
From the Applied Pi Calculus to Horn Clauses
for Protocols with Lists

Miriam Paiola and Bruno Blanchet

INRIA Paris-Rocquencourt
{paiola,blanchet}@inria.fr

Abstract. Recently [7], we presented an automatic technique for prov-
ing secrecy and authentication properties for security protocols that ma-
nipulate lists of unbounded length, for an unbounded number of ses-
sions. That work relies on an extension of Horn clauses, generalized Horn
clauses, designed to support unbounded lists, and on a resolution algo-
rithm on these clauses. However, in that previous work, we had to model
protocols manually with generalized Horn clauses, which is unpractical.
In this work, we present an extension of the input language of ProVerif,
a variant of the applied pi calculus, to model protocols with lists of un-
bounded length, give its formal semantics, and translate it automatically
to generalized Horn clauses. We prove that this translation is sound.

1 Introduction

Security protocols rely on cryptography for securing communication on insecure
networks such as Internet. However, attacks are often found against protocols
that were thought correct. Furthermore, security flaws cannot be detected by
testing since they appear only in the presence of an attacker. Formal verification
can then be used to increase the confidence in these protocols. To ease formal
verification, one often uses the symbolic, so-called Dolev-Yao model [11], which
considers cryptographic primitives as black boxes and messages as terms on these
primitives. In this work, we also rely on this model.

The formal verification of security protocols with fixed-size data structures
has been extensively studied. However, some protocols, for instance XML proto-
cols of web services or some group protocols, use more complex data structures,
such as lists. The verification of protocols that manipulate such data structures
has been less studied and presents additional difficulties, since these complex
data structures add another cause of undecidability.

Recently [7], we started to extend the automatic verifier ProVerif [5] to pro-
tocols with lists of unbounded length. ProVerif takes as input a protocol written
in a variant of the applied pi calculus [1], translates it into a representation
in Horn clauses, and uses a resolution algorithm to determine whether a fact is
derivable from the clauses. One can then infer security properties of the protocol.
For instance, ProVerif uses a fact att(M) to mean that the attacker may have
the message M . If att(s) is not derivable from the clauses, then s is secret. The

2 Miriam Paiola and Bruno Blanchet

main goal of this approach is to prove security properties of protocols without
bounding the number of sessions of the protocol.

In [7], we introduced generalized Horn clauses, to be able to represent lists
of any length, and we adapted the resolution algorithm of ProVerif to deal with
these new clauses. Using this algorithm, we can prove secrecy and authentication
properties of protocols with lists of any length, without bounding the number
of sessions of the protocol. However, to use this algorithm, one has to write the
generalized Horn clauses that model the protocol manually, which is delicate and
error-prone. In this paper, our goal is to solve this problem by providing a more
convenient input language for protocols. More precisely, we extend the input
language of ProVerif to model protocols with lists of unbounded length. We give
a formal semantics to the new process calculus, and an automatic translation to
generalized Horn clauses. We prove that this translation is sound. One can apply
the resolution algorithm of [7] to the generalized Horn clauses obtained by our
translation, to prove secrecy and authentication properties of the initial protocol.
We illustrate our work on a small protocol that relies on XML signatures; it could
obviously be applied to other protocols such as those considered in [7]. This work
is only theoretical: the implementation is planned for future work.

Related Work The first approach considered for proving protocols with recur-
sive data structures was interactive theorem proving: a recursive authentica-
tion protocol was studied for an unbounded number of participants, using Is-
abelle/HOL [15], and using rank functions and PVS [9]. However, this approach
requires considerable human effort.

Truderung [17] showed a decidability result (in NEXPTIME) for secrecy
in recursive protocols, which include transformations of lists, for a bounded
number of sessions. This result was extended to a class of recursive protocols
with XOR [13] in 3-NEXPTIME. Chridi et al [10] present an extension of the
constraint-based approach in symbolic protocol verification to handle a class of
protocols (Well-Tagged protocols with Autonomous keys) with unbounded lists
in messages. They prove that the insecurity problem for Well-Tagged protocols
with Autonomous keys is decidable for a bounded number of sessions.

Several approaches were considered for verifying XML protocols [4,16,12,3],
by translating them to the input format of a standard protocol verifier: the tool
TulaFale [4] uses ProVerif as back-end; Kleiner and Roscoe [16,12] translate WS-
Security protocols to FDR; Backes et al [3] use AVISPA. All these approaches
have little or no support for lists of unbounded length. For instance, TulaFale
has support for list membership with unbounded lists, but does not go further.

In [14], we showed that, for a certain class of Horn clauses, if secrecy is proved
by ProVerif for lists of length one, then secrecy also holds for lists of unbounded
length. However, this work is limited to secrecy and to protocols that treat all
elements of lists uniformly. When this reduction result does not apply, a different
approach is needed: in our previous work [7], we proposed such an approach.

Outline In the next section, we recall the process calculus used by ProVerif and
we extend it with the non-deterministic choice. We also adapt its translation

From the Applied Pi Calculus to Horn Clauses 3

into Horn clauses. In Section 3, we recall the syntax of generalized Horn clauses
and their translation into Horn clauses. Section 5 defines the new process cal-
culus and its semantics. Section 6 gives the automatic translation of generalized
processes into generalized Horn clauses. In Section 7, we prove that this trans-
lation is sound. Because of space constraints, the proofs and additional details
are postponed to the appendix.

2 ProVerif

ProVerif [5] takes as input a process written in a variant of the applied pi calcu-
lus [1]. ProVerif then translates this process into an abstract representation by
Horn clauses. It uses a resolution algorithm to determine whether some facts are
derivable from these clauses, and infer security properties on the initial process.

2.1 The Process Calculus: Syntax and Semantics

The syntax of the process calculus assumes an infinite set of names a, b, c, k, s, to
be used for representing atomic data items, such as keys or nonces, and an infinite
set of variables x, y, z. There is also a set of function symbols for constructors
(f) and destructors (g), each with an arity. Constructors build new terms of
the form f(M1, . . . ,Mn). Therefore, messages are represented by terms M , N ,
which can be a variable, a name, or a constructor application f(M1, . . . ,Mn).
Destructors manipulate terms in processes; they are defined by rewrite rules as
detailed below.

Protocols are represented by processes P , Q, of the following forms:

– The output process out(M,N).P outputs the message N on the channel M
and then executes P .

– The input process in(M,x).P inputs a message on the channel M and then
executes P with x bound to the input message.

– The nil process 0 does nothing.
– The process P | Q is the parallel composition of P and Q.
– The replication !P represents an infinite number of copies of P in parallel.
– The restriction (νa)P creates a new name a and then executes P .
– The destructor application let x = g(M1, . . . ,Mn) in P else Q tries to eval-

uate g(M1, . . . ,Mn); if this succeeds, then x is bound to the result and P
is executed, else Q is executed. More precisely, a destructor g is defined
by a set def (g) of rewrite rules of the form g(M1, . . . ,Mn) → M where
M1, . . . ,Mn,M are terms without free names, and the variables of M also
occur in M1, . . . ,Mn. Then g(M1, . . . ,Mn) evaluates to M if and only if it
reduces toM by a rewrite rule of def (g). Using constructors and destructors,
one can represent data structures and cryptographic operations:
• The constructor pk builds a new public key pk(M) from a secret key M .

The constructor sign is such that sign(M,N) represents the signature of
M under the key N . It has one corresponding destructor:

checksign(sign(x, y), pk(y), x)→ x

4 Miriam Paiola and Bruno Blanchet

Hence, checksign(sign(M,N), pk(N),M) checks if sign(M,N) is a cor-
rect signature of message M under the secret key N ; if yes, it returns
the message M ; otherwise, it fails.

• A data constructor is a constructor f of arity n that comes with n as-
sociated destructors f−1i (1 ≤ i ≤ n), defined by rewrite rules f−1i (f(x1,
. . . , xn)) → xi, so that the arguments of f can be recovered. Data con-
structors are typically used to represent data structures.

– The pattern-matching let pat =M in P else Q matches M with the pattern
pat , and executes P when the matching succeeds and Q when it fails. The
pattern pat can be a variable x or a data constructor application f(pat1, . . . ,
patn). Patterns pat are linear, that is, they never contain several occurrences
of the same variable. Pattern-matching can be encoded using destructor
application: let x =M in P else Q is an abbreviation for let x = id(M) in P
else Q, where the destructor id is defined by id(x) → x and let f(pat1, . . . ,
patn) =M in P else Q is an abbreviation for

let x1 = f−11 (M) in . . . let xn = f−1n (M) in

let pat1 = x1 in . . . let patn = xn in P else Q . . . else Q

else Q . . . else Q

where the variables x1, . . . , xn are fresh and the variables of pat1, . . . , patn
do not occur in Q.

– ProVerif models authentication as correspondence assertions, such as “if
event e(x) has been executed, then event e′(x) has been executed”. The pro-
cess calculus provides an instruction for executing such events: the process
event(e(M)).P executes the event e(M), then executes P .

– We add a construct for internal choice, which was not present in [5]: the pro-
cess P +Q behaves either as P or as Q, non-deterministically. This construct
will be helpful for defining our extension to lists.

The conditional if M = N then P else Q can be encoded as the destructor ap-
plication let x = equal(M,N) in P else Q where x does not occur in P and the
destructor equal , defined by equal(x, x) → x, succeeds if and only if its two
arguments are equal. We often omit a trailing 0.

The name a is bound in P in the process (νa)P . The variable x is bound
in P in the processes in(M,x).P and let x = g(M1, . . . ,Mn) in P else Q. The
variables of pat are bound in P in the process let pat =M in P else Q. A process
is closed if it has no free variables; it may have free names. We denote by fn(P)
the free names of P .

The formal semantics of this calculus can be defined either by a structural
equivalence and a reduction relations, in the style of [1], or by a reduction relation
on semantic configurations, as in [5]. These semantics can easily be extended with
the internal choice, by adding rules such that the process P +Q reduces into P
and also into Q.

From the Applied Pi Calculus to Horn Clauses 5

2.2 Horn Clauses

ProVerif translates a protocol written in the process calculus into a set of Horn
clauses. The syntax of these clauses is defined as follows.

The terms, named clause terms to distinguish them from the terms that
occur in processes, represent the messages of the protocol. A term p can be a
variable x, a name a[p1, . . . , pn], or a constructor application f(p1, . . . , pn). A
variable can represent any term. Instead of representing each fresh name by
a different symbol in the clauses, the fresh names are considered as functions
represented by the clause term a[p1, . . . , pn]. These functions take as arguments
the messages previously received by the principal that creates the name as well
as session identifiers, which are variables that take a different value at each run
of the protocol, to distinguish names created in different runs. As shown in, e.g.,
[5], this representation of names is a sound approximation.

A fact F = pred(p1, . . . , pn) can be of the following forms: message(p, p′)
means that the message p′ may appear on channel p; att(p) means that the
attacker may have the message p; m-event(p) represents that the event p must
have been executed; event(p) represents that the event pmay have been executed.

A clause F1 ∧ · · · ∧ Fn ⇒ F means that, if all facts Fi are true, then the
conclusion F is also true. We use R for a clause, H for its hypothesis, and C for
its conclusion. The hypothesis of a clause is considered as a multiset of facts. A
clause with no hypothesis ⇒ F is written simply F .

2.3 Translation from the Process Calculus to Horn Clauses

As explained in [5], ProVerif uses two sets of clauses: the clauses for the attacker
and the clauses for the protocol.

Clauses for the Attacker. Initially the attacker has all the names in a set S,
hence the clauses att(a[]) for each a ∈ S. Moreover, the abilities of the attacker
are represented by the following clauses:

att(b[x]) (Rn)

for each constructor f of arity n,
att(x1) ∧ · · · ∧ att(xn)⇒ att(f(x1, . . . xn))

(Rf)

for each destructor g, for each rule g(M1, . . . ,Mn)→M in def (g),
att(M1) ∧ · · · ∧ att(Mn)⇒ att(M)

(Rg)

message(x, y) ∧ att(x)⇒ att(y) (Rl)
att(x) ∧ att(y)⇒ message(x, y) (Rs)

Clause (Rn) represents the ability of the attacker to create fresh names: all fresh
names that the attacker may create are represented by the names b[x] for any
x. Clauses (Rf) and (Rg) mean that if the attacker has some terms, than he
can apply constructors and destructors to them. Clause (Rl) means that if the
attacker has a channel x then he can listen on it and clause (Rs) means that the
attacker can send messages in all the channels he has.

6 Miriam Paiola and Bruno Blanchet

Clauses for the Protocol. The protocol is represented by a closed process P0. To
compute the clauses, we first rename the bound names of P0 so that they are
pairwise distinct and distinct from free names of P0. This renaming is important
because bound names are also used as function symbols in terms in the generated
clauses. We make an exception for the new construct P +Q: the bound names in
P need not be distinct from those in Q. Using the same symbols for both names
in P and Q does not cause problems because P and Q cannot be both executed.
We say that the renamed process, denoted P ′0, is a suitable renaming of P0.

Next, we instrument the process P ′0 by labeling each replication !P with a dis-
tinct session identifier s, so that it becomes !sP , and labeling each restriction (νa)
with the clause term that corresponds to the fresh name a, a[x1, . . . , xn, s1, . . . ,
sn′], where x1, . . . , xn are the variables that store the messages received in inputs
above (νa) in P ′0 and s1, . . . , sn′ are the session identifiers that label replications
above (νa) in the instrumentation of P ′0. We denote the instrumentation of P ′0
by instr(P ′0).

Then we compute the clauses as follows. Let ρ be a function that associates
a clause term with each name and variable. We extend ρ as a substitution by
ρ(f(M1, . . . ,Mn)) = f(ρ(M1), . . . , ρ(Mn)) if f is a constructor.

The translation [[P]]ρH of an instrumented process P is a set of clauses, where
the environment ρ is a function defined as above and H is a sequence of facts
message(·, ·) and m-event(·). The empty sequence is ∅ and the concatenation of a
fact F to the sequence H is denoted by H ∧F . The translation [[P]]ρH is defined
as follows, and explained below.

– [[out(M,N).P]]ρH = [[P]]ρH ∪ {H ⇒ message(ρ(M), ρ(N))}.
– [[in(M,x).P]]ρH = [[P]](ρ[x 7→ x])(H ∧message(ρ(M), x)).
– [[0]]ρH = ∅.
– [[P | Q]]ρH = [[P]]ρH ∪ [[Q]]ρH.
– [[!sP]]ρH = [[P]](ρ[s 7→ s])H.
– [[(νa : a′[x1, . . . , xn, s1, . . . , sn′])P]]ρH =

[[P]](ρ[a 7→ a′[ρ(x1), . . . , ρ(xn), ρ(s1), . . . , ρ(sn′)]])H.
– [[let x = g(M1, . . . ,Mn) in P else Q]]ρH =

⋃
{[[P]]((σρ)[x 7→ σ′p′])(σH) |

g(p′1, . . . , p
′
n)→ p′ is in def (g) and (σ, σ′) is a most general pair of substitu-

tions such that σρ(M1) = σ′p′1, . . . , σρ(Mn) = σ′p′n} ∪ [[Q]]ρh.
– [[event(e(M)).P]]ρH = [[P]]ρ(H∧m-event(e(ρ(M))))∪{H ⇒ event(e(ρ(M)))}.
– [[P +Q]]ρH = [[P]]ρH ∪ [[Q]]ρH.

