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Abstract. Originally proposed for privacy protection in the context of statisti-
cal databases, differential privacy is now widely adopted in various models of
computation. In this paper we investigate techniques for proving differential pri-
vacy in the context of concurrent systems. Our motivation stems from the work
of Tschantz et al., who proposed a verification method based on proving the exis-
tence of a stratified family of bijections between states, that can track the privacy
leakage, ensuring that it does not exceed a given leakage budget. We improve
this technique by investigating state properties which are more permissive and
still imply differential privacy. We consider three pseudometrics on probabilis-
tic automata: The first one is essentially a reformulation of the notion proposed
by Tschantz et al. The second one is a more liberal variant, still based on the
existence of a family of bijections, but relaxing the relation between them by
integrating the notion of amortization, which results into a more parsimonious
use of the privacy budget. The third one aims at relaxing the bijection require-
ment, and is inspired by the Kantorovich-based bisimulation metric proposed by
Desharnais et al. We cannot adopt the latter notion directly because it does not im-
ply differential privacy. Thus we propose a multiplicative variant of it, and prove
that it is still an extension of weak bisimulation. We show that for all the pseu-
dometrics the level of differential privacy is continuous on the distance between
the starting states, which makes them suitable for verification. Moreover we for-
mally compare these three pseudometrics, proving that the latter two metrics are
indeed more permissive than the first one, but incomparable with each other, thus
constituting two alternative techniques for the verification of differential privacy.

Keywords: differential privacy, probabilistic automata, bisimulation metrics, ver-
ification.

1 Introduction

Differential privacy [12] was originally proposed for privacy protection in the context
of statistical databases, but nowadays it is becoming increasingly popular in many other
fields, ranging from programming languages [21] to social networks [20] and geoloca-
tion [19]. One of the reasons of its success is its independence from side knowledge,
which makes it robust to attacks based on combining various sources of information.

In the original definition, a query mechanism A is ϵ-differentially private if for
any two databases u1 and u2 which differ only for one individual (one raw), and any
property Z, the probability distributions of A(u1),A(u2) differ on Z at most by eϵ,
namely, Pr[A(u1) ∈ Z] ≤ eϵ · Pr[A(u2) ∈ Z]. This means that the presence (or the



data) of an individual cannot be revealed by querying the database. In [7], the principle
of differential privacy has been formally extended to measure the degree of protection
of secrets in more general settings.

In this paper we deal with the problem of verifying differential privacy properties for
concurrent systems, modeled as probabilistic automata admitting both nondeterministic
and probabilistic behavior. In such systems, reasoning about the probabilities requires
solving the nondeterminism first, and to such purpose the usual technique is to consider
functions, called schedulers, which select the next step based on the history of the com-
putation. However, in our context, as well as in security in general, we need to restrict
the power of the schedulers and make them unable to distinguish between secrets in the
histories, or otherwise they would plainly reveal them by their choice of the step. See for
instance [6, 15, 8] for a discussion on this issue. Thus we consider a restricted class of
schedulers, called admissible schedulers, following the definition of [2]. Admissibility
is introduced to deal with bisimulation-like notions in security contexts: Two bisimilar
processes are typically considered to be indistinguishable, yet an unrestricted scheduler
could trivially separate them.

The property of differential privacy requires that the observations generated by two
different secret values be probabilistically similar. In standard concurrent systems the
notion of similarity is usually formalized as an equivalence, preferably preserved under
composition, i.e., a congruence. We mention in particular trace equivalence and bisim-
ulation. The first is often used for its simplicity, but in general is not compositional. The
second one is a congruence and it is appealing for its proof technique. Process equiva-
lences have been extensively used to formalize security properties like secrecy [1] and
noninterference [13, 22, 23].

In probabilistic systems, we need notions which are robust with respect to small
variations in the probabilities, and therefore we usually prefer metric notions over e-
quivalences. In their seminal work, Desharnais et al. [11] proposed a pseudometric
based on the Kantorovich metric, which is particularly appealing because it extends
weak bisimilarity (captured by the property of having distance 0) and it is based on
a natural way of relating probability masses distributed on a metric space. It also sat-
isfies the property that the composition does not increase the distance, which can be
considered the metric generalization of the congruence property.

In this paper we focus on metrics suitable for verifying differential privacy. Name-
ly, metrics for which the distance between two processes determines an upper bound
on the ratio of the probabilities of the respective observables. We start by considering
the framework proposed by Tschantz et al. [25], which was explicitly designed for the
purpose of verifying differential privacy. Their verification technique is based on prov-
ing the existence of an indexed family of bijections between states. The parameter of
the starting states, representing the privacy budget, determines the level of differential
privacy of the system, which decreases over time by subtracting the absolute difference
of probabilities in each step during mutual simulation. Once the balance reaches zero,
processes must behave exactly the same. We reformulate this notion in the form of a
pseudometric, showing some novel properties as a distance relation.

The above technique is sound, but limited by the strictness of the relation to be
proved, which requires a strong correspondence on states and on their probabilities,

2



and has a rather rigid budget management. The main goal of this paper is to make the
technique more permissive by identifying metrics that are more relaxed and still imply
an upper bound on the privacy leakage.

The first improvement we propose is based on a thriftier use of the privacy budget.
Inspired by the notion of amortisation used in some quantitative bisimulations [17, 18,
9], we propose a new pseudometric which is more permissive than the former one. The
idea is that, when constructing the bijections between states, the differences among the
probabilities of related states are kept with their sign, and added with their sign through
each step. In this way, successive differences can compensate (amortise) each other, and
rather than always being consumed, the privacy budget may also be refurbished.

Although this second metric is inspired by amortised bisimulation, it is not an ex-
tension of weak bisimulation, since it still requires bijections between the states, which
is in general more restrictive than the bisimilarity relation. It is therefore natural to ex-
plore also the use of bisimulation metrics, and to consider the metric à la Kantorovic
proposed in [11], which represents a cornerstone in this area. However, we cannot use
directly the metric of [11] because it does not imply differential privacy: the problem
is that the difference in probabilities in this metric is accounted for additively, while
differential privacy is a property about their ratio. Thus, we propose a multiplicative
variant of it, and obtain a pseudometric that, to the best of our knowledge, is new.

We show that the distance in this pseudometric can be computed using linear pro-
gramming solution method (by simply using its dual form). Intuitively, in the context
of transportation problem, Kantorovich metric gives the lowest total cost of transport-
ing the mass of one distribution µ to the other distribution µ′, while our variant is used
to achieve the lowest cost of transportation per unit mass of µ′, namely the optimal
efficiency. We also show that our variant satisfies most of the properties of the metric
in [11]: in particular, it can be characterized by a fixed-point construction, and it extends
weak bisimilarity.

While this third metric is more liberal than the first one, it is not comparable with the
second. The reason is that the management of the budget in the second metric follows
the spirit trace semantics (which is coarser than bisimulation), in that the budget gets
amortised by adding positive or negative differences trough the step-by-step comparison
of two traces.

More related Work. Verification of differential privacy has become an active area of
research. Among the approaches based on formal methods, we mention those based on
type-systems [21, 14] and logical formulations [4, 3]

In a previous paper [26], one of the authors has developed a compositional method
for proving differential privacy in a probabilistic process calculus. The technique there
is rather different from the ones presented in paper: the idea is based on decomposing
a process in simpler processes, computing the level of privacy of these, and combining
them to obtain the level of privacy of the original program.

Contribution. The main contributions of this paper can be summarized as follows:

- We reformulate the notion of approximate similarity proposed in [25] in terms of a
pseudometric and we study the properties of the distance relation.
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- We propose the second pseudometric which is more liberal than the former one, in
the sense that the total differences of probabilities get amortised during the mutual
simulation.

- We propose the third pseudometric, which a multiplicative variant of Kantorovich-
based bisimulation metric in [11].

- We show that for all the pseudometrics the level of differential privacy is continuous
on the distance between the starting states, which makes them suitable for verification.

- We compare these three pseudometrics and study their relations with weak bisimi-
larity, proving that the latter two metrics are more permissive than the first one, but
incomparable with each other.

Plan of the Paper. In the next section we recall some preliminary notions about prob-
abilistic automata, differential privacy and pseudometrics. Sections 3, 4, 5 introduce
respectively the first, second and third pseudometrics, and prove for differential privacy
the soundness of the verification technique with respect to each of these three pseu-
dometrics. In Section 6 we compare these three metrics and study their relations with
weak bisimilarity. Section 7 concludes. Proofs can be found in the appendix.

2 Preliminaries

2.1 Probabilistic automata

Given a set X , we denote by Disc(X) the set of discrete sub-probability measures
over X; the support of a measure µ is defined as supp(µ) = {x ∈ X|µ(x) > 0}. A
probabilistic automaton (henceforth PA) A is a tuple (S, s,A,D) where S is a finite
set of states, s ∈ S is the start state, A is a finite set of action labels, and D ⊆ S ×
A×Disc(S) is a weak transition relation. We write s a

=⇒ µ for (s, a, µ) ∈ D, and we
denote by act(d) the action of the transition d ∈ D. Note that =⇒ is typically obtained
from an original transition relation by merging τ transitions (see, for instance, [11]).
A PA A is fully probabilistic if from each state of A there is at most one transition
available.

