
A semantic based tool for firewall configuration∗
(Extended abstract)

P. Adão
SQIG–IT, Instituto de Telecomunicações and

Instituto Superior Técnico,
Universidade de Lisboa, Portugal

Email: pedro.adao@ist.utl.pt

C. Bozzato, G. Dei Rossi, R. Focardi and F.L. Luccio
Dipartimento di Scienze Ambientali, Informatica e Statistica,

Università Ca’ Foscari Venezia, Italy
Email: {cbozzato,deirossi,focardi,luccio}@dsi.unive.it

Abstract

The management and specification of access control rules that enforce a given
policy is a non-trivial, complex, and time consuming task. In this paper we
aim at simplifying this task both at specification and verification levels. For
that, we propose a formal model of Netfilter, a firewall system integrated in the
Linux kernel. We define an abstraction of the concepts of chains, rules, and
packets existent in Netfilter configurations, and give a semantics that mimics
packet filtering and address translation. We then introduce a simple but powerful
language that permits to specify firewall configurations that are unaffected by the
relative ordering of rules, and that does not depend on the underlying Netfilter
chains. We give a semantics for this language and show that it can be translated
into our Netfilter abstraction. We then present Mignis, a publicly available tool
that translates abstract firewall specifications into real Netfilter configurations.
Mignis is currently used to configure the whole firewall of the DAIS Department
of Ca’ Foscari University.

Protecting networks from external and internal attacks is a crucial task. System
administrators rely on the usage of firewalls that examine the network traffic and
enforce policies based on specified rules. However, implementing correct policies is a
non-trivial task: if a policy is too weak the system may be attacked by exploiting its
weaknesses, while if it is too restrictive legitimate traffic may be filtered out.

∗This work has been partially supported by the PRIN 2010 Project Security Horizons, by FCT
projects ComFormCrypt PTDC/EIA-CCO/113033/2009, and by PEst-OE/EEI/LA0008/2013.

1



Manually proving that implementations comply with a firewall policy is a too
much time-consuming practice given that firewall rules are usually written in low-
level, platform-specific languages, thus automatic tools for testing them have been
developed [23, 35]. These tools however do not prevent users from introducing new
flaws when modifying such policies. Some flaws may derive from the wrong order
of firewall rules (consistency problems), and some others from the lack of matching
rules for every packet that crosses the firewall (completeness problems). Another
approach is to use a firewall design process that passes through different verification
stages [27], but this is also time and resource consuming. Policy visualization tools
have also been developed [24, 29, 30, 34], but they are not sufficiently helpful in
dynamically changing networks where new services are added over time, as these
typically impose very articulated firewalls composed of hundreds or even thousands
of interacting rules. It is in fact very difficult to keep the number of rules small also
because of redundancies (compactness problem).

In our opinion, there is an increasing need for formal and general tools to reason
about the security of firewalls. Existing tools are however still far from the intended
goal and we propose in this paper one further step in that direction.

Our contribution Netfilter is a firewall system integrated in the Linux kernel [33].
A firewall in Netfilter is implemented as a series of chains, tables and rules that are
executed in a precise given order. In this paper we propose a model of Netfilter in
which we abstract the concept of chains, rules and packets, and introduce the notion
of state that records the information about exchanged packets. We give a semantics
for this abstraction, close to the real one, that specifies how packets are dealt by the
firewall in a specific state.

The novel features of our model allow us to introduce a new simple declarative
language that specifies firewall policies by abstracting both the order in which rules
are applied, and the different chains that Netfilter provides. The main advantage of
this language is that transitions are defined in a single-step fashion, contrary to the
multi-step semantics associated with the evaluation of the different tables of Netfilter.
We then show how this language can be translated into our Netfilter abstraction, and
we provide sufficient conditions under which a specification given in this language
and its translation into Netfilter abstraction have the same effect on packets, both in
terms of filtering and network address translation.

It is important to stress that, in our high level setting, any order of rules is ac-
ceptable and irrelevant for the semantics, whereas in Netfilter the order in which rules
are written is fundamental and in general not interchangeable. Indeed, a well-known
difficulty that reduces significantly the usability of Netfilter is that adding/deleting/-
modifying rules is context-dependent and might potentially break the whole firewall
policy. This makes it painful for system administrators to modify complex Netfilter
configurations. Our firewall language, instead, makes it very easy to modify a con-
figuration as the relative order of rules never affects the behavior of the generated

2



Netfilter rules. This language, in spite of its simplicity, is expressive and powerful
enough to specify the most commonly used network security policies.

In order to demonstrate the feasibility and illustrate the simplicity and advantages
of this approach we also present Mignis 1, a novel publicly available tool that trans-
lates, according to the aforementioned results, abstract firewall specifications into real
Netfilter configurations. We then show an example of how Mignis can be used in a
realistic, large scale, and non-trivial setting: Mignis is currently used to configure
the firewall of the DAIS Department of the Ca’ Foscari University of Venice. Using
the overlap-detecting capabilities of Mignis and its simple syntax we were able to
tackle the compactness problem by capturing many redundancies in the initial Netfil-
ter configurations, and we could thus drastically reduce the number of configuration
lines. Moreover, we have run some experiments by querying the Mignis specification
and we were able to extract information such as the rules that affect packets from a
certain host or whether a certain rule is already included or not in the specification.

While we were not the first ones presenting a language and a model that sim-
plify firewall specification [1, 2, 3, 5, 6, 8, 12, 14, 18, 20, 22, 25, 36], to the best of
our knowledge our model is the first that provides correctness guarantees about the
generated configuration.

