(A1) = · · · = dom(An) and for every label, the
messages in the different FLICs have the same type.

• The messages sent in each FLIC are equal.
• For every i ∈ {1, . . . , n}, terms(Ai) ⊆

SMP(patterns(Spec)) and for every +R 7→ t ∈ Ai, t is
linear, does not contain constants and the variables in
fv(t) do not occur in any other message sent.

Then a lazy intruder rule is applicable in A1 iff that rule is
applicable in every Ai.

Proof. Let us consider the first non-simple constraints, say it
is to send a message t. First, we assume that Unification is
applicable in A1. Then it means that t can be unified with
another message observed earlier, i.e., there is a label l that
maps to a message unifying with t. Since t contains only fresh
variables and no constants, then t can be unified with any
message of the same type. Since the label l maps to messages
of the same type in every FLIC, then l is a solution in every
FLIC so Unification is applicable in the same way in every
FLIC. Note that the variables in t that are substituted do not
make any other constraints non-simple, since these variables
do not occur in any other message sent.

Second, we assume that Compose is applicable. Then it
means that t is composed with a public function at the top-
level. The intruder can produce t with a composed recipe,
using the same function at the top-level and subrecipes for the
arguments, and this is applicable in every FLIC.

Since every message to send is linear and contains only
fresh variables, the rules of Guessing and Repetition are not
applicable. Moreover, after one rule application, the updated
FLICs still form a set of FLICs with identical messages to
send. This means that Guessing and Repetition will never be
applicable when solving the constraints.

Lemma A.2. Given a type-flaw resistant protocol, the tran-
sitions for receiving message patterns always perform well-
typed instantiations.

Proof. First, we consider the case that the intruder makes
some choice of recipes computed with the lazy intruder. The
transition is:

{(rcv(t).P1, ϕ1,A1,X1, α1, δ1), . . . ,

(rcv(t).Pn, ϕn,An,Xn, αn, δn)}
⇒ {(σ1(P1), ϕ1,A′

1, σ1(X1), α1, σ1(δ1)), . . . ,

(σn(Pn), ϕn,A′
n, σn(Xn), αn, σn(δn))}

where R is a fresh recipe variable and X is a fresh intruder
variable, ρ ∈ LI (A1.+R 7→ X, [X 7→ t]), A′

i = ρ(Ai.+R 7→
X), and σi = σAi.+R 7→X

ρ – and every σi(Xi) is satisfiable.
By Theorem IV.1, ρ is well-typed w.r.t. A1.+R 7→ X , and
thus also w.r.t. A1. By induction using Lemma A.1, the lazy
intruder gives the same results in every FLIC. Therefore ρ is
actually well-typed w.r.t. Ai.+R 7→ X , and thus Ai, for every
i ∈ {1, . . . , n}.

Next, we consider the case that the intruder sends a message
that does not match a pattern t /∈ Vintruder . Then there is no
instantiation of variables.

Next we show that our rules for pattern matching for sym-
bolic states are a correct representation on pattern matching
for ground states. This is an update of the correctness result
in [13], Proposition 1, when adding the new pattern matching
construct.

Lemma V.1. Given a type-flaw resistant specification, then
the set of reachable states in the symbolic semantics represents
exactly the reachable states of the ground semantics.

Proof. We use the fact that this is already proved for all
previous constructs in [13] and just show it for the newly
added rules for receiving with pattern matching (found in
Definition V.2 and Appendix A).

Given a symbolic state S where the possibilities have the
form:

{(rcv(t).P1, ϕ1,A1,X1, α1, δ1), . . . ,

(rcv(t).Pn, ϕn,An,Xn, αn, δn)}

i.e., so that new the pattern-matching receive rules are appli-
cable (the second rule only if t /∈ Vintruder ).

For the positive case (i.e., satisfying the pattern) for a type-
flaw resistant protocol, it follows from Lemma A.2 that all
Ai have the same set ρ of solutions for producing t, i.e., for
Ai.+R 7→ t.

Completeness (all reachable ground states are represented
on the symbolic level): The new ground rule for pattern
matching receive (Appendix A) is applicable for an arbitrary
recipe r in every state ground S represented by S. If r
produces an instance of t, then by the correctness of the lazy
intruder, r is an instance of ρ(R) for one of the ρ that solve
Ai. + R 7→ t. The resulting ground state S′ is thus covered
by the symbolic state that uses the positive rule with ρ.