The translation of an output out(M,N).P adds a clause, meaning that the recep-
tion of the messages in H can produce the output in question. The translation
of an input in(M,x).P is the translation of P with the concatenation of the
input to H. The translation of 0 is empty, as this process does nothing. The
translation of the parallel composition P | Q is the union of the translation of P
and Q. The translation of the replication adds the session identifier to ρ; as the
clauses can be applied many times, replication is otherwise ignored. The trans-
lation of a restriction (νa)P is the translation of P in which a is replaced with
the corresponding clause term that depends on previously received messages and
on session identifiers of replications above the restriction. The translation of a

From the Applied Pi Calculus to Horn Clauses 7

destructor application is the union of the translation for the case where the de-
structor succeeds and that for the case where it fails, so the translation does
not have to determine whether the destructor succeeds or not, but considers
both the possibilities. We consider that the else branch may always be executed,
which overapproximates the possible behaviors of the process. The translation
of an event adds the hypothesis m-event(e(ρ(M))) to H, meaning that P can be
executed only if the event e(M) has been executed first. Furthermore, it adds a
clause that concludes event(e(ρ(M)), meaning that the event e(M) is triggered
when all conditions in H are true. The translation of the choice P + Q is the
union of the translation of P and Q, since P + Q behaves either as P or as
Q. The choice was not included in [5]; we have easily extended the proofs of
the results of [5] to the internal choice. (It is also possible to encode P + Q
as (νa)(a〈a〉 | a(x).P | a(x).Q) where a and x do not occur in P and Q. This
encoding leads to more complex clauses so we preferred defining P +Q as a new
construct.)

Summary and correctness. Let ρ0 = {a 7→ a[] | a ∈ fn(P0)}. The set of the
clauses corresponding to the closed process P0 is defined as:

RP ′
0,S

= [[instr(P ′0)]]ρ0∅ ∪ {att(a[]) | a ∈ S} ∪ {(Rn), (Rf), (Rg), (Rl), (Rs)}

where P ′0 is a suitable renaming of P0 and S is the set of names initially known
by the attacker.

By testing derivability of facts from these clauses, we can prove security
properties of the protocol P0, as shown by the following two results. These results
are applications of [5, Theorem 1] to the particular properties of secrecy and
authentication modeled as non-injective agreement. The formal definitions of
these properties can be found in [5]. For this paper, it is sufficient to know that
the following results hold. Let Fme be any set of facts of the form m-event(p);
this set corresponds to the set of allowed events. As explained in [5], this set
is useful to prove the desired correspondence for authentication. We refer the
reader to [5, Section 4] for further details.

Theorem 1 (Secrecy). Let P ′0 be a suitable renaming of P0. Let M be a term.
Let p be the clause term obtained by replacing names a with a[] in M . If att(p)
is not derivable from RP ′

0,S
∪Fme for any Fme, then P0 preserves the secrecy of

M from adversaries with initial knowledge S.

Theorem 2 (Authentication). Let P ′0 be a suitable renaming of P0. Suppose
that, for all Fme, for all p, if event(e(p)) is derivable from RP ′

0,S
∪ Fme, then

m-event(e′(p)) ∈ Fme. Then P0 satisfies the correspondence “if e(x) has been
executed, then e′(x) has been executed” against adversaries with initial knowledge
S.

3 Generalized Horn Clauses

This section recalls the syntax and semantics of generalized Horn Clauses, which
extend Horn clauses to lists and were introduced in [7].

8 Miriam Paiola and Bruno Blanchet

ι ::= index terms
i index variable
φ(ι1, . . . , ιh) function application

pG ::= clause terms
xι1,...,ιh variable (h ≥ 0)
f(pG1 , . . . , p

G
n) function application

a
L1,...,Lh
ι1,...,ιh [pG1 , . . . , p

G
n] indexed names

list(i ≤ L, pG) list constructor

C ::=
∧

(i1,...ih)∈[1,L1]×···×[1,Lh] conjunctions

FG = C pred(pG1 , . . . , pGl) facts

E ::= C pG .
= p′G equations

E ::= {E1, . . . , En} set of equations

RG ::= FG1 ∧ · · · ∧ FGn ∧ E ⇒ pred(pG1 , . . . , p
G
l) generalized Horn clauses

Fig. 1. Syntax of generalized Horn clauses

3.1 Syntax

The syntax of these clauses is defined in Figure 1. Clause terms pG represent
messages: variables may have indices xι1,...,ιh ; these indices ι are build from
index variables and application of functions on indices. The term f(pG1 , . . . , p

G
n)

represents constructor application. For each integer n, we introduce a new data
constructor 〈pG1 , . . . , pGn 〉, which represents lists of fixed length n. The clause term
aL1,...,Lh
ι1,...,ιh

[pG1 , . . . , p
G
n] represents a fresh name a indexed by ι1, . . . , ιh in [1, L1],

. . . , [1, Lh] respectively. The construct list(i ≤ L, pG) represents lists of variable
length L: list(i ≤ L, pG) represents intuitively the list 〈pG{1/i}, . . . , pG{L/i}〉.

Facts are represented by
∧

(i1,...,ih)∈[1,L1]×···×[1,Lh]
pred(pG1 , . . . , p

G
l). The sym-

bol [1, L] represents the set {1, . . . , L}. The set of equations E serves to remember
equalities between terms. Keeping equations is especially useful when they can-
not be immediately used to infer the value of some variables and substitute
them in the rest of clause. For instance, the equation xi

.
= pG does not deter-

mine the value of all instances of xι, because the equation holds for a single
index i and not for all indices, so the equation remains for future use. The clause
FG1 ∧ · · · ∧FGn ∧ E ⇒ pred(pG1 , . . . , p

G
l) means that, if the facts FG1 , . . . , FGn and

the equations in E hold, then the fact pred(pG1 , . . . , p
G
l) also holds. The conclu-

sion of a clause does not contain a conjunction C: we can simply leave the indices
of pred(pG1 , . . . , p

G
l) free to mean that pred(pG1 , . . . , p

G
l) can be concluded for any

value of these indices. We use HG for hypothesis and CG for conclusions.
These clauses are simplified with respect to [7]: in [7], we considered conjunc-

tions over arbitrary subsets of [1, L1] × · · · × [1, Lh] and equations on indices.
These two features appear during the resolution algorithm on generalized Horn
clauses, but are not needed in the initial clauses, so we omit them here. We
still introduce two minor extensions with respect to [7]: we consider names with

From the Applied Pi Calculus to Horn Clauses 9

any number of indices instead of just 0 or 1 index, and predicates of any arity
instead of just arity 1. (The predicate message has arity 2.) It is straightforward
to extend the resolution algorithm of [7] to this more general situation.

3.2 Translation from Generalized Horn Clauses to Horn Clauses

A generalized Horn clause represents several Horn clauses: for each value of
the bounds L, functions φ, and free indices i that occur in a generalized Horn
clause RG, RG corresponds to a certain Horn clause. This section defines this
correspondence, which gives the formal semantics of the generalized Horn clauses.

As in [7], we can define a type system for generalized Horn clauses, to guar-
antee that the indices of all variables vary in the appropriate interval. The judg-
ment Γ ` RG means that the clause RG is well-typed in the type environment Γ ,
which is a sequence of type declarations of the following forms: i : [1, L] means
that index i can vary between 1 and L; φ : [1, L1]× . . .× [1, Lh]→ [1, L] means
that function φ expects as arguments h indices of types [1, Lj] for j = 1, . . . , h,
and returns an index of type [1, L]; x_ : [1, L1] × . . . × [1, Lh] means that the
variable x expects indices of types [1, Lj] for j = 1, . . . , h.

Definition 1 Given a well-typed generalized Horn clause Γ ` RG, an environ-
ment T for Γ ` RG is a function that associates:

– to each bound L that appears in RG or Γ an integer LT ;
– to each index i such that i : [1, L] ∈ Γ , an index iT ∈ {1, . . . , LT };
– to each index function φ such that φ : [1, L1] × · · · × [1, Lh] → [1, L] ∈ Γ , a

function φT : {1, . . . , LT1 } × · · · × {1, . . . , LTh } → {1, . . . , LT }.

Given an environment T and values v1, . . . , vh, we write T [i1 7→ v1, . . . , ih 7→
vh] for the environment that associates to indices i1, . . . , ih the values v1, . . . ,
vh respectively and that maps all other values like T .

Given an environment T for Γ ` RG, the generalized Horn clause RG is
translated into the standard Horn clause RGT defined as follows. We denote
respectively pGT , ET , . . . the translation of pG, E, . . . using the environment T .

The translation of an index term ι such that Γ ` ι : [1, L] is an integer
ιT ∈ {1, . . . , LT } defined as follows:

ιT =

{
iT if ι = i

φT (ιT1 , . . . , ι
T
h) if ι = φ(ι1, . . . , ιh)

The translation of a clause term pG is defined as follows:

(xι1,...,ιh)
T = xιT1 ,...,ιTh

f(pG1 , . . . , p
G
n)

T = f(pGT1 , . . . , pGTn)

aL1,...,Lh
ι1,...,ιh

[pG1 , . . . , p
G
n]
T = a

LT
1 ,...,L

T
h

ιT1 ,...,ι
T
h

[pGT1 , . . . , pGTn]

list(i ≤ L, pG)T = 〈pGT [i 7→1], . . . , pGT [i 7→LT]〉

10 Miriam Paiola and Bruno Blanchet

The symbol xιT1 ,...,ιTh is considered as a variable x; the symbol aL
T
1 ,...,L

T
h

ιT1 ,...,ι
T
h

is consid-
ered as a name function symbol a. (There is a different symbol for each value of
the indices ιT1 , . . . , ιTh and bounds LT1 , . . . , LTh .) The translation of list(i ≤ L, pG)
is a list of length LT .

Given a conjunction C =
∧

(i1,...,ih)∈[1,L1]×···×[1,Lh]
and an environment T ,

we define the set of environments T C = {T [i1 7→ v1, . . . , ih 7→ vh] | vj ∈
{1, . . . , LTj } for j = 1, . . . , h}: these environments map the indices ij of the con-
junction to all their possible values in {1, . . . , LTj }, and map all other values like
T .

The translation of a fact FG = C pred(pG1 , . . . , p
G
l) is

(C pred(pG1 , . . . , p
G
l))

T = F1 ∧ · · · ∧ Fk

where {F1, . . . , Fk} = {pred(pGT
′

1 , . . . , pGT
′

l) | T ′ ∈ T C} and (FG1 ∧ · · · ∧FGn)T =
FGT1 ∧ · · · ∧ FGTn .

The translation of a set of equations E is the set ET obtained by translating
the equations as follows:

– (C pG .
= p′G)T = {pGT ′

= p′GT
′ | T ′ ∈ T C}.

– ET =
⋃
E∈E E

T .

Given a set of equations {p1 = p′1, . . . , pn = p′n} over standard clause terms,
we define as usual its most general unifier mgu ({p1 = p′1, . . . , pn = p′n}) as a
most general substitution σ such that σpi = σp′i for all i ∈ {1, . . . , n}, dom(σ)∪
fv(im(σ)) ⊆ fv(p1, p

′
1, . . . , pn, p

′
n), and dom(σ) ∩ fv(im(σ)) = ∅, where fv(p)

designates the (free) variables of p, dom(σ) is the domain of σ: dom(σ) = {x |
σx 6= x}, and im(σ) is the image of σ: im(σ) = {σx | σx 6= x}. We denote by
{x1 7→ p1, . . . , xn 7→ pn} the substitution that maps xi to pi for all i = 1, . . . , n.

Finally, we define the translation of the generalized Horn clause RG = HG ∧
E ⇒ pred(pG1 , . . . , p

G
l) as follows. If the unification of ET fails, then RGT is

undefined. Otherwise, RGT = mgu (ET)HGT ⇒ mgu (ET)pred(pGT1 , . . . , pGTl).
When RG is a set of well-typed generalized Horn clauses (i.e., a set of pairs

of a type environment Γ and a clause RG such that Γ ` RG), we define RGT =
{RGT | Γ ` RG ∈ RG, T is an environment for Γ ` RG and RGT is defined},
the set of all Horn clauses corresponding to clauses in RG.

4 Motivation

4.1 Running Example

As a running example, we consider a simple protocol based on the SOAP ex-
tension to XML signatures [8]. SOAP envelopes are XML documents with a
mandatory Body together with an optional Header. The Body may contain a
request, response or a fault message. The Header contains information about the
message: in particular, the SOAP header can carry a digital signature, as follows:

From the Applied Pi Calculus to Horn Clauses 11

<Envelope>
<Header>

<Signature>
<SignedInfo>

<Reference URI="#theBody">
<DigestValue> hash of the body </DigestValue>

</Reference>
<Reference URI="#x1">

<DigestValue> hash of the content of x1
</DigestValue>

</Reference>
...

</SignedInfo>
<SignatureValue>
signature of SignedInfo with key skC

</SignatureValue>
</Signature>

</Header>
<Body Id="#theBody"> request </Body>

</Envelope>

The Signature header contains two components. The first component is a
SignedInfo element: it contains a list of references to the elements of the mes-
sage that are signed. Each reference is designated by its identifier and carries a
DigestValue, a hash of the corresponding content. This hash may be computed
with the hash function SHA-1. The second component of the Signature header
is the signature of the SignedInfo element with a secret key skC .

We consider a simple protocol in which a client C sends such a document to
a server S. The server processes the document and checks the signature before
authorizing the request given in the Body: if the SignedInfo contains a Reference
to an element with tag Body and the content of this element is the request, then
he will authorize the request.

4.2 Need for a New Process Calculus

In order to model this protocol, we suppose that the XML parser parses the
SOAP envelope as a pair. The first component is a list of triplets (tag, id, corre-
sponding content) and the second component is the content of the body (that is,
the request). The list in the first component is useful to retrieve the content of
an element from its id by looking up the list. The content of the Signature header
is modeled as a pair (SignedInfo, SignatureValue). SignedInfo is a list of pairs
containing an id and the hash of the corresponding content. SignatureValue is
the signature of SignedInfo with a secret key skC .

We would like to model this running example with the process calculus in-
troduced in Section 2.1. However since the length of the header and the length
of the list of references of the signature can be different from a document to
another, we encounter several problems.

12 Miriam Paiola and Bruno Blanchet

First, since the receiver of the SOAP envelope accepts messages containing
any number of headers, we need lists of variable length in order to model the
expected message. We solve this problem by adding a new construct to the
syntax of terms: list(i ≤ L,Mi) for the list of elements Mi with index i in the
set {1, . . . , L}.

Suppose now to have the following process let list(i ≤ L, yi) = x in P else 0:
we would like to bind yi (i ≤ L) to the element of the list x, without knowing
the length of the list in advance. To do this, we introduce a new construct
choose L in P that chooses non-deterministically a bound L and then executes
P .

Hence the beginning of the process PS , that describes the receiver of the
SOAP envelope, will be:

PS := in(c, x).choose L in
let (list(j ≤ L, (tagj , id j , contj)), w) = x in
. . .

Next, the server has to check the signature, before authorizing the request he
receives. He has to verify that the list contains a tag tagk equal to Signature and
that contk contains a correct signature. In other words, the server has to choose
a k and test whether tagk is equal to Signature and contk contains a correct
signature. We introduce a new process choose k ≤ L in P that chooses non-
deterministically an index k ∈ {1, . . . , L} and then executes P . This construct
allows us to handle protocols that treat elements of lists non-uniformly: we can
in fact perform a look-up in a list.