A (weak) execution α of a PA is a (possibly infinite) sequence s0a1s1a2s2 . . . of
alternating states and labels, such that for each i : si

ai+1
=⇒ µi+1 and µi+1(si+1) > 0.

We use lstate(α) to denote the last state of a finite execution α. We use Exec∗(A) and
Exec(A) to represent the set of finite weak executions and of all weak executions of A,
respectively. A scheduler of a PA A = (S, s,A,D) is a function ζ : Exec∗(A) 7→ D

such that ζ(α) = s
a

=⇒ µ ∈ D implies that s = lstate(α). The idea is that a scheduler
selects a transition among the ones available in D, basing its decision on the history
of the execution. The (weak) execution tree of A relative to the scheduler ζ, denoted
by Aζ , is a fully probabilistic automaton (S′, s′, A′, D′) such that S′ ⊆ Exec∗(A),
s′ = s, A′ = A, and α

a
=⇒ ν ∈ D′ if and only if ζ(α) = lstate(α)

a
=⇒ µ for some

µ and ν(αas) = µ(s). Intuitively, Aζ is produced by unfolding the executions of A
and resolving all non-deterministic choices using ζ. Note that Aζ is a simple and fully
probabilistic automaton. We use α with primes and indices to range over states in an
execution tree.
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A (weak) trace is a sequence of labels in A∗ ∪ Aω obtained from executions by
removing the states. We use [ ] to represent the empty trace, and a to concatenate two
traces. A state α of Aζ induces a probability measure over traces as follows. The basic
measurable events are the cones of finite traces, where the cone of a finite trace t,
denoted by Ct, is the set {t′ ∈ A∗ ∪ Aω|t ≤ t′}, where ≤ is the standard prefix
preorder on sequences. The probability of a cone Ct induced by state α, denoted by
Prζ [α ◃ t], is defined recursively as follows.

Prζ [α ◃ t] =


1 if t = [ ],
0 if t = aat′ and act(ζ(α)) ̸= a,∑

si∈supp(µ) µ(si)Prζ [αasi ◃ t′]

if t = aat′ and ζ(α) = s
a

=⇒ µ.

(1)

Admissible schedulers. In concurrent systems containing both non-deterministic and
probabilistic behavior, it is well-known that the scheduler (i.e. the entity resolving the
non-determinism) can easily break many security and privacy properties by choosing
different transition based on a secret value. As a consequence, to perform a meaningful
analysis one needs to restrict to a class of admissible schedulers, which do not exhib-
it such a behavior. Thus we consider a restricted class of schedulers, called admissi-
ble schedulers, following the definition of [2]. Essentially this definition requires that
whenever given two adjacent states s, s′, namely, differing only for the choice for some
secret value, then the choice made by the scheduler on s and s′ should be consistent, i.e.
the scheduler should not be able to make a different choice on the basis of the secret.
Note that in [25] scheduling is not an issue since non-determinism is not allowed.

Pseudometrics on states. A pseudometric1 on S is a function m : S2 → R satisfying
the following properties: m(s, s) = 0 (reflexivity), m(s, t) = m(t, s) (symmetry) and
m(s, t) ≤ m(s, u) +m(u, t) (triangle inequality). Let M denote the set of all pseudo-
metrics on S, with the ordering m1 ≼ m2 iff ∀s, t : m1(s, t) ≥ m2(s, t) (note that the
order is reversed). It can be shown that (M,≼) is a complete lattice.

2.2 Differential privacy

Differential privacy [12] was originally defined in the context of statistical databas-
es, by requiring that a mechanism (i.e. a probabilistic query) gives similar answers on
adjacent databases, that is those differing on a single row. More precisely, a mechanism
K satisfies ϵ-differential privacy iff for all adjacent databases x, x′: Pr[K(x) ∈ Z] ≤
eϵ · Pr[K(x′) ∈ Z] for all Z ⊆ range(K).

In this paper, we study concurrent systems taking a secret as input and producing
an observable trace as output. Let U be a set of secrets and ∼ an adjacency relation
on U , where u ∼ u′ denotes the fact that two close secrets u, u′ should not be easily
distinguished by the adversary after seeing observable traces. A concurrent system A
is a mapping of secrets to probabilistic automata, where A(u), u ∈ U is the automaton

1 Unlike a metric, points in a pseudometric need not be distinguishable; that is, one may have
m(s, t) = 0 for distinct values s ̸= t.
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modelling the behaviour of the system when running on u. Differential privacy can be
directly adapted to this context:

Definition 1 (Differential Privacy). A concurrent system A satisfies ϵ-differential pri-
vacy (DP) iff for any u ∼ u′, any finite trace t and any admissible scheduler ζ:

Prζ [A(u) ◃ t] ≤ eϵ · Prζ [A(u′) ◃ t]

3 The accumulative bijection pseudometric

In this section, we present the first pseudometric based on a reformulation of the relation
family proposed in [25]. We reformulate their notion in the form of an approximate
bisimulation relation, named accumulative bisimulation, and the use it to construct a
pseudometric on the state space.

We start by defining an approximate lifting operation that lifts a relation over states
to a relation over distributions. We use D to simply differentiate notions of this section
from the following sections. Intuitively, we use a parameter ϵ to represent the total
privacy leakage budget. A parameter c ranging over [0, ϵ], starting from 0, records the
current amount of leakage and increasing over time by adding the maximum absolute
difference of probabilities, denoted by σ, in each step during mutual simulation. Once
c reaches the budget bound ϵ, processes must behave exactly the same. Since the total
bound is ϵ, only a total of ϵ privacy can be leaked, a fact that will be used later to verify
differential privacy.

Definition 2. Let ϵ > 0, c ∈ [0, ϵ], R ⊆ S×S× [0, ϵ]. The D-approximate lifting of R
up to c, denoted by LD(R, c), is the relation on Disc(S) defined as:

µLD(R, c)µ′ iff ∃ bijection β : supp(µ) → supp(µ′) such that

∀s ∈ supp(µ) : (s, β(s), c+ σ) ∈ R where σ = max
s∈supp(µ)

| ln µ(s)

µ′(β(s))
|

This lifting allows us to define an approximate bisimulation relation:

Definition 3 (Accumulative bisimulation). A relation R ⊆ S × S × [0, ϵ] is an ϵ-
accumulative bisimulation iff for all (s, t, c) ∈ R:

1. s
a

=⇒ µ implies t a
=⇒ µ′ with µLD(R, c)µ′

2. t
a

=⇒ µ′ implies s a
=⇒ µ with µLD(R, c)µ′

We can now define a pseudometric based on accumulative bisimulation as:

mD(s, t) = min{ϵ | (s, t, 0) ∈ R for some ϵ-accumulative bisimulation R}

Proposition 1. mD is a pseudometric, that is:

1. (reflexivity) mD(s, s) = 0
2. (symmetry) mD(s1, s2) = mD(s2, s1)
3. (triangle inequality) mD(s1, s3) ≤ mD(s1, s2) +mD(s2, s3)
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Fig. 1: Distance between A(u1) and A(u2), mD gives ∞, while mA gives ln 9
4 .

Verification of differential privacy using mD. As already shown in [25], the closeness
of processes in the relation family implies a level of differential privacy. We here restate
this result in terms of the metric mD.

Lemma 1. Given a PA A, let R be an ϵ-accumulative bisimulation, c ∈ [0, ϵ], let ζ
be an admissible scheduler, t be a finite trace, α1, α2 two finite executions of A. If
(lstate(α1), lstate(α2), c) ∈ R, then

1

eϵ−c
≤ Prζ [α1 ◃ t]

Prζ [α2 ◃ t]
≤ eϵ−c

The above lemma shows that in an ϵ-accumulative bisimulation, two states related
by a current leakage amount c, produce distributions over the same trace that only de-
viate by a factor (ϵ − c) representing the remaining amount of leakage. Then it is easy
to get that the level of differential privacy is continuous on mD.

Theorem 1. A concurrent system A is ϵ-differentially private if mD(A(u),A(u′)) ≤ ϵ
for all u ∼ u′.

4 The amortized bijection pseudometric

As shown in the previous section, mD is useful for verifying differential privacy. How-
ever, a drawback of this metric is that the definition of accumulative bisimulation is
too restrictive: first, the amount of leakage is only accumulated, independently from
whether the difference in probabilities is negative or positive. Moreover, the accumula-
tion is same for all branches, and equal to the worst branch, although the actual differ-
ence on some branch might be small. As a consequence, mD is inapplicable in several
systems, as shown by the following example.

7



Example 1. Consider a concurrent system A shown in Fig. 1. Consider an admissi-
ble scheduler always choosing for A(u1) the a1-branch (the case for the a2-branch is
similar), thus scheduling for A(u2) also the a1-branch. It is easy to see that the ratio of
probabilities for A(u1) and A(u2) producing the same finite sequences (a1no a2 no)∗ is
( 0.4×0.6
0.6×0.4 )

∗ = 1. For the rest sequences (a1no a2 no)∗a1ok and (a1no a2 no)
∗a1no a2 ok,

we can check that the ratios are bounded by 9
4 . Thus, A satisfies ln 9

4 -differential priva-
cy. However, we can not find an accumulative bisimulation with a bounded ϵ between
A(u1) and A(u2). The problem lies in that the leakage amount is always accumulated
by adding the absolute differences during cyclic simulations, resulting in a convergence
to ∞.

