
Timing attacks in security protocols:
symbolic framework and proof techniques?

Vincent Cheval1 and Véronique Cortier2

1 School of Computer Science, University of Birmingham, UK
2 LORIA, CNRS, France

Abstract. We propose a framework for timing attacks, based on (a
variant of) the applied-pi calculus. Since many privacy properties, as
well as strong secrecy and game-based security properties, are stated as
process equivalences, we focus on (time) trace equivalence. We show that
actually, considering timing attacks does not add any complexity: time
trace equivalence can be reduced to length trace equivalence, where the
attacker no longer has access to execution times but can still compare
the length of messages. We therefore deduce from a previous decidability
result for length equivalence that time trace equivalence is decidable for
bounded processes and the standard cryptographic primitives.
As an application, we study several protocols that aim for privacy. In
particular, we (automatically) detect an existing timing attack against
the biometric passport and new timing attacks against the Private Au-
thentication protocol.

1 Introduction

Symbolic models as well as cryptographic models aim at providing high and
strong guarantees when designing security protocols. However, it is well known
that these models do not capture all types of attacks. In particular, most of them
do not detect side-channel attacks, which are attacks based on a fine analysis
of e.g., time latencies, power consumption, or even noise [26,27,9]. The issue of
side-channel attacks is well-known in cryptography. One of prominent issues is
the fact that many cryptosystems such as RSA or Difie-Hellman involve modu-
lar exponentiation. To remain efficient, modular exponentiation is implemented
using (variants of) the fast exponentiation algorithm. Basically, this algorithm
requires one squaring for each bit equals to 0 in the key, and one squaring and
one multiplication for each bit equals to 1 in the key. A fine observation of the
computation time or the power consumption leaks information on the secret
key. Of course, counter-measures have been proposed but many variations of the
attack remain.

The same kind of issues occur at the protocol level as well. For example,
the biometric passport contains an RFID chip that stores sensitive information
? The research leading to these results has received funding from the European

Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement number 258865 (ERC ProSecure project).

1



such as the name, nationality, date of birth, etc. To protect users’ privacy, data
are never sent in the clear. Instead, dedicated protocols ensure that confidential
data are sent encrypted between the passport and the reader. However, a minor
variation in the implementation of the protocol in the French passport has led to
a privacy flaw [7]. Indeed, by observing the error message when replaying some
old message, an attacker could learn whether a given passport belongs to Alice
or not. The attack has been fixed by unifying the error messages produced by
the passports. However, it has been discovered [18] that all biometric passports
(from all countries) actually suffer from exactly the same attack as soon as the
attacker measures the computation time of the passport instead of simply looking
at the error messages.

The goal of the paper is to provide a symbolic framework and proof tech-
niques for the detection of timing attacks on security protocols. Symbolic models
for security protocols typically assume “the perfect encryption hypothesis”, ab-
stracting away the implementation of the primitives. We proceed similarly in our
approach, assuming a perfect implementation of the primitives w.r.t. timing. It
is well known that implementation robust against side-channel attacks should,
at the very least, be “in constant time”, that is, the execution time should only
depend on the number of blocks that need to be processed. “Constant time”
is not sufficient to guarantee against timing attacks but is considered to be a
minimal requirement and there is an abundant literature on how to design such
implementations (see for example the NaCl library [1] and some related publica-
tions [25,12]). One could think that side-channel attacks are only due to a non
robust implementation of the primitives and that it is therefore enough to ana-
lyze in isolation each of the cryptographic operations. However, in the same way
that it is well known that the perfect encryption assumption does not prevent
flaws in protocols, a perfect implementation of the primitives does not prevent
side-channel attacks. This is exemplified by the timing attack found against the
biometric passport [18] and the timing attacks we discovered against the Private
Authentication protocol [5] and several of its variants. These attacks require
both an interaction with the protocol and a dedicated time analysis. Robust
primitives would not prevent these attacks.

Our first contribution is to propose a symbolic framework that models timing
attacks at the protocol level. More precisely, our model is based on the applied-
pi calculus [3]. We equip each function symbol with an associated time function
as well as a length function. Indeed, assuming a perfect implementation of the
primitives, the computation time of a function typically only depends on the
size of its arguments. Each time a process (typically a machine) performs an
observable action (e.g., it sends out a message), the attacker may observe the
elapsed time. Our model is rather general since it inherits the generality of the
applied-pi calculus with e.g., arbitrary cryptographic primitives (that can be
modeled through rewrite systems), possibly arbitrarily replicated processes, etc.
Our time and length functions are also arbitrary functions that may depend
on the machine on which they are run. Indeed, a biometric passport is typi-
cally much slower than a server. Moreover, a server usually handles thousands of

2



requests at the same time, which prevents from a fine observation of its compu-
tation time. Our model is flexible enough to cover all these scenarios. Finally, our
model covers more than just timing attacks. Indeed, our time functions not only
model execution times but also any kind of information that can be leaked by the
execution, such as power consumption or other “side-channel” measurements.