If r does not produce an instance of t, then we go directly to
0 process in all possibilities, and this is covered by the second
rule of the symbolic level, since in this case the pattern cannot
be a variable.

Soundness (only reachable ground states are represented on
the symbolic level): If ρ is a solution in Ai. + R 7→ t, then
all ground states represented by ρ(S) allow for applying the
pattern rule with r = ρ(R). Thus every successor state S ′
resulting from the first symbolic applying ρ is represented by a
ground state. Moreover, if the second rule is applicable (when
t /∈ Vintruder ) then there is a ground recipe r that is not an
instance of t, thus the transition that makes all processes 0 is
also possible on the ground level.

Before proving, for type-flaw resistant protocols, the equiv-
alence between analysis transitions and destructor oracles,
we show an intermediate result. Whenever a label maps to
a composed term, then in every FLIC the label maps to a
composed term with the same top-level function. This will be
useful to make sure that if a destructor oracle can be applied,
then also the transition for analysis can be applied.

Lemma A.3. Let S be a normal symbolic state with FLICs
A1, . . . ,An and l ∈ dom(S) such that −l 7→ c(t11, . . . , t

m
1 ) ∈
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A1, where m > 0. Then for every i ∈ {1, . . . , n}, we have
−l 7→ c(t1i , . . . , t

m
i ) ∈ Ai for some terms tji .

Proof. Assume that in some FLIC Aj (j ̸= 1) we have −l 7→
X , where X ∈ Vintruder . Since S is normal, the experiment
(l, R) must have been done already, i.e., (l, R) ∈ Checked ,
where +R 7→ X ∈ Aj . We will show that this contradicts the
assumption that S is well-formed. All states in the symbolic
execution are well-formed by construction. The complete
definition of well-formedness is found in [13] but for our
purpose the following suffices: let σi = mgu(Ai(l)

.
= Ai(R))

for i in {1, . . . , n}, since (l, R) ∈ Checked , then either for
every i ∈ {1, . . . , n}, isPriv(σi) and α0 ∧ β0 ∧ ϕi |= σi, or
for every i ∈ {1, . . . , n}, LI (Ai, σi) = ∅ or (isPriv(σi) and
α0 ∧ β0 ∧ ϕi |= ¬σi).

However, we have not isPriv(σ1). We also have that
σj = ε, so LI (Aj , σj) ̸= ∅ and ̸|= ¬σj . This contradicts well-
formedness, so we conclude that in every FLIC, the label does
not map to an intruder variable. Recall that, since the messages
sent in different branches have the same types, every label
maps to messages of the same type. Moreover, since m > 0, it
cannot be the type of a privacy variable. Therefore the message
mapped by l has the same constructor in every FLIC.

Lemma V.2. Given a type-flaw resistant protocol, =⇒= =⇒•.

Proof. Let S,S ′ be reachable symbolic states in a type-flaw
resistant protocol. For executing normal transactions, the same
transitions are possible in both relations. The only thing we
have to show is that destructor oracles and analysis transitions
are equivalent. Let A1, . . . ,An be the FLICs in the state S.

First, we assume that S =⇒ S ′, where some destructor ora-
cle is executed. Then it means that S is normal and there exist
a label l ∈ dom(S) and a public destructor d ∈ Σpub such that
l can be analyzed with d, i.e., −l 7→ c(k′, t1, . . . , tm) in some
FLIC, where c occurs in the rewrite rule for d. By Lemma A.3,
in all the other FLICs also l maps to composed messages
with the same constructor c, i.e., for every i ∈ {1, . . . , n},
we have −l 7→ c(k′i, t

1
i , . . . , t

m
i ) ∈ Ai. By Definition III.5, for

every i ∈ {1, . . . , n}, we have d(ki, c(k′i, t
1
i , . . . , t

m
i )) → tji

as an instance of the rewrite rule for d, for some term ki
and some j ∈ {1, . . . ,m}. Executing the destructor oracle
specialized with label l means that in FLIC Ai, the process is
now rcv(X).if X

.
= ki then snd(tji ).snd(ki), which is exactly

what we get from the corresponding analysis transition. Thus
S=⇒•S ′.