In order to obtain a more relaxed metric, we employ the amortised bisimulation
relation of [17, 18]. The main intuition behind this notion is that the privacy leakage
budget in each simulation step may be either reduced due to a negative difference of
probabilities, or increase due to a positive difference. Hence, the long-term budget gets
amortised, in contrast to the accumulative bisimulation in which the budget is always
consumed. We start by defining the corresponding lifting, using A to represent amor-
tised bisimulation-based notions. Note that the current leakage c ranges over [−ϵ, ϵ].

Definition 4. Let ϵ > 0, c ∈ [−ϵ, ϵ], R ⊆ S × S × [−ϵ, ϵ]. The A-approximate lifting
of R up to c, denoted by LA(R, c), is a relation on Disc(S) defined as:

µLA(R, c)µ′ iff ∃ bijection β : supp(µ) → supp(µ′) such that

∀s ∈ supp(µ) : (s, β(s), c+ ln
µ(s)

µ′(β(s))
) ∈ R

Note that if ln µ(s)
µ′(β(s)) is positive, then after this mutual step, the current leakage for

s and β(s) gets increased, otherwise decreased. We are now ready to define amortised
bisimulation.

Definition 5 (Amortised bisimulation). A relation R ⊆ S × S × [−ϵ, ϵ] is an ϵ-
amortised bisimulation iff for all (s, t, c) ∈ R:

1. s
a

=⇒ µ implies t a
=⇒ µ′ with µLA(R, c)µ′

2. t
a

=⇒ µ′ implies s a
=⇒ µ with µLA(R, c)µ′

Note that the coalgebraic character of amortised bisimulation notion has been justi-
fied in [9], ensuring that it inherits most of the good properties of quantitative bisimu-
lation semantics, such as the existence of a fixed-point characterization.

Similarly to the previous section, we can finally define a pseudometric on states as:

mA(s, t) = min{ϵ | (s, t, 0) ∈ R for some ϵ-amortized bisimulation R}

Proposition 2. mA is a pseudometric.
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Verification of differential privacy using mA. We now show that mA can be used to
verify differential privacy.

Lemma 2. Given a PA A, let R be an ϵ-amortised bisimulation, c ∈ [−ϵ, ϵ], let ζ
be an admissible scheduler, t be a finite trace, α1, α2 two finite executions of A. If
(lstate(α1), lstate(α2), c) ∈ R, then

1

eϵ+c
≤ Prζ [α1 ◃ t]

Prζ [α2 ◃ t]
≤ eϵ−c

Note that there is a subtle difference between Lemmas 1 and 2, in that the left-hand
bound is eϵ+c instead of eϵ−c. This comes from the amortised nature of R. We can now
show that differential privacy is continuous on mA as well.

Theorem 2. A concurrent system A is ϵ-differentially private if mA(A(u),A(u′)) ≤ ϵ
for all u ∼ u′.

Example 2 (Example 1 revisited). Consider again the concurrent system shown in Fig. 1.
Let S and T denote the state space of A(u1) and A(u2), respectively. Let R ⊆ S×T ×
[ln 4

9 , ln
9
4 ]. It is straightforward to check according to Def. 5 that the following relation

is an amortised bisimulation between A(u1) and A(u2).

R = { (A(u1),A(u2), 0),

(s2, t2, ln
2
3 ), (s6, t6, ln

3
2 ),

(s5, t5, ln
3
2 ), (s5, t5, ln

2
3 ),

(s3, t3, ln
2
3 ), (s7, t7, ln

3
2 ),

(s4, t4, 0), (s8, t8, 0),

(s5, t5, ln
4
9 ), (s5, t5, ln

9
4 ) }

Thus mA(A(u1),A(u2)) = ln 9
4 , by Theorem 2, A is ln 9

4 -differentially private.

5 The multiplicative variant of the Kantorovich pseudometric

The Kantorovich metric (shown in the left column of Fig. 2) is a widely used construc-
tion for lifting a metric from a set to distributions over this set. In a well-known work,
Desharnais et al. [11] use this lifting and a fixpoint construction to define a metric on
states, denoted by mO, which characterizes weak bisimulation.

Since our goal is to use metrics for verifying differential privacy, a natural question
that arises is whether mO can be employed for our goal. However, when trying to use
mO for this purpose, one quickly realizes that the “additive” nature of the Kantorovich
metric makes it inadequate for verifying a “multiplicative” property such as differential
privacy. An example of this behaviour is given later in this section.

As a consequence, we propose a multiplicative variant of the Kantorovich metric,
which gives rise to a third pseudometric mK . On the one hand, mK inherits most of the
appealing behaviors of mO, while being adequate for verifying differential privacy.
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Kantorovich metric The multiplicative variant

maximize
∑

i(µ(si)− µ′(si))xi maximize | ln
∑

i µ(si)xi∑
i µ

′(si)xi

|

Primal subject to ∀i. 0 ≤ xi ≤ 1 subject to ∀i. 0 ≤ xi ≤ 1

∀i, j. xi − xj ≤ m(si, sj) ∀i, j. xi ≤ em(si,sj)xj

minimize
∑

i,j lijm(si, sj) +
∑

i xi +
∑

j yj minimize ln z

Dual subject to ∀i.
∑

j lij + xi = µ(si) subject to ∀i.
∑

j lij − ri = µ(si)

∀j.
∑

i lij + yj = µ′(sj) ∀j.
∑

i lije
m(si,sj) − rj ≤ z · µ′(sj)

∀i, j. lij , xi, yj ≥ 0 ∀i, j. lij , ri ≥ 0

Fig. 2: The Kantorovich metric and its multiplicative variant.

5.1 Adapting the Kantorovich metric

We now give a multiplicative variant of the Kantorovich metric, which computes the
distance between probability distributions in a multiplicative sense, namely, with re-
spect to the ratio between the distributions. With a slight abuse use of notation, we use
m to denote both the original metric on states and its lifting.

Definition 6. Let m ∈ M. Let µ, µ′ be distributions on states. The metric m(µ, µ′) is
given by the solution of the primal optimization program shown in Fig. 2 (multiplicative
variant).

The primal program can be converted (the details are given in the appendix) to a
quasi-linear dual program ( Fig. 2), (For the sake of simplicity, Fig. 2 only shows the
dual program of ln

∑
i µ(si)xi−ln

∑
i µ

′(si)xi. The dual program for ln
∑

i µ
′(si)xi−

ln
∑

i µ(si)xi can be obtained by simply switching the roles of µ and µ′.) which can
be solved using any linear programming method. In addition, this dual form will be
essential to prove the correspondence with weak bisimilarity (in Section 6.1) and give
an intuitive interpretation latter.

Intuitive difference between the Kantorovich metric and our variant. First let us
recall the intuition of the Kantorovich metric. Consider its dual program in Fig. 2. The
Kantorovich metric is usually interpreted as a transportation problem. Intuitively, lij
can be understood as a transportation of lij unit mass from a location si ∈ supp(µ)
to a location sj ∈ supp(µ′), the cost of moving one unit of mass from si to sj is
represented by (a function of) the distance m(si, sj). Then the Kantorovich distance
gives the lowest total cost of transporting the mass of µ to µ′.

Similarly, the dual program of the multiplicative variant can be used to obtain an
intuitive interpretation. By simple transformation, we obtain z ≥ (

∑
i,j lije

m(si,sj) −∑
i ri)/

∑
j µ

′(sj), where lij and m(si, sj) are read in the same way as above. Now
we can see that our variant is used to achieve the lowest cost of transportation per unit
mass of µ′, the ratio representing the optimal efficiency.

We can finally show that the lifted metric is indeed a metric.

10



Lemma 3. Let m ∈ M. The Kantorovich lifting m(µ, µ′) is a metric on Disc(S).
Moreover, m ≼ m′ implies m(µ, µ′) ≥ m′(µ, µ′).

5.2 The mK metric on states

We are now ready to use the Kantorovich lifting to define a third pseudometric mK on
states. We start by defining the concept of a K-state-metric:

Definition 7. m ∈ M is a K-state-metric if, for any ϵ, m(s, t) ≤ ϵ implies that if
s

a
=⇒ µ then there exists some µ′ such that t a

=⇒ µ′ and m(µ, µ′) ≤ ϵ.

Note that in the above definition, the “vice-versa” case is covered by the fact that m is
also a metric. By m(s, t) ≤ ϵ we have m(t, s) ≤ ϵ, which implies that if t a

=⇒ µ′ then
there exists some µ such that s a

=⇒ µ and m(µ′, µ) ≤ ϵ.
Then mK is defined as the greatest K-state-metric:

mK =
⊔

{m ∈ M|m is a K-state-metric}.

A fixed-point characterization. Next, we characterize mK as the greatest fixed-point
of a monotone function on a complete lattice. This approach was first proposed by
Desharnais et al. [11] for labelled concurrent Markov chains.

Definition 8. Define F , a functional on M as follows. F (m)(s, t) ≤ ϵ if and only if:

1. (∀s a
=⇒ µ)(∃t a

=⇒ µ′)[m(µ, µ′) ≤ ϵ].
2. (∀t a

=⇒ µ′)(∃s a
=⇒ µ)[m(µ, µ′) ≤ ϵ].

