
Stateful Protocol Composition
(Extended Version)

DTU Compute Technical Report-2018-03. ISSN: 1601-2321

Andreas V. Hess1, Sebastian A. Mödersheim1, and Achim D. Brucker2

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
{avhe,samo}@dtu.dk

2 The University of Sheffield, Sheffield, United Kingdom
a.brucker@sheffield.ac.uk

Abstract. We prove a parallel compositionality result for protocols with
a shared mutable state, i.e., stateful protocols. For protocols satisfying
certain compositionality conditions our result shows that verifying the
component protocols in isolation is sufficient to prove security of their
composition. Our main contribution is an extension of the composition-
ality paradigm to stateful protocols where participants maintain shared
databases. Because of the generality of our result we also cover many
forms of sequential composition as a special case of stateful parallel com-
position. Moreover, we support declassification of shared secrets. As a
final contribution we prove the core of our result in Isabelle/HOL, pro-
viding a strong correctness guarantee of our proofs.

1 Introduction

The typical use of communication networks like the Internet is to run a wide
variety of security protocols in parallel, for example TLS, IPSec, DNSSEC, and
many others. While the security properties of many of these protocols have
been analyzed in great detail, much less research has been devoted to their
parallel composition. It is far from self-evident that the parallel composition of
secure protocols is still secure, in fact one can systematically construct counter-
examples. One such problem is if protocols have similar message structures of
different meaning, so that an attacker may be able to abuse messages, or parts
thereof, that he has learned in the context of one protocol, and use them in
the context of another where the same structure has a different meaning. Thus,
we have to exclude that the protocols in some sense “interfere” with each other.
However, it is unreasonable to require that the developers of the different proto-
cols have to work together and synchronize with each other. Similarly, we do not
want to reason about the composition of several protocols as a whole, neither in
manual nor automated verification. Instead, we want a set of sufficient conditions
and a composition theorem of the form: every set of protocols that satisfies the
conditions yields a secure composition, provided that each protocol is secure in
isolation. The conditions should be realistic so that many existing protocols like

TLS (without modifications) actually satisfy them, and they should be simple,
in the sense that checking them is a static task that does not involve considering
the reachable states.

The main contribution of this paper is the extension of the compositionality
paradigm to stateful protocols, where participants may maintain a database
(e.g., a list of valid public keys) independent of sessions. Such databases do
not necessarily grow monotonically during protocol execution—we allow, for
instance, negative membership checks and deletion of elements from databases.
Moreover, we allow for such databases to be shared between the protocols to be
composed. For instance, in the example of public keys, there could be several
different protocols for registering, certifying, and revoking keys that all work on
the same public-key database. Since such a shared database can potentially be
exploited by the intruder to trigger harmful interferences, an important part of
our result is a clear coordination of the ways in which each protocol is allowed to
access the database. This coordination is based on assumptions and guarantees
on the transactions that involve the database. Moreover, this also allows us to
support protocols with the declassification of long-term secrets (e.g., that the
private key to a revoked public key may be learned by the intruder without
breaking the security goals). The result is so general that it actually also covers
many forms of sequential composition as a special case, since one can for instance
model that one protocol inserts keys into a database of fresh session keys, and
another protocol “consumes” and uses them.

The proof of the main result is by a reduction to a problem finding solutions
for intruder constraints: given a satisfiable constraint representing an attack on
the composition, we show that the projection of the constraints to the individ-
ual protocols are satisfiable. This particular tricky part of the proof has been
formalized in the interactive theorem prover Isabelle/HOL. This formalization,
along with all proofs, is available at:

https://people.compute.dtu.dk/samo/composec.html

Last but not least, as already indicated in [16], the formulation of the problem
over intruder constraints allows us to apply our result with a variety of protocol
formalisms such as applied-π calculus and multi-set rewriting.

The rest of the paper is organized as follows. Preliminaries are introduced in
Section 2. In Section 3 we define stateful constraints and protocols. Afterwards
we define protocol composition and introduce a keyserver protocol example in
Section 4. We define our compositionality conditions and prove our main result
in Section 5. Finally, we conclude in Section 6 and discuss related work.

2 Preliminaries

2.1 Terms and Substitutions

We model terms over a countable signature Σ of function symbols and a count-
ably infinite set V of variable symbols. We do not fix here a particular set of

2

cryptographic operators but rather parameterize our theory over arbitrary Σ.
A term is either a variable x ∈ V or a composed term of the form f(t1, . . . , tn)
where f ∈ Σn and ti are terms and Σn denotes the symbols in Σ of arity n. The
set of constants C is defined as Σ0. The set of variables of a term t is denoted
by fv(t) and if fv(t) = ∅ then t is ground. Both of these notions are extended to
sets of terms. By v we denote the subterm relation.

Substitutions are defined as functions from variables to terms. The domain
of a substitution δ is denoted by dom(δ) and is defined as the set of variables
that are not mapped to themselves by δ: dom(δ) ≡ {x ∈ V | δ(x) 6= x}. The
substitution image, img(δ), is then defined as the image of dom(δ) under δ:
img(δ) ≡ δ(dom(δ)). If the image of δ is ground then δ is said to be a ground
substitution. Additionally, we define an interpretation to be a substitution that
assigns a ground term to every variable: I is an interpretation iff dom(I) = V
and img(I) is ground. We extend substitutions to functions on terms and set
of terms as expected. For substitutions δ with finite domain we will usually use
the common value mapping notation: δ = [x1 7→ t1, . . . , xn 7→ tn]. Finally, a
substitution δ is a unifier of terms t and t′ iff δ(t) = δ(t′).

2.2 The Intruder Model

The intruder model follows the standard of Dolev and Yao, roughly, the intruder
can encrypt and decrypt terms where he has the respective keys, but he cannot
break the cryptography. This is often done by a set of rules specialized to the
concrete cryptographic functions, but since our model is parameterized over an
arbitrary set Σ, we also need to parameterize it over (a) a predicate public over
Σ that says for each function whether it is available to the intruder and (b) a
function Ana that takes a term t and returns a pair (K,T) of sets of terms. The
meaning is: from the term t the intruder can obtain the terms T , provided that
he knows all the “keys” in the set K. For instance if crypt is a public function
symbol to represent asymmetric encryption and inv is a private function symbol
(i.e., ¬public(inv)) mapping public keys to the corresponding private key, then
we may define Ana(crypt(k,m)) = ({inv(k)}, {m}) for any terms k and m. Thus
we can inductively define the relation `, where M ` t means that an intruder
who knows the set of terms M can derive the message t as the least relation
that includes M , is closed under composition with public functions and is closed
under analysis with Ana as follows where Σn

pub ≡ {f ∈ Σn | public(f)}:

Definition 1 (Intruder model).

M ` t
(Axiom),
t ∈M

M ` t1 · · · M ` tn
M ` f(t1, . . . , tn)

(Compose),
f ∈ Σn

pub

M ` t M ` k1 · · · M ` kn
M ` ti

(Decompose),Ana(t) = (K,T),
ti ∈ T,K = {k1, . . . , kn}

Note that [15] in contrast considers only public function symbols; one can
simulate however a private function symbol of arity n by a public function symbol

3

of arity n+1 where the additional argument is used with a special constant that
is never given to the intruder; in this way all results can be lifted to a model with
both private and public function symbols. For instance we can encode inv ∈ Σ1

in terms of a public symbol inv′ ∈ Σ2 and a special secret constant secinv.
Our results will not work with an arbitrary analysis function, so we make the

following requirements on Ana:

1. Ana(x) = (∅, ∅) for variables x ∈ V,
2. Ana(f(t1, . . . , tn)) = (K,T) implies T ⊆ {t1, . . . , tn}, finite K, and fv(K) ⊆

fv(f(t1, . . . , tn)),
3. Ana(f(t1, . . . , tn)) = (K,T) implies Ana(δ(f(t1, . . . , tn))) = (δ(K), δ(T)).

Note that Anamust be defined for arbitrary terms, including terms with variables
(while the standard Dolev-Yao deduction is typically applied to ground terms).
The three conditions regulate that Ana is also meaningful on symbolic terms. The
first requirement says that we cannot analyze a variable. The second requirement
says that the result of the analysis are immediate subterms of the term being
analyzed, and the keys can be any finite set of terms, but built with only variables
that occur in the term being analyzed. The third requirement says that analysis
does not change its behavior when instantiating a term (that is not a variable).

Our requirements on Ana are a bit simpler than the ones in [15]. There,
also the key-terms K have to be subterms of the analyzed term, while the third
requirement is stated only for terms that do not yield (∅, ∅). While this is more
relaxed, it is a quite roundabout condition that was introduced to handle a model
of public-key encryption where public keys were modeled with a function pub
from private to public keys. Since we allow also for private functions, and since
we have less restrictions on the key-terms K of Ana, we can also work with the
private function inv from public to private keys instead, and do not need this
special case. Since it simplifies many things, we decided to stick with it, but note
that our results would also work similarly with the definition from [15].

Example 1. We model asymmetric encryption and signatures with the following
Ana theory: Ana(crypt(k,m)) = ({inv(k)}, {m}), Ana(sign(k,m)) = (∅, {m}). We
will also later use some transparent functions: Ana(pair(t, t′)) = (∅, {t, t′}) and
Ana(update(s, t, u, v)) = (∅, {s, t, u, v}). For all other terms t: Ana(t) = (∅, ∅).

3 Stateful Protocols

We now introduce a strand-based protocol formalism for stateful protocols adap-
ted from [16]. This formalism is compact and reduced to the key concepts needed
here, while more complex formalisms like process calculi can easily be fitted simi-
larly. The semantics is defined by a symbolic transition system where constraints
are built-up during transitions. The models of the constraints then constitute
the concrete protocol runs. We will use a typing result that shows that for a
large class of protocols, it is without loss of attacks to restrict the constraints to
well-typed models [16].