Hence, we can represent the beginning of the check of the signature as:
. . .
choose k ≤ L in
if tagk = Signature then
let (sinfo, sinfosign) = contk in
. . .
We will give the final representation of this protocol with the new process

calculus in Section 5.2.
Suppose now, that we want to model the following simple message between

L participants Ai, with i = 1, . . . , L and a chair of the communication C:

Ai → C : ai

Since we have L participants we would like to describe each participant with a
process Ai and replicate Ai L times. Moreover we may need to create L identifiers
ai, each for one participant Ai. We solve these two issues by introducing two new
constructs: Πi≤LP and (for all i ≤ L, νai)P . The first represents L copies of P
running in parallel; the second creates L names a1, . . . , aL and then executes
P . Such components appears when modeling of groups protocols, such as the
Asokan-Ginzboorg protocol [2].

Finally, suppose to apply a destructor g(ri, si) to each element yi of a list
list(i ≤ L, yi). Since L is not fixed we cannot model this destructor application
as let y1 = g(r1, s1) in . . . let yL = g(rL, sL) in P else Q . . . else Q. Hence we

From the Applied Pi Calculus to Horn Clauses 13

introduce a new destructor application let for all i1 ≤ L1, . . . , ih ≤ Lh, xi1,...,ih =
g(M1, . . . ,Mn) in P else Q: it tries to evaluate g(M1, . . . ,Mn) for each i1 ∈ {1,
. . . , L1}, . . . , ih ∈ {1, . . . , Lh}; if this succeeds, then xi1,...,ih is bound to the
result and P is executed, else Q is executed. This construct allows us to perform
a map on the list: the destructor g is in fact applied to all the elements of the
list.

5 Generalized Process Calculus

This section formally defines the syntax and the semantics of the new process
calculus that we introduce to represent protocols with lists of unbounded lengths.
We will refer to this new process calculus as generalized process calculus.

5.1 Syntax and Type System

The syntax of the generalized process calculus is described in Figure 2. Terms
are enriched with several new constructs. Variables may have indices xι1,...,ιh ,
and so do names aι. We use the construct list(i ≤ L,MG) to represent lists
of variable length L. Lists of fixed length are represented by a data construc-
tor 〈MG

1 , . . . ,M
G
n 〉 for each length n. We use ĩ to represent a tuple of indices

i1, . . . , ih, and we use the notation xĩ for xi1,...,ih and list (̃i ≤ L̃,MG) for
list(i1 ≤ L1, list(i2 ≤ L2, . . . , list(ih ≤ Lh,MG) . . .)).

Processes are also enriched with new constructs:

– The indexed replication Πi≤LP
G represents L copies of PG in parallel. It

may represent L participants of a group protocol, where L is not fixed.
– The restriction (for all i ≤ L, νai)P

G creates L names a1, . . . , aL and then
executes PG. The names a1, . . . , aL may for instance be a secret key for each
member of a group of L participants.

– The destructor application let for all i1 ≤ L1, . . . , ih ≤ Lh, xi1,...,ih = g(MG
1 ,

. . . ,MG
n) in PG else QG tries to evaluate g(MG

1 , . . . ,M
G
n) for each i1 ∈ {1,

. . . , L1}, . . . , ih ∈ {1, . . . , Lh}; if this succeeds, then xi1,...,ih is bound to the
result and PG is executed, else QG is executed.

– The pattern matching let for all i1 ≤ L1, . . . , ih ≤ Lh, patG =MG in PG else
QG matches MG with the pattern patG for each i1 ∈ {1, . . . , L1}, . . . , ih ∈
{1, . . . , Lh} and executes PG when the matching succeeds, QG otherwise.
The pattern patG can be a variable xi1,...,ih , a data constructor application
f(patG1 , . . . , patGh), or a list of variable length list(i ≤ L, patG); the latter
pattern is essential to be able to decompose lists without fixing their length,
since we do not have destructors to perform this decomposition. When a
variable occurs in the pattern patG in the process let for all i1 ≤ L1, . . . , ih′ ≤
Lh′ , list(ih′+1 ≤ Lh′+1, . . . list(ih ≤ Lh, patG) . . .) = MG in PG else QG, its
indices must be i1, . . . , ih. Patterns are linear.

– The bound choice choose L in PG chooses non-deterministically a bound L
and then executes PG. For example, in the process choose L in let list(i ≤

14 Miriam Paiola and Bruno Blanchet

ι ::= index terms
i index variable
φ(ι1, . . . , ιh) function application

MG, NG ::= terms
xι1,...,ιh variable (h ≥ 0)
f(MG

1 , . . . ,M
G
n) function application

a name
aι indexed name
list(i ≤ L,MG) list constructor

patG := patterns
xi1,...,ih variable
f(patG1 , . . . , pat

G
n) data constructor

list(i ≤ L, patG) list pattern

PG, QG ::= processes
out(MG, NG).PG output
in(MG, x).PG input
0 nil
PG | QG parallel composition
!PG replication
Πi≤LP

G indexed replication
(νa)PG restriction
(for all i ≤ L, νai)PG restriction
let for all i1 ≤ L1, . . . , ih ≤ Lh, xi1,...,ih = g(MG

1 , . . . ,M
G
n) in PG else QG

destructor application
let for all i1 ≤ L1, . . . , ih ≤ Lh, patG =MG in PG else QG pattern matching
event(e(MG)).PG event
choose L in PG bound choice
choose k ≤ L in PG index choice
choose φ : [1, L1]× · · · × [1, Lh]→ [1, L′] in PG function choice

Fig. 2. Syntax of the generalized process calculus

L, yi) = x in PG else 0, the non-deterministic choice of the bound L allows
us to bind yi (i ≤ L) to the elements of the list x, without knowing the
length of the list in advance.

– The index choice choose k ≤ L in PG chooses non-deterministically an in-
dex k ∈ {1, . . . , L} and then executes PG. In particular, this construct al-
lows us to perform a lookup in a list. For example, let list(i ≤ L, xi) =
z in choose k ≤ L in if f(xk) = MG then PG else 0 looks for an element xk
of the list z such that f(xk) =MG.

– The function choice choose φ : [1, L1]× · · · × [1, Lh]→ [1, L′] in PG chooses
non-deterministically an index function φ : {1, . . . , L1}×· · ·×{1, . . . , Lh} →
{1, . . . , L} and then executes PG. For instance, this construct allows us to
verify that the elements of a list are a subset of the elements of another list,

From the Applied Pi Calculus to Horn Clauses 15

by non-deterministically choosing the mapping between the indices of the
two lists, as we do in Section 5.2.

We will use the notation for all ĩ ≤ L̃ instead of for all i1 ≤ L1, . . . , ih ≤ Lh,
and simply omit “for all ” when h = 0. As for the process calculus of Sec-
tion 2.1, we can encode the process if for all i1 ≤ L1, . . . , ih ≤ Lh,M

G =
NG then PG else QG in the generalized process calculus as let x = equal(list (̃i ≤
L̃,MG), list (̃i ≤ L̃, NG)) in PG else QG, where x does not occur in PG. The
“else” branches can be omitted when they are “else 0”.

We also define a simple type system for the generalized process calculus, to
guarantee that the indices of all variables vary in the appropriate interval. In
the type system, the type environment Γ is a list of type declarations:

– i : [1, L] means that i is of type [1, L], that is, intuitively, the value of index
i can vary between 1 and the value of the bound L;

– φ : [1, L1]× · · · × [1, Lh]→ [1, L] means that the function φ expects as input
h indices of types [1, Lj], for j = 1, . . . , h and computes an index of type
[1, L];

– x_ : [1, L1]× · · · × [1, Lh] means that the variable x expects indices of types
[1, L1], . . . , [1, Lh]; we write x_ : [] when x expects no index (that is, h = 0);

– a_ : [1, L] means that the name a expects an index of type [1, L], and a_ : []
means that the name a expects no index.

The type system defines the judgment Γ ` PG, which means that PG is well-
typed in the type environment Γ . The type rules are detailed in Appendix A.

We have notions of bound indices i, functions φ, variables x, names a, and
bounds L. For example, the index k is bound in PG in the process choose k ≤
L in PG. In the pattern matching let for all i1 ≤ L1, . . . , ih ≤ Lh, patG = MG

in PG else QG, the indices i1, . . . , ih are bound in patG = MG, but not in PG
or QG. The bound L is bound in PG in the process choose L in PG. A closed
process has no free bounds, indices, functions, and variables. It may have free
names.

We suppose that all processes are well-typed. A closed process PG0 is well-
typed as follows: Γ0 ` PG where Γ0 = {a_ : [] | a ∈ fn(PG)}.

5.2 Example

The representation of the protocol introduced in Section 4.1 in our process cal-
culus is given in Figure 3. As explained in Section 4.2, we represent an XML
message as a pair, containing as first component a list of triplets (tag, identi-
fier, corresponding content) and as second component the content of the body.
The client process PC first executes an event b(Req), meaning that he starts
the protocol with a request Req. Then he builds his message and sends it on
the public channel c. We suppose that the only element signed by the client
is the Body. Since the receiver of the SOAP envelope accepts messages con-
taining any number of headers, we need lists of variable length in order to
model the expected message. This is why we model a generic XML message

16 Miriam Paiola and Bruno Blanchet

PC := event(b(Req)).out(c, (〈(Signature, ids, (〈(idb, sha1 (Req))〉,
sign((〈(idb, sha1 (Req))〉, skC)))), (Body, idb,Req)〉,Req)))

PS := in(c, x).choose L in
let (list(j ≤ L, (tagj , id j , contj)), w) = x in
choose k ≤ L in
if tagk = Signature then
let (sinfo, sinfosign) = contk in
let z = checksign(sinfosign, pkC , sinfo) in
choose L′ in choose φ : [1, L′]→ [1, L] in
if sinfo = list(l ≤ L′, (idφ(l), sha1 (contφ(l)))) then
choose d ≤ L′ in
if tagφ(d) = Body then if contφ(d) = w then event(e(w))

P := (νskC)let pkC = pk(skC) in out(c, pkC).(!PC |!PS)

Fig. 3. Representation of our running example

as (list(j ≤ L, (tagj , id j , contj)), w), where tagj , id j , and contj are variables
representing tags, identifiers, and contents respectively and w is the variable for
the body. Therefore, the server process PS receives on channel c the document
x consisting of list(j ≤ L, (tagj , id j , contj)) together with the body w. Then he
looks for an element with tag tagk = Signature and tries to match the corre-
sponding content contk to (sinfo, sinfosign), where sinfosign is the signature of
sinfo under the secret key skC . He checks that sinfo is a list of references to
elements of the message list(l ≤ L′, (idφ(l), sha1 (contφ(l)))), and that in this list,
there is an element with tag tagφ(d) = Body and with content contφ(d) equal to
the content of the body w. When all checks succeed, he authorizes the request
w, which is modeled by the event e(w). Our goal is to show that, if the server
authorizes a request w, then the client has sent this request, that is, if event
e(w) is executed, then event b(w) has been executed.

5.3 Semantics

We define the semantics of a generalized process by translating it into a corre-
sponding standard process. To define this translation, we need an environment
that gives a value to each free bound, index, and index function of the process.

Definition 2 Given a generalized process Γ ` PG, an environment T for Γ `
PG is a function that associates:

– to each bound L free in PG or that appears in Γ an integer LT ;
– to each index i such that i : [1, L] ∈ Γ , an index iT ∈ {1, . . . , LT };
– to each index function φ such that φ : [1, L1] × · · · × [1, Lh] → [1, L] ∈ Γ , a

function φT : {1, . . . , LT1 } × · · · × {1, . . . , LTh } → {1, . . . , LT }.

In order to abbreviate notations, we write:

– T [̃i 7→ ṽ] instead of T [i1 7→ v1, . . . , ih 7→ vh];

From the Applied Pi Calculus to Horn Clauses 17

– T [̃i 7→ 1̃] instead of T [i1 7→ 1, . . . , ih 7→ 1];
– T [̃i 7→ L̃T] instead of T [i1 7→ LT1 , . . . , ih 7→ LTh];
– ṽ ≤ L̃T instead of ∀j ∈ {1, . . . , h}, vj ∈ {1, . . . , LTj };
– ĩ : L̃ instead of i1 : [1, L1], . . . , ih : [1, Lh];
– x_ : L̃ instead of x_ : [1, L1]× · · · × [1, Lh];
–

∧
ĩ∈L̃ instead of

∧
(i1,...,ih)∈[1,L1]×···×[1,Lh]

.

Given an environment T for Γ ` PG, the generalized process PG is translated
into the standard process PGT defined as follows. The translation ιT of an index
term ι is defined exactly as in Section 3.2. The translation MGT of a term MG

is defined as follows:

(xι1,...,ιh)
T = xιT1 ,...,ιTh

f(MG
1 , . . . ,M

G
n)T = f(MGT

1 , . . . ,MGT
n)

aT = a

aTι = aιT

list(i ≤ L,MG)T = 〈MGT [i7→1], . . . ,MGT [i 7→LT]〉

The translation of list(i ≤ L,MG) is a list of length LT . Patterns patG are
translated exactly in the same way as terms MG.

Finally the translation of a generalized process is defined as follows and
explained below.

– (out(MG, NG).PG)T = out(MGT , NGT).PGT .
– (in(MG, x).PG)T = in(MGT , x).PGT .
– 0T = 0.
– (PG | QG)T = PGT | QGT .
– (!PG)T = !PGT .
– (Πi≤LP

G)T = PGT [i 7→1] | · · · | PGT [i 7→LT].
– ((νa)PG)T = (νa)PGT .
– ((for all i ≤ L, νai)PG)T = (νaL

T

1) . . . (νaL
T

LT)P
GT .

– (let for all ĩ ≤ L̃, xĩ = g(MG
1 , . . .M

G
n) in PG else QG)T = let E1 in . . . let

El in PT else QT . . . else QT , where {E1, . . . El} = {xT ′

ĩ
= g(MGT ′

1 , . . . ,

MGT ′

n) | T ′ = T [̃i 7→ ṽ], ṽ ≤ L̃T }.
– (let for all ĩ ≤ L̃, patG = MG in PG else QG)T = let E1 in . . . let El in P

T

else QT . . . else QT , where {E1, . . . El} = {patGT
′
= MGT ′ | T ′ = T [̃i 7→

ṽ], ṽ ≤ L̃T }.
– (event(e(MG)).PG)T = event(e(MGT)).PGT .
– (choose L in PG)T = PGT [L7→1] + · · ·+ PGT [L 7→n] + · · · .
– (choose k ≤ L in PG)T = PGT [k 7→1] + · · ·+ PGT [k 7→LT].
– (choose φ : [1, L1] × · · · × [1, Lh] → [1, L′] in PG)T = PGT [φ 7→φ1] + · · · +
PGT [φ 7→φl], where {φ1, . . . , φl} = {φ | φ : {1, . . . , LT1 } × · · · × {1, . . . , LTh } →
{1, . . . , LT }}.

18 Miriam Paiola and Bruno Blanchet

In most cases, a construct of the generalized process calculus is translated into
the corresponding construct of the standard process calculus. The translation
of (for all i ≤ L, νai)P

G creates LT names and then executes PGT . The trans-
lation of the process let ĩ ≤ L̃, xĩ = g(MG

1 , . . . ,M
G
n) in PG else QG computes

g(MG
1 , . . . ,M

G
h) and stores it in xĩ, for all values of the indices ĩ . We define the

translation of the pattern matching similarly. The choice processes are trans-
lated into a non-deterministic choice between all the values that L, i, or φ can
assume. The translation of the process choose L in PG is an infinite process: this
translation cannot be handled by ProVerif and our work solves this problem.