We believe this work may have impact in several communities. From a practical
perspective we allow practitioners to specify firewall configurations in a simple under-
standable language with single-step semantics, and to generate the list of rules that
implements that configuration in Netfilter. For theoreticians we propose a formal-
ization of the behavior of a firewall that is amenable to verification of the intended
security properties.

References

[1] High level firewall language. http://www.hlfl.org, 2003.

[2] Firestarter. http://www.fs-security.com/, 2007.

[3] Kmyfirewall. http://www.kmyfirewall.org/, 2008.

[4] Ipfilter. http://coombs.anu.edu.au/~avalon/, 2009.

[5] Netspoc: A network security policy compiler. http://netspoc.berlios.de,
2011.

[6] Pyroman. http://pyroman.alioth.debian.org/, 2011.

[7] Rule markup language. http://www.ruleml.org/, 2011.

[8] Firewall builder. http://www.fwbuilder.org/, 2012.

1Available for download at the address https://github.com/secgroup/Mignis.

3



[9] Frenetic, a family of network programming languages. http://www.

frenetic-lang.org/, 2013.

[10] Oasis extensible access control markup language. http://xacmlinfo.org/

category/xacml-3-0/, 2013.

[11] Packet filtering. http://www.openbsd.org/faq/pf/filter.html, 2013.

[12] Uncomplicated firewall. https://help.ubuntu.com/community/UFW, 2013.

[13] Chef. http://www.getchef.com/chef/, 2014.

[14] Iptables made easy, shorewall. http://www.shorewall.net/, 2014.

[15] LCFG large scale unix configuration system. http://www.lcfg.org/, 2014.

[16] pfSense, a proven open source firewall. http://www.pfsense.org/, 2014.

[17] With puppet enterprise, you pull the strings. http://puppetlabs.com/, 2014.

[18] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger,
and D. Walke. Netkat: Semantic foundations for networks. In Proc. of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2014), to appear. ACM, 2014.

[19] Anonymous. A semantic based tool for firewall configuration. http://dl.

dropboxusercontent.com/u/7143532/iptables/ccs.pdf, 2013.

[20] Y. Bartal, A. Mayer, Nissim, and A. Wool: Firmato. A Novel Firewall Man-
agement Toolkit. ACM Transactions on Computer Systems, 22(4):1237–1251,
2002.

[21] F. Cuppens, N. Cuppens-Boulahia, J. Garca-Alfaro, T. Moataz, and X. Rimas-
son. Handling stateful firewall anomalies. In SEC, volume 376 of IFIP Advances
in Information and Communication Technology, pages 174–186. Springer, 2012.

[22] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège. A formal approach
to specify and deploy a network security policy. In Formal Aspects in Security
and Trust (FAST’04), pages 203–218, 2004.

[23] A. El-Atawy, T. Samak, Z. Wali, E. Al-Shaer, F. Lin, C. Pham, and S. Li. An
automated framework for validating firewall policy enforcement. In Proc. of the
Eighth IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY’07), pages 151–160. IEEE, 2007.

[24] T. Göbel F. Mansmann and W. Cheswick. Visual analysis of complex firewall
configurations. In Proc. of the Ninth International Symposium on Visualization
for Cyber Security, VizSec’12, pages 1–8. ACM, 2012.

4



[25] M.G. Gouda and A.X. Liu. Structured firewall design. Comput. Netw.,
51(4):1106–1120, March 2007.

[26] A. Jeffrey and T. Samak. Model checking firewall policy configurations. In Proc.
of the 2009 IEEE International Symposium on Policies for Distributed Systems
and Networks (POLICY ’09), pages 60–67. IEEE Computer Society, 2009.

[27] A.X. Liu and M.G. Gouda. Diverse Firewall Design. IEEE Transactions on
Parallel and Distributed Systems, 19(9):1237–1251, 2008.

[28] S. Mart́ınez, J. Cabot, J. Garcia-Alfaro, F. Cuppens, and N. Cuppens-Boulahia.
A model-driven approach for the extraction of network access-control policies.
In Proc. of the Workshop on Model-Driven Security, MDsec ’12, pages 5:1–5:6.
ACM, 2012.

[29] S. Morrissey and G. Grinstein. Visualizing firewall configurations using created
voids. In Proc. of the Int. Workshop on Visualization for Cyber Security. ACM,
2009.

[30] S. Morrissey, G. Grinstein, and B. Keyes. Developing multidimensional firewall
configuration visualizations. In Proc. of the 2010 International Conference on
Information Security and Privacy. ISRT, 2010.

[31] S. Pozo, R. Ceballos, and R. M. Gasca. Afpl, an abstract language model for
firewall acls. In Proc. of the international conference on Computational Science
and Its Applications, Part II, ICCSA ’08, pages 468–483. Springer-Verlag, 2008.

[32] R. M. Marmorstein. Formal Analysis of Firewall Policies. PhD thesis, College
of William and Mary, Williamsburg, VA, May 2008.

[33] R. Russell. Linux 2.4 packet filtering howto. http://www.netfilter.org/

documentation/HOWTO/packet-filtering-HOWTO.html, 2002.

[34] T. Tran, E. Al-Shaer, and R. Boutaba. Policyvis: Firewall security policy visu-
alization and inspection. In Proc. of the 21st Large Installation System Admin-
istration Conference (LISA ’07), pages 1–16. Usenix association, 2007.

[35] J. Walsh. Icsa labs firewall testing: An in depth analysis. http://bandwidthco.
com/whitepapers/netforensics/penetration/Firewall%20Testing.pdf,
2004.

[36] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely, and C. Pitcher. Specifications of
a high-level conflict-free firewall policy language for multi-domain networks. In
Proc. of ACM Symposium on Access Control Models and Technologies (SACMAT
2007). ACM, 2007.

5