4

3.1 Stateful Symbolic Constraints

We use intruder constraints as a key concept for reasoning about protocol execu-
tions and attacks. This is in fact applicable with a variety of protocol verification
formalisms, such as process calculi or multi-set rewrite rules. The idea is to define
a symbolic transition system where the variables of sent and received messages
of the original protocol formalism are not instantiated (only renamed as neces-
sary) and formulate symbolic constraints on these variables: the intruder needs
to be able to construct each message an honest agent receives from the messages
the honest agents have sent up to that point. When equipping these constraints
also with equalities and inequalities, the set of all executions (and the attack
predicates) of many formalisms like Applied π-calculus can be described by a
set of constraints. An attack can then be defined by satisfiability of a constraint
in which the intruder produces a secret. Stateful constraints can furthermore
express queries and updates on databases. They are defined as finite sequences
of steps and are built from the following grammar where t and t′ ranges over
terms and x̄ over finite variable sequences x1, . . . , xn:

A ::= send(t).A | receive(t).A | t .= t′.A | (∀x̄. t 6 .= t′).A |
insert(t, t′).A | delete(t, t′).A | t ∈̇ t′.A | (∀x̄. t 6 ∈̇ t′).A | 0

Instead of ∀x̄. t 6 .= t′ and ∀x̄. t 6 ∈̇ t′ we may write t 6 .= t′ and t 6 ∈̇ t′ whenever x̄ is
the empty sequence. We may also write t 6 ∈̇ f(_) for f ∈ Σn as an abbreviation of
∀x1, . . . , xn. t 6 ∈̇ f(x1, . . . , xn). The bound variables of a constraint A consists of
its variable sequences while the remaining variables, fv(A), are the free variables.
Also, by trms(A) we denote the set of terms occurring in A and the set of set
operations of A, called setops(A), is defined as follows where (·, ·) ∈ Σ2

pub :

setops(A) ≡ {(t, s) | insert(t, s) or delete(t, s) or t ∈̇ s or ∀x̄. t 6 ∈̇ s occurs in A}

For the semantics of constraints we first define a predicate JM,D;AK I, where
M is a ground set of terms (the intruder knowledge), D is a ground set of tuples
(the state of the sets), A is a constraint, and I is an interpretation as follows:

JM,D; 0K I iff true
JM,D; send(t).AK I iff M ` I(t) and JM,D;AK I

JM,D; receive(t).AK I iff J{I(t)} ∪M,D;AK I
JM,D; t

.
= t′.AK I iff I(t) = I(t′) and JM,D;AK I

JM,D; (∀x̄. t 6 .= t′).AK I iff JM,D;AK I and I(δ(t)) 6= I(δ(t′))
for all ground substitutions δ with domain x̄

JM,D; insert(t, s).AK I iff JM, {I((t, s))} ∪D;AK I
JM,D; delete(t, s).AK I iff JM,D \ {I((t, s))};AK I

JM,D; t ∈̇ s.AK I iff I((t, s)) ∈ D and JM,D;AK I
JM,D; (∀x̄. t 6 ∈̇ s).AK I iff JM,D;AK I and I(δ((t, s))) /∈ D

for all ground substitutions δ with domain x̄

We then define that I is a model of A, written I |= A, iff J∅, ∅;AK I.

5

A crucial requirement on constraints is that they are well-formed in the sense
that every variable first occurs in a message the intruder sends, or in a positive
check like t .= t′ or t ∈̇ s, and that the intruder knowledge monotonically grows
over time. The latter condition is already built-in in our constraint notation, the
former is expressed as follows: A constraint A is well-formed w.r.t. the set of
variables X (or just well-formed if X = ∅) iff the free variables and the bound
variables of A are disjoint and wf X(A) holds where:

wf X(0) iff true
wf X(receive(t).A) iff fv(t) ⊆ X and wf X(A)
wf X(send(t).A) iff wf X∪fv(t)(A)

wf X(t
.
= t′.A) iff fv(t′) ⊆ X and wf X∪fv(t)(A)

wf X(insert(t, t′).A) iff fv(t) ∪ fv(t′) ⊆ X and wf X(A)
wf X(delete(t, t′).A) iff fv(t) ∪ fv(t′) ⊆ X and wf X(A)
wf X(t ∈̇ t′.A) iff wf X∪fv(t)∪fv(t′)(A)

wf X(a.A) iff wf X(A) otherwise

Note that this allows to “introduce” variables in a send step, on the left-hand
side of an equation, or in a positive set-membership check (and we will work
only with well-formed constraints throughout the paper).

3.2 Typed Model

Our result is based on a typed model of protocols, i.e., where the intruder by
definition cannot send ill-typed messages. [16] shows that this is not a restriction
for a large class of so-called type-flaw resistant stateful protocols, since for every
ill-typed attack also exists a well-typed one. This gives a sufficient condition for
protocols to satisfy a prerequisite of our compositionality result. The definition
of typed model is then as follows. Type expressions are terms built over the
function symbols of Σ and a finite set Ta of atomic types like Agent and Nonce.
Further, we define a typing function Γ that assigns to every variable a type,
to every constant an atomic type, and that is extended to composed terms as
follows: Γ (f(t1, . . . , tn)) = f(Γ (t1), . . . , Γ (tn)) for every f ∈ Σn \ C and terms
ti. We also require that {c ∈ C | public(c), Γ (c) = β} is infinite for each β ∈ Ta,
thus giving the intruder access to an infinite supply of terms of each atomic type.

The sufficient condition for a protocol to satisfy the typing result is now
based on the following notions. A substitution δ is well-typed iff Γ (x) = Γ (δ(x))
for all x ∈ V. Given a set of messages that occur in a protocol we define the
following set of sub-message patterns, intuitively the ones that may occur during
constraint reduction:

Definition 2 (Sub-message patterns). The sub-message patterns SMP(M)
for a set of messages M is defined as the least set satisfying the following rules:

1. M ⊆ SMP(M).
2. If t ∈ SMP(M) and t′ v t then t′ ∈ SMP(M).
3. If t ∈ SMP(M) and δ is a well-typed substitution then δ(t) ∈ SMP(M).

6

4. If t ∈ SMP(M) and Ana(t) = (K,T) then K ⊆ SMP(M).

The sufficient condition for the typing result is now that non-variable sub-
message patterns have no unifier unless they have the same type:

Definition 3 (Type-flaw resistance). We say a set M of messages is type-
flaw resistant iff ∀t, t′ ∈ SMP(M) \ V. (∃δ. δ(t) = δ(t′)) −→ Γ (t) = Γ (t′). We
may also apply the notion of type-flaw resistance to a constraint A to mean that:

– trms(A) ∪ setops(A) is type-flaw resistant,
– if t and t′ are unifiable then Γ (t) = Γ (t′), for all t .= t′ occurring in A,
– Γ (fv(t)∪ fv(t′)) ⊆ Ta for all insert(t, t′) and delete(t, t′) occurring in A, and
– Γ ((fv(t) ∪ fv(t′)) \ x̄) ⊆ Ta for all ∀x̄. t 6 .= t′ and ∀x̄. t 6 ∈̇ t′ occurring in A.

We have formalized in Isabelle/HOL the following typing result theorem,
which shows that for type-flaw resistant protocols it is safe to check satisfiability
of constraints within the typed model [16]:

Theorem 1 ([16]) If A is a well-formed, type-flaw resistant constraint, and if
I |= A, then there exists a well-typed interpretation Iτ such that Iτ |= A.

3.3 Protocol Semantics

Protocols are defined as sets P = {R1, . . .} of transaction rules of the form:
Ri = ∀x1 ∈ T1, . . . , xn ∈ Tn. new y1, . . . , ym. S where S is a transaction strand,
i.e., of the form receive(t1). · · · .receive(tk).φ1 · · · .φk′ .send(t′1). · · · .send(t′k′′) where

φ : := t
.
= t′ | ∀x̄. t 6 .= t′ | t ∈̇ t′ | ∀x̄. t 6 ∈̇ t′ | insert(t, t′) | delete(t, t′)

The prefix ∀x1 ∈ T1, . . . , xn ∈ Tn denotes that the transaction strand S is ap-
plicable for instantiations σ of the xi variables where σ(xi) ∈ Ti. The construct
new y, . . . , ym represents that the occurrences of the variables yi in the trans-
action strand S will be instantiated with fresh terms. We extend trms(·) and
setops(·) to transactions strands, rules, and protocols as expected.

We define a transition relation ⇒•P for protocol P where states are con-
straints and the initial state is the empty constraint 0. First we define the
dual of a transaction strand S, written dual(S), as “swapping” the direction
of the sent and received messages of S: dual(send(t).S) = receive(t).dual(S),
dual(receive(t).S) = send(t).dual(S), and otherwise dual(s.S) = s.dual(S). The
transition A ⇒•P A.dual(α(σ(S))) is then applicable if these conditions are met:

1. (∀x1 ∈ T1, . . . , xn ∈ Tn. new y1, . . . , ym. S) ∈ P,
2. dom(σ) = {x1, . . . , xn, y1, . . . , ym},
3. σ(xi) ∈ Ti for all i ∈ {1, . . . , n},
4. σ(yi) is a fresh ground term of type Γ (yi) for all i ∈ {1, . . . ,m}, and
5. α is a variable-renaming of the variables of σ(S) where α is well-typed and

the variables in img(α) do not occur in σ(S).

7

Hence transaction rules are processed atomically, and converted into constraints,
during transitions. Note that each transaction rule can be executed arbitrarily
often and so we support an unbounded number of “sessions”. For instance, the
transaction rule ∀A ∈ Hon. new PK . insert(PK , ring(A)) models that each honest
agent a ∈ Hon can insert one fresh key into its keyring ring(a) during each
application of the transaction rule. This rule can be executed any number of
times with any agent a ∈ Hon and a fresh value for PK each time.