When PG is a closed process, it can be translated in the empty environment,
which we denote by T0.

6 Translation into Generalized Horn Clauses

As for the standard process calculus, we define the translation of the generalized
process calculus into generalized Horn clauses, by giving the clauses for the
attacker and those for the protocol.

Clauses for the Attacker. The clauses for the attacker are the same as in ProVerif,
that is, the clauses att(a[]) for each a ∈ S and the clauses (Rn), (Rf), (Rg), (Rl),
(Rs), except that the following two clauses for lists are added:∧

i∈[1,M] att(xi)⇒ att(list(j ≤M,xj)) (Rf-list)

att(list(j ≤M,xj))⇒ att(xi) (Rg-list)

and the clauses (Rf) and (Rg) for lists of fixed length 〈· · · 〉 are removed. (The
two clauses above are sufficient for all lists.)

Clauses for the Protocol. The protocol is represented by a closed process PG0 . To
compute the clauses, we assume that the bound names in PG0 have been renamed
so that they are pairwise distinct and distinct from free names of PG0 .

Next, we instrument the process PG0 by labeling each replication !PG with a
distinct session identifier s, so that it becomes !sPG, and labeling each restriction
(for all i ≤ L, νai) with the clause term that corresponds to the fresh name ai,
aL,L1,...,Lh

i,i1,...,ih
[x1, . . . , xn, s1, . . . , sn′], where x1, . . . , xn are the variables that store

the messages received in inputs above (for all i ≤ L, νai) in PG0 , s1, . . . , sn′ are
the session identifiers that label replications above (for all i ≤ L, νai) in the
instrumentation of PG0 and i1, . . . , ih and L1, . . . , Lh are the indices that label
indexed replications above (for all i ≤ L, νai) in PG0 . The construct (νa) is in-
strumented in the same way, so that it becomes (νa : aL1,...,Lh

i1,...,ih
[x1, . . . , xn, s1,

. . . , sn′]). We denote the instrumentation of PG0 by instrG(PG0).
The translation [[PG]]ρGHGEΓ of a well-typed instrumented process ΓP `

PG is a set of clauses, where the environment ρG is a mapping that associates
each name and variable, possibly with indices, to a clause term, HG is a sequence
of facts message(·, ·) and m-event(·), E is a set of equations, and Γ is a type
environment for generalized Horn clauses such that:

From the Applied Pi Calculus to Horn Clauses 19

– Γ ` HG;
– Γ ` E ;
– ΓP , Γ ` ρG: for each mapping xĩ 7→ pG in ρG, if ΓP ` x_ : L̃ then Γ, ĩ :

L̃ ` pG, for each mapping a 7→ pG in ρG, then Γ ` pG, for each mapping
ai 7→ pG, if ΓP ` a_ : [1, L] then Γ, i : [1, L] ` pG, and for each declaration
i : [1, L] ∈ ΓP (resp. φ : [1, L1] × · · · × [1, Lh] → [1, L] ∈ ΓP) we have
i : [1, L] ∈ Γ (resp. φ : [1, L1]× · · · × [1, Lh]→ [1, L] ∈ Γ).

The mapping ρG is then extended into a substitution that maps terms MG

to clause terms pG = ρG(MG), by replacing each name and variable with the
corresponding clause term, as follows:

ρG(xι̃) = pG{ι̃/̃i} if ρG(xĩ) = pG

ρG(f(MG
1 , . . . ,M

G
n)) = f(ρG(MG

1), . . . , ρG(MG
n))

ρG(aι) = pG{ι/i} if ρG(ai) = pG

ρG(list(i ≤ L,MG)) = list(i ≤ L, ρG(MG)) if i /∈ fi(im(ρG))

The side condition i /∈ fi(im(ρ)) in the last formula can be guaranteed by re-
naming i if needed; it avoids the capture of bound indices.

– [[out(MG, NG).PG]]ρGHGEΓ =
[[PG]]ρGHGEΓ ∪ {Γ ` HG ∧ E ⇒ message(ρG(MG), ρG(NG))}.

– [[in(MG, x).PG]]ρGHGEΓ =
[[PG]](ρG[x 7→ x])(HG ∧message(ρG(MG), x))E(Γ, x_ : []).

– [[0]]ρGHGEΓ = ∅.
– [[PG | QG]]ρGHGEΓ = [[PG]]ρGHGEΓ ∪ [[QG]]ρGHGEΓ .
– [[!sPG]]ρGHGEΓ = [[PG]](ρG[s 7→ s])HGEΓ .
– [[Πi≤LP

G]]ρGHGEΓ = [[PG]]ρGHGE(Γ, i : [1, L]).
– [[(νa : aL̃

ĩ
[x1, . . . , xn, s1, . . . , sn′])PG]]ρGHGEΓ = [[PG]](ρG[a 7→ aL̃

ĩ
[ρG(x1),

. . . , ρG(xn), ρ
G(s1), . . . , ρ

G(sn′)]])HGEΓ .
– [[(for all i ≤ L, νai : aL,L̃i,̃i [x1, . . . , xn, s1, . . . , sn′])PG]]ρGHGEΓ =

[[PG]](ρG[ai 7→ aL,L̃
i,̃i

[ρG(x1), . . . , ρ
G(xn), ρ

G(s1), . . . , ρ
G(sn′)]])HGEΓ .

– [[let for all ĩ ≤ L̃, xĩ = g(MG
1 , . . .M

G
n) in PG else QG]]ρGHGEΓ =

[[QG]]ρGHGEΓ ∪ [[PG]](ρG[xĩ 7→ p′G])HG(E ∪ E ′)Γ ′,
where p′G, E ′, and Γ ′ are defined as follows. Let g(p1, . . . , pn) → p be the
rewrite rule in def (g). The rewrite rule g(p′G1 , . . . , p′Gn) → p′G is obtained
from g(p1, . . . , pn) → p by replacing all variables y of this rule with fresh
variables with indices ĩ: y′

ĩ
. Then E ′ = {

∧
ĩ≤L̃ p

′G
1

.
= ρG(MG

1), . . . ,
∧
ĩ≤L̃ p

′G
n

.
=

ρG(MG
n)} and Γ ′ is Γ extended with x_ : L̃ and y′_ : L̃ for each variable y′

ĩ

in p′G1 , . . . , p′Gn , p
′G.

– [[let for all ĩ ≤ L̃, patG = MG in PG else QG]]ρGHGEΓ = [[QG]]ρGHGEΓ ∪
[[PG]](ρG[xĩ′ 7→ xĩ′ | xĩ′ occurs in patG])HG(E∪{

∧
ĩ≤L̃ patG

.
= ρG(MG)})Γ ′,

where Γ ′ is Γ extended for the variables in patG.

20 Miriam Paiola and Bruno Blanchet

– [[event(e(MG)).PG]]ρGHGEΓ = [[PG]]ρG(HG ∧ m-event(e(ρG(MG))))EΓ ∪
{Γ ` HG ∧ E ⇒ event(e(ρG(MG)))}.

– [[choose L in PG]]ρGHGEΓ = [[PG]]ρGHGEΓ .
– [[choose k ≤ L in PG]]ρGHGEΓ = [[PG]]ρGHGE(Γ, k : [1, L]).
– [[choose φ : [1, L1]× · · · × [1, Lh]→ [1, L′] in PG]]ρGHGEΓ =

[[PG]]ρGHGE(Γ, φ : [1, L1]× · · · × [1, Lh]→ [1, L′]).

In most cases, the translation is similar to the one of the standard process cal-
culus. The translation of the process (for all i ≤ L, νai : a

L,L̃

i,̃i
[x1, . . . , xn, s1, . . . ,

sn′])PG extends ρG to the name ai for all possible values of i ∈ {1, . . . , L}. The
translation of the destructor application let for all ĩ ≤ L̃, xĩ = g(MG

1 , . . .M
G
n) in

PG else QG is the union of the clauses for the case where the destructor suc-
ceeds and for the case where it fails. In particular, when the destructor succeeds,
instead of performing unification, we add the equations ρ(MG

i) = p′Gi for every
ĩ ≤ L̃ to E and extend ρG to the variable xĩ. We define the translation of the
pattern matching similarly. Finally, the type environment Γ is extended with the
chosen index or function in the choice processes and in the indexed replication;
this is sufficient since the chosen bound, index, or function can take any value
in the generalized Horn clauses.

Summary. Let ρ0 = {a 7→ a[] | a ∈ fn(PG0)}. The set of generalized Horn clauses
corresponding to the closed process PG0 is defined as:

RGPG
0 ,S

= [[instrG(PG0)]]ρ0∅∅Γ0 ∪ {att(a[]) | a ∈ S}

∪ {(Rn), (Rf), (Rg), (Rl), (Rs), (Rf-list), (Rg-list) }

where S is the set of names initially known by the attacker.
For example, by translating the process PS of our running example, we obtain

the following clause:

message(c, x) ∧ {s .
= pk(skC), pkC

.
= s, (list(j ≤ L, (tagj , id j , contj)), w)

.
= x,

tagk
.
= Signature, contk

.
= (sinfo, sinfosign), sinfosign

.
= sign(v, y),

sinfo
.
= v, pkC

.
= pk(y), sinfo

.
= list(l ≤ L′, (idφ(l), sha1 (contφ(l)))),

tagφ(d)
.
= Body, contφ(d)

.
= w} ⇒ event(e(w))

which means that the server process PS executes event e(w) when it has received
a message x that satisfies all the checks. This clause will be simplified by the
resolution algorithm presented in [7].

7 Soundness of the Generalized Horn Clauses

In this section, we relate the generalized Horn clauses generated from a closed
well-typed generalized process Γ0 ` PG0 , to the Horn clauses generated from
PGT0
0 , to show that our generated Horn clauses are correct. The proofs of the

From the Applied Pi Calculus to Horn Clauses 21

Gen. Process Calculus
PG

Gen. Horn clauses
RG

Horn clausesApplied Pi
P [[·]]ρH

T T

[[·]]ρGHGEΓ

Fig. 4. Basic idea of Theorem 3

results of this section can be found in Appendix B. We assume that the bound
names in PG0 have been renamed so that they are pairwise distinct and distinct
from free names of PG0 .

The bound names in PGT0
0 need not be pairwise distinct, so we first need to

rename them, before generating the Horn clauses. Hence, we define a function
Tren that combines the translation PGT with that renaming of bound names.

Definition 3 Given a well-typed generalized process Γ ` PG, an environment
T for Γ ` PG, and a list of indices ĩ ≤ L̃, let Tren be defined by:

– Tren(Πi≤LP
G, T, ĩ ≤ L̃) = Tren(PG, T [i 7→ 1], (̃i, i) ≤ (L̃, L)) | · · · | Tren(PG,

T [i 7→ LT], (̃i, i) ≤ (L̃, L));
– Tren((νa)PG, T, ĩ ≤ L̃) = (νaL̃

T

ĩT
)Tren(PG, T, ĩ ≤ L̃){aL̃T

ĩT
/a};

– Tren((for all i ≤ L, νai)P
G, T, ĩ ≤ L̃) = (νaL

T ,L̃T

1,̃iT
) . . . (νaL

T ,L̃T

LT ,̃iT
)Tren(PG, T,

ĩ ≤ L̃){aL
T ,L̃T

1,̃iT
/a1, . . . , a

LT ,L̃T

LT ,̃iT
/aLT };

– In all other cases, Tren(PG, T,≤ L̃) is defined like PGT except that it re-
cursively calls Tren(P ′G, T,≤ L̃) instead of P ′GT on the subprocesses. For
instance, Tren(choose k ≤ L in PG, T, ĩ ≤ L̃) = Tren(PG, T [k 7→ 1], ĩ ≤
L̃) + · · ·+Tren(PG, T [k 7→ LT], ĩ ≤ L̃).

Lemma 1. Tren(PG0 , T0, ∅ ≤ ∅) is a suitable renaming of PGT0
0 .

We say that R1 subsumes R2 when R2 can be obtained by adding hypotheses
to an instance of R1. In this case, all facts derivable using R2 can also be derived
by R1, so R2 can be eliminated. Formally, subsumption is defined by:

Definition 4 (Subsumption) We say that R1 = H1 ⇒ C1 subsumes R2 =
H2 ⇒ C2, and we write R1 w R2, if and only if there exists a substitution σ
such that σC1 = C2 and σH1 ⊆ H2 (multiset inclusion).

We extend subsumption to sets of clauses as follows. Let R1,R2 be two sets of
Horn clauses. We say that R1 w R2 if for every clause R2 ∈ R2, there exists a
clause R1 ∈ R1 such that R1 w R2.

The following theorem shows the soundness of our generalized Horn clauses.
Its main idea is summarized in Figure 4.

22 Miriam Paiola and Bruno Blanchet

Theorem 3. Let Γ0 ` PG0 be a closed well-typed generalized process, and S be
a set of names. Let P ′0 = Tren(PG0 , T0, ∅ ≤ ∅). We have RGT

PG
0 ,S
w RP ′

0,S
.

Furthermore, if R1 w R2 and a fact F is derivable from R1, then it is also
derivable from R2. So, by Theorems 1, 2, and 3 and Lemma 1, we obtain the
following results.

Corollary 1 (Secrecy). Let MG be a term. Let pG be the clause term obtained
by replacing names a with a[] and names ai with ai[] in MG. If for all envi-
ronments T , att(pGT) is not derivable from RGT

PG
0 ,S
∪Fme for any Fme, then for

all environments T , PGT0
0 preserves the secrecy of MGT from adversaries with

initial knowledge S.

Corollary 2 (Authentication). Suppose that, for all Fme, for all p, if
event(e(p)) is derivable from RGT

PG
0 ,S
∪ Fme, then m-event(e′(p)) ∈ Fme. Then

PGT0
0 satisfies the correspondence “if e(x) has been executed, then e′(x) has been

executed” against adversaries with initial knowledge S.

The hypotheses of these two corollaries are precisely those that can be proved
using the resolution algorithm we developed in [7], as shown by [7, Corollaries 3
and 4]. In particular, in [7] we prove the soundness of the resolution algorithm
for generalized Horn clauses by considering their translation into Horn clauses.
So by combining the results of this paper with [7], we can prove secrecy and
authentication for protocols that use lists of any length.

For example, after translating our running example into generalized Horn
clauses, we can run the tool developed in [7] and obtain that the hypothesis of
Corollary 2 holds for events e and b. Therefore, by Corollary 2, the process of
Section 5.2 satisfies the desired correspondence: if e(x) is executed, then b(x)
has been executed.

8 Conclusion

We have proposed a new process calculus, useful to represent protocols that ma-
nipulate lists of unbounded length. We have defined its semantics and provided
an automatic translation from this calculus into generalized Horn clauses. We
have proved that this translation is sound. By combining these results with [7],
we obtain an automatic technique for proving secrecy and authentication prop-
erties of protocols that manipulate unbounded lists, for an unbounded number
of sessions, represented in a process calculus. Implementing the translation into
generalized Horn clauses is planned for future work. We also plan to adapt to the
generalized process calculus the result presented in [6] on observational equiva-
lences between processes.
Acknowledgments. This work was partly supported by the ANR project ProSe
(decision number ANR-2010-VERS-004-01).