The triangle inequality on F (m) follows from the triangle inequality on m extended
to distributions (see Lemma 3). By adapting the proofs of the analogous results in [11,
10], F (m) is well-defined. By directly checking the definition of F , it is easy to see
that m is a K-state-metric if and only if m ≼ F (m). Henceforth, we have that mK is
exactly the greatest pre-fixed-point of F , namely, mK =

⊔
{m ∈ M|m ≼ F (m)}.

By Lemma 3, the ordering on pseudometrics is preserved when metrics are lifted from
states to distributions over states, it is routine to get that F is monotone on M. There-
fore, since (M,≼) is a complete lattice, we can apply Tarski’s fixed point theorem [24],
which ensures that F has a maximum fixed-point. In addition, the finite-stateness of the
PA A ensures that closure ordinal of F is ω (cf: [11], Lemma 3.10). Hence we can
proceed in a standard way to show that mK is indeed the largest fixed-point of F , and
is given by mK = ⊓imi, where m0 = ⊤ and mi+1 = F (mi).

5.3 Verification of differential privacy using mK

We then show that mK is suitable for verifying differential privacy.

Lemma 4. Given a PA A, let ζ be an admissible scheduler, t be a finite trace, and
α1, α2 be two finite executions in A. If mK(lstate(α1), lstate(α2)) ≤ ϵ, then:

1

eϵ
≤ Prζ [α1 ◃ t]

Prζ [α2 ◃ t]
≤ eϵ

11



s1 s2

s

nook

a

0.9 0.1

t1 t2

t

nook

a

0.999 0.001

(a) mO(s, t) = 0.099 while ϵ = ln 100.

s
′

1
s
′

2

s
′

nook

a

0.8 0.2

t
′

1
t
′

2

t
′

nook

a

0.3 0.7

(b) mO(s′, t′) = 0.5 while ϵ′ = ln 3.5.

Fig. 3: The pseudometric of [11] does not imply differential privacy

Finally, we can show that mK can be used to verify differential privacy.

Theorem 3. A concurrent system A is ϵ-differentially private if mK(A(u),A(u′)) ≤ ϵ
for all u ∼ u′.

Differential privacy and the standard Kantorovich metric. We now revisit the question
of using the original Kantorovich metric mO for verifying privacy. Recall that mO, in-
troduced in [11], is defined in the same way as mK , but using the standard Kantorovich
lifting. The example below shows that mO may be very different from the level of
differential privacy.

Example 3. Consider two processes s, t shown in Fig. 3 (a), compute mO(s, t) = 0.1−
0.001 = 0.099 while the level of differential privacy ϵ = ln 0.1

0.001 = ln 100. Consider
another two processes s′, t′ shown in Fig. 3 (b), compute mO(s′, t′) = 0.7 − 0.2 =
0.5 while the level of differential privacy ϵ′ = ln 0.7

0.2 = ln 3.5. Using the original
Kantorovich metric, s and t are considered more indistinguishable than s′ and t′, in
sharp contrast to the corresponding differential privacy levels.

This behaviour is due to the additive nature of mO. In fact, we can show that mO

induces a bound on the difference between the probabilities of producing a trace.

Lemma 5. Given a PA A, let ζ be an admissible scheduler, let t be a finite trace, and
α1, α2 be two finite executions in A. If mO(lstate(α1), lstate(α2)) ≤ ϵ, then:

|Prζ [α1 ◃ t]− Prζ [α2 ◃ t] | ≤ ϵ

6 Comparing the three metrics

In this section, we compare the three metrics, showing that the latter two are indeed
more liberal than the first one, although incomparable to each other. Moreover,we in-
vestigate their relation with weak bisimilarity.

We first show that mA is bounded by mD.

Lemma 6. mD ≼ mA.

12



s1 s4

s

s2
s3

s5

cb

a

ok
no

0.4 0.6

0.2

0.1

0.7

t1 t4

t

t2
t3

s5

cb

a

ok
no

0.1 0.9

0.2
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Fig. 4: mK(s, t) > mA(s, t)

Note the converse does not hold, since Examples 1 and 2 already show cases in which
mD is infinite while mA is finite.

Then, we show that mK is also bounded by mD.

Lemma 7. mD ≼ mK .

To show that mA,mK are incomparable to each other, we first show a toy example
in which mK(s, t) > mA(s, t).

Example 4. Consider two processes s, t shown in Fig. 4. Through computations (see
Appendix), we obtain that mK(s, t) = ln 24, while mA(s, t) = ln 14 which is finer. The
idea behind this example is that mA works well in the scenario where by amortising the
total differences of probabilities, the resulting ratio gets smaller than by accumulating.

For the converse, note that from the definitions of mA, a strong bijection relation
is required in each mutual simulation. We can easily find counterexamples that do not
have this bijection relation between the distributions of the starting states, making mA

infinite. On the other hand, mK is completely permissive on this point.

6.1 Relations with weak bisimilarity

Finally, we show that, similarly to the original Kantorovich metric, the 0 distance of
mK characterizes weak bisimilarity, thus satisfying the criterion on metrics for proba-
bilistic processes of Desharnais et al. [11]. On the other hand, mD and mA only imply
weak bisimilarity, while the converse direction does not hold because of the strong re-
quirement of the bijections. We adopt the notion of weak bisimilarity proposed in [11],
the details can be found in the appendix.

The maximal fixed point of F introduced in Section 5.2 as an alternative character-
ization of mK , corresponds to weak bisimilarity. The forward implication of the proof
is proved by defining a metric m(s, t) = 0 if s and t are weak bisimilar, and ∞ other-
wise, and showing that m ≼ F (m). The converse implication proceeds by defining an
equivalence relation induced by the metric mK , i.e. (s, t) ∈ R iff mK(s, t) = 0, and
showing that R is a weak bisimulation.

13



Proposition 3. The following hold:

– mK(s, t) = 0 ⇔ s ≈ t
– mD(s, t) = 0 ⇒ s ≈ t
– mA(s, t) = 0 ⇒ s ≈ t

7 Conclusion and future work

We have investigated three pseudometrics on states: the first one is a reformulation
of the notion proposed in [25], the second one is designed in the sense that the total
privacy leakage bound gets amortised, the last metric is built on a multiplicative variant
inheriting the merits of Kantorovich metric. Each of the three pseudometrics establish
a framework for the formal verification of differential privacy for concurrent systems.
Namely, the closer processes are in the metrics, the higher level of differential privacy
they can preserve.

We have formally compared these pseudometrics, showing that the latter two are
more liberal than the first one. They make improvements on the first metric in two or-
thogonal ways: one by considering a more careful use of the privacy leakage budget; the
other by using more relaxed relation between states, inspired by bisimilarity and by the
Kantorovich metric. Through some counterexamples, the second and the third metrics
are shown to be incomparable with each other, henceforth they can be considered as
two alternative techniques for verification of differential privacy.

In this paper we have mainly focus on developing a basic framework for the formal
verification of differential privacy for concurrent systems. In the future we plan to de-
velop more realistic case-studies and applications. We also plan to investigate whether
and how we can define a new pseudometric that unifies the merits of the amortised
pseudometric and the multiplicative variant of the Kantorovich metric. Finally, we want
to investigate whether the distance in our multiplicative variant of the Kantorovich met-
ric is compositional with respect to the typical process algebra operators, in the sense
that the distance between two compound terms can be calculated as a function of the
distance of the components. This would allow to combine the techniques presented in
this paper with the compositional method proposed in [26].
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A Appendix

Proofs are shown according to their orders in the main text.

A.1 Proof of Proposition 1

mD is a pseudometric, that is:

1. (reflexivity) mD(s, s) = 0
2. (symmetry) mD(s1, s2) = mD(s2, s1)
3. (triangle inequality) mD(s1, s3) ≤ mD(s1, s2) +mD(s2, s3)

Proof. 1. For reflexivity, it is enough to show that the identity relation over the set S
of states of A, that is the relation IdS = {(s, s, 0)|s ∈ S}, is an 0-accumulative
bisimulation. This is easy.

2. For symmetry, assume that (s1, s2, 0) is in a ϵ-accumulative bisimulation R, we
will show that R′ = {(s′2, s′1, c)|(s′1, s′2, c) ∈ R} is a ϵ-accumulative bisimulation,
thus we have mD(s2, s1) ≤ ϵ.
- It is easy to see that (s2, s1, 0) ∈ R′, because (s1, s2, 0) ∈ R.
- For (s′2, s

′
1, c) ∈ R′, if s′2

a
=⇒ µ2, we must show that there exists a transition

from s′1: s′1
a

=⇒ µ1 and µ2LD(R′, c)µ1. Since (s′1, s
′
2, c) ∈ R, there exists a

transition from s′1 such that s′1
a

=⇒ µ1 and µ1LD(R, c)µ2. According to the
definition of D-approximate lifting, there exist a bijection β : supp(µ1) −→
supp(µ2), such that for all s′′1 in supp(µ1), s′′2 = β(s′′1), (s

′′
1 , s

′′
2 , c + σ) ∈ R

where σ = maxs′′1 ∈supp(µ1) | ln
µ1(s

′′
1 )

µ′(s′′2 )
|. Then µ2LD(R′, c)µ1 holds, because we

have the inverse of the bijection β satisfying s′′1 = β−1(s′′2), and (s′′2 , s
′′
1 , c+σ) ∈

R′.
- For the other direction, it is analogous to the above case.