We say that a constraint A is reachable in protocol P if 0⇒•?P A where ⇒•?P
denotes the transitive reflexive closure of ⇒•P . We need to ensure that these
constraints are well-formed and we will therefore always assume the following
sufficient requirement on the protocols P that we work with: for any transaction
strand S occurring in any rule ∀x1 ∈ T1, . . . , xn ∈ Tn. new y1, . . . , ym. S of P the
constraint dual(S) is well-formed w.r.t. the variables {x1, . . . , xn, y1, . . . , ym}. In
other words, the variables of S must first occur in either a receive step, a positive
check (.=, ∈̇), or be part of {x1, . . . , xn, y1, . . . , ym}.

To model goal violations of a protocol P we first fix a special constant unique
to P, e.g., attackP . Secondly, we add the rule receive(attackP) to P that we use
as a signal for when an attack has occurred. The protocol then has a (well-typed)
attack if there exists a (well-typed) satisfiable reachable constraint of the form
A.send(attackP). A protocol with no attacks is secure.

With sets we can model events, e.g., asserting an event e amounts to inserting
e into a distinguished set of events while checking whether e has previously oc-
curred (or not) corresponds to a positive (respectively negative) set-membership
check. We therefore support all security properties expressible in the geometric
fragment [1]. This covers many standard reachability goals such as authentica-
tion; it seems that any significantly richer fragment of first-order logic would be
incompatible with our result. We do not currently support privacy-type proper-
ties, i.e., where goal violations occur if the observable behavior of protocols can
be distinguished.

4 Composition and a Running Example

The core definition of this paper is rather simple: we define the parallel composi-
tion P1 ‖ P2 of protocols P1 and P2 as their union: P1 ‖ P2 ≡ P1∪P2. Protocols
P1 and P2 are also referred to as the component protocols of the composition
P1 ‖ P2. For such a composed protocol the reachable constraints in P1 ‖ P2 will
in general contain steps originating from both component protocols. To keep
track of where a step in a constraint originated we assign to each step a label
` ∈ {1, 2, ?}. The steps that are exclusive to the first component are marked with
1 while the steps exclusive to the second are marked with 2. In addition to the
protocol-specific labels we also have a special label ? that we explain later.

Let A be a constraint with labels and ` ∈ {1, 2, ?}, we define A|` to be the
projection of A to the steps labeled ` or ? (so the ?-steps are kept in every a pro-
jection). We extend projections to transaction rules and protocols as expected.
We may also write P? instead of P|?.

8

4.1 A Keyserver Example

1 ≡ 1: receive(sign(inv(PK), pair(A,NPK))). ? : PK ∈̇ valid(A,S).
? : NPK 6 ∈̇ valid(_). 1: NPK 6 ∈̇ revoked(_)

R1
1
∀A ∈ Hon, S ∈ Ser.

1: receive(inv(PK)). ? : PK ∈̇ valid(A,S). 1: send(attack1)

R2
1

∀A ∈ Hon, S ∈ Ser.
1 . ? : NPK 6 ∈̇ begin1(A,S).

1: send(attack1)

R3
1

∀A ∈ Hon, S ∈ Ser.
1 . ? : NPK ∈̇ begin1(A,S). ? : NPK ∈̇ end1(A,S).

1: send(attack1)

R4
1
∀A ∈ Dis. new PK .

? : send(PK). ? : send(inv(PK))

R5
1

∀A ∈ Hon, S ∈ Ser. new PK .
1: insert(PK , ring(A)). ? : insert(PK , valid(A,S)).
? : insert(PK , begin1(A,S)). ? : insert(PK , end1(A,S)).
? : send(PK)

R6
1

∀A ∈ Hon, S ∈ Ser. new NPK .
1: PK ∈̇ ring(A). 1: delete(PK , ring(A)).
1: insert(NPK , ring(A)). ? : insert(NPK , begin1(A,S)).
? : send(NPK). 1: send(sign(inv(PK), pair(A,NPK)))

R7
1

∀A ∈ Hon, S ∈ Ser.
1 . ? : NPK ∈̇ begin1(A,S). ? : NPK 6 ∈̇ end1(A,S).

? : delete(PK , valid(A,S)). ? : insert(NPK , valid(A,S)).
1: insert(PK , revoked(A,S)). ? : insert(NPK , end1(A,S)).
? : send(inv(PK))

R8
1

∀A ∈ Dis, S ∈ Ser.
1 . ? : delete(PK , valid(A,S)).

? : insert(NPK , valid(A,S)).
1: insert(PK , revoked(A,S))

R9
1
∀A ∈ Dis, S ∈ Ser.

1: receive(PK). ? : PK 6 ∈̇ valid(_). ? : insert(PK , valid(A,S))

R10
1 1: receive(attack1)

Fig. 1. The transaction rules of the first keyserver protocol Pks,1.

As a running example, Fig. 1 and Fig. 2 define two keyserver protocols that
share the same databases of valid public keys registered at the keyserver. In a
nutshell, the first protocol Pks,1 = {R1

1, . . . , R
10
1 } allows users to register public

keys out of band and to update an existing key with a new one (revoking the
old key in the process), while the second protocol Pks,2 = {R1

2, . . . , R
10
2 } uses a

different mechanism to register new public keys.
We use here three atomic types: the type of agents Agent, public keys PubKey,

and the type Attack of the attacki constants. We partition type Agent into the

9

2 ≡ 2: receive(crypt(PK , update(A,S,NPK , pw(A,S)))).
2: PK ∈̇ pubkeys(S). 2: NPK 6 ∈̇ pubkeys(_). 2: NPK 6 ∈̇ seen(_)

R1
2
∀A ∈ Hon, S ∈ Ser.

2: receive(inv(PK)). ? : PK ∈̇ valid(A,S). 2: send(attack2)

R2
2
∀A ∈ Hon, S ∈ Ser.

2 . ? : NPK 6 ∈̇ begin2(A,S). 2: send(attack2)

R3
2

∀A ∈ Hon, S ∈ Ser.
2 . ? : NPK ∈̇ begin2(A,S). ? : NPK ∈̇ end2(A,S).

2: send(attack2)

R4
2
∀A ∈ Dis. new PK .

? : send(PK). ? : send(inv(PK))

R5
2

∀A ∈ Hon, S ∈ Ser. new NPK .
2: PK ∈̇ pubkeys(S). ? : insert(NPK , begin2(A,S)).
? : send(NPK). 2: send(crypt(PK , update(A,S,NPK , pw(A,S))))

R6
2

∀A ∈ Hon, S ∈ Ser.
2 . ? : NPK ∈̇ begin2(A,S). ? : NPK 6 ∈̇ end2(A,S).

? : insert(NPK , valid(A,S)). ? : insert(NPK , end2(A,S)).
2: insert(NPK , seen(A))

R7
2
∀A ∈ Dis, S ∈ Ser.

2: send(pw(A,S))

R8
2
∀A ∈ Dis, S ∈ Ser.

2 . ? : insert(PK , valid(A,S)). 2: insert(PK , seen(A))

R9
2
∀S ∈ Ser. new PK .

2: insert(PK , pubkeys(S)). ? : send(PK)

R10
2 2: receive(attack2)

Fig. 2. The transaction rules of the second keyserver protocol Pks,2.

honest users Hon, the dishonest users Dis, and the keyservers Ser. There are sets
for authentication goals begin1, end1, begin2, and end2, and all protocol steps
related to these sets are highlighted in gray; let us first ignore these.

Protocol Pks,1 In the first protocol, rule R5
1 models that an honest user registers

a new public key PK out of band (e.g., by physically visiting a registration site);
this is achieved by inserting PK (in the same transaction) both into a keyring
ring(A) for user A and into a shared database valid(A,S) of the user’s currently
valid keys. There is also a corresponding rule for dishonest users: R9

1. Dishonest
users may register in their name any key they know (hence the receive(PK) step),
so the key is not necessarily freshly created; also we do not model a keyring for
them. (Rule R4

i gives the intruder access to arbitrarily many fresh key pairs.)
Secondly, we model a key update with revocation of old keys. To request an

update of key PK with a newly generated key NPK at server S, an honest user
sends NPK signed with PK as in R6

1. (For this rule there is no equivalent for the
dishonest agents, since they may produce an arbitrary update request message.)

The rule R7
1 shows how S receives the update message from an honest agent:

it checks (1) that the key PK is currently valid, and that NPK is neither

10

registered as valid or revoked. If so, it updates its databases accordingly: it
moves the old key from valid(A,S) to revoked(A,S) and registers the new key
NPK by inserting it into valid(A,S). Also, we reveal here inv(PK), in order to
specify that the protocol must even be secure when old private keys are leaked.
This is an example of declassification of a secret shared between two protocols:
after intentionally revealing inv(PK) it should no longer count as a secret. The
rule R8

1 is the pendant for dishonest agents. The last rule R10
1 acts as a signal

for when an attack has occurred in Pks,1.

Protocol Pks,2 The second protocol has another mechanism to register new keys:
every user has a password pw(A,S) with the server (the dishonest agents reveal
their password to the intruder with rule R7

2). Instead of using a (possibly weak)
password for an encryption, the registration message is encrypted with the public
key of the server (rule R5

2). For uniformity, we model the server’s public keys in a
set pubkeys(S) that is initialized with rule R9

2 (in fact, the server may thus have
multiple public keys). Rule R6

2 models how the server receives a registration
request (in case of honest users): to protect against replay, the server uses a
set seen of seen keys (this may in a real implementation be a buffer-timestamp
mechanism). Rule R8

2 is the pendant for the dishonest users. Finally, the rule
R10

2 acts as a signal for when an attack has occurred in Pks,2.