From the Applied Pi Calculus to Horn Clauses 23

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL’01. pp. 104–115. ACM Press, London, United Kingdom (Jan 2001)

2. Asokan, N., Ginzboorg, P.: Key agreement in ad hoc networks. Computer Com-
munications 23(17), 1627–1637 (2000)

3. Backes, M., Mödersheim, S., Pfitzmann, B., Viganò, L.: Symbolic and crypto-
graphic analysis of the secure WS-ReliableMessaging scenario. In: Aceto, L., In-
gólfsdóttir, A. (eds.) FoSSaCS’06. LNCS, vol. 3921, pp. 428–445. Springer (2006)

4. Bhargavan, K., Fournet, C., Gordon, A.D., Pucella, R.: TulaFale: A security tool
for web services. In: FMCO’03. LNCS, vol. 3188, pp. 197–222. Springer (2004)

5. Blanchet, B.: Automatic verification of correspondences for security protocols.
Journal of Computer Security 17(4), 363–434 (Jul 2009)

6. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1),
3–51 (Feb–Mar 2008)

7. Blanchet, B., Paiola, M.: Automatic verification of protocols with lists of un-
bounded length. In: CCS’13. ACM (Nov 2013), to appear.

8. Brown, A., Fox, B., Hada, S., LaMacchia, B., Maruyama, H.: SOAP security ex-
tensions: Digital signature, available at http://www.w3.org/TR/SOAP-dsig/

9. Bryans, J., Schneider, S.: CSP, PVS and recursive authentication protocol. In:
DIMACS Workshop on Formal Verification of Security Protocols (Sep 1997)

10. Chridi, N., Turuani, M., Rusinowitch, M.: Decidable analysis for a class of cryp-
tographic group protocols with unbounded lists. In: CSF’09. pp. 277–289. IEEE
Computer Society (2009)

11. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory IT-29(12), 198–208 (Mar 1983)

12. Kleiner, E., Roscoe, A.W.: On the relationship between web services security and
traditional protocols. In: MFPS 21. Electronic Notes in Theoretical Computer Sci-
ence, vol. 155, pp. 583–603 (2006)

13. Küsters, R., Truderung, T.: On the automatic analysis of recursive security proto-
cols with XOR. In: Thomas, W., Weil, P. (eds.) STACS’07. LNCS, vol. 4393, pp.
646–657. Springer (2007)

14. Paiola, M., Blanchet, B.: Verification of security protocols with lists: from length
one to unbounded length. In: Degano, P., Guttman, J.D. (eds.) POST’12. LNCS,
vol. 7215, pp. 69–88. Springer (2012)

15. Paulson, L.C.: Mechanized proofs for a recursive authentication protocol. In:
CSFW’97. pp. 84–95. IEEE Computer Society Press (1997)

16. Roscoe, A.W., Kleiner, E.: Web Services Security: a preliminary study using Casper
and FDR. In: Automated Reasoning for Security Protocol Analysis (2004)

17. Truderung, T.: Selecting theories and recursive protocols. In: CONCUR 2005.
LNCS, vol. 3653, pp. 217–232. Springer (2005)

Appendix

A Type System

The type rules are given in Figure 5. The type system defines the following
judgments:

24 Miriam Paiola and Bruno Blanchet

i : [1, L] ∈ Γ
Γ ` i : [1, L]

φ : [1, L1]× · · · × [1, Lh]→ [1, L] ∈ Γ Γ ` ι1 : [1, L1] . . . Γ ` ιh : [1, Lh]

Γ ` φ(ι1, . . . , ιh) : [1, L]
x_ : [1, L1]× · · · × [1, Lh] ∈ Γ Γ ` ι1 : [1, L1] . . . Γ ` ιh : [1, Lh]

Γ ` xι1,...,ιh
(Var)

Γ `MG
1 . . . Γ `MG

n

Γ ` f(MG
1 , . . . ,M

G
n)

a_ : [] ∈ Γ
Γ ` a

a_ : [1, L] ∈ Γ Γ ` ι : [1, L]
Γ ` aι

Γ, i : [1, L] `MG

Γ ` list(i ≤ L,MG)

Γ `MG Γ ` NG Γ ` PG

Γ ` out(MG, NG).PG

Γ `MG Γ, x_ : [] ` PG

Γ ` in(MG, x).PG

Γ ` 0
Γ ` PG Γ ` QG

Γ ` PG | QG
Γ ` PG

Γ ` !PG

Γ, i : [1, L] ` PG

Γ ` Πi≤LPG
Γ, a_ : [] ` PG

Γ ` (νa)PG
Γ, a_ : [1, L] ` PG

Γ ` (for all i ≤ L, νai)PG

Γ, i1 : [1, L1], . . . , ih : [1, Lh] `MG
1

. . .

Γ, i1 : [1, L1], . . . , ih : [1, Lh] `MG
n

Γ, x_ : [1, L1]× · · · × [1, Lh] ` PG

Γ ` QG

let for all i1 ≤ L1, . . . , ih ≤ Lh, xi1,...,ih = g(MG
1 , . . .M

G
n) in PG else QG

i1 : [1, L1], . . . , ih[1, Lh] ` xi1,...,ih (x_ : [1, L1]× · · · × [1, Lh])(PatVar)

for all j ≤ n, we have i1 : [1, L1], . . . , ih : [1, Lh] ` patGj Γj

i1 : [1, L1], . . . , ih : [1, Lh] ` f(patG1 , . . . , patGn) Γ1, . . . , Γn
(PatData)

i1 : [1, L1], . . . , ih : [1, Lh], i : [1, L] ` patG Γ

i1 : [1, L1], . . . , ih : [1, Lh] ` list(i ≤ L, patG) Γ
(PatList)

i1 : [1, L1], . . . , ih : [1, Lh] ` patG Γ ′

Γ, i1 : [1, L1], . . . , ih : [1, Lh] `MG

Γ, Γ ′ ` PG

Γ ` QG

let for all i1 ≤ L1, . . . , ih ≤ Lh, patG =MG in PG else QG

Γ `MG Γ ` PG

Γ ` event(e(MG)).PG
Γ ` PG

Γ ` choose L in PG

Γ, k : [1, L] ` PG

Γ ` choose k ≤ L in PG
Γ, φ : [1, L1]× · · · × [1, Lh]→ [1, L] ` PG

Γ ` choose φ : [1, L1]× · · · × [1, Lh]→ [1, L] in PG

Fig. 5. Type system for the generalized process calculus

From the Applied Pi Calculus to Horn Clauses 25

– Γ ` ι : [1, L], which means that ι has type [1, L] in the type environment Γ ;
– Γ `MG, Γ ` PG, which mean that MG, PG, respectively, are well-typed in

the type environment Γ .
– i1 : [1, L1], . . . , ih : [1, Lh] ` patG Γ , which means that the pattern patG

has free indices i1, . . . , ih of types [1, L1], . . . , [1, Lh] respectively, and binds
the variables in Γ .

Most type rules are straightforward. For instance, the rule (Var) means that
xi1,...,ih is well-typed when the types expected by x for its indices match the
types of i1, . . . , ih. The rules (PatVar), (PatData), and (PatList) deal with the
patterns xi1,...,ih , f(patG1 , . . . , patGn), and list(i ≤ L, patG), respectively. They
build the type environment that gives types to the variables bound in the pattern.

B Proofs

We write P ≡α Q when the process P is equal to Q up to renaming of bound
names: in an instrumented process (νa : a′[x1, . . . , xn, s1, . . . , sn′])P , the name a
can be renamed, but the function symbol a′ remains unchanged. This is why we
may end up with instrumented processes in which the name a is different from
the function symbol a′.

B.1 Proof of Lemma 1

Lemma 1 is an immediate consequence of the following lemma.

Lemma 2. Let Γ ` PG be a well-typed generalized process, such that the bound
names of PG are pairwise distinct and distinct from free names of PG. Given
an environment T for Γ ` PG, and a list of indices ĩ ≤ L̃, we have:

Tren(PG, T, ĩ ≤ L̃) ≡α PGT .

Furthermore, we have the following two properties:

P1. The bound names in Tren(PG, T, ĩ ≤ L̃) are pairwise distinct and distinct
from free names, except that in processes P +Q, the bound names in P need
not be distinct from those in Q.

P2. All bound names in Tren(PG, T, ĩ ≤ L̃) are of the form aL̃
T ,...

ĩT ,...
when they come

from (νa) in PG and of the form aL
T ,L̃T ,...

v,̃iT ,...
when they come from (for all i ≤

L, νai) in PG.

Proof. The property Tren(PG, T, ĩ ≤ L̃) ≡α PGT is proved by an easy induction
on the syntax of PG.

Properties P1 and P2 are proved by simultaneous induction on the syntax of
PG.

26 Miriam Paiola and Bruno Blanchet

– Case Πi≤LP
G: for each v ≤ LT , by induction hypothesis, the bound names

in Tren(PG, T [i 7→ v], (̃i, i) ≤ (L̃, L)) are pairwise distinct (except that in
processes P + Q, the bound names in P need not be distinct from those
in Q) and distinct from free names. Furthermore, they are of the form
aL̃

T ,LT ,...

ĩT ,v,...
when they come from (νa) in PG and of the form aL

′T ,L̃T ,LT ,...

v′ ,̃iT ,v,...

when they come from (for all i′ ≤ L′, νai′) in PG, so P2 holds. Hence the
names Tren(PG, T [i 7→ v], (̃i, i) ≤ (L̃, L)) are distinct from the names in
Tren(PG, T [i 7→ v′], (̃i, i) ≤ (L̃, L)) when v 6= v′, so P1 holds.

– Case (for all i ≤ L, νai)P
G: by induction hypothesis, the bound names in

Tren(PG, T, ĩ ≤ L̃) are pairwise distinct (except that in processes P +Q, the
bound names in P need not be distinct from those inQ) and distinct from free
names. Furthermore, they are of the form a′

L̃T ,...

ĩT ,...
when they come from (νa′)

in PG and of the form a′
LT ,L̃T ,...

v,̃iT ,...
when they come from (for all i ≤ L, νa′i)

in PG. The new bound names aL
T ,L̃T

v,̃iT
for v ≤ LT are of the required form,

so P2 holds. They are distinct from the free names and from the bound names
of Tren(PG, T, ĩ ≤ L̃), since the bound names in (for all i ≤ L, νai)P

G are
pairwise distinct and distinct from free names, so they do not use the same
symbol a. So P1 holds.

– The case (νa)PG is similar to the previous one. All other cases follow easily
using the induction hypothesis. We use the property that the bound names
of PG are pairwise distinct and distinct from free names of PG. In the cases
“choose”, we also use that in processes P+Q, the bound names in P need not
be distinct from those in Q, so the induction hypothesis already guarantees
that names are distinct when desired. �

B.2 Proof of Theorem 3

Theorem 3 comes from the combination of two different results. The first result
(Lemma 4) shows that the translation from generalized processes to processes
commutes with the instrumentation (provided the translation is suitably re-
named using Tren). The second result (Lemma 10) shows the soundness of the
translation from instrumented processes to generalized Horn clauses.

Instrumentation Before proving the first result, we define the instrumentation
of processes and generalized processes more formally by induction on the syntax
of the processes, as follows.

Definition 5 Given a process P , a list of variables Vars = x1, . . . , xn, and a
list of session identifiers SessId = s1, . . . , sn′ , we define the instrumented process
as follows:

– instr(in(M,x).P,Vars,SessId) = in(M,x).instr(P, (Vars, x),SessId);
– instr(!P,Vars,SessId) = !sinstr(P,Vars, (SessId , s));

From the Applied Pi Calculus to Horn Clauses 27

– instr((νa)P,Vars,SessId) = (νa : a[Vars,SessId])instr(P,Vars,SessId);
– In all other cases, the same instrumentation is applied recursively on the sub-

processes. For instance, instr(P | Q,Vars,SessId) = instr(P,Vars,SessId) |
instr(Q,Vars,SessId).

We let instr(P) = instr(P, ∅, ∅).

Definition 6 Given a generalized process PG, a list of variables Vars = x1, . . . ,
xn, a list of session identifiers SessId = s1, . . . , sn′ , and a list of indices ĩ ≤ L̃,
we define the instrumented generalized process as follows:

– instrG(in(MG, x).PG,Vars,SessId , ĩ ≤ L̃) =
in(MG, x).instrG(PG, (Vars, x),SessId , ĩ ≤ L̃);

– instrG(!PG,Vars,SessId , ĩ ≤ L̃) = !sinstrG(PG,Vars, (SessId , s), ĩ ≤ L̃);
– instrG(Πi≤LP

G,Vars,SessId , ĩ ≤ L̃) =
Πi≤Linstr

G(PG,Vars,SessId , (̃i, i ≤ L̃, L));
– instrG((for all i ≤ L, νai)PG,Vars,SessId , ĩ ≤ L̃) =

(for all i ≤ L, νai : aL,L̃i,̃i [Vars,SessId])instrG(P,Vars,SessId , ĩ ≤ L̃);

– instrG((νa)PG,Vars,SessId , ĩ ≤ L̃) =
(νa : aL̃

ĩ
[Vars,SessId])instrG(PG,Vars,SessId , ĩ ≤ L̃);

– In all other cases, the same instrumentation is applied recursively on the sub-
processes. For instance, instrG(PG | QG,Vars,SessId , ĩ ≤ L̃) = instrG(PG,

Vars,SessId , ĩ ≤ L̃) | instrG(QG,Vars,SessId , ĩ ≤ L̃).

We let instrG(PG) = instrG(PG, ∅, ∅, ∅ ≤ ∅).

The translation PGT on instrumented processes is defined similarly to the
translation on non-instrumented processes; the cases that differ are as follows:

– (!sPG)T = !sPGT

– ((νa : a′
L̃
ĩ [x1, . . . , xn, s1, . . . , sn′])PG)T = (νa : a′

L̃T

ĩT [x1, . . . , xn, s1, . . . ,
sn′])PGT

– ((for all i ≤ L, νai : a
′L,L̃
i,̃i

[x1, . . . , xn, s1, . . . , sn′])PG)T = (νa1 : a′
LT ,L̃T

1,̃iT
[x1,

. . . , xn, s1, . . . , sn′]) . . . (νaLT
: a′

LT ,L̃T

LT ,̃iT
[x1, . . . , xn, s1, . . . , sn′])PGT

Lemma 3. Given a well-typed generalized process Γ ` PG, an environment T
for Γ ` PG, a list of variables Vars = x1, . . . xn, a list of session identifiers
SessId = s1, . . . , sn′ , and a list of indices ĩ ≤ L̃, we have:

(instrG(PG,Vars,SessId , ĩ ≤ L̃))T ≡α instr(Tren(PG, T, ĩ ≤ L̃),Vars,SessId) .

Proof. This proof is done by structural induction on the process PG. We detail
here the most interesting cases.