3. For transitivity, assume that (s1, s2, 0) is in the ϵ1-accumulative bisimulation R1 ⊆
S × S × [0, ϵ1], (s2, s3, 0) is in the ϵ2-accumulative bisimulation R2 ⊆ S × S ×
[0, ϵ2]. we mush show that their relational composition R1R2 ⊆ S×S×[0, ϵ1+ϵ2]:

{(s′1, s′3, c)|∃s′2, c1, c2.(s′1, s′2, c1) ∈ R1 ∧ (s′2, s
′
3, c2) ∈ R2 ∧ c ≤ c1 + c2}

is a ϵ1 + ϵ2-accumulative bisimulation.
- It is easy to see that (s1, s3, 0) ∈ R1R2, because (s1, s2, 0) ∈ R1 and (s2, s3, 0)
∈ R2.

- for (s′1, s
′
3, c) ∈ R1R2, if s′1

a
=⇒ µ1, we must show that there exists a transition

from s′3: s′3
a

=⇒ µ3 and µ1LD(R1R2, c)µ3. Since there exist s′2, c1, c2 such that
(s′1, s

′
2, c1) ∈ R1 and (s′2, s

′
3, c2) ∈ R2 and c ≤ c1 + c2, there exist also a

transition s′2
a

=⇒ µ2 and µ1LD(R1, c1)µ2, and hence a transition s′3
a

=⇒ µ3

and µ2LD(R2, c2)µ3. By the definition of D-approximate lifting, there exists a
bijection β1 : supp(µ1) −→ supp(µ2), s.t. for all s′′1 in supp(µ1), s′′2 = β1(s

′′
1)

and

(s′′1 , s
′′
2 , c1 + σ1) ∈ R1 where σ1 = max

s′′1 ∈supp(µ1)
| ln µ1(s

′′
1)

µ2(s′′2)
|.
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There exists also a bijection β2 : supp(µ2) −→ supp(µ3), s.t. for all s′′2 in
supp(µ2), s′′3 = β2(s

′′
2) and

(s′′2 , s
′′
3 , c2 + σ2) ∈ R2 where σ2 = max

s′′2 ∈supp(µ2)
| ln µ2(s

′′
2)

µ3(s′′3)
|.

It holds that µ1LD(R1R2, c)µ3, because of the composition β1β2 satisfying
β1β2 : supp(µ1) −→ supp(µ3), s.t. for all s′′1 in supp(µ1), s′′3 = β2(β1(s

′′
1))

and

(s′′1 , s
′′
3 , c+ σ′) ∈ R1R2 where σ′ = max

s′′1 ∈supp(µ1)
| ln µ1(s

′′
1)

µ3(s′′3)
|

and c+ σ′ ≤ c1 + σ1 + c2 + σ2.
- For the other direction, it is analogous to the above case.

⊓⊔

A.2 Proof of Proposition 2

mA is a pseudometric, that is:

1. (reflexivity) mA(s, s) = 0
2. (symmetry) mA(s1, s2) = mA(s2, s1)
3. (triangle inequality) mA(s1, s3) ≤ mA(s1, s2) +mA(s2, s3)

Proof. 1. For reflexivity, it is enough to show that the identity relation over the set
S of states of A, that is the relation IdS = {(s, s, 0)|s ∈ S}, is an 0-amortised
bisimulation. This is easy.

2. For symmetry, assume that (s1, s2, 0) is in a ϵ-amortised bisimulation R, we will
show that R′ = {(s′2, s′1, c)|(s′1, s′2,−c) ∈ R} is a ϵ-amortised bisimulation, thus
we have mA(s2, s1) ≤ ϵ.
- It is easy to see that (s2, s1, 0) ∈ R′, because (s1, s2, 0) ∈ R.
- for (s′2, s

′
1, c) ∈ R′, if s′2

a
=⇒ µ2, we must show that there exists a transition

from s′1: s′1
a

=⇒ µ1 and µ2LA(R′, c)µ1. Since (s′1, s
′
2,−c) ∈ R, there exists

a transition from s′1 such that s′1
a

=⇒ µ1 and µ1LA(R,−c)µ2. According to
the definition of A-approximate lifting, there is a bijection β : supp(µ1) −→
supp(µ2), s.t. for all s′′1 in supp(µ1), s′′2 = β(s′′1) and (s′′1 , s

′′
2 ,−c+ lnµ1(s

′′
1)−

lnµ2(s
′′
2)) ∈ R. Then µ2LA(R′, c)µ1 holds, because we have the inverse of the

bijection β satisfying s′′1 = β−1(s′′2), and (s′′2 , s
′′
1 , c + lnµ2(s

′′
2) − lnµ1(s

′′
1)) ∈

R′.
- For the other direction, it is analogous to the above case.

3. For transitivity, let (s1, s2, 0) be in the ϵ1-amortised bisimulation R1 ⊆ S × S ×
[−ϵ1, ϵ1], (s2, s3, 0) be in the ϵ2-amortised bisimulation R2 ⊆ S×S×[−ϵ2, ϵ2]. we
mush show that their relational composition R1R2 ⊆ S ×S × [−ϵ1 − ϵ2, ϵ1 + ϵ2]:

{(s′1, s′3, c)|∃s′2, c1, c2.(s′1, s′2, c1) ∈ R1 ∧ (s′2, s
′
3, c2) ∈ R2 ∧ c1 + c2 = c}

is a ϵ1 + ϵ2-amortised bisimulation.
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- It is easy to see that (s1, s3, 0) ∈ R1R2, because (s1, s2, 0) ∈ R1 and (s2, s3, 0) ∈
R2.

- for (s′1, s
′
3, c) ∈ R1R2, if s′1

a
=⇒ µ1, we must show that there exists a transition

from s′3: s′3
a

=⇒ µ3 and µ1LA(R1R2, c)µ3. Since there exist s′2, c1, c2 such that
(s′1, s

′
2, c1) ∈ R1 and (s′2, s

′
3, c2) ∈ R2 and c1 + c2 = c, there exist also a

transition s′2
a

=⇒ µ2 and µ1LA(R1, c1)µ2, and hence a transition s′3
a

=⇒ µ3 and
µ2LA(R2, c2)µ3. By the definition of A-approximate lifting, there is a bijection
β1 : supp(µ1) −→ supp(µ2), s.t. for all s′′1 in supp(µ1),

s′′2 = β1(s
′′
1) and (s′′1 , s

′′
2 , c1 + lnµ1(s

′′
1)− lnµ2(s

′′
2)) ∈ R1.

There is also a bijection β2 : supp(µ2) −→ supp(µ3), s.t. for all s′′2 in supp(µ2),

s′′3 = β2(s
′′
2) and (s′′2 , s

′′
3 , c2 + lnµ2(s

′′
2)− lnµ3(s

′′
3)) ∈ R2.

It holds that µ1LA(R1R2, c)µ3, because we have the composition β1β2 satisfy-
ing β1β2 : supp(µ1) −→ supp(µ3), s.t. for all s′′1 in supp(µ1),

s′′3 = β2(β1(s
′′
1)) and (s′′1 , s

′′
3 , c+ lnµ1(s

′′
1)− lnµ3(s

′′
3)) ∈ R1R2.

- For the other direction, it is analogous to the above case.
⊓⊔

A.3 Proof of Lemma 2

Given a PA A, let R be an ϵ-amortised bisimulation, c ∈ [−ϵ, ϵ], let ζ be an admissible
scheduler, t be a finite trace, α1, α2 two finite executions of A. If (lstate(α1), lstate(α2),
c) ∈ R, then

1

eϵ+c
≤ Prζ [α1 ◃ t]

Prζ [α2 ◃ t]
≤ eϵ−c

Proof. We prove by induction on the length of trace t: |t|.

1. |t| = 0: According to equation (1), for any scheduler ζ, Prζ [α1 ◃ t] = Prζ [α2 ◃
t] = 1.

2. IH: For any two executions α1 and α2 of A, let s1 = lstate(α1) and s2 =
lstate(α2). (s1, s2, c) ∈ R implies that for any admissible scheduler ζ, trace t′

where |t′| ≤ L:
1

eϵ+c
≤ Prζ [α1 ◃ t′]

Prζ [α2 ◃ t′]
≤ eϵ−c

3. We have to show that for any admissible scheduler ζ, trace t with |t| = L + 1,
(s1, s2, c) ∈ R implies

1

eϵ+c
≤ Prζ [α1 ◃ t]

Prζ [α2 ◃ t]
≤ eϵ−c

Assume that t = aat′. We prove first the right-hand part Prζ [α1 ◃ t] ≤ eϵ−c ∗
Prζ [α2 ◃ t]. According to equation (1), two cases must be considered:
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- Case act(ζ(α1)) ̸= a. Then Prζ [α1 ◃ t] = 0. Since ζ is admissible, it schedules
for α2 a transition consistent with α1, namely, not a transition labeled by a either.
Thus Prζ [α2 ◃ t] = 0, the inequality is satisfied.