Second, we assume that S=⇒•S ′, where some analysis
transition is taken. Then it means that S is normal and there
exist a label l ∈ dom(S) and a public destructor d ∈ Σpub

such that l can be analyzed with d, i.e., −l 7→ c(k′, t1, . . . , tn)
in some FLIC, where c occurs in the rewrite rule for d. The
corresponding destructor oracle transaction can be executed,
leading to the same state. Thus S =⇒ S ′.

Theorem V.1 (Typing result). Given a type-flaw resistant
protocol, it is correct to restrict the intruder model to well-
typed recipes/messages for verifying privacy.

Proof. The only way that variables are instantiated during the
transitions is by applying some lazy intruder result. For every
transition, we ensure that all messages in the FLICs are in the
set of sub-message patterns of the protocol. By Definition III.4,
all the constraints occurring during the symbolic execution are
well-typed, and thus by Theorem IV.1, the lazy intruder only
performs well-typed instantiations. In a reachable state, all
constraints are simple, i.e., all the messages sent are pairwise
distinct intruder variables. Since the intruder can produce an
unbounded number of messages of each type, then they can
instantiate the intruder variables in a well-typed way.

C. Models and Details for Case Studies

Note that in some of the models below, we write steps
of right processes before steps of center processes. This is
syntactic sugar to avoid repetition, for instance if we write
snd(t).if ϕ then P else Q it means that snd(t) happens in
both branches. We also use a wildcard “_” instead of a binding
name when the value is not used in the transaction.

1) Basic Hash: We take the model found in [13] and add
type annotations.

Sigma0: public t1/0 t2/0 t3/0
Sigma: public h/2 ok/0

private sk/1 extract/1
Types: t1:tag t2:tag t3:tag ok:reply
Algebra: extract(h(sk(X),Y))->X

Transaction Tag:

* x in {t1,t2,t3}.
new N:nonce.
send pair(N,h(sk(x),N))

Transaction Reader:
receive M:pair(nonce,h(sk(tag),nonce)).
try N:=proj1(M) in
try H:=proj2(M) in
try X:=extract(H) in
if H=h(sk(X),N) then
send ok

Then we have that this protocol satisfies Definition III.5.
There is no destructor application to remove in the tag trans-
action. However, for the reader, we apply Definition III.6 to
get the following transaction with pattern matching:

Transaction ReaderPat:
receive pair(N:nonce,

h(sk(_:tag),N’:nonce)).
if N=N’ then
send ok

Thus, we have the following message patterns:

M = {x, t1, t2, t3, N, pair(N, h(sk(x), N)),

pair(N ′, h(sk(X), N ′′)), N ′, N ′′, ok}
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with the following types for variables and constants:

Γ(x) = Γ(t1) = Γ(t2) = Γ(t3) = Γ(X) = tag

Γ(N) = Γ(N ′) = Γ(N ′′) = nonce

Γ(ok) = reply

The set M is type-flaw resistant, and thus Basic Hash is
type-flaw resistant.

2) BAC: The model found in [15] contains, in the response
transaction, a non-empty catch branch, which is not supported
by the typing result. Therefore we change the model by
replacing the symmetric decryption with private extractors.
Note that the original model is slightly different from the
model below: in case the message M received by the tag is
not of the form scrypt(sk(·), ·, ·), the original model returns a
format error, while the model here does not send anything
in case M does not have the right form. However, in the
original model, even if the intruder sends a message that does
not have the right form message, the tag will respond with a
message of type reply. Thus, the intruder knows the types of
the messages in their knowledge. Therefore, the intruder also
knows, before sending, whether a message matches the pattern,
so they would not learn anything by sending a message that is
not an encryption of the right form. This is why we consider
our changes reasonable.