28 Miriam Paiola and Bruno Blanchet

– Case in(MG, x).PG:

(instrG(in(MG, x).PG,Vars,SessId , ĩ ≤ L̃))T

= (in(MG, x).instrG(PG, (Vars, x),SessId , ĩ ≤ L̃))T

= in(MGT , x).(instrG(PG, (Vars, x),SessId , ĩ ≤ L̃))T

≡α in(MGT , x).instr(Tren(PG, T, ĩ ≤ L̃), (Vars, x),SessId)
by induction hypothesis

≡α instr(in(MGT , x).Tren(PG, T, ĩ ≤ L̃),Vars,SessId)

≡α instr(Tren(in(MG, x).PG, T, ĩ ≤ L̃),Vars,SessId)

– Case !PG:

(instrG(!PG,Vars,SessId , ĩ ≤ L̃))T

= (!sinstrG(PG,Vars, (SessId , s), ĩ ≤ L̃))T

= !s(instrG(PG,Vars, (SessId , s), ĩ ≤ L̃))T

≡α !sinstr(Tren(PG, T, ĩ ≤ L̃),Vars, (SessId , s))
by induction hypothesis

≡α instr(!Tren(PG, T, ĩ ≤ L̃),Vars,SessId)

≡α instr(Tren(!PG, T, ĩ ≤ L̃),Vars,SessId)

– Case Πi≤LP
G:

(instrG(Πi≤LP
G,Vars,SessId , ĩ ≤ L̃))T

= Πi≤L(instr
G(PG,Vars,SessId , (̃i, i) ≤ (L̃, L)))T

= (instrG(PG,Vars,SessId , (̃i, i) ≤ (L̃, L)))T [i 7→1] | · · · |

(instrG(PG,Vars,SessId , (̃i, i) ≤ (L̃, L)))T [i 7→LT]

For each v ≤ LT , we have by induction hypothesis:

instrG(PG,Vars,SessId , (̃i, i) ≤ (L̃, L))T [i 7→v] ≡α
instr(Tren(PG, T [i 7→ v], (̃i, i) ≤ (L̃, L)),Vars,SessId).

Hence:

(instrG(Πi≤LP
G,Vars,SessId , ĩ ≤ L̃))T

≡α instr(Tren(PG, T [i 7→ 1], (̃i, i) ≤ (L̃, L)),Vars,SessId) | · · · |

instr(Tren(PG, T [i 7→ LT], (̃i, i) ≤ (L̃, L)),Vars,SessId)

≡α instr(Tren(PG, T [i 7→ 1], (̃i, i) ≤ (L̃, L)) | · · · |

Tren(PG, T [i 7→ LT], (̃i, i) ≤ (L̃, L)),Vars,SessId)

≡α instr(Tren(Πi≤LP
G, T, ĩ ≤ L̃),Vars,SessId)

From the Applied Pi Calculus to Horn Clauses 29

– Case (for all i ≤ L, νai)PG:

(instrG((for all i ≤ L, νai)PG,Vars,SessId , ĩ ≤ L̃))T

= ((for all i ≤ L, νai : aL,L̃i,̃i [Vars,SessId])

instrG(PG,Vars,SessId , ĩ ≤ L̃))T

= (νa1 : aL
T ,L̃T

1,̃iT
[Vars,SessId]) . . . (νaLT : aL

T ,L̃T

LT ,̃iT
[Vars,SessId])

(instrG(PG,Vars,SessId , ĩ ≤ L̃))T

Moreover, by induction hypothesis, (instrG(PG,Vars,SessId , ĩ ≤ L̃))T ≡α
instr(Tren(PG, T, ĩ ≤ L̃),Vars,SessId). Therefore,

(instrG((for all i ≤ L, νai)PG,Vars,SessId , ĩ ≤ L̃))T

≡α (νa1 : aL
T ,L̃T

1,̃iT
[Vars,SessId]) . . . (νaLT : aL

T ,L̃T

LT ,̃iT
[Vars,SessId])

instr(Tren(PG, T, ĩ ≤ L̃),Vars,SessId)

≡α (νaL
T ,L̃T

1,̃iT
: aL

T ,L̃T

1,̃iT
[Vars,SessId]) . . . (νaL

T ,L̃T

LT ,̃iT
: aL

T ,L̃T

LT ,̃iT
[Vars,SessId])

(instr(Tren(PG, T, ĩ ≤ L̃),Vars,SessId){aL
T ,L̃T

1,̃iT
/a1, . . . , a

LT ,L̃T

1,̃iT
/aLT })

by renaming bound names

≡α instr((νaL
T ,L̃T

1,̃iT
) . . . (νaL

T ,L̃T

LT ,̃iT
)Tren(PG, T, ĩ ≤ L̃){aL

T ,L̃T

1,̃iT
/a1, . . . ,

aL
T ,L̃T

1,̃iT
/aLT },Vars,SessId)

≡α instr(Tren((for all i ≤ L, νai)PG, T, ĩ ≤ L̃),Vars,SessId)

– The case (νa)PG can be handled similarly to the previous case. All other
cases follow easily from the induction hypothesis. �

Lemma 4. Given a well-typed generalized process Γ0 ` PG0 , we have:

(instrG(PG0))T0 ≡α instr(Tren(PG0 , T0, ∅ ≤ ∅)) .

Proof. This result comes immediately from Lemma 3 applied to instrG(PG0) =
instrG(PG0 , ∅, ∅, ∅ ≤ ∅). �

Translation from Instrumented Processes to Clauses We use the follow-
ing standard result.

Lemma 5. Let E1, E2 be two sets of equations over standard clause terms. Then
mgu (E1∪E2) is defined if and only if mgu (mgu (E2)E1)mgu (E2) is defined, and
mgu (E1 ∪ E2) = mgu (mgu (E2)E1)mgu (E2).

30 Miriam Paiola and Bruno Blanchet

Lemma 6. Let P be an instrumented process, ρ a function that associates a
clause term with each name and variable, and H a sequence of facts. Given a
substitution σ over the variables in ρ, we have that:

[[P]](σρ)(σH) v [[P]]ρH .

Proof. The proof of this lemma is done by structural induction on the process
P . We detail here the most interesting cases.

– Case M(x).P :

[[M(x).P]](σρ)(σH)

= [[P]]((σρ)[x 7→ x])(σH ∧message(σρ(M), x))

= [[P]](σ′(ρ[x 7→ x]))(σ′(H ∧message(ρ(M), x)))
where we define the substitution σ′ = σ[x 7→ x]

v [[P]](ρ[x 7→ x])(H ∧message(ρ(M), x)) by induction hypothesis
v [[M(x).P]]ρH

– Case let x = g(M1, . . . ,Mn) in P else Q:

[[let x = g(M1, . . . ,Mn) in P else Q]](σρ)(σH)

= [[Q]](σρ)(σH) ∪
⋃
{[[P]](σ1σρ[x 7→ σ′1p

′])(σ1σH) | g(p′1, . . . , p′n)→ p′

is in def (g) and (σ1, σ
′
1) is a most general pair of substitutions

such that σ1σρ(Mi) = σ′1p
′
i, for each i = 1, . . . n}

By induction hypothesis, we have [[Q]](σρ)(σH) v [[Q]]ρH. Let g(p′1, . . . ,
p′n) → p′ be a rule in def (g), and (σ1, σ

′
1) be a most general pair of sub-

stitutions such that σ1σρ(Mi) = σ′1p
′
i, for each i = 1, . . . n. Let σ2 = σ1σ

and σ′2 = σ′1. For each i = 1, . . . , n, we have σ2ρ(Mi) = σ′2p
′
i. Let (σ3, σ

′
3)

be a most general pair of substitutions such that for each i = 1, . . . , n:
σ3ρ(Mi) = σ′3p

′
i. As (σ2, σ

′
2) is such a pair (but maybe not a most general

one), there exists a substitution σ4 such that σ2 = σ4σ3 and σ′2 = σ4σ
′
3.

Hence we have that

[[P]](σ1σρ[x 7→ σ′1p
′])(σ1σH)

= [[P]](σ4σ3ρ[x 7→ σ4σ
′
3p
′])(σ4σ3σH)

= [[P]](σ4(σ3ρ[x 7→ σ′3p
′]))(σ4(σ3σH))

v [[P]](σ3ρ[x 7→ σ′3p
′])(σ3σH)

by induction hypothesis. Therefore,

[[let x = g(M1, . . . ,Mn) in P else Q]](σρ)(σH)

v [[Q]]ρH ∪
⋃
{[[P]](σ3ρ[x 7→ σ′3p

′])(σ3σH) | g(p′1, . . . , p′n)→ p′

is in def (g) and (σ3, σ
′
3) is a most general pair of substitutions

such that σ3ρ(Mi) = σ′3p
′
i, for each i = 1, . . . n}

v [[let x = g(M1, . . . ,Mn) in P else Q]]ρH.

From the Applied Pi Calculus to Horn Clauses 31

– The other cases are straightforward using the induction hypothesis. �

Lemma 7. We have

[[let E1 in . . . let El in P else Q . . . else Q]]ρH

v [[Q]]ρH ∪ [[P]](mgu (E)(ρ[x1 7→ p′1, . . . , xl 7→ p′l]))(mgu (E)H)

where

– for each i ≤ l, Ei is xi = gi(Mi,1, . . . ,Mi,ni);
– for each i ≤ l, xi does not occur in Q nor in Mk,j for all k = 1, . . . , l and
j = 1, . . . , nk;

– for each i ≤ l, gi(p0i,1, . . . , p0i,ni
) → p′0i is the rewriting rule of gi and

pi,1, . . . , pi,ni , p
′
i are obtained by renaming p0i,1, . . . , p0i,ni

, p′0i with fresh vari-
ables;

– E = {ρ(Mk,j) = pk,j | k = 1, . . . , l and j = 1, . . . , nk}.

When the equations in E cannot be unified, mgu (E) is not defined, and the second
component of the union is omitted.

Proof. The proof is done by induction on l.

– Base case: l = 1.

[[let E1 in P else Q]]ρH = [[Q]]ρH ∪ [[P]](σρ[x1 7→ σp′1])(σH)

where σ is a most general substitution such that σρ(M1,j) = σp1,j for each
j = 1, . . . , n1, assuming that σ exists. (Finding such a σ is equivalent to
finding a most general pair of substitutions (σ′, σ′′) such that σ′ρ(M1,j) =
σ′′p01,j : we can define σ by σx = σ′′α−1x where α is the renaming of p0i,j
into pi,j and x is a fresh variable introduced by this renaming, and σx = σ′x
otherwise.) Hence σ = mgu (E) where E = {ρ(M1,j) = p1,j | j = 1, . . . , n1}
and we can conclude that

[[let E1 in P else Q]]ρH = [[Q]]ρH ∪ [[P]](mgu (E)(ρ[x1 7→ p′1]))(mgu (E)H)

When mgu (E) is not defined, that is, σ does not exist, the second component
of the union is omitted.

– Inductive step. We have

[[let E1 in let E2 in . . . let El in P else Q . . . else Q else Q]]ρH

= [[Q]]ρH ∪ [[let E2 in . . . let El in P else Q . . . else Q]]ρ1H1

where ρ1 = mgu (E1)(ρ[x1 7→ p′1]), H1 = mgu (E1)H, and
E1 = {ρ(M1,j) = p1,j | j = 1, . . . , n1}, by the base case

v [[Q]]ρH ∪ [[Q]]ρ1H1 ∪
[[P]](mgu (E2)(ρ1[x2 7→ p′2, . . . , xl 7→ p′l]))(mgu (E2)H1)

32 Miriam Paiola and Bruno Blanchet

where E2 = {ρ1(Mk,j) = pk,j | k = 2, . . . , l and j = 1, . . . , nk}, by induc-
tion hypothesis, assuming that mgu (E1) and mgu (E2) are defined. We have
[[Q]]ρ1H1 = [[Q]](mgu (E1)ρ)(mgu (E1)H) since x1 does not occur in Q, so
[[Q]]ρ1H1 v [[Q]]ρH by Lemma 6.
Let E ′2 = {ρ(Mk,j) = pk,j | k = 2, . . . , l and j = 1, . . . , nk}. The variables
of pk,j (k ≥ 2) are fresh, so they are untouched by mgu (E1), so we have
E2 = mgu (E1)E ′2 and E = E1 ∪ E ′2, so

mgu (E2)mgu (E1) = mgu (mgu (E1)E ′2)mgu (E1) = mgu (E1∪E ′2) = mgu (E)

by Lemma 5. Moreover, the variables of p′2, . . . , p′l are fresh, so they are
untouched by mgu (E1). Hence

mgu (E2)(ρ1[x2 7→ p′2, . . . , xl 7→ p′l])

= mgu (E2)mgu (E1)(ρ[x1 7→ p′1, x2 7→ p′2, . . . , xl 7→ p′l])

= mgu (E)(ρ[x1 7→ p′1, . . . , xl 7→ p′l])

and mgu (E2)H1 = mgu (E2)mgu (E1)H = mgu (E)H. Therefore,

[[let E1 in let E2 in . . . let El in P else Q . . . else Q else Q]]ρH

v [[Q]]ρH ∪ [[P]](mgu (E)(ρ[x1 7→ p′1, . . . , xl 7→ p′l]))(mgu (E)H)

As before, when mgu (E) is not defined, that is, mgu (E2)mgu (E1) is not
defined, the second component of the union is omitted. �

From this lemma, we obtain the following result for the special case of the
decomposition of data constructors.

Corollary 3. Let f be a data constructor of arity n and f−11 , . . . , f−1n be its
associated destructors.

[[let x1 = f−11 (M) in . . . let xn = f−1n (M) in P else Q . . . else Q]]ρH

v [[Q]]ρH ∪ [[P]](mgu (E)(ρ[x1 7→ v1, . . . , xn 7→ vn]))(mgu (E)H)

where x1, . . . , xn do not occur in Q nor in M , and E = {f(v1, . . . , vn) = ρ(M)}.
When mgu (E) is not defined, the second component of the union is omitted.

Proof. By Lemma 7, we obtain

[[let x1 = f−11 (M) in . . . let xn = f−1n (M) in P else Q . . . else Q]]ρH

v [[Q]]ρH ∪ [[P]](mgu (E ′)(ρ[x1 7→ v1,1, . . . , xn 7→ vn,n]))(mgu (E ′)H)

where E ′ = {ρ(M) = f(vk,1, . . . , vk,n) | k = 1, . . . , n} and the variables vk,j
(k = 1, . . . , n, j = 1, . . . , n) are fresh. We have mgu (E ′)vk,j = mgu (E ′)vk′,j for
all k, k′, j, so for all j = 1, . . . , n, we can rename the variables vk,j for all k into
the same variable vj . After this renaming, we obtain the announced result. �

From the Applied Pi Calculus to Horn Clauses 33

Lemma 8. Suppose that the variables of pat1, . . . , patn are pairwise distinct and
fresh (that is, they do not occur in ρ, H, M1, . . . , Mn, and Q).

[[let pat1 =M1 in . . . let patn =Mn in P else Q . . . else Q]]ρH

v [[Q]]ρH ∪ [[P]](mgu (E)(ρ[x 7→ x | x occurs in pat1, . . . , patn]))(mgu (E)H)

where E = {pat i = ρ(Mi) | i = 1, . . . , n}.

Proof. The proof is done by induction on the total size of the patterns pat1, . . . ,
patn.

– Case 1: there is a single pattern pat = x.

[[let x =M in P else Q]]ρH

= [[let x = id(M) in P else Q]]ρH

= [[Q]]ρH ∪ [[P]](mgu ({ρ(M) = y})(ρ[x 7→ y]))(mgu ({ρ(M) = y})H)

where y is a fresh variable and the rewrite rule for destructor
id is renamed into id(y)→ y (see the base case of Lemma 7).

v [[Q]]ρH ∪ [[P]](mgu ({ρ(M) = x})(ρ[x 7→ x]))(mgu ({ρ(M) = x})H)

by renaming x into y since x and y do not occur in ρ, ρ(M),
and H.

– Case 2: there is a single pattern pat = f(pat1, . . . , patn).