Authentication Besides the secrecy goal R1
i that no valid private key of an honest

agent may ever be known by the intruder, the crucial authentication goal is
that all insertions into valid(A,S) for honest A are authenticated. The classical
injective agreement is modeled by the steps highlighted in gray: when an honest
agent generates a fresh key for server, it inserts it into a special set begin, and
whenever a server accepts a key that appears to come from an honest agent A,
then it inserts it into a special set end. (Note that these sets exist only in our
model to specify the goals.) It is a violation of non-injective agreement if the
server accepts a key that is not in begin (rule R2

i), and of injective agreement if
the server accepts a key that is already in end (rule R3

i).

Such a specification is more declarative when one separates the protocol rules
from the attack rules, but that has one drawback: if the protocol indeed had an
attack, then one would allow the server to actually insert an unauthenticated
key into its database and then in the next step the attack rule fires. For the
composition result, however, we want that each protocol can rely on the other
protocols to never insert unauthenticated keys into the database. This is why we
integrate in rules R6

i of each protocol the checks that we are in an authenticated
case (otherwise, the rules R2

i or R3
i fire). This is similar to a “lookahead” where

we prevent the execution of a transition if it leads to an attack, and directly
trigger an attack. This computation of the lookahead version of goals may of
course be lifted from the user by verification tools.

11

5 The Compositionality Results

With stateful protocols and parallel composition defined we can now formally
define the concepts underlying our results and state our compositionality theo-
rems. We first provide a result on the level of constraints and afterwards show
our main theorems for stateful protocols.

5.1 Protocol Abstraction

Note that all steps containing the valid set family in our keyserver example have
been labeled with ?. Labeling operations on the shared sets with ? is actually
an important part of our compositionality result and we now explain why.

Essentially, compositionality results aim to prevent that attacks can arise
from the composition itself, i.e., attacks that do not similarly work on the com-
ponents in isolation. Thus we want to show that attacks on the composed system
can be sufficiently decomposed into attacks on the components. This however
cannot directly work if the components have shared sets like valid in the example:
if one protocol inserts something to a set and the other protocol reads from the
set, then this trace in general does not have a counter-part in the second protocol
alone. We thus need a kind of interface to how the two protocols can influence
their shared sets. In the key server example, both protocols can insert public
keys into the shared set valid, the first protocol can even remove them. The idea
is now that we develop from each protocol an abstract version that subsumes
all the modifications that the concrete protocol can perform on the shared sets.
This can be regarded as a “contract” for the composition: each protocol guaran-
tees that it will not make any modifications that are not covered by its abstract
protocol, and it will assume that the other protocol only makes modifications
covered by the other protocol’s abstraction. We will still have to verify that each
individual protocol is also secure when running together with the other abstract
protocol, but this is in general much simpler than the composition of the two
concrete protocols. (In the special case that the protocols share no sets, i.e. like
in all previous parallel composition results, the abstractions are empty, i.e., we
have to verify only the individual components.)

In general, the abstraction of a component protocol P is defined by restric-
tion to those steps that are labeled ?, i.e., P?. We require that at least the
modification of shared sets are labeled ?. In the keyserver example we have also
labeled the operations on the authentication-related sets with a ? (everything
highlighted in gray): we need to ensure that we insert into the set of valid keys of
an honest agent only those keys that really have been created by that agent and
that have not been previously inserted. So the contract between the two protocols
is that they only insert keys that are properly authenticated, but the abstrac-
tion ignores how each protocol achieves the authentication (e.g. signatures vs.
passwords and seen-set). There are also some outgoing messages labeled with ?
which we discuss a little below.3
3 We require also well-formedness of the ?-projected protocols. This is violated, for
instance, if a protocol contains a rule where only one outgoing message is labeled

12

Example 2. Consider the abstractions of rules R5
2 and R6

2:

∀A ∈ Hon, S ∈ Ser. new NPK .
? : insert(NPK , begin2(A,S)).
? : send(NPK)

∀A ∈ Hon, S ∈ Ser.
? : NPK ∈̇ begin2(A,S).
? : NPK 6 ∈̇ end2(A,S).
? : insert(NPK , valid(A,S)).
? : insert(NPK , end2(A,S))

Notice that the gray steps prevent unauthenticated key registration because keys
can only be registered if inserted into begin2 by an honest agent. If we did not
ensure such authenticated key-registration then the intruder would be able to
register arbitrary keys in P?ks,2. This would lead to an attack on secrecy in the
protocol Pks,1 ‖ P?ks,2.

One may wonder why there is no similar specification for secrecy, i.e., that
inv(NPK) is secret for every key NPK that is being inserted into valid. In fact,
below we will declare all private keys to be secret by default. Thus, unless ex-
plicitly declassified, they are (implicitly) required to be secret.

5.2 Shared Terms

Before giving the compositionality conditions we first formally define what terms
can be shared: Every term t that occurs in multiple component protocols must
be either a basic public term (meaning that the intruder can derive t without
prior knowledge, i.e., ∅ ` t) or a shared secret. If the intruder learns a shared
secret (that has not been explicitly declassified) then it is considered a violation
of secrecy in all component protocols. For instance, agent names are usually
basic public terms whereas private keys are secrets. In fact, we will have that
all shared terms (except basic public terms) are by default secrets—even public
keys—before they are declassified.

Let Sec be a set of ground terms, representing the initially shared secrets
of the protocols. Note that the set of shared secrets Sec is not a fixed prede-
fined set of terms, but rather just a parameter to our compositionality con-
dition. We require that all shared terms of the protocols are either in Sec or
basic public terms. To precisely define this requirement, we first define the
ground sub-message patterns (GSMP) of a set of terms M as GSMP(M) ≡
{t ∈ SMP(M) | fv(t) = ∅}. This definition is extended to constraints A as the
set GSMP(A) ≡ GSMP(trms(A) ∪ setops(A)), and similarly for protocols. To
make matters smooth, we also require that Sec ∪ {t | ∅ ` t} is closed under
subterms (which is trivially the case for the basic public terms).

Example 3. We will typically study the ground subterms of each individual pro-
tocol in parallel with the abstraction of the other. For the example, the set

? and this message contains variables. However, given that the concrete protocol is
already well-formed, this is easy to fix automatically, transparent to the user.

13

GSMP(Pks,1 ‖ P?ks,2) is the closure under subterms of the following set:

{attack1, (pk , ring(a)), (pk , valid(a, s)), (pk , revoked(a, s)), (pk , begini(a, s)),
(pk , endi(a, s)), sign(inv(pk), pair(a,npk)) | i ∈ {1, 2}, pk ,npk , a, s ∈ C,
Γ ({pk ,npk}) = {PubKey}, Γ ({a, s}) = {Agent}}

and GSMP(P?ks,1 ‖ Pks,2) is the closure under subterms of the following set:

{attack2, (pk , valid(a, s)), (pk , seen(a, s)), (pk , begini(a, s)), (pk , endi(a, s)),
(pk , pubkeys(s)), inv(pk), crypt(pk , update(a, s,npk , pw(a, s))) | i ∈ {1, 2},
pk ,npk , a, s ∈ C, Γ ({pk ,npk}) = {PubKey}, Γ ({a, s}) = {Agent}}

For composition we will require that two protocols are disjoint in their ground
sub-message patterns except for basic public terms and shared secrets:

Definition 4 (GSMP disjointedness). Given two sets of terms M1 and M2,
and a ground set of terms Sec (the shared secrets), we say that M1 and M2 are
Sec-GSMP disjoint iff GSMP(M1) ∩ GSMP(M2) ⊆ Sec ∪ {t | ∅ ` t}. This is
extended to constraints and protocols as expected.

5.3 Declassification and Leaking

Up until now the set of shared secrets has been static. We now remove this re-
striction by introducing a notion of declassification that will allow shared secrets
to become public during protocol execution. For instance, in protocol Pks,1 we
give revoked private keys of the form inv(PK) to the intruder by transmitting
them over the network: send(inv(PK)). The transmitted key inv(PK) should
no longer be secret after transmission and so we call such steps declassification.
Since declassification involves shared secrets we require that they are declassified
for all component protocols together. Thus we label them with ?.

For any constraint A with model I we can now formally define the set of
secrets that has been declassified in A under I:

Definition 5 (Declassification). Let A be a labeled constraint and I a model
of A. Then declassified(A, I) ≡ I({t | ? : receive(t) occurs in A}) is the set of
declassified secrets of A under I.

Given a protocol P, a reachable constraint A (i.e., 0⇒•?P A), and a model I of
A, then I(A) represents a concrete protocol run and the set declassified(A, I)
represents the messages that have been declassified by honest agents during the
protocol run. Note that in this definition we have reversed the direction of the
declassification transmission, because the send and receive steps of reachable
constraints are duals of the transaction rules they originated from.

Declassification also allows us to share terms that have shared secrets as
subterms but which are not themselves meant to be secret. For instance, public
key certificates have as subterm the private key of the signing authority, and
such certificates can be shared between protocols by modeling them as shared
secrets that are declassified when first published.

14

Finally, if the intruder learns a secret that has not been declassified then it
counts as an attack. We say that protocol P leaks a secret s if there is a reachable
satisfiable constraint A where the intruder learns s before it is declassified:

Definition 6 (Leakage). Let Sec be a set of secrets and I be a model of the
labeled constraint A. A leaks a secret from Sec under I iff there exists s ∈
Sec \ declassified(A, I) such that I |= A|1.send(s) or I |= A|2.send(s).

Our notion of leakage requires that one of the components in isolation leaks a
secret. This is important for our compositionality result later—we will require
protocols not to leak in isolation (which can be verified on the protocols in
isolation) for the composition to work. Note also that the set declassified(A, I)
is unchanged during projection of A, and so it suffices to pick the leaked s from
the set Sec \ declassified(A, I) instead of Sec \ declassified(A|i, I).