Sigma0: public t1/0 t2/0
Sigma: public ok/0 formatErr/0 fixedR/0

private sk/1 fresh/0 spent/0
session/2 sfst/1 ssnd/1
recipient/1 content/1

Types: t1:tag t2:tag ok:reply
nonceErr:reply formatErr:reply
fixedR:nonce fresh:state
spent:state

Algebra: sfst(session(X,Y))->X
ssnd(session(X,Y))->Y
recipient(scrypt(sk(X),M,R))->X
content(scrypt(sk(X),M,R))->M

Cells: noncestate[N:nonce]:=fresh

Transaction Challenge:

* x in {t1,t2}.
new N:nonce.
send session(x,N).
send N.
send scrypt(sk(x),N,fixedR)

Transaction Response:
receive Session:session(tag,nonce).
receive M:scrypt(sk(tag),nonce,nonce).
try X:=sfst(Session) in
try N:=ssnd(Session) in
try Y:=recipient(M) in
try NN:=content(M) in
if Y=X then

State:=noncestate[N].

if N=NN and State=fresh then
noncestate[N]:=spent.
send ok

else send formatErr
else send formatErr

Then we have that this protocol satisfies Definition III.5.
There is no destructor application to remove in the challenge
transaction. However, for the response transaction, we apply
Definition III.6 to get the following transaction with pattern
matching:

Transaction ResponsePat:
receive session(X:tag,N:nonce).
receive scrypt(sk(Y:tag),

NN:nonce,
_:nonce).

if Y=X then
State:=noncestate[N].
if N=NN and State=fresh then
noncestate[N]:=spent.
send ok

else send formatErr
else send formatErr

Thus we have the following message patterns:

M = {x, t1, t2, N, session(x,N), scrypt(sk(x), N, fixedR),

session(X,N ′), scrypt(sk(Y ),NN , R), Y,X,State,

N ′,NN , fresh, spent, ok, formatErr}

with the following types for variables and constants:

Γ(x) = Γ(t1) = Γ(t2) = Γ(X) = Γ(Y ) = tag

Γ(N) = Γ(N ′) = Γ(fixedR) = Γ(NN ) = Γ(R) = nonce

Γ(State) = Γ(fresh) = Γ(spent) = state

Γ(ok) = Γ(formatErr) = reply

The set M is type-flaw resistant, and thus BAC is type-flaw
resistant.

3) Private Authentication: The model found in [15] con-
tains, in the responder transaction, a non-empty catch branch,
which is not supported by the typing result. Moreover, the
reply sent by the responder is either an encryption or a fresh
nonce as decoy. In general, the intruder does not know which
is the case so when they observe that such a reply is sent,
they do not know a priori its type. Therefore we change
the model: first by replacing the asymmetric decryption with
private destructors, and second by replacing the fresh nonce
as decoy with a fresh encryption. In this formulation, the
protocol is still not type-flaw resistant because a reply from the
responder can be confused with the message sent by initiator,
even though these have different types. Thus, our final change
is replacing the pairing function by distinct formats.

Sigma0: public a/0 b/0 i/0
Sigma: public f1/2 f2/1 df11/1 df12/1

df2/1
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private recipient/1 sender/1
Types: a:agent b:agent i:agent
Algebra:
recipient(crypt(pk(B),f1(A,NA),R))->B
sender(crypt(pk(B),f1(A,NA),R))->A
df11(f1(X,Y))->X
df12(f1(X,Y))->Y
df2(f2(X))->X

Transaction ReceivePrivateKey:
send inv(pk(i))

Transaction Initiator:

* xA in {a,b}.

* xB in {a,b,i}.
new NA:nonce,R:nonce.
send crypt(pk(xB),f1(xA,NA),R).
if xB=i then

* xA=gamma(xA) and xB=gamma(xB)
else

* xB in {a,b}

Transaction Responder:

* xB in {a,b}.
receive M:crypt(pk(agent),

f1(agent,nonce),
nonce).

try C:=recipient(M) in
try A:=sender(M) in
new NB:nonce,R:nonce.
if C=xB and A in {a,b,i} then

send crypt(pk(A),f2(NB),R).
if A=i then

* xB=gamma(xB)
else
new AA:agent.
send crypt(pk(AA),f2(NB),R).
if A in {a,b,i} and C in {a,b} then

* not (C=xB and A=i)

In this model, it is convenient to make use of a meta-
notation. The details of the meta-notation are defined in [13]
and we only explain the idea behind it here: a formula
released like * xB=gamma(xB) means that the intruder is
now allowed to learn the true value of xB, say a. This meta-
notation is not to be confused with an actual function symbol:
when we compute the message patterns, we do consider the
terms that occur inside the meta-notation, but gamma itself is
not a function and therefore it is not part of the set of message
patterns.