- Case ζ(α1) = s1
a

=⇒ µ1. So,

Prζ [α1 ◃ t] =
∑

si∈supp(µ1)
µ1(si)Prζ [α1asi ◃ t′]

Since (s1, s2, c) ∈ R, there must be also a transition from s2 such that s2
a

=⇒ µ2

and µ1LA(R, c)µ2. Since ζ is admissible, ζ(α2) = s2
a

=⇒ µ2. We use ti to
range over elements in supp(µ2). Thus,

Prζ [α2 ◃ t] =
∑

ti∈supp(µ2)
µ2(ti)Prζ [α2ati ◃ t′]

Since µ1LA(R, c)µ2, there is a bijection β : supp(µ1) −→ supp(µ2), s.t. for
any si ∈ supp(µ1), there is a state ti ∈ supp(µ2), ti = β(si) and (si, ti, c +
lnµ1(si) − lnµ2(ti)) ∈ R. Apply the inductive hypothesis to α1asi, α2ati and
t′, we get that:

Prζ [α1asi ◃ t′] ≤ eϵ−(c+lnµ1(si)−lnµ2(ti)) ∗ Prζ [α2ati ◃ t′] (2)

Thus,

Prζ [α1 ◃ t] (3)

=
∑

si∈supp(µ1)

µ1(si)Prζ [α1asi ◃ t′] (4)

≤
∑

si∈supp(µ1)

µ1(si)e
ϵ−(c+lnµ1(si)−lnµ2(β(si)))Prζ [α2aβ(si) ◃ t′] (5)

=
∑

si∈supp(µ1)

µ1(si) ∗
µ2(β(si))

µ1(si)
∗ eϵ−c ∗ Prζ [α2aβ(si) ◃ t′] (6)

=
∑

ti∈supp(µ2)

µ2(ti) ∗ eϵ−c ∗ Prζ [α2ati ◃ t′] (7)

= eϵ−c
∑

ti∈supp(µ2)

µ2(ti)Prζ [α2ati ◃ t′] (8)

= eϵ−c ∗ Prζ [α2 ◃ t] (9)

which completes the proof of right-hand part. Lines (4) and (9) follow from the
equation (1). Line (5) follow from the inductive hypothesis, i.e. Line (2).
For the left-hand part Prζ [α2 ◃ t] ≤ eϵ+c ∗ Prζ [α1 ◃ t], exchange the roles of
s1 and s2. use β−1 instead of β, and all the rest is analogous. ⊓⊔
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A.4 Proof of Theorem 2

A concurrent system A is ϵ-differentially private if mA(A(u),A(u′)) ≤ ϵ for all u ∼
u′.

Proof. Since mA(A(u),A(u′)) ≤ ϵ for all u ∼ u′, by the definition of mA, there exists
a ϵ-amortised bisimulation R such that (A(u),A(u′), 0) ∈ R. By Lemma 2, for any
admissible scheduler ζ, any finite trace t:

1

eϵ
≤ Prζ [A(u) ◃ t]

Prζ [A(u′) ◃ t]
≤ eϵ

Thus, A is ϵ-differentially private. ⊓⊔

A.5 Middle steps of the transformation of the linear-fractional program

Here shows the detailed transformation of the following linear-fractional program to its
linear counterpart and the dual program.

maximize

∑
i µ(si)xi∑
i µ

′(si)xi

subject to: ∀i. 0 ≤ xi ≤ 1

∀i, j. xi ≤ em(si,sj)xj .

Following the techniques in [5], we extend the dimensions of the feasible region by
adding new decision variables yi for i ∈ [1, |S|]. The extension does not affect the
optimal value. This is justified by the new constraints ensuring that in fact xi = yi for
i ∈ [1, |S|] (because m(si, si) = 0).

maximize

∑
i µ(si)xi∑
j µ

′(sj)yj

subject to: ∀i. 0 ≤ xi, yi ≤ 1

∀i, j. xi − em(si,sj)yj ≤ 0

∀i, yi − xi ≤ 0.
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Let αi =
xi∑

j µ
′(sj)yj

, βi =
yi∑

j µ
′(sj)yj

and t =
1∑

j µ
′(sj)yj

. The above

linear-fractional problem can be transformed to the equivalent linear program.

maximize
∑

i µ(si)αi

subject to: ∀i. 0 ≤ αi, βi ≤ t

∀i, j. αi − em(si,sj)βj ≤ 0

∀i, βi − αi ≤ 0∑
i µ

′(si)βi = 1.

Dualizing the above (primal) problem yields:

minmize z

subject to: ∀i.
∑

j lij + ai − ri ≥ µ(si)

∀j.
∑

i lije
m(si,sj) − bj − rj ≤ z · µ′(sj)∑

i ai +
∑

i bi ≤ 0

∀i, j. lij , ai, bi, ri ≥ 0

where the possible values for ai and bi can only be 0. Thus, the dual problem becomes:

minmize z

subject to: ∀i.
∑

j lij − ri ≥ µ(si)

∀j.
∑

i lije
m(si,sj) − rj ≤ z · µ′(sj)

∀i, j. lij , ri ≥ 0.

which is equivalent to the following program where the first constraints are equations:

minmize z

subject to: ∀i.
∑

j lij − ri = µ(si)

∀j.
∑

i lije
m(si,sj) − rj ≤ z · µ′(sj)

∀i, j. lij , ri ≥ 0.

A.6 Proof of Lemma 3

Def. 6 defines m(µ, µ′) as the solution to the following program:

maximize | ln

∑
i µ(si)xi∑
i µ

′(si)xi

| (10)
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We prove Lemma 3 as follows:

1. Let m ∈ M. m(µ, µ) = 0.
2. (Symmetry.) Let m ∈ M. m(µ, µ′) = m(µ′, µ).
3. (Triangle inequality.) Let m ∈ M. Then, (∀µ1, µ2, µ3)m(µ1, µ3) ≤ m(µ1, µ2) +

m(µ2, µ3).
4. Let m,m′ ∈ M such that m ≼ m′. Then, for all distributions on states µ, µ′,

m(µ, µ′) ≥ m′(µ, µ′).

Proof. 1. Straightforwardly, the numerator and the denominator in the program of
Definition 6 turn out to be equivalent. Thus m(µ, µ) = ln 1 = 0.

2. It is easy to see the symmetry property, because | ln
∑

i µ(si)xi−ln
∑

i µ
′(si)xi| =

| ln
∑

i µ
′(si)xi − ln

∑
i µ(si)xi|.

3. To prove the triangle inequality, given distributions µ1, µ2, µ3,

| ln
∑

i µ1(si)xi∑
i µ3(si)xi

| = | ln(
∑

i µ1(si)xi∑
i µ2(si)xi

·
∑

i µ2(si)xi∑
i µ3(si)xi

)|

= | ln
∑

i µ1(si)xi∑
i µ2(si)xi

+ ln

∑
i µ2(si)xi∑
i µ3(si)xi

|

≤ | ln
∑

i µ1(si)xi∑
i µ2(si)xi

|+ | ln
∑

i µ2(si)xi∑
i µ3(si)xi

|

Taking the maximum over the xi for the left side, we get m(µ1, µ3) ≤ m(µ1, µ2)+
m(µ2, µ3).

4. For the last item, consider the primal program (10), note that every solution to the
program defining m′(µ1, µ2) is also a solution to the program defining m(µ1, µ2).
So, the maximum value m′(µ1, µ2) ≤ m(µ1, µ2).

⊓⊔

A.7 Proof of Lemma 4

Given a PA A, let ζ be an admissible scheduler, let t be a finite trace, and let α1, α2 be
two states in Aζ . If mK(lstate(α1), lstate(α2)) ≤ ϵ then

1

eϵ
≤ Prζ [α1 ◃ t]

Prζ [α2 ◃ t]
≤ eϵ

Proof. We prove by induction on the length of trace t: |t|.

1. |t| = 0: According to equation (1), Prζ [α1 ◃ t] = Prζ [α2 ◃ t] = 1.
2. IH: For any two states α1 and α2 in Aζ , let s1 = lstate(α1) and s2 = lstate(α2),

mK(s1, s2) ≤ ϵ implies that for any trace t′ where |t′| ≤ L,

1

eϵ
≤ Prζ [α1 ◃ t′]

Prζ [α2 ◃ t′]
≤ eϵ
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Because mK(s, s) = 0, we can easily deduce from the IH that

Prζ [α ◃ t′] = Prζ [s ◃ t′] (11)

in which s = lstate(α).
3. We have to show that for any trace t with |t| = L+ 1, mK(s1, s2) ≤ ϵ implies:

1

eϵ
≤ Prζ [α1 ◃ t]

Prζ [α2 ◃ t]
≤ eϵ

Assume that t = aat′. According to equation (1), two cases must be considered:
- Case act(ζ(α1)) ̸= a. Then Prζ [α1 ◃ t] = 0. Since ζ is an admissible scheduler,

it does not schedule for α2 the transition with label a either. Thus Prζ [α2 ◃ t] =
0, the inequality is satisfied.