Example 4. The terms occurring in the GSMP intersection of the two keyserver
protocols are (a) public keys pk, (b) private keys of the form inv(pk), (c) agent
names, and (d) operations on the shared set families valid, begini, and endi. Agent
names are basic public terms in our example, i.e., ∅ ` a for all constants a of type
Agent. The public keys are initially secret, but we immediately declassify them
whenever they are generated. To satisfy GSMP disjointedness of Pks,1 ‖ P?ks,2
and P?ks,1 ‖ Pks,2 it thus suffices to choose the following set as the set of shared
secrets (where the secf are special secret constants used in the encoding of the
private function symbol f):

Sec = {pk , inv(pk), (pk , f(a, s)), f(a, s), secinv, secf | Γ ({a, s}) = {Agent},
Γ (pk) = PubKey, f ∈ {valid, begin1, end1, begin2, end2}, pk , a, s ∈ C}

Note that we want the set symbols like valid to be private. This is because terms
like valid(A,S) occurs in both component protocols and so we have to prevent
the intruder from constructing them.

5.4 Parallel Compositionality for Constraints

With these concepts defined we can list the requirements on constraints that are
necessary to apply our result on the constraint level:

Definition 7 (Parallel composability). Let A be a constraint and let Sec be
a ground set of terms. Then (A,Sec) is parallel composable iff

1. A|1 and A|2 are Sec-GSMP disjoint,
2. for all terms t the step ? : send(t) does not occur in A,
3. for all s ∈ Sec and s′ v s, either ∅ ` s′ or s′ ∈ Sec,
4. for all ` : (t, s), `′ : (t′, s′) ∈ labeledsetops(A), if (t, s) and (t′, s′) are unifiable

then ` = `′,
5. A is type-flaw resistant and A, A|1, A|2, and A|? are all well-formed,

15

where labeledsetops(A) ≡ {` : (t, s) | ` : insert(t, s) or ` : delete(t, s) or ` : t ∈̇ s or
` : (∀x̄. t 6 ∈̇ s) occurs in A}. (This definition is also extended to protocols.)

The first requirement is at the core of our compositionality result and states
that the protocols can only share basic public terms and shared secrets. The
second requirement ensures that ? steps are only used for declassification, checks,
and stateful steps. The third condition is our only requirement on the shared
terms; it ensures that the set Sec∪{t | ∅ ` t} is closed under subterms. The fourth
condition is our requirement on stateful protocols; it implies that shared sets
must be labeled with a ?. Finally, the last condition is needed to apply the typing
result and it is orthogonal to the other conditions; it is indeed only necessary so
that we can apply Theorem 1 and restrict ourselves to well-typed attacks. Typing
results with different requirements could potentially be used instead. Note that
we require well-formedness of all projections of A. This is because we usually
consider constraints reachable in composed and augmented protocols, and we
need well-formedness to apply the typing result to these constraints.

With these requirements defined we can state our main result on constraints:

Theorem 2 If (A,Sec) is parallel composable and I |= A then there exists a
well-typed interpretation Iτ such that either Iτ |= A|1 and Iτ |= A|2 or some
prefix A′ of A leaks a secret from Sec under Iτ .

That is, we can obtain a well-typed model of projections A|1 and A|2 for sat-
isfiable parallel composable constraints A—or one of the projections has leaked
a secret. In other words, if we can verify that a parallel composable constraint
A does not have any well-typed model of both projections, and no prefix of A
leaks a secret under any well-typed model, then it is unsatisfiable.

5.5 Parallel Compositionality for Protocols

Until now our parallel compositionality result has been stated on the level of
constraints. As a final step we now explain how we can use Theorem 2 to prove
a parallel compositionality result for protocols.

First, we define the traces of a protocol P as the set of reachable constraints:
traces(P) ≡ {A | 0 ⇒•?P A}. We then define a compositionality requirement on
protocols that ensures that all traces are parallel composable:

Definition 8 (Parallel composability, for protocols). Let P1 ‖ P2 be a
composed protocol and let Sec be a ground set of terms. Then (P1 ‖ P2,Sec) is
parallel composable iff

1. P1 ‖ P?2 and P?1 ‖ P2 are Sec-GSMP disjoint,
2. for all terms t the step ? : receive(t) does not occur in P1 ‖ P2,
3. for all s ∈ Sec and s′ v s, either ∅ ` s′ or s′ ∈ Sec,
4. for all ` : (t, s), `′ : (t′, s′) ∈ labeledsetops(P1 ‖ P2), if (t, s) and (t′, s′) are

unifiable then ` = `′,
5. P1 ‖ P2 is type-flaw resistant and P1, P2, P?1 , and P?2 are all well-formed.

16

For protocols we need to require that their composition is type-flaw resistant.
It is not sufficient to simply require it for the component protocols in isolation;
unifiable messages from different protocols might break type-flaw resistance oth-
erwise. Note also that type-flaw resistance of a protocol P implies that the traces
of P are type-flaw resistant, because SMP(A) ⊆ SMP(P) for any A ∈ traces(P)
and because the traces consists of the duals of the transaction strands occurring
in the protocol; likewise for GSMP disjointedness. Thus if (P1 ‖ P2,Sec) is paral-
lel composable then (A,Sec) is parallel composable for any A ∈ traces(P1 ‖ P2).

Example 5. Continuing example 4 we now show that Pks,1 ‖ Pks,2 is paral-
lel composable, i.e., that it satisfies the conditions of Definition 8. We have
previously shown type-flaw resistance and well-formedness for a similar key-
server protocol [16] and so we focus on the remaining four conditions here.
GSMP disjointedness of the composed keyserver protocols was explained in ex-
ample 4. Hence the first condition of Definition 8 is satisfied. Conditions two
and three are satisfied since Pks,1 ‖ Pks,2 does not contain any steps of the form
? : receive(t) and since any subterm of a term from Sec (as defined in the previ-
ous example) is either in Sec or an agent name (a basic public term). Note that
labeledsetops(Pks,1 ‖ Pks,2) consists of instances of labeled terms from the follow-
ing set: {1: (PK 0, ring(A0)), 1: (PK 1, revoked(A1, S1)), 2: (PK 2, seen(A2, S2)),
? : (PK 3, valid(A3, S3)), ? : (PK i

4, begini(A
i
4, S

i
4)), ? : (PK i

5, endi(A
i
5, S

i
5)) | i ∈

{1, 2}}. For all pairs ` : (t, s), `′ : (t′, s′) in this set we have that ` = `′ if (t, s)
and (t′, s′) are unifiable. Hence condition 4 is satisfied.

As a consequence of Theorem 2 we have that any protocol P1 can be safely
composed with another protocol P2 provided that P1 ‖ P?2 is secure and that
P?1 ‖ P2 does not leak a secret:

Theorem 3 If (P1 ‖ P2,Sec) is parallel composable, P1 ‖ P?2 is well-typed
secure in isolation, and P?1 ‖ P2 does not leak a secret under any well-typed
model, then all goals of P1 hold in P1 ‖ P2 (even in the untyped model).

Note that the only requirement on protocol P2 is that it does not leak any
secrets (before declassifying), but we do not require that P2 is completely secure.
This means, if we have a secure protocol P1, that the goals of P1 continue to hold
in any composition with another protocol P2 that satisfies the composability
conditions and does not leak secrets, even if P2 has some attacks. This is in
particular interesting if we run a protocol P1 in composition with a large number
of other protocols that are too complex to verify in all detail.

Finally, the composition of parallel composable and secure protocols is secure:

Corollary 1. If (P1 ‖ P2,Sec) is parallel composable and P1 ‖ P?2 and P?1 ‖ P2

are both secure in isolation then the composition P1 ‖ P2 is also secure (even in
the untyped model).

5.6 Sequential Composition

Until now we have focused entirely on parallel composition where protocols are
run “side-by-side”. Another type of protocol composition is sequential composi-

17

tion where protocols are run in sequence, e.g. most recently [6] for PKIs. Thanks
to the generality of our result, we can cover such sequential compositions as a
parallel composition with sets dedicated to the hand-over between the proto-
cols. Let us take a key-exchange protocols like TLS as an example, where the
handshake protocol establishes a pair of shared keys between a client A and a
server S, and then subsequently, the transport protocol uses these keys to en-
crypt communication between A and S. We illustrate how the last transition
of the handshake and the first transition of the transport protocol look for A
where t1 and t2 are terms representing the two shared keys established in the
handshake (and there are similar rules for S):

∀A ∈ Hon, S ∈ Ser.
1: · · ·
? : insert((t1, t2), keys(A,S))

∀A ∈ Hon, S ∈ Ser.
? : (K1,K2) ∈̇ keys(A,S).
? : delete((K1,K2), keys(A,S)).
2: · · ·

Note that, like in the keyserver example, the set keys(A,S) does not represent a
means of communication between two participants, but rather a buffer or glue
between two protocols: one protocol is producing keys, the other protocol is
consuming them. Of course, one needs to require here that the first protocol
only inserts authenticated and secret keys into the set, which is similar to the
assume-guarantee reasoning we have illustrated for our keyserver example.

In fact, our result allows for a generalization of existing sequential compo-
sition results: while all results like [6] and the similar vertical result [11] are
specialized to a particular set of data to be transferred from one protocol to
another, our result does not prescribe a particular setup, but allows for any ex-
change of data through shared sets. This only requires one to specify sufficient
assumptions on the shared-set operations for the assume-guarantee reasoning,
but one does no longer need to establish a new composition theorem for each
new form of sequential composition. In fact, the composition does not even need
to be strictly sequential, e.g. if the first protocol establishes keys for the sec-
ond protocol, one may well have that additionally the second protocol can also
establish new keys for subsequent sessions.