[[let f(pat1, . . . , patn) =M in P else Q]]ρH

= [[let x1 = f−11 (M) in . . . let xn = f−1n (M) in

let pat1 = x1 in . . . let patn = xn in P else Q . . . else Q

else Q . . . else Q]]ρH

where x1, . . . , xn are fresh variables
v [[Q]]ρH ∪ [[let pat1 = x1 in . . . let patn = xn in P else Q . . . else Q]]

(mgu (E)(ρ[x1 7→ v1, . . . , xn 7→ vn]))(mgu (E)H)

where E = {f(v1, . . . , vn) = ρ(M)}, by Corollary 3
v [[Q]]ρH ∪ [[Q]]ρ′H ′ ∪

[[P]](mgu (E ′)(ρ′[x 7→ x | x occurs in pat1, . . . , patn]))(mgu (E ′)H ′)

where ρ′ = mgu (E)(ρ[x1 7→ v1, . . . , xn 7→ vn]), H ′ = mgu (E)H, and E ′ =
{pat1 = ρ′(x1), . . . , patn = ρ′(xn)}, by induction hypothesis (since the total
size of pat1, . . . , patn is less than the size of f(pat1, . . . , patn)).
As x1, . . . , xn do not appear in Q, [[Q]]ρ′H ′ = [[Q]](mgu (E)ρ)(mgu (E)H) v
[[Q]]ρH, by Lemma 6.
We have E ′ = {pat i = mgu (E)vi | i = 1, . . . , n} = mgu (E){pat i = vi |
i = 1, . . . , n}, so by Lemma 5, mgu (E ′)mgu (E) = mgu ({f(v1, . . . , vn) =
ρ(M)} ∪ {pat i = vi | i = 1, . . . , n}) = mgu ({f(pat1, . . . , patn) = ρ(M)} ∪
{pat i = vi | i = 1, . . . , n}). Let E ′′ = {f(pat1, . . . , patn) = ρ(M)}. Then

34 Miriam Paiola and Bruno Blanchet

we have mgu (E ′)mgu (E) = (mgu (E ′′))[vi 7→ mgu (E ′′)pat i]. Therefore we
obtain that:

[[let f(pat1, . . . , patn) =M in P else Q]]ρH v [[Q]]ρH

∪ [[P]](mgu (E ′′)(ρ[x 7→ x | x occurs in pat1, . . . , patn]))(mgu (E ′′)H)

since the variables v1, . . . , vn do not occur in ρ and H, and the variables x1,
. . . , xn can be removed from the environment since they do not occur in P .

– Case 3: there are several patterns.

[[let pat1 =M1 in . . . let patn =Mn in P else Q . . . else Q]]ρH

v [[Q]]ρH ∪ [[let pat2 =M2 in . . . let patn =Mn in P else Q . . . else Q]]

(mgu (E1)(ρ[x 7→ x | x occurs in pat1]))(mgu (E1)H)

where E1 = {pat1 = ρ(M1)}, by induction hypothesis applied to pat1

v [[Q]]ρH ∪ [[Q]]ρ′H ′ ∪
[[P]](mgu (E2)(ρ′[x 7→ x | x occurs in pat2, . . . , patn]))(mgu (E2)H ′)

where ρ′ = mgu (E1)(ρ[x 7→ x | x occurs in pat1]), H ′ = mgu (E1)H, and
E2 = {pat i = ρ′(Mi) | i = 2, . . . , n}, by induction hypothesis applied to pat2,
. . . , patn.
Since the variables of pat1 do not occur in the process Q, we have [[Q]]ρ′H ′ =
[[Q]](mgu (E1)ρ)(mgu (E1)H) v [[Q]]ρH by Lemma 6.
Let E ′2 = {pat i = ρ(Mi) | i = 2, . . . , n} and E = {pat i = ρ(Mi) | i =
1, . . . , n}. Since the variables of pat i for i ≥ 2 do not occur in E1, we have
mgu (E2)mgu (E1) = mgu (mgu (E1)E ′2)mgu (E1) = mgu (E1∪E ′2) = mgu (E)
by Lemma 5. So

mgu (E2)(ρ′[x 7→ x | x occurs in pat2, . . . , patn])

= mgu (E2)mgu (E1)(ρ[x 7→ x | x occurs in pat1, . . . , patn])

= mgu (E)(ρ[x 7→ x | x occurs in pat1, . . . , patn])

and mgu (E2)H ′ = mgu (E2)mgu (E1)H = mgu (E)H. Therefore,

[[let pat1 =M1 in . . . let patn =Mn in P else Q . . . else Q]]ρH v [[Q]]ρH

∪ [[P]](mgu (E)(ρ[x 7→ x | x occurs in pat1, . . . , patn]))(mgu (E)H)

�

Lemma 9. Let ΓP `MG be a well-typed pattern, ρG a function that associates
a clause term with each name and variable, possibly with indices, and Γ an envi-
ronment for generalized Horn clauses such that ΓP , Γ ` ρG. Then Γ ` ρG(MG)

Proof. We detail here the three interesting cases.

– Case MG = xι̃. Since ΓP types xι̃, we have two judgments x_ : L̃ ∈ ΓP

and ΓP ` ι̃ : L̃. From the definition of ΓP , Γ ` ρG, if {xĩ 7→ pG} ∈ ρG,
then Γ, ĩ : L̃ ` pG. Moreover, as ΓP ` ι̃ : L̃, we have Γ ` ι̃ : L̃. Hence
ρG(MG) = pG{ι̃/̃i} and Γ ` ρG(MG).

From the Applied Pi Calculus to Horn Clauses 35

– Case MG = a. From the definition of Γ ` ρG, if {a 7→ pG} ∈ ρG, then
Γ ` pG = ρG(MG).

– Case MG = aι. Since ΓP types aι, we have two judgments a_ : [1, L] ∈ ΓP
and ΓP ` i : [1, L]. From the definition of ΓP , Γ ` ρG, if {ai 7→ pG} ∈ ρG,
then Γ, i : [1, L] ` pG. Moreover, as ΓP ` i : [1, L], we have Γ ` i : [1, L].
Hence ρG(MG) = pG{ι/i} and Γ ` ρG(MG).

We write T ′ext T to mean that T ′ is an extension of the environment T . Given
a type environment ΓP for processes and a type environment Γ for generalized
Horn clauses, we define {xĩ 7→ pG}T = {xṽ 7→ pGT [̃i 7→ṽ] | ṽ ≤ L̃} when x_ : L̃ ∈
Γ , {a 7→ pG}T = {a 7→ pGT }, and {ai 7→ pG}T = {av 7→ pGT [i 7→v] | v ≤ L} when
a_ : [1, L] ∈ ΓP . We extend this definition naturally to ρGT .

Lemma 10. Let ΓP ` PG be a well-typed instrumented generalized process, ρG a
function that associates a clause term with each name and variable, possibly with
indices, HG a sequence of facts, E a set of equations, and Γ is an environment
for generalized Horn clauses such that:

– Γ ` HG;
– Γ ` E;
– ΓP , Γ ` ρG.

Then

[[PGT]](mgu (ET)ρGT)(mgu (ET)HGT) v
⋃

T ′ext T

([[PG]]ρGHGEΓ)T
′

and the clauses in the right hand side are well-typed.

Proof. The proof is done by structural induction on the process PG. Let ρ =
mgu (ET)ρGT and H = mgu (ET)HGT , and let us show that [[PGT]]ρH v⋃
T ′ext T ([[P

G]]ρGHGEΓ)T ′
.

– Case out(MG, NG).PG:

[[(out(MG, NG).PG)T]]ρH

= [[out(MGT , NGT)〉.PGT]]ρH
= [[PGT]]ρH ∪ {(mgu (ET)HGT

⇒ message(mgu (ET)ρGT (MGT),mgu (ET)ρGT (NGT))}
= [[PGT]]ρH ∪ ({Γ ` HG ∧ E ⇒ message(ρG(MG), ρG(NG))})T

v
⋃

T ′ext T

([[PG]]ρGHGEΓ)T
′
∪⋃

T ′ext T

({Γ ` HG ∧ E ⇒ message(ρG(MG), ρG(NG))})T
′

by induction hypothesis and using that T is an extension of itself

v
⋃

T ′ext T

([[out(MG, NG).PG]]ρGHGEΓ)T
′

36 Miriam Paiola and Bruno Blanchet

– Case in(MG, x).PG:

[[(in(MG, x).PG)T]]ρH = [[in(MGT , x).PGT]]ρH

= [[PGT]](ρ[x 7→ x])(H ∧message(ρ(MGT), x))

The right-hand side of the theorem develops in⋃
T ′ext T

([[in(MG, x).PG]]ρGHGEΓ)T
′
=

⋃
T ′ext T

([[PG]]ρG1 H
G
1 EΓ1)

T ′

where ρG1 = ρG[x 7→ x], HG
1 = HG ∧message(ρG(MG), x), and Γ1 = Γ, x_ :

[]. We show that ρ[x 7→ x] = mgu (ET)ρGT1 :

mgu (ET)ρGT1 = mgu (ET)ρGT [x 7→ x] = ρ[x 7→ x]

and H ∧message(ρ(MGT), x) = mgu (ET)HGT
1 :

mgu (ET)HGT
1 = mgu (ET)(HG ∧message(ρG(MG), x))T

= mgu (ET)HGT ∧mgu (ET)(message(ρGT (MGT), x)

= H ∧message(mgu (ET)ρGT (MGT), x)

= H ∧message(ρ(MGT), x)

Let Γ ′P the environment that types PG, Γ ′P = ΓP , x_ : []. Before applying
the induction hypothesis we need to show that Γ ′P , Γ1 ` ρG1 and Γ1 ` HG

1

(clearly, Γ1 ` E). Since ΓP , Γ ` ρG, we have Γ ′P , Γ1 ` ρG. For the new map
[x 7→ x] ∈ ρG1 we have that x_ : [] ∈ Γ ′P and Γ1 ` x. Hence Γ ′P , Γ1 ` ρG1 .
Since Γ ` HG, we have Γ1 ` HG. From Lemma 9 we have that Γ `
ρG(MG), as ΓP , Γ ` ρG and ΓP ` MG. Finally Γ1 ` x. Hence Γ1 `
message(ρG(MG), x), and thus Γ1 ` HG

1 . Therefore, we can apply the in-
duction hypothesis and conclude.

– Case 0: [[0T]]ρH = ∅ =
⋃
T ′ext T ([[0]]ρ

GHGEΓ)T ′
.

– Case PG | QG:

[[(PG | QG)T]]ρH = [[PGT | QGT]]ρH = [[PGT]]ρH ∪ [[QGT]]ρH

v
⋃

T ′ext T

([[PG]]ρGHGEΓ)T
′
∪

⋃
T ′ext T

([[QG]]ρGHGEΓ)T
′

v
⋃

T ′ext T

([[PG |QG]]ρGHGEΓ)T
′

– Case !sPG:

[[(!sPG)T]]ρh = [[!sPGT]]ρH = [[PGT]](ρ[s 7→ s])H

v
⋃

T ′ext T

([[PG]](ρG[s 7→ s])HGEΓ)T
′

v
⋃

T ′ext T

([[!sPG]]ρGHGEΓ)T
′

From the Applied Pi Calculus to Horn Clauses 37

– Case Πi≤LP :

[[(Πi≤LP)
T]]ρH = [[PGT [i 7→1] | . . . |PGT [i 7→LT]]]ρH

= [[PGT [i 7→1]]]ρH ∪ · · · ∪ [[PGT [i7→LT]]]ρH

By induction hypothesis, [[PGT [i7→v]]]ρH v
⋃
T ′ext T [i 7→v]([[P

G]]ρGHGE(Γ, i :
[1, L]))T

′
for each v ∈ {1, . . . , LT }. Therefore

[[(Πi≤LP)
T]]ρH v

⋃
T ′ext T [i 7→1]

([[PG]]ρGHGE(Γ, i : [1, L]))T
′
∪ · · · ∪

⋃
T ′ext T [i7→LT]

([[PG]]ρGHGE(Γ, i : [1, L]))T
′

v
⋃

T ′ext T

([[PG]]ρGHGE(Γ, i : [1, L]))T
′

v
⋃

T ′ext T

([[Πi≤LP
G]]ρGHGEΓ)T

′

since T [i 7→ v] is an extension of T for each v ∈ {1, . . . , LT }.

– Case (for all i ≤ L, νai : aL,L̃i,̃i [x1, . . . , xn, s1, . . . , sn′])PG:

[[((for all i ≤ L, νai : aL,L̃i,̃i [x1, . . . , xn, s1, . . . , sn′])PG)T]]ρH

= [[(νa1 : aL
T ,L̃T

1,̃iT
[x1, . . . , xn, s1, . . . , sn′]) . . .

(νaLT : aL
T ,L̃T

LT ,̃iT
[x1, . . . , xn, s1, . . . , sn′])PGT]]ρH

= [[PGT]]ρ1H

where

ρ1 = ρ[a1 7→ aL
T ,L̃T

1,̃iT
[ρ(x1), . . . , ρ(xn), ρ(s1), . . . , ρ(sn′)], . . . ,

aLT 7→ aL
T ,L̃T

LT ,̃iT
[ρ(x1), . . . , ρ(xn), ρ(s1), . . . , ρ(sn′)]] .

The right-hand side of the theorem develops in

⋃
T ′ext T

([[(for all i ≤ L, νai : aL,L̃i,̃i [x1, . . . , xn, s1, . . . , sn′])PG]]ρGHGEΓ)T
′

=
⋃

T ′ext T

([[PG]]ρG1 H
GEΓ)T

′

38 Miriam Paiola and Bruno Blanchet

where ρG1 = ρG[ai 7→ aL,L̃
i,̃i

[ρG(x1), . . . , ρ
G(xn), ρ

G(s1), . . . , ρ
G(sn′)]]. We show

that ρ1 = mgu (ET)ρGT1 :

ρ1 = ρ[a1 7→ aL
T ,L̃T

1,̃iT
[ρ(x1), . . . , ρ(xn), ρ(s1), . . . , ρ(sn′)], . . . ,

aLT 7→ aL
T ,L̃T

LT ,̃iT
[ρ(x1), . . . , ρ(xn), ρ(s1), . . . , ρ(sn′)]]

= mgu (ET)

(ρGT [a1 7→ aL
T ,L̃T

1,̃iT
[ρGT (x1), . . . , ρ

GT (xn), ρ
GT (s1), . . . , ρ

GT (sn′)],

. . . , aLT 7→ aL
T ,L̃T

LT ,̃iT
[ρGT (x1), . . . , ρ

GT (xn), ρ
GT (s1), . . . , ρ

GT (sn′)]])

= mgu (ET)ρGT1

Let Γ ′P the environment that types PG, Γ ′P = ΓP , a_ : [1, L]. Before ap-
plying the induction hypothesis we need to show that Γ ′P , Γ ` ρG1 . Since
ΓP , Γ ` ρG, we have Γ ′P , Γ ` ρG. For the new map [ai 7→ aL,L̃

i,̃i
[ρG(x1), . . . ,

ρG(xn), ρ
G(s1), . . . , ρ

G(sn′)]] ∈ ρG1 we have that a_ : [1, L] ∈ Γ ′P and Γ `
aL,L̃
i,̃i

[ρG(x1), . . . , ρ
G(xn), ρ

G(s1), . . . , ρ
G(sn′) by Lemma 9. Hence Γ ′P , Γ `

ρG1 . We can then apply the induction hypothesis and conclude.
– Case (νa)PG: this case is similar to the previous one.
– Case let for all ĩ ≤ L̃, xĩ = g(MG

1 , . . . ,M
G
n) in PG else QG: let g(p1, . . . ,

pn)→ p′ be the rewrite rule for the destructor g. We suppose that the tuples
of indices ṽ ≤ L̃T are indexed by 1, . . . , l, that is, we define {ṽ1, . . . , ṽl} =
{1̃, . . . , L̃T }. We let T ′k = T [̃i 7→ ṽk] for k = 1, . . . , l.