Our second main contribution is to provide techniques to decide (time) pro-
cess equivalence in our framework. Equivalence-based properties are at the heart
of many security properties such as privacy properties [21,7] (e.g., anonymity,
unlinkability, or ballot privacy), strong secrecy [15] (i.e. indistinguishability from
random), or game-based security definitions [4,20] (e.g., indistinguishability from
an ideal protocol). Side channel attacks are particularly relevant in this context
where the attacker typically tries to distinguish between two scenarios since
any kind of information could help to make a distinction. Several definitions
of equivalence have been proposed such as trace equivalence [3], observational
equivalence [3], or diff-equivalence [14]. In this paper, we focus on trace equiva-
lence. In an earlier work [17], we introduced length (trace) equivalence. It reflects
the ability for an attacker to measure the length of a message but it does not let
him access to any information on the internal computations of the processes.
Our key result is a generic and simple simplification result: time equivalence can
be reduced to length equivalence. More precisely, we provide a general transfor-
mation such that two processes P and Q are in time equivalence if and only if
their transformation P̃ and Q̃ are in length equivalence.

P ≈ti Q⇔ P̃ ≈` Q̃

This result holds for an arbitrary signature and rewriting system, for arbitrary
processes - including replicated processes, and for arbitrary length and time func-
tions. The first intuitive idea of the reduction is simple: we add to each output
a term whose length encodes the time needed for the intermediate computa-
tions. The time elapsed between two outputs of the same process however does
not only depend on the time needed to compute the sent term and the corre-
sponding intermediate checks. Indeed, other processes may run in parallel on the
same machine (in particular other ongoing sessions). Moreover, the evaluation
of a term may fail (for example if a decryption is attempted with a wrong key).
Since we consider else branches, this means that an else branch may be chosen
after a failed evaluation of a term, which execution time has to be measured
precisely. The proof of our result therefore involves a precise encoding of these
behaviors.

A direct consequence of our result is that we can inherit existing decidability
results for length equivalence. In particular, we deduce from [17] that time equiv-
alence is decidable for bounded processes and a fixed signature that captures all
standard cryptographic primitives. We also slightly extend the result of [17] to
cope with polynomial length functions instead of linear functions.

As an application, we study two protocols that aim for privacy: the private
authentication protocol (PA) [5] and the Basic Authentication Protocol (BAC) of
the biometric passport [2]. Using the APTE tool [16] dedicated to (length) trace

3



equivalence, we retrieve the flaw of the biometric passport mentioned earlier.
We demonstrate that the PA protocol is actually not private if the attacker can
measure execution times. Interestingly, several natural fixes still do not ensure
privacy. Finally, we provide a fix for this protocol and (automatically) prove
privacy.

Related work. Several symbolic frameworks already include a notion of time [11,22,19,23,24].
The goal of these frameworks is to model timestamps. The system is given a
global clock, actions take some number of “ticks”, and participants may com-
pare time values. Depending on the approach, some frameworks (e.g. [11,22])
are analysed using interactive theorem provers, while some others (e.g. [19,24])
can be analysed automatically using for example time automata techniques [24].
Compared to our approach, the representation of time is coarser: each action
takes a fixed time which does not depend on the received data while the attack
on e.g. the biometric passport precisely requires to measure (and compare) the
time of a given action. Moreover, these frameworks consider trace properties only
and do not apply to equivalence properties. They can therefore not be applied
to side-channel analysis.
On the other hand, the detection or even the quantification of information possi-
bly leaked by side-channels is a subject thoroughly studied in the last years (see
e.g. [28,10,30,13,8]). The models for quantifying information leakage are typically
closer to the implementation level, with a precise description of the control flow
of the program. They often provide techniques to measure the amount of infor-
mation that is leaked. However, most of these frameworks typically do not model
the cryptographic primitives that security protocols may employ. Messages are
instead abstracted by atomic data. [28] does consider primitives abstracted by
functions but the framework is dedicated to measure the information leakage of
some functions and does not apply to the protocol level. This kind of approaches
can therefore not be applied to protocols such as BAC or PA (or when they may
apply, they would declare the flawed and fixed variants equally insecure).
Fewer papers do consider the detection of side-channel attacks for programs that
include cryptography [29,6]. Compared to our approach, their model is closer
to the implementation since it details the implementation of the cryptographic
primitives. To do so, they over-approximate the ability of an attacker by letting
him observe the control flow of the program, e.g. letting him observe whether
a process is entering a then or an else branch. However privacy in many proto-
cols (in particular for the BAC and PA) precisely relies on the inability for an
attacker to detect whether a process is entering a then (meaning e.g. that the
identity is valid) or an else branch (meaning e.g. that the identity is invalid).
So the approach developed in [29,6] could not prove secure the fixed variants
of BAC and PA. Their side-channel analysis is also not automated, due to the
expressivity of their framework.

References

1. http://nacl.cr.yp.to/.