6 Conclusion and Related Work

Our composition theorem for parallel composition is the newest in a sequence of
parallel composition results that are each pushing the boundaries of the class of
protocols that can be composed [14,13,2,12,9,8,7,3,1]. The first results simply re-
quire completely disjoint encryptions; subsequent results allowed the sharing of
long-term keys, provided that wherever the common keys are used, the content
messages of the different protocols are distinguished, for instance by tagging.
Other aspects are which primitives are supported as well as what forms of neg-
ative conditions, e.g. to support as goals the full geometric fragment.

Our result lifts the common requirement that the component protocols only
share a fixed set of long-term public and private constants. Our result allows

18

for stateful protocols that maintain databases (such as a key server) and the
databases may even be shared between these protocols. This includes the possi-
bility to declassify long-term secrets, e.g., to verify that a protocol is even secure
if the intruder learns all old private keys. Both databases, shared databases, and
declassification are considerable generalizations over the existing results.

Like [1] our result links the parallel compositionality result with a typing
result such as the result of [16], i.e., essentially requiring that all messages of
different meaning have a distinguishable form. Under this requirement it is sound
to restrict the intruder model to using only well-typed messages which greatly
simplifies many related problems. While one may argue that such a typing result
is not strictly necessary for composition, we believe it is good practice and also
fits well with disjointness requirements of parallel composition. Moreover, many
existing protocols already satisfy our typing requirement, since, unlike tagging
schemes, this does not require a modification of a protocol as long as there is
some way to distinguish messages of different meaning.

There are other types of compositionality results for sequential and vertical
composition, where the protocols under composition do build upon each other,
e.g., one protocol establishes a key that is then subsequently used by another pro-
tocol [2,10,8,6,18,11]. This requires that one protocol satisfies certain properties
(e.g. that the key exchange is authenticated and secret) for the other protocol to
rely on. Our composition result allows for such sequential composition through
shared databases: a key exchange protocol may enter keys into a shared set,
and the other protocol consumes these keys. Thus our concept of sharing sets
generalizes the interactions between otherwise independent protocols, and one
only needs to think about the interface (e.g., only authenticated, fresh, secret
keys can be entered into the database; they can only be used once). Moreover,
we believe that sets are also a nice way to talk about this interaction.

There are several interesting aspects of compositionality that our result does
not cover, for instance, [7] discusses the requirements for composing password-
based protocols, and [3] investigates conditions under which privacy properties
can be preserved under protocol composition.

So far, compositionality results are solely “paper-and-pencil” proofs. The
proof arguments are often quite subtle, e.g., given an attack where the intruder
learned a nonce from one protocol and uses it in another protocol, one has to
prove that the attack does not rely on this, but would similarly work for dis-
tinct nonces. It is not uncommon that parts of such proofs are a bit sketchy
with the danger of overlooking some subtle problems as for instance described
in [15]. For this reason, we have formalized the compositionality result—on the
level of ordinary constraints—in the proof assistant Isabelle/HOL [19], extending
the formalization of [15,16], giving the extremely high correctness guarantee of
machine-checked proofs. To our knowledge, this work is the first such formaliza-
tion of a compositionality result in a proof assistant, with the notable exception
of a study in Isabelle/HOL of compositional reasoning on concrete protocols [5].

Finally, all the works discussed so far are based on a black-box model of
cryptography. There are several cryptographic frameworks for composition, most

19

notably universal composability, reactive simulatability [4], and [17]. Considering
the real cryptography makes compositional reasoning several orders of magnitude
harder than abstract cryptography models. It is an intriguing question whether
stateful protocol composition can be lifted to the full cryptographic level.

References

1. Almousa, O., Mödersheim, S., Modesti, P., Viganò, L.: Typing and composition-
ality for security protocols: A generalization to the geometric fragment. In: ES-
ORICS. pp. 209–229 (2015)

2. Andova, S., Cremers, C.J.F., Gjøsteen, K., Mauw, S., Mjølsnes, S.F., Radomirović,
S.: A framework for compositional verification of security protocols. Inf. Comput.
206(2-4), 425–459 (2008)

3. Arapinis, M., Cheval, V., Delaune, S.: Composing security protocols: From confi-
dentiality to privacy. In: Focardi, R., Myers, A. (eds.) POST. pp. 324–343. Springer
Berlin Heidelberg, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46666-7_17

4. Backes, M., Pfitzmann, B., Waidner, M.: The reactive simulatability (RSIM) frame-
work for asynchronous systems. Inf. Comput. 205(12), 1685–1720 (2007)

5. Butin, D.F.: Inductive analysis of security protocols in Isabelle/HOL with appli-
cations to electronic voting. Ph.D. thesis, Dublin City University (Nov 2012)

6. Cheval, V., Cortier, V., Warinschi, B.: Secure composition of PKIs with public key
protocols. In: CSF. pp. 144–158 (Aug 2017). https://doi.org/10.1109/CSF.2017.28

7. Chevalier, C., Delaune, S., Kremer, S., Ryan, M.D.: Composition of password-
based protocols. Formal Methods in System Design 43(3), 369–413 (Dec 2013).
https://doi.org/10.1007/s10703-013-0184-6

8. Ştefan Ciobâcă, Cortier, V.: Protocol composition for arbitrary primitives. In: CSF.
pp. 322–336. IEEE (2010)

9. Cortier, V., Delaune, S.: Safely composing security protocols. Formal Methods in
System Design 34(1), 1–36 (2009). https://doi.org/10.1007/s10703-008-0059-4

10. Escobar, S., Meadows, C.A., Meseguer, J., Santiago, S.: Sequential protocol com-
position in Maude-NPA. In: ESORICS. pp. 303–318 (2010)

11. Groß, T., Mödersheim, S.: Vertical protocol composition. In: CSF. pp. 235 –250
(2011). https://doi.org/10.1109/CSF.2011.23

12. Guttman, J.D.: Cryptographic Protocol Composition via the Authentication Tests.
In: FOSSACS. pp. 303–317. Springer (2009)

13. Guttman, J.D., Thayer, F.J.: Protocol independence through disjoint encryption.
In: CSFW. pp. 24–34. IEEE (2000)

14. Heintze, N., Tygart, J.D.: A model for secure protocols and their
compositions. In: Security and Privacy. pp. 2–13 (May 1994).
https://doi.org/10.1109/RISP.1994.296596

15. Hess, A.V., Mödersheim, S.: Formalizing and proving a typing result for security
protocols in Isabelle/HOL. In: CSF (2017)

16. Hess, A.V., Mödersheim, S.: A typing result for stateful protocols. In: CSF (2018)
17. Küsters, R., Tuengerthal, M.: Composition theorems without pre-established

session identifiers. In: CCS. pp. 41–50. ACM, New York, NY, USA (2011).
https://doi.org/10.1145/2046707.2046715

18. Mödersheim, S., Viganò, L.: Secure pseudonymous channels. ESORICS pp. 337–
354 (2009)

20

19. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002).
https://doi.org/10.1007/3-540-45949-9

A High-Level Explanation of the Proofs

In this appendix we will explain the main ideas for the proofs of our composi-
tionality results. We have formalized in Isabelle/HOL the majority of our work,
namely the compositionality result on the ordinary constraints (i.e., constraints
built using only the cases send(t), receive(t), t .= t′, and ∀x̄. t 6 .= t′) and the reach-
able constraints of ordinary protocols. The stateful typing result is formalized
in Isabelle/HOL as well. The extensions to stateful protocols have not been for-
malized in Isabelle/HOL yet, but the paper proofs reuses the core proof idea of
the Isabelle-formalized stateful typing result to lift the compositionality results
from ordinary to stateful constraints and protocols. The proofs for the theorems
on the protocol level are mostly applications of the constraint level theorems and
so we will not focus on those theorems in this appendix.

A.1 Proving Theorem 2 for Ordinary Constraints

For Theorem 2 we need to show that for satisfiable parallel composable con-
straints A with shared secrets Sec we can obtain a well-typed model of pro-
jections A|1 and A|2 or A has leaked a secret in one of the projections. In a
nutshell we show that any term t occurring in a ` : send(t) step of A need only to
be constructed from terms of protocol `, unless leakage has occurred previously.
For that we first need a notion of terms belonging to a specific protocol:

Definition 9. Let A be a constraint and Sec be a set of shared secrets. A term
t is i-specific iff t ∈ GSMP(A|i) \ Sec ∪ {t | ∅ ` t} for a label i. A term t is
heterogeneous (w.r.t. A and Sec) iff there exists subterms t1 and t2 of t such that
each ti for i ∈ {1, 2} is i-specific w.r.t. A and Sec. A term t is then homogeneous
(w.r.t. A and Sec) iff it is not heterogeneous (w.r.t. A and Sec).

Then all ground sub-message patterns are homogeneous:

Lemma 1 If (A,Sec) is parallel composable and t ∈ GSMP(A) then t is homo-
geneous.

Given a constraint A and a set of shared secrets Sec we now define a useful
variant `A,Sechom of the intruder deduction relation ` as the restriction of ` to
homogeneous terms only. This relation satisfies a useful property:

Lemma 2 Let (A,Sec) be parallel composable and t be a homogeneous term.
Then ik(A) ` t iff ik(A) `A,Sechom t.

This is useful because we can prove that all homogeneous GSMP terms can be
derived purely through derivation of other homogeneous GSMP terms. In other
words, for homogeneous terms such as those in parallel composable constraints
we can reduce the intruder derivation problem to `A,Sechom .

21

Lemma 3 Let (A,Sec) be parallel composable, I be a well-typed model of A. If
ik(I(A)) `A,Sechom t, then either

– t /∈ Sec \ declassified(A, I), and
– if i ∈ {1, 2} and t ∈ GSMP(A|i) then ik(A|i) `A,Sechom t,

or there exists s ∈ Sec \declassified(A, I) and j ∈ {1, 2} s.t. ik(I(A|j)) `A,Sechom s.