- Case ζ(α1) = s1
a

=⇒ µ1. So, by (11) we have

Prζ [α1 ◃ t] =
∑

si∈supp(µ1)
µ1(si)Prζ [α1asi ◃ t′]

=
∑

i µ1(si)Prζ [si ◃ t′]
(12)

Since ζ is admissible, mK(s1, s2) ≤ ϵ which is the maximum fixed-point of F ,
there must be also a transition from s2 such that s2

a
=⇒ µ2, mK(µ1, µ2) ≤ ϵ,

and ζ(α2) = s2
a

=⇒ µ2. So, by (11) we have analogously

Prζ [α2 ◃ t] =
∑

si∈supp(µ2)
µ2(si)Prζ [α2asi ◃ t′]

=
∑

i µ2(si)Prζ [si ◃ t′]
(13)

Since mK(µ1, µ2) ≤ ϵ, by Def. 6, it follows that:

max | ln

∑
i µ1(si)xi∑
i µ2(si)xi

| ≤ ϵ (14)

subject to: ∀i.0 ≤ xi ≤ 1

∀i, j.
xi

xj

≤ em
K(si,sj)

Let xi = Prζ [si ◃ t′]. Clearly, it holds that 0 ≤ Prζ [si ◃ t′] ≤ 1. In addition,
applying the inductive hypothesis to si, sj and t′, we get:

1

em
K(si,sj)

≤ Prζ [si ◃ t′]

Prζ [sj ◃ t′]
≤ em

K(si,sj)

Thus by equation (14), we have:

| ln

∑
i µ1(si)Prζ [si ◃ t′]∑
i µ2(si)Prζ [si ◃ t′]

| ≤ ϵ
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−ϵ ≤ ln

∑
i µ1(si)Prζ [si ◃ t′]∑
i µ2(si)Prζ [si ◃ t′]

≤ ϵ

1

eϵ
≤

∑
i µ1(si)Prζ [si ◃ t′]∑
i µ2(si)Prζ [si ◃ t′]

≤ eϵ

By equations (12) and (13), we obtain:

1

eϵ
≤

Prζ [α1 ◃ t]

Prζ [α2 ◃ t]

≤ eϵ

as required. ⊓⊔

A.8 Proof of Lemma 5

Let m be the pseudometric based on the standard Kantorovich metric proposed in [11].
Given a PA A, let ζ be an admissible scheduler, let t be a finite trace, and let α1, α2

be two states in Aζ . If m(lstate(α1), lstate(α2)) ≤ ϵ then

|Prζ [α1 ◃ t]− Prζ [α2 ◃ t] | ≤ ϵ.

Proof. We prove by induction on the length of trace t: |t|.

1. |t| = 0: According to equation (1), Prζ [α1 ◃ t] = Prζ [α2 ◃ t] = 1.
2. IH: For any two states α1 and α2 in Aζ , let s1 = lstate(α1) and s2 = lstate(α2),

m(s1, s2) ≤ ϵ implies that for any trace t′ where |t′| ≤ L,

|Prζ [α1 ◃ t′]− Prζ [α2 ◃ t′] | ≤ ϵ

Because m(s, s) = 0, we can easily deduce from the IH that

Prζ [α ◃ t′] = Prζ [s ◃ t′] (15)

in which s = lstate(α).
3. We have to show that for any trace t with |t| = L+ 1, m(s1, s2) ≤ ϵ implies:

|Prζ [α1 ◃ t]− Prζ [α2 ◃ t] | ≤ ϵ.

Assume that t = aat′. According to equation (1), two cases must be considered:
- Case act(ζ(α1)) ̸= a. Then Prζ [α1 ◃ t] = 0. Since ζ is an admissible scheduler,

it does not schedule for α2 the transition with label a either. Thus Prζ [α2 ◃ t] =
0, the inequality is satisfied.

- Case ζ(α1) = s1
a

=⇒ µ1. So, by (15) we have

Prζ [α1 ◃ t] =
∑

si∈supp(µ1)
µ1(si)Prζ [α1asi ◃ t′]

=
∑

i µ1(si)Prζ [si ◃ t′]
(16)
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Since m(s1, s2) ≤ ϵ and ζ is admissible, by the definition of the pseudometric
in [11], there must be also a transition from s2 such that s2

a
=⇒ µ2, m(µ1, µ2) ≤

ϵ, and ζ(α2) = s2
a

=⇒ µ2. So, by (15) we have analogously

Prζ [α2 ◃ t] =
∑

si∈supp(µ2)
µ2(si)Prζ [α2asi ◃ t′]

=
∑

i µ2(si)Prζ [si ◃ t′]
(17)

Since m(µ1, µ2) ≤ ϵ, it follows that:

max |
∑
i

µ1(si)xi −
∑
i

µ2(si)xi| ≤ ϵ (18)

subject to: ∀i.0 ≤ xi ≤ 1

∀i, j.xi − xj ≤ m(si, sj)

Let xi = Prζ [si ◃ t′]. Clearly, it holds that 0 ≤ Prζ [si ◃ t′] ≤ 1. In addition,
applying the inductive hypothesis to si, sj and t′, we get:

|Prζ [si ◃ t′]− Prζ [sj ◃ t′]| ≤ m(si, sj)

Thus by equation (18), we have:

|
∑
i

µ1(si)Prζ [si ◃ t′]−
∑
i

µ2(si)Prζ [si ◃ t′]| ≤ ϵ

By equations (16) and (17), we obtain:

|Prζ [α1 ◃ t]− Prζ [α2 ◃ t]| ≤ ϵ

as required. ⊓⊔

A.9 Proof of Lemma 6

mD ≼ mA.

Proof. Assume that RD ⊆ S × S × [0, ϵ] is the ϵ-accumulative bisimulation such that
(s, t, 0) ∈ RD. We define a relation RA ⊆ S × S × [−ϵ, ϵ] from RD as follows:

(s′, t′, cA) ∈ RA iff ∃cD.(s′, t′, cD) ∈ RD ∧ |cA| ≤ cD (19)

Now we prove that RA is an ϵ-amortised bisimulation.

1. It is easy to see that (s, t, 0) ∈ RA, because (s, t, 0) ∈ RD.
2. Given (s′, t′, cA) ∈ RA, if s′

a
=⇒ µ1, we must show that there exists a transi-

tion from t′: t′ a
=⇒ µ2 and µ1LA(RA, cA)µ2. By (19) we know that there exist-

s cD such that |cA| ≤ cD and (s′, t′, cD) ∈ RD. Thus there exists a transition
from t′ such that t′ a

=⇒ µ2 and µ1LD(RD, cD)µ2. According to the definition
of D-approximate lifting, there exists a bijection β : supp(µ1) −→ supp(µ2),
s.t. for all s′′ in supp(µ1), t′′ = β(s′′), (s′′, t′′, cD + σ) ∈ RD where σ =

maxs′′∈supp(µ1) | ln
µ1(s

′′)
µ2(t′′)

|. We have |cA + lnµ1(s
′′) − lnµ2(t

′′)| ≤ cD + σ and
hence (s′′, t′′, cA + lnµ1(s

′′)− lnµ2(t
′′)) ∈ RA by (19). According to the defini-

tion of A-approximate lifting, it holds that µ1LA(RA, cA)µ2 as required.
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3. For the other direction, it is analogous to the above case.
⊓⊔

A.10 Proof of Lemma 7

mD ≼ mK .

Proof. We need to show that mD(s, t) ≤ ϵ implies mK(s, t) ≤ ϵ. Since mD(s, t) ≤ ϵ,
there exists an ϵ-accumulative bisimulation R such that (s, t, 0) ∈ R. We show that if
(s, t, c) ∈ R then mD(s, t) ≤ ϵ−c. It is justified by proving that R′ ⊆ S×S×[0, ϵ−c]
defined as {(s, t, c′) | (s, t, c′ + c) ∈ R} is an (ϵ− c)-accumulative bisimulation.

For any s
a

=⇒ µ, there exist t a
=⇒ µ′ and a bijection β : supp(µ) → supp(µ′) such

that for all si in supp(µ), ti = β(si) and (si, ti, σ) ∈ R where σ = maxi | lnµ(si) −
lnµ′(ti)|. We prove that the distance given by the multiplicative Kantorovich metric
mD(µ, µ′) is less than ϵ.

mD(µ, µ′) = max | ln

∑
i µ(si)xi∑
i µ

′(ti)yi

|

where | ln xi

yi
| ≤ mD(si, ti). In particular, for ti = β(si), we have | ln xi

yi
| ≤ mD(si, ti) ≤

ϵ− σ. Thus,

mD(µ, µ′) ≤ max | ln
∑

i µ(si)yie
ϵ−σ∑

i µ
′(ti)yi

|

= max | ln
eϵ

∑
i µ(si)yie

−σ∑
i µ

′(ti)yi
|

≤ max | ln
eϵ

∑
i µ(si)yie

lnµ′(ti)−lnµ(si)∑
i µ

′(ti)yi
|

= max | ln
eϵ

∑
i µ

′(ti)yi∑
i µ

′(ti)yi
|

= ϵ

It satisfies that F (mD)(s, t) ≤ mD(s, t), showing that mD is also a pre-fixed point of
F . Henceforth the greatest fixed-point of F : mK(s, t) ≤ ϵ. ⊓⊔

A.11 Computations for Example 4

Consider the processes s, t shown in Fig. 4. We compute their distance using the third
pseudometric, showing that mK(s, t) = ln 24.