Then we have that this protocol satisfies Definition III.5.
There is no destructor application to remove in the initiator
transaction. However, for the responder transaction, we apply
Definition III.6 to get the following version with pattern
matching:

Transaction ResponderPat:

* xB in {a,b}.
receive crypt(pk(C:agent),

f1(A:agent,_:nonce)),
_:nonce).

new NB:nonce,R:nonce.
if C=xB then
send crypt(pk(A),f2(NB),R).
if A=i then

* xB=gamma(xB)
else
new AA:agent.
send crypt(pk(AA),f2(NB),R).
if A in {a,b,i} and C in {a,b} then

* not (C=xB and A=i)

Thus we have the following message patterns:

M = {inv(pk(i)), xA, a, b, xB , i,NA, R,
crypt(pk(xB), f1(xA,NA), R), xB

′,

crypt(pk(C), f1(A,NA
′), R′),NB , R′′,

C, crypt(pk(A), f2(NB), R′′), A,AA,

crypt(pk(AA), f2(NB), R′′)}

with the following types for variables and constants:

Γ(i) = Γ(xA) = Γ(a) = Γ(b) = Γ(xB) = Γ(xB ′) = Γ(C)

= Γ(A) = Γ(AA) = agent

Γ(NA) = Γ(R) = Γ(NA′) = Γ(R′) = Γ(NB) = Γ(R′′)

= nonce

The set M is type-flaw resistant, and thus Private Authen-
tication (AF0 variant) is type-flaw resistant.

As is done in [15], we can extend AF0 to include a relation
talk, where an agent sends a decoy when they do not want to
talk to the claimed sender.

Sigma0: public a/0 b/0 i/0
rel talk/2

Sigma: public f1/2 f2/1 df11/1 df12/1
df2/1

private recipient/1 sender/1
Types: a:agent b:agent i:agent
gamma0: talk: (a,b),(a,i),(b,a)
Algebra:
recipient(crypt(pk(B),f1(A,NA),R))->B
sender(crypt(pk(B),f1(A,NA),R))->A
df11(f1(X,Y))->X
df12(f1(X,Y))->Y
df2(f2(X))->X

Transaction ReceivePrivateKey:
send inv(pk(i))

Transaction Initiator:

* xA in {a,b}.

* xB in {a,b,i}.
if talk(xA,xB) then
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new NA:nonce,R:nonce.
send crypt(pk(xB),f1(xA,NA),R).

* talk(xA,xB).
if xB=i then

* xA=gamma(xA) and xB=gamma(xB)
else

* xB in {a,b}
else

* not talk(xA,xB)

Transaction Responder:

* xB in {a,b}.
receive M:crypt(pk(agent),

f1(agent,nonce),
nonce).

try C:=recipient(M) in
try A:=sender(M) in
new NB:nonce,AA:agent,R:nonce.
if C=xB then

if A=i then
if talk(xB,A) then

send crypt(pk(A),f2(NB),R).

* talk(xB,A) and xB=gamma(xB)
else

send crypt(pk(AA),f2(NB),R).

* not talk(xB,A)
else
if A in {a,b} then

if talk(xB,A) then
send crypt(pk(A),f2(NB),R)

else
send crypt(pk(AA),f2(NB),R)

else
send crypt(pk(AA),f2(NB),R)

else
send crypt(pk(AA),f2(NB),R).
if A in {a,b,i} and C in {a,b} then

* not (C=xB and A=i and talk(xB,A))

Transaction ResponderPat:

* xB in {a,b}.
receive crypt(pk(C:agent),

f1(A:agent,_:nonce),
_:nonce).

new NB:nonce,AA:agent,R:nonce.
if C=xB then

if A=i then
if talk(xB,A) then

send crypt(pk(A),f2(NB),R).

* talk(xB,A) and xB=gamma(xB)
else

send crypt(pk(AA),f2(NB),R).

* not talk(xB,A)
else
if A in {a,b} then

if talk(xB,A) then

send crypt(pk(A),f2(NB),R)
else
send crypt(pk(AA),f2(NB),R)

else
send crypt(pk(AA),f2(NB),R)

else
send crypt(pk(AA),f2(NB),R).
if A in {a,b,i} and C in {a,b} then

* not (C=xB and A=i and talk(xB,A))
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