The idea is that deriving a term f(t1, . . . , tn) that “falls outside of” the homoge-
neous GSMP terms is only possible by composition; if all the immediate subterms
ti are homogeneous GSMP terms then deriving f(t1, . . . , tn) must have happened
by an application of the (Compose) rule. Usually, such proofs proceed by inspect-
ing the derivation tree of the derivation of f(t1, . . . , tn), and, in the case where
f(t1, . . . , tn) has been derived from decomposition, either transforming the tree
to remove unnecessary decomposition steps or regress to the first decomposition
step. Such arguments are cumbersome to formalize in Isabelle/HOL since one
would need a deep embedding of the derivation tree. For our purposes, however,
it is sufficient to only encode the height of the derivation tree and so we equip
the relation ` with such a number: M `k t iff k is the maximum number of ap-
plications of the (Compose) and (Decompose) rules in any path of the derivation
tree forM ` t. Essentially, we prove that no matter how many steps occur in the
derivation tree of f(t1, . . . , tn) the first time the term is derived (it might have
been derived later on through decomposition) is always a composition step.

With Lemma 2 and 1 we can prove a useful consequence of Lemma 3:

Lemma 4 Let (A,Sec) be parallel composable, I be a well-typed model of A,
i ∈ {1, 2} be a label, and t a term such that t ∈ GSMP(A|i). If ik(I(A)) ` t
then either ik(I(A|i)) ` t or A leaks a secret from Sec.

Now we can use Lemma 4 to show that the models I of parallel composable
constraints A are also models of the projections A|i, or some secret is leaked.
The proof is by structural induction on the constraint A. The only non-trivial
case is where a step of the form send(t) occurs in A, i.e., when a prefix of the form
A′.send(t) exists for A. By the constraint semantics such a prefix corresponds to
a derivation constraint ik(I(A′)) ` I(t), and here we can apply Lemma 4. Thus:

Lemma 5 Let (A,Sec) be parallel composable and let I be a well-typed model
of the ordinary constraint A. Then either I |= A|1 and I |= A|2 or some prefix
A′ of A leaks a secret from Sec under I.

Finally, we can use Theorem 1 and Lemma 5 to relax the well-typedness
assumption and prove our main result on the level of ordinary (i.e., “stateless”)
constraints:

Lemma 6 Let (A,Sec) be parallel composable and let I be a model of the or-
dinary A. Then there exists a well-typed interpretation Iτ of A such that either
Iτ |= A|1 and Iτ |= A|2 or some prefix A′ of A leaks a secret from Sec under
Iτ .

22

A.2 Proving Theorem 2 for Stateful Constraints

For stateful constraints the proof idea is to use a variant of a reduction technique
introduced in [16] to reduce the compositionality problem for stateful constraints
to the Isabelle-formalized compositionality problem for ordinary constraints. We
first make some definitions:

Definition 10 (Projections). Given a finite set D = {`1 : (t1, s1), . . . , `n : (tn, sn)},
where each ti and si, are terms and `i ∈ {1, 2, ?} are labels, we define the pro-
jection of D to `, written |D|`, as follows: |D|` = {`′ : d ∈ D | ` = `′}.

The constraint reduction tr is now defined as follows:

Definition 11 (Translation of symbolic constraints). Given a constraint
A its translation into ordinary constraints is denoted by tr(A) = tr∅(A) where:

trD(0) = {0}
trD(` : insert(t, s).A) = trD∪{` : (t,s)}(A)
trD(` : delete(t, s).A) = {
` : (t, s)

.
= d1. · · · .` : (t, s)

.
= di.` : (t, s) 6 .= di+1. · · · .` : (t, s) 6 .= dn.A′ |

|D|` = {` : d1, . . . , ` : di, . . . , ` : dn}, 0 ≤ i ≤ n,A′ ∈ trD\{` : d1,...,` : di}(A)}
trD(` : t ∈̇ s.A) = {` : (t, s)

.
= d.A′ | ` : d ∈ |D|`,A′ ∈ trD(A)}

trD(` : (∀x̄. t 6 ∈̇ s).A) = {` : (∀x̄. (t, s) 6 .= d1). · · · .` : (∀x̄. (t, s) 6 .= dn).A′ |
|D|` = {` : d1, . . . , ` : dn}, 0 ≤ n,A′ ∈ trD(A)}

trD(` : a.A) = {` : a.A′ | A′ ∈ trD(A)} otherwise

Note that we apply projections |D|` when translation set operations with la-
bel `. Hence we never have “mix” two set operations with different labels in
the reduction. A crucial point here is that parallel compositionality makes such
mixing unnecessary, and this enables us to prove a strong relationship between
translated constraints and projections:

Lemma 7 Let i ∈ {1, 2} be a label. If B ∈ trD(A) then B|i ∈ tr |D|i∪|D|?(A|i).

Proof. The lemma follows from an induction over the structure of A. In this
sketch we will only show the t ∈̇ s and delete(t, s) cases, and we will only consider
the case where i = 1. All remaining cases are similarly proven.

– Case A = (` : t ∈̇ s).A′: In this case we know that B must be of the form
(` : (t, s)

.
= d).B′ for some ` : d ∈ |D|` and B′ ∈ trD(A′). From the induction

hypothesis we can now conclude that

B′|1 ∈ tr |D|1∪|D|?(A′|1) (IH)

We now show that B|1 ∈ tr |D|1∪|D|?(A|1) by a case analysis on the label `:
• ` = ? or ` = 1:

In these cases we have that A|1 = (` : t ∈̇ s).(A′|1) and B|1 = (` : (t, s)
.
=

d).(B′|1). We also have that ` : d ∈ |D|1 ∪ |D|?. Thus the case follows
from (IH) and the definition of tr .

23

• ` = 2:
In this case we have that A|1 = A′|1 and B|1 = B′|1. Thus the case
follows immediately from (IH).

– Case A = (` : delete(t, s)).A′: In this case we know that B must be of the
form ` : (t, s)

.
= d1. · · · .` : (t, s)

.
= di.` : (t, s) 6 .= di+1. · · · .` : (t, s) 6 .= dn.B′ for

some B′ ∈ trD′(A′) and 0 ≤ i ≤ n where |D|` = {` : d1, . . . , ` : di, . . . , ` : dn}
and D′ = D \ {` : d1, . . . , ` : di}. From the induction hypothesis we can now
conclude that

B′|1 ∈ tr |D′|1∪|D′|?(A′|1) (IH)

We now show that B|1 ∈ tr |D|1∪|D|?(A|1) by a case analysis on the label `:
• ` = ? or ` = 1:

In these cases we have that |D′|1∪|D′|? = (|D|1∪|D|?)\{` : d1, . . . , ` : di}
and B|1 = (` : (t, s)

.
= d1. · · · .` : (t, s)

.
= di.` : (t, s) 6 .= di+1. · · · .` : (t, s) 6 .=

dn).(B′|1) and A|1 = (` : delete(t, s)).(A|1). Thus the case follows from
(IH) and the definition of tr .

• ` = 2:
In this case we have that A|1 = A′|1, B|1 = B′|1, |D′|1 = |D|1, and
|D′|? = |D|?. Thus the case follows immediately from (IH).

ut

By a straightforward induction proof over the structure of constraints we
can also prove that tr preserves the properties we need for our compositionality
result:

Lemma 8 (Preservation of well-formedness and compositionality) If A
is well-formed and parallel composable, and if B ∈ tr(A), then B is well-formed
and parallel composable.

Now the core idea is to reduce the compositionality problem on stateful
constraints to ordinary constraints using the translation tr . For that reason we
need to show that the translation is correct, i.e., that the set of models of the
input constraint is exactly the set of models of the translation:

Lemma 9 (Semantic equivalence of reduction) Let A be a constraint and
D = {`1 : (t1, s1), . . . , `n : (tn, sn)}. Assume that all unifiable set operations oc-
curring in A and D carry the same label, i.e., if ` : (t, s), `′ : (t′, s′) ∈ labeledsetops(A)∪
D and ∃δ. δ((t, s)) = δ((t′, s′)) then ` = `′. Assume also that the set of vari-
ables occurring in D is disjoint from the bound variables of A. Then the models
of A are the same as the models of tr(A), i.e., JM, I(D);AK I iff there exists
B ∈ trD(A) such that JM, ∅;BK I.

Proof. For this proof let us first define the following variant of tr where we in
the delete, ∈̇, and 6 ∈̇ cases do not project D to the current label ` (in contrast to

24

tr):

tr ′D(0) = {0}
tr ′D(` : insert(t, s).A) = tr ′D∪{` : (t,s)}(A)

tr ′D(` : delete(t, s).A) = {
`1 : (t, s)

.
= d1. · · · .`i : (t, s)

.
= di.`i+1 : (t, s) 6 .= di+1. · · · .`n : (t, s) 6 .= dn.A′ |

D = {`1 : d1, . . . , `i : di, . . . , `n : dn}, 0 ≤ i ≤ n,A′ ∈ tr ′D\{`1 : d1,...,`i : di}(A)}
tr ′D(` : t ∈̇ s.A) = {`′ : (t, s)

.
= d.A′ | `′ : d ∈ D,A′ ∈ tr ′D(A)}

tr ′D(` : (∀x̄. t 6 ∈̇ s).A) = {`1 : (∀x̄. (t, s) 6 .= d1). · · · .`n : (∀x̄. (t, s) 6 .= dn).A′ |
D = {`1 : d1, . . . , `n : dn}, 0 ≤ n,A′ ∈ tr ′D(A)}

tr ′D(` : a.A) = {` : a.A′ | A′ ∈ tr ′D(A)} otherwise

The theorem follows from the following two statements (the assumptions of
this lemma still apply to D and A):

JM, I(D);AK I iff (∃B′ ∈ tr ′D(A). JM, ∅;B′K I) (1)

(∃B ∈ trD(A). JM, ∅;BK I) iff (∃B′ ∈ tr ′D(A). JM, ∅;B′K I) (2)

Statement (1) is actually a simple adaption of Theorem 2 of [16]. The rest
of this proof is to show statement (2) and we prove it by proving each direction
of the bi-implication. Both proofs are by induction over the structure of A and
we give the proof only for the most difficult case: delete. All remaining cases are
similar. Note that the assumptions of this lemma still apply, but we will skip
proving the antecedents of any induction hypothesis we use since those proofs
are trivial.