We denote s
a

=⇒ µ1, t a
=⇒ µ2, s1

b
=⇒ η1 and t1

b
=⇒ η2. Compute

m(η1, η2) = max | ln
0.2x1 + 0.1x2 + 0.7x3

0.2y1 + 0.6y2 + 0.2y3

|
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under the constraints: ∀i ∈ {1, 2, 3}, 0 ≤ xi, yi ≤ 1, x1 = y1, x2 = y2, x3 = y3, xi

and yj are independent from each other if i ̸= j. We obtain m(η1, η2) = ln 6. Thus
m(s1, t1) = ln 6. Compute

m(µ1, µ2) = max | ln
0.4x1 + 0.6x2

0.1y1 + 0.9y2

|

under the constraints: ∀i ∈ {1, 2}, 0 ≤ xi, yi ≤ 1, x1 ≤ 6y1, y1 ≤ 6x1, x2 = y2, xi

and yj are independent from each other if i ̸= j. We obtain m(s, t) = m(µ1, µ2) =
ln 24. Since there is no iteration, mK(s, t) = ln 24.

Next, we compute their distance by using the second pseudometric, showing that
mA(s, t) = ln 14 which is finer than the former distance. Let S and T denote the
state space of systems s and t, respectively. Let R ⊆ S × T × [− ln 14, ln 14]. It is
straightforward to check according to Def. 5 that the following relation is an amortised
bisimulation between s and t.

R = { (s, t, 0),

(s1, t1, ln 4), (s4, t4, ln
2
3 ),

(s2, t2, ln 4), (s3, t3, ln
2
3 ),

(s5, s5, ln 14) }

It is easy to see that mA(s, t) = ln 14 since there does not exist an amortised bisimula-
tion with a ϵ smaller that ln 14.

A.12 Proof of Proposition 3: the first item

We adopt the notion of weak bisimilarity proposed in [11]. The “probability” from
a state s to a subset of states via a trace with weak label a is defined by taking the
supremum over all possible computations.

Definition 9. Let A be a PA, s ∈ S, E ⊆ S. Then, the probability of going from s to E
via a, denoted by µ(s, a, E), is defined as:

µ(s, a, E) = sup{
∑
t∈E

µ′(t) | s a
=⇒ µ′}.

In [11], it has been proved that there exists a computation with root s that assigns the
maximum probability to E, i.e. µ(s, a, E) =

∑
t∈E µ′(t) for some s

a
=⇒ µ′.

We consider equivalence relations on the set of states. Given an equivalence relation
R ⊆ S × S, we say a set E is R-closed if E = {s | ∃t ∈ E such that tRs}.

Definition 10. An equivalence relation R ⊆ S × S is a weak bisimulation if for all
s, t ∈ S such that sRt and all R-closed E ⊆ S, we have:

(∀a ∈ A)[µ(s, a, E) = µ(t, a, E)].

There is a maximum weak bisimulation, namely weak bisimilarity, denoted by ≈.
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s ≈ t ⇔ mK(s, t) = 0.

Proof. (⇒) Consider the pseudometric m, defined as m(s, t) = 0 if s and t are weak
bisimilar, and ∞ otherwise. By Lemma 2.9 in [11], which states that given s ≈ t, if
s

a
=⇒ µ then there exists t a

=⇒ µ′ such that for all states si: µ([si]) = µ′([si]), where
[si] ∈ S/ ≈. Consider the primal program (10) determining the value of m(µ, µ′), note
that si ≈ sj implies xi = xj . Thus the summations in the objective function can be
grouped together by the equivalence classes of S under ≈. It is now straightforward
to see that

∑
[si]∈S/≈ µ([si])xi =

∑
[si]∈S/≈ µ′([si])xi and hence m(µ, µ′) = 0. For

the bisimilar states s, t in which m(s, t) = 0, m satisfies F (m)(s, t) ≤ m(s, t) = 0,
For the non bisimilar states s, t in which m(s, t) = ∞, F (m)(s, t) ≤ m(s, t) holds.
Henceforth, m ≼ F (m), m is a pre-fixed-point of F .

Recall that mK is the greatest pre-fixed-point of F , namely, mK =
⊔
{m ∈

M|m ≼ F (m)}. We have m ≼ mK . mK(s, t) ≤ m(s, t) = 0, thus for the maxi-
mum fixed-point: mK(s, t) = 0.

(⇐) Consider the relation R induced by 0 distance in mK . Clearly it is an equiv-
alence relation. We now show that it is a weak bisimulation. Let mK(s, t) = 0. Con-
sider an arbitrary R-closed set [si] ∈ S/R, µ(s, a, [si]) =

∑
s∈[si]

µ1(s) = µ1([si])

for some s
a

=⇒ µ1. Since mK is a fixed-point of F , there exists some µ2 such that
t

a
=⇒ µ2 and mK(µ1, µ2) = 0. We will prove that µ2([si]) ≥ µ1([si]).

We first show that ∑
i

µ1(si) =
∑
i

µ2(si). (20)

Consider the primal program (10), we know that ln

∑
i µ1(si)xi∑
i µ2(si)xi

and ln

∑
i µ2(si)xi∑
i µ1(si)xi

are bounded by 0. Let xi = 1 for all 1 ≤ i ≤ |S|, We obtain
∑

i µ1(si) ≤
∑

i µ2(si)
and

∑
i µ1(si) ≥

∑
i µ2(si). Straightforwardly, it holds that

∑
i µ1(si) =

∑
i µ2(si).

Using the dual programs, we know that the optimal values of z are not greater
than 1. Consider the lij , ri which achieve the minimum ln z in the dual program of
ln

∑
i µ1(si)xi − ln

∑
i µ2(si)xi, where the optimal value z ≤ 1. We shall prove that

if [si] ̸= [sj ] then lij = 0. (21)

It satisfies that:

µ1(si) =
∑
j

lij − ri (22)

z · µ2(sj) ≥
∑
i

lije
m(si,sj) − rj (23)
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Adding up all the constraint equations for µ1 and µ2 respectively, it follows that:∑
i µ1(si) =

∑
i,j lij −

∑
i ri

z ·
∑

j µ2(sj) ≥
∑

i,j lije
m(si,sj) −

∑
j rj∑

i,j lije
m(si,sj) −

∑
j rj ≤

∑
i,j lij −

∑
i ri by equation (20) and z ≤ 1∑

i,j lij(e
m(si,sj) − 1) ≤ 0

lij(e
m(si,sj) − 1) = 0 by lij ≥ 0 and mK(si, sj) ≥ 0

Thus, if [si] ̸= [sj ], i.e. mK(si, sj) ̸= 0, then it must hold that lij = 0.

µ2([si]) =
∑

sj∈[si]
µ2(sj)

≥
∑

sj∈[si]

∑
k lkje

m(sk,sj) −
∑

sj∈[si]
rj by (23)

=
∑

sj∈[si]

∑
sk∈[si]

lkje
m(sk,sj) −

∑
sj∈[si]

rj by (21)

=
∑

sj ,sk∈[si]
(lkj − rk) by mK(sk, sj) = 0

= µ1([si]) by (22) and (21)

Hence µ2([si]) ≥ µ1([si]) for all [si] ∈ S/R, ensuring µ(t, a, [si]) ≥ µ2([si]) ≥
µ1([si]) = µ(s, a, [si]).

By the symmetry property of R, we get µ(s, a, [si]) ≥ µ(t, a, [si]) and therefore
µ(s, a, [si]) = µ(t, a, [si]) as required. ⊓⊔

A.13 Proof of Proposition 3: the second item

mD(s, t) = 0 ⇒ s ≈ t. It is straightforwardly obtained from Lemma 7: mD ≼ mK

and the first item.

A.14 Proof of Proposition 3: the third item

mA(s, t) = 0 ⇒ s ≈ t.

Proof. Consider the relation R induced by 0 distance in mA. Clearly it is an equivalence
relation. We show that it is a weak bisimulation. Let mA(s, t) = 0. Consider an arbitrary
R-closed set [si] ∈ S/R, µ(s, a, [si]) =

∑
s∈[si]

µ1(s) = µ1([si]) for some s
a

=⇒ µ1.
Since mA(s, t) = 0, there exists an 0-amortised bisimulation R′ ⊆ S ×S × [0, 0] such
that (s, t, 0) ∈ R′. There exist a bijection β and a distribution µ2 such that t a

=⇒ µ2,
for any si ∈ supp(µ1), ti = β(si) and (si, ti, lnµ1(si)− lnµ2(ti)) ∈ R′. Because the
leakage budget is 0, which says that during the mutual simulation, every step must have
exactly the same probability, i.e. µ1(si) = µ2(ti). Furthermore by (si, ti, 0) ∈ R′,
we have mA(si, ti) = 0, thus [si] = [ti]. Henceforth, µ1([si]) =

∑
s∈[si]

µ1(s) =∑
β(s)∈[si]

µ2(β(s)) = µ2([si]) for all [si] ∈ S/R, ensuring µ(t, a, [si]) ≥ µ2([si]) =

µ1([si]) = µ(s, a, [si]).
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By the symmetry property of R, we get µ(s, a, [si]) ≥ µ(t, a, [si]) and therefore
µ(s, a, [si]) = µ(t, a, [si]) as required. ⊓⊔
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