4



2. Machine readable travel document. Technical Report 9303, International Civil
Aviation Organization, 2008.

3. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In 28th ACM Symp. on Principles of Programming Languages (POPL’01), 2001.

4. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus.
In 4th Conference on Computer and Communications Security (CCS’97), pages
36–47. ACM Press, 1997.

5. Mart́ın Abadi and Cédric Fournet. Private authentication. Theoretical Computer
Science, 322(3):427–476, 2004.

6. Jos Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir.
Certified computer-aided cryptography: Efficient provably secure machine code
from high-level implementations. In 21st ACM Conference on Computer and Com-
munications Security (CCS’13), 2013.

7. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In 23rd IEEE Computer Security Foun-
dations Symposium (CSF’10), 2010.

8. Michael Backes, Goran Doychev, and Boris Köpf. Preventing side-channel leaks
in web traffic: A formal approach. In Network and Distributed System Security
Symposium (NDSS’13), 2013.

9. Michael Backes, Markus Duermuth, Sebastian Gerling, Manfred Pinkal, and Car-
oline Sporleder. Acoustic emanations of printers. In 19th USENIX Security Sym-
posium, 2010.

10. Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automatic discovery
and quantification of information leaks. In Symposium on Security and Privacy
(S&P’09), 2009.

11. G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the secrecy
goals. In 5th European Symposium on Research in Computer Security (Esorics’98),
volume 1485 of LNCS. Springer, 1998.

12. Daniel J. Bernstein, Tung Chou, and Peter Schwabe. Mcbits: Fast constant-
time code-based cryptography. In Cryptographic Hardware and Embedded Systems
(CHES 2013), volume 8086 of Lecture Notes in Computer Science, pages 250–272.
Springer, 2013.

13. Fabrizio Biondi, Axel Legay, Pasquale Malacaria, , and Andrzej Wasowski. Quan-
tifying information leakage of randomized protocols. In 14th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation (VMCAI’13),
2013.

14. B. Blanchet, M. Abadi, and C. Fournet. Automated Verification of Selected Equiv-
alences for Security Protocols. In 20th Symposium on Logic in Computer Science,
pages 331–340, 2005.

15. Bruno Blanchet. Automatic proof of strong secrecy for security protocols. In
Symposium on Security and Privacy (S&P’04), pages 86–100. IEEE Comp. Soc.
Press, 2004.

16. Vincent Cheval. Apte: an algorithm for proving trace equivalence. In Erika
Ábrahám and JKlaus Havelund, editors, Proceedings of the 20th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’14), Lecture Notes in Computer Science, Grenoble, France, April
2014. Springer. to appear.

17. Vincent Cheval, Véronique Cortier, and Antoine Plet. Lengths may break privacy
– or how to check for equivalences with length. In 25th International Conference on
Computer Aided Verification (CAV’13), volume 8043 of Lecture Notes in Computer
Science, pages 708–723. Springer, 2013.

5



18. Tom Chothia and Vitaliy Smirnov. A traceability attack against e-passports. In
14th International Conference on Financial Cryptography and Data Security, 2010.

19. E. Cohen. Taps: A first-order verifier for cryptographic protocols. In 13th IEEE
Computer Security Foundations Workshop (CSFW00). IEEE Computer Society,
2000.

20. H. Comon-Lundh and V. Cortier. Computational soundness of observational equiv-
alence. In 15th Conf. on Computer and Communications Security (CCS’08), 2008.

21. Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security, (4):435–
487, July 2008.

22. N. Evans and S. Schneider. Analysing time dependent security properties in csp
using pvs. In 6th European Symposium on Re- search in Computer Security (Es-
orics’00), page 222237. Springer-Verlag, 2000.

23. R. Gorrieri, E. Locatelli, and F. Martinelli. A simple language for real-time
cryptographic protocol analysis. In 12th European Symposium on Programming
(ESOP’03), page 114128, 2003.

24. Gizela Jakubowska and Wojciech Penczek. Modelling and checking timed authen-
tication of security protocols. Fundamenta Informaticae, pages 363–378, 2007.

25. Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant aes-gcm.
In Cryptographic Hardware and Embedded Systems (CHES 2009), volume 5747 of
Lecture Notes in Computer Science, pages 1–17. Springer, 2009.

26. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In 16th Annual International Cryptology Conference on Advances
in Cryptology (CRYPTO ’96), pages 104–113. Springer-Verlag, 1996.

27. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In 19th Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO ’99), pages 388–397. Springer-Verlag, 1999.

28. Boris Köpf and David Basin. An information-theoretic model for adaptive side-
channel attacks. In 14th ACM Conference on Computer and Communications
Security (CCS’07), 2007.

29. David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program
counter security model: Automatic detection and removal of control-flow side chan-
nel attacks. In International Conference and Information Security and Cryptology
(ICISC’05), pages 156–168, 2005.

30. Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S. Pasareanu.
Symbolic quantitative information flow. In ACM SIGSOFT Software Engineering
Notes, 2012.

6