1. To show:

If B ∈ trD(A) and JM, ∅;BK I then JM, ∅;B′K I for some B′ ∈ tr ′D(A).

Case A = (` : delete(t, s)).A0:
In this case we know that B must be of the form:

B = ` : (t, s)
.
= d1. · · · .` : (t, s)

.
= di.` : (t, s) 6 .= di+1. · · · .` : (t, s) 6 .= dn.B0

for some B0 ∈ trD\{` : d1,...,` : di}(A0) where |D|` = {` : d1, . . . , ` : dn} and
0 ≤ i ≤ n. We also know that JM, ∅;BK I and therefore JM, ∅;B0K I.
From the induction hypothesis we can obtain B′0 ∈ tr ′D\{` : d1,...,` : di}(A0)

such that JM, ∅;B′0K I. Now obtain `k1 , dk1 , . . . , `km , dkm such that D\|D|` =
{`k1 : dk1 , . . . , `km : dkm}. Hence ` 6= `kj for all j ∈ {1, . . . ,m} (because |D|`
contains exactly the elements of D with label `) and so JM, ∅; `k1 : (t, s) 6 .=
dk1 · · · .`km : (t, s) 6 .= dkmK I because of the unifiability assumption on the set
operations of A and D. Let B′ = φ.B′0 where

φ = ` : (t, s)
.
= d1. · · · .` : (t, s)

.
= di.` : (t, s) 6 .= di+1. · · · .

` : (t, s) 6 .= dn.`k1 : (t, s) 6 .= dk1 . · · · .`km : (t, s) 6 .= dkm

We can then conclude that B′ ∈ tr ′D(A) and JM, ∅;B′K I.

25

2. To show:

If B′ ∈ tr ′D(A) and JM, ∅;B′K I then JM, ∅;BK I for some B ∈ trD(A).

Case A = (` : delete(t, s)).A0:
In this case we know that B′ must be of the form:

B′ = `1 : (t, s)
.
= d1. · · · .`i : (t, s)

.
= di.`i+1 : (t, s) 6 .= di+1. · · · .`n : (t, s) 6 .= dn.B′0

for some B′0 ∈ tr ′D\{`1 : d1,...,`i : di}(A0) where D = {`1 : d1, . . . , `n : dn} and
0 ≤ i ≤ n. We also know that JM, ∅;B′K I and therefore JM, ∅;B′0K I. Since
(t, s) and d′ are unifiable only if ` = `′, for all `′ : d′ ∈ D, it must be the
case that ` = `j for all j ∈ {1, . . . , i}. We can thus apply the induction
hypothesis to obtain B0 ∈ trD\{` : d1,...,` : di}(A0) where JM, ∅;B0K I. Now
pick the largest subset {k1, . . . , km} of {i + 1, . . . , n} such that `kj = `
for all 0 ≤ j ≤ m. Then |D|` = {` : d1, . . . ` : di, ` : dk1 , . . . , ` : dkm}. Let
B = ` : (t, s)

.
= d1. · · · .` : (t, s)

.
= di.` : (t, s) 6 .= dk1 . · · · .` : (t, s) 6 .= dkm .B0.

Thus B ∈ trD(A) and JM, ∅;BK I which concludes the case.

ut

For proving Theorem 2 we now only need to lift Lemma 6 to stateful con-
straints. That is, given I |= A we obtain B ∈ tr(A) such that I |= B. For B
we can apply Lemma 6; either Iτ |= B|i for all i ∈ {1, 2} or B leaks, for some
well-typed interpretation Iτ . Finally, with Lemma 9 and 7 we can show that
either Iτ |= A|i for all i ∈ {1, 2} or A leaks. Thus:
Theorem 2. If (A,Sec) is parallel composable and I |= A then there exists a
well-typed interpretation Iτ such that either Iτ |= A|1 and Iτ |= A|2 or some
prefix A′ of A leaks a secret from Sec under Iτ .

Proof. From the assumptions, Lemma 8, and Lemma 9 we can obtain a parallel
composable B such that

B ∈ tr(A) and I |= B (*)

From Lemma 5 we can then obtain a well-typed interpretation Iτ such that
either

1. Iτ |= B|1 and Iτ |= B|2, or
2. some prefix B′ of B leaks a secret from Sec under Iτ .

In the former case it follows from Lemma 7, Lemma 9, and (*) that Iτ |= A|1
and Iτ |= A|2 (note that the assumption of Lemma 9 follows from the fact that
B is parallel composable and that the assumption is also preserved during pro-
jections). In the latter case we can obtain a secret s ∈ Sec \ declassified(B′, Iτ)
such that either Iτ |= B′|1.send(s) or Iτ |= B′|2.send(s). We need to prove
that some prefix of A leaks the secret s and we will do so using the seman-
tic equivalence of tr . However, there is not necessarily a corresponding prefix
of A with B′ as a translation, and we need such a prefix to apply Lemma 9.

26

Therefore we consider the longest prefix B′′ of B′ that ends in a receive step
(which must exist if s is not derivable from the empty intruder knowledge). For
B′′ we can prove that there exists some prefix A′′ of A such that B′′ ∈ tr(A′′).
We also know that either Iτ |= B′′|1.send(s) or Iτ |= B′′|2.send(s) because B′
and B′′ have the same intruder knowledges (also after projections). Moreover,
declassified(B′′, Iτ) = declassified(A′′, Iτ) and ik(B′′) = ik(A′′) (also after pro-
jections). Thus we have that A′′ leaks a secret from Sec under Iτ and we can
therefore conclude the proof. ut

A.3 Proving the Compositionality Result for Protocols

Now that we have proven the result on the constraint level we can prove The-
orem 3 for stateful protocols. When actually proving the theorems we will use
the following abbreviations for arbitrary protocols P1, P2:

1. P•1 ≡ P1 ‖ P?2
2. P•2 ≡ P?1 ‖ P2

3. P• ≡ {A | A|1 ∈ traces(P•1),A|2 ∈ traces(P•2)}

The main idea is to prove the result for P• (Lemma 12) from which the
theorem follows. For that reason we first need to show that the traces of the
composed protocol P1 ‖ P2 occur in P• (Lemma 10) and that (P1 ‖ P2,Sec) is
parallel composable iff (P•,Sec) is parallel composable (Lemma 11):

Lemma 10 traces(P1 ‖ P2) ⊆ P•

Proof. A constraint A ∈ traces(P1 ‖ P2) consists of an interleaving of two
reachable constraints A1 ∈ traces(P1) and A2 ∈ traces(P2). Consider A|1. We
need to prove that this constraint is in traces(P•1). We have that A|1 consists
of an interleaving of A1|1 and A2|1, and that A1|1 = A1 ∈ traces(P1) and
A2|1 = A2|? ∈ traces(P?2). Thus A|1 ∈ traces(P•1) because P•1 = P1 ∪ P?2 . By a
similar argument we can prove that A|2 ∈ traces(P•2). ut

Lemma 11 (P1 ‖ P2,Sec) is parallel composable if and only if (P•,Sec) is
parallel composable.

Proof. Note that all constraint steps that occur in traces(P1 ‖ P2) also occur
in P•, and vice versa. Since all but our well-formedness requirements univer-
sally quantifies over the terms and steps occurring in the protocols we have that
these requirements are satisfied for (P1 ‖ P2,Sec) if and only if they are satis-
fied for (P•,Sec). For the well-formedness requirements note that we require all
the reachable constraints plus all of the projections to be well-formed. Since P•

really only differs from traces(P1 ‖ P2) by including ?-projections of (and inter-
leavings of) constraints from traces(P1 ‖ P2) we have that the well-formedness
requirements for traces(P1 ‖ P2) are satisfied if and only if they are satisfied for
P•. ut

27

Lemma 12 If (P•,Sec) is parallel composable, and P•1 is well-typed secure in
isolation, then for any attack A.(1 : send(attack1)) ∈ P• on P1, there exists some
prefix A′ ∈ traces(P•2) of A|2 that leaks a secret under a well-typed model.

Proof. We first prove that any A.(1 : send(attack1)) ∈ P• is parallel composable.
Then we can apply Theorem 2 since the constraint is satisfiable (otherwise it
would not be an attack), and since P•1 is secure it must be the case that some
prefix of A′ ∈ traces(P•2) of A|2 leaks a secret. ut

From Lemma 10, Lemma 11, and Lemma 12 then follows our main theorem:
Theorem 3. If (P1 ‖ P2,Sec) is parallel composable, P1 ‖ P?2 is well-typed se-
cure in isolation, and P?1 ‖ P2 does not leak a secret under any well-typed model,
then all goals of P1 hold in P1 ‖ P2 (even in the untyped model).

As a consequence of Theorem 3 we have the following corollary:
Corollary 1. If (P1 ‖ P2,Sec) is parallel composable and P1 ‖ P?2 and P?1 ‖ P2

are both secure in isolation then the composition P1 ‖ P2 is also secure (even in
the untyped model).

Proof. Apply Theorem 3 twice: once to P•1 and once to P•2 .

28