[[(let for all ĩ ≤ L̃, xĩ = g(MG
1 , . . . ,M

G
n) in PG else QG)T]]ρH

= [[let E1 in . . . let El in P
GT else QGT . . . else QGT]]ρH

where Ek is xT
′
k

ĩ
= g(M

GT ′
k

1 , . . . ,M
GT ′

k
n) for k = 1, . . . , l.

v [[QGT]]ρH ∪ [[PGT]](mgu (E1)(ρ[xṽ1 7→ p′1, . . . , xṽl 7→ p′l]))(mgu (E1)H)

by Lemma 7, where pk,1, . . . , pk,n, p′k are the patterns p1, . . . , pn, p′ renamed
with distinct fresh variables for each k = 1, . . . , l and E1 = {ρ(MGT ′

k
j) =

pk,j | k = 1, . . . , l and j = 1, . . . , n}, assuming that mgu (E1) exists. (When
mgu (E1) does not exist, the second component of the union is omitted, and
the rest of the proof can easily be adapted.) The right-hand side of the
theorem develops in⋃
T ′ext T

([[let for all ĩ ≤ L̃, xĩ = g(MG
1 , . . . ,M

G
n) in PG else QG]]ρGHGEΓ)T

′

=
⋃

T ′ext T

([[QG]]ρGHGEΓ)T
′
∪

⋃
T ′ext T

([[PG]](ρG[xĩ 7→ p′G])HG(E ∪ E ′)Γ ′)T
′

where E ′ and Γ ′ are defined as follows. The rewrite rule g(p′G1 , . . . , p′Gn) →
p′G is obtained from g(p1, . . . , pn) → p′ by replacing all variables y of this

From the Applied Pi Calculus to Horn Clauses 39

rule with fresh variables with indices ĩ: y′
ĩ
. Then E ′ is the set of equations

{
∧
ĩ∈L̃ p

′G
1

.
= ρG(MG

1), . . . ,
∧
ĩ∈L̃ p

′G
n

.
= MG

n } and Γ ′ is Γ extended with
x_ : L̃ and y′_ : L̃ for each variable y′

ĩ
in p′G1 , . . . p′Gn , p

′G.
We analyze now the relation between mgu (E1) and E ′T . We have E ′T =

{ρGT (MGT [̃i 7→ṽ]
j) = p

′GT [̃i 7→ṽ]
j | ṽ ≤ L̃T and j = 1, . . . n}. Given the construc-

tion of pk,j , p′k, p
′G
j , p′G, there is a renaming α such that, for all k = 1, . . . , l,

we have αpk,j = p
′GT ′

k
j for each j = 1, . . . , n and αp′i = p′GT

′
k . Hence we have

mgu (ET)E ′T = {mgu (ET)ρGT (MGT [̃i 7→ṽ]
j) = mgu (ET)p′GT [̃i7→ṽ]

j

| ṽ ≤ L̃T and j = 1, . . . n}

= {ρ(MGT [̃i7→ṽ]
j) = p

′GT [̃i 7→ṽ]
j | ṽ ≤ L̃T and j = 1, . . . n}

since the variables of p′GT [̃i 7→ṽ]
j are fresh,

so they are not touched by mgu (ET)

= {ρ(MGT ′
k

j) = αpk,j | k = 1, . . . , l and j = 1, . . . n}
= αE1

So, by Lemma 5,

mgu (αE1)mgu (ET) = mgu (mgu (ET)E ′T)mgu (ET) = mgu ((E ∪ E ′)T)

Hence

mgu (αE1)(ρ[xṽ1 7→ αp′1, . . . , xṽl 7→ αp′l])

= mgu (αE1)mgu (ET)(ρGT [x1̃ 7→ p′GT [̃i 7→1̃], . . . , xL̃T 7→ p′GT [̃i7→L̃T]])

= mgu ((E ∪ E ′)T)(ρG[xĩ 7→ p′G])T

Similarly, mgu (αE1)H = mgu (αE1)mgu (ET)HGT = mgu ((E ∪ E ′)T)HGT .
Let Γ ′P the environment that types PG: by the typing rules we have that
Γ ′P = ΓP , x_ : L̃. Before applying induction we need to show that Γ ′P , Γ

′ `
ρG[xĩ 7→ p′G] and Γ ′ ` E ∪ E ′. At first, notice that p′G1 , . . . , p′Gn , p

′G are
obtained from p1, . . . , pn, p

′ by replacing all variables y with fresh variables
with indices y′

ĩ
and that Γ ′ types each variable y′_ with type L̃. Hence all

variables in p′G1 , . . . , p′Gn , p
′G are typed by Γ ′.

We have that Γ ′P , Γ
′ ` ρG because Γ ′ extends Γ , Γ ′P extends ΓP , and ΓP , Γ `

ρG by hypothesis. Since x_ : L̃ ∈ Γ ′P and Γ ′, ĩ : L̃ ` p′G (all variables in p′G
are typed by Γ ′), we have Γ ′P , Γ

′ ` ρG[xĩ 7→ p′G].
For each equation

∧
ĩ∈L̃ p

′G
j

.
= ρG(MG

j), j = 1, . . . n we have that:
• Γ ′, ĩ : L̃ ` ρG(MG

j): this comes from Lemma 9 applied to ΓP , ĩ : L̃ `MG
j

and (ΓP , ĩ : L̃), Γ ` ρG and from the fact that Γ ′ extends Γ .
• Γ ′, ĩ : L̃ ` p′Gj : all variables in p′Gj are typed in Γ ′.

40 Miriam Paiola and Bruno Blanchet

This means that each equation in E ′ is well typed in Γ ′; moreover Γ ′ ` E
because Γ ′ extends Γ and Γ ` E by hypothesis. Thus Γ ′ ` E ∪ E ′.
We can then apply the induction hypothesis, which yields

[[PGT]](mgu (αE1)(ρ[xṽ1 7→ αp′1, . . . , xṽl 7→ αp′l]))(mgu (αE1)H)

v
⋃

T ′ext T

([[PG]](ρG[xĩ 7→ p′G])HG(E ∪ E ′)Γ ′)T
′

and [[QGT]]ρH v
⋃
T ′ext T ([[Q

G]]ρGHGEΓ)T ′
.

Moreover,

[[PGT]](mgu (E1)(ρ[xṽ1 7→ p′1, . . . , xṽl 7→ p′l]))(mgu (E1)H)

v [[PGT]](mgu (αE1)(ρ[xṽ1 7→ αp′1, . . . , xṽl 7→ αp′l]))(mgu (αE1)H)

(These two sets of clauses are in fact equal up to renaming of variables, by
construction.)
Hence we can conclude that:

[[(let for all ĩ ≤ L̃, xĩ = g(MG
1 , . . . ,M

G
n) in PG else QG)T]]ρH v⋃

T ′ext T

([[let for all ĩ ≤ L̃, xĩ = g(MG
1 , . . . ,M

G
n) in PG else QG]]ρGHGEΓ)T

′

– Case let for all ĩ ≤ L̃, patG =MG in PG else QG: as in the previous case, we
suppose that the tuples of indices ṽ ≤ L̃T are indexed by 1, . . . , l, that is, we
define {ṽ1, . . . , ṽl} = {1̃, . . . , L̃T }.

[[(let for all ĩ ≤ L̃, patG =MG in PG else QG)T]]ρH

= [[let E1 in . . . let El in P
GT else QGT . . . else QGT]]ρH

where Ei is the equation patGT [̃i 7→ṽi] =MGT [̃i 7→ṽi].
v [[Q]]ρH ∪ [[P]]ρ′H ′

by Lemma 8, where E1 = {patGT
′′

= ρ(MGT ′′
) | T ′′ = T [̃i 7→ ṽ], ṽ ≤

L̃T }, ρ′ = mgu (E1)(ρ[x 7→ x | x occurs in patGT [̃i 7→ṽ], ṽ ≤ L̃T]), and H ′ =
mgu (E1)H, assuming that mgu (E1) exists. (When mgu (E1) does not exist,
the second component of the union is omitted, and the rest of the proof can
easily be adapted.)
The right-hand side of the theorem develops in:⋃

T ′ext T

([[let for all ĩ ≤ L̃, patG =MG in PG else QG]]ρGHGEΓ)T
′

=
⋃

T ′ext T

([[Q]]ρGHGEΓ)T
′
∪

[[P]](ρG[xĩ′ 7→ xĩ′ | xĩ′ occurs in patG])HG(E ∪ E ′)Γ ′)T
′

From the Applied Pi Calculus to Horn Clauses 41

where E ′ =
∧
ĩ≤L̃ patG

.
= ρG(MG) and Γ ′ is Γ extended for the variables oc-

curring in patG. More precisely, if the typing rule for the process let for all ĩ ≤
L̃, patG = MG in PG else QG has i1 : [1, L1], . . . , ih : [1, Lh] ` patG Γ ′′

as a premise, then Γ ′ = Γ, Γ ′′. Hence E ′T = {patGT
′′
= ρGT (MGT ′′

) | T ′′ =
T [̃i 7→ ṽ],∀ṽ ≤ L̃T }. Hence we have that:

mgu (ET)E ′T

= {mgu (ET)patGT [̃i7→ṽ] = mgu (ET)ρGT (MGT [̃i7→ṽ]) | ∀ṽ ≤ L̃T }

= {patGT [̃i 7→ṽ] = ρ(MGT [̃i 7→ṽ]) | ∀ṽ ≤ L̃T }
= E1

By Lemma 5,

mgu (E1)mgu (ET) = mgu (mgu (ET)E ′T)mgu (ET) = mgu ((E ∪ E ′)T)

so

ρ′ = mgu (E1)(ρ[x 7→ x | x occurs in patGT [̃i 7→ṽi], ṽi ≤ L̃T])

= mgu (E1)mgu (ET)(ρGT [x 7→ x | x occurs in patGT [̃i7→ṽi], ṽi ≤ L̃T])
= mgu ((E ∪ E ′)T)(ρG[xĩ′ 7→ xĩ′ | xĩ′ occurs in patG])T

Similarly,

H ′ = mgu (E1)H = mgu (E1)mgu (ET)HGT = mgu ((E ∪ E ′)T)HGT .

Let Γ ′P the environment that types PG: by the typing rules we have that
Γ ′P = ΓP , Γ

′′
P , where ĩ : L̃ ` patG Γ ′′P . Before applying induction we need

to show that Γ ′P , Γ
′ ` ρG[xĩ′ 7→ xĩ′ | xĩ′ occurs in patG] and Γ ′ ` E ∪ E ′.

We have that Γ ′P , Γ
′ ` ρG because Γ ′ extends Γ , Γ ′P extends ΓP , and ΓP , Γ `

ρG by hypothesis. Clearly x_ : L̃ ∈ Γ ′′P (that is x_ : L̃ ∈ Γ ′P) and Γ ′, ĩ :

L̃ ` xĩ (all variables in patG are typed by Γ ′) then Γ ′P , Γ
′ ` ρG[xĩ′ 7→ xĩ′ |

xĩ′ occurs in patG].
For the equation

∧
ĩ∈L̃ patG

.
= ρG(MG) we have that:

• Γ ′, ĩ : L̃ ` ρG(MG): this comes from Lemma 9 applied to ΓP , ĩ : L̃ `MG

and (ΓP , ĩ : L̃), Γ ` ρG and from the fact that Γ ′ extends Γ .
• Γ ′, ĩ : L̃ ` patG: all variables in pat′G are typed in Γ ′.

This means that the equation in E ′ is well typed in Γ ′; moreover Γ ′ ` E
because Γ ′ extends Γ and Γ ` E by hypothesis. Thus Γ ′ ` E ∪ E ′.
We can then apply the induction hypothesis:

[[PGT]]ρ′H ′ v
⋃

T ′ext T

[[P]](ρG[xĩ′ 7→ xĩ′ | xĩ′ occurs in patG])HG(E ∪ E ′)Γ ′)T
′

and [[QGT]]ρH v
⋃
T ′ext T ([[Q

G]]ρGHGEΓ)T ′
. Therefore we can conclude.

42 Miriam Paiola and Bruno Blanchet

– Case choose L in PG:

[[(choose L in PG)T]]ρH

= [[PGT [L 7→1] + · · ·+ PGT [L 7→n] + · · ·]]ρH
= [[PGT [L 7→1]]]ρH ∪ · · · ∪ [[PGT [L7→n]]]ρH ∪ · · ·

v
⋃

T ′ext T [L 7→1]

([[PG]]ρGHGEΓ)T
′
∪ · · · ∪

⋃
T ′ext T [L7→n]

([[PG]]ρGHGEΓ)T
′
∪ · · ·

v
⋃

T ′ext T

([[choose L in PG]]ρGHGEΓT
′
)

– Case choose k ≤ L in PG:

[[(choose k ≤ L in PG)T]]ρH

= [[PGT [k 7→1] + · · ·+ PGT [k 7→LT]]]ρH

= [[PGT [k 7→1]]]ρH ∪ · · · ∪ [[PGT [k 7→LT]]]ρH

v
⋃

T ′ext T [k 7→1]

([[PG]]ρGHGE(Γ, k : [1, L]))T
′
∪ · · · ∪

⋃
T ′ext T [k 7→LT]

([[PG]]ρGHGE(Γ, k : [1, L]))T
′

v
⋃

T ′ext T

([[choose k ≤ L in PG]]ρGHGEΓT
′
)

– Case choose φ : L1 × · · · × Lh → L′ in PG: this case is similar to previous
one. �

Combining the results From the previous results, we easily obtain Theorem 3.

Proof (of Theorem 3). By Lemma 10, ([[PG1]]ρ0∅∅Γ0)
T =

⋃
T ([[P

G
1]]ρ0∅∅Γ0)

T w
[[PGT0

1]]ρ0∅, where PG1 = instrG(PG0). By Lemma 4, instr(P ′0) = instr(Tren(PG0 ,
T0, ∅ ≤ ∅)) ≡α instrG(PG0)T0 = PGT0

1 , so we have ([[instrG(PG0)]]ρ0∅∅Γ0)
T w

[[instr(P ′0)]]ρ0∅ since the translation to Horn clauses [[·]] is invariant by renaming
of bound names.

Moreover, for each clause R in {att(a[]) | a ∈ S} ∪ {(Rn), (Rf), (Rg), (Rl),
(Rs)} except the clauses (Rf) and (Rg) for lists of fixed length, R is also a
generalized Horn clause and we have {R}T = {R}. The clauses (Rf) for lists
of fixed length are in {RG}T = {att(x1) ∧ · · · ∧ att(xn) ⇒ att(〈x1, . . . , xn〉) |
n ∈ N}, where RG = (Rf-list). The clauses (Rg) for lists of fixed length are in
{RG}T = {att(〈x1, . . . , xn〉)⇒ att(xv) | n ∈ N, v ≤ n} where RG = (Rg-list).

So we obtain RGT
PG

0 ,S
w RP ′

0,S
. �

