
Defining Privacy is Supposed to be Easy?

Sebastian Mödersheim1, Thomas Groß2, and Luca Viganò3

1 DTU Compute, Lyngby, Denmark
2 School of Computing Science, Newcastle University, UK
3 Department of Informatics, King’s College London, UK

Abstract. Formally specifying privacy goals is not trivial. The most widely
used approach in formal methods is based on the static equivalence of frames
in the applied pi-calculus, basically asking whether or not the intruder is
able to distinguish two given worlds. A subtle question is how we can be sure
that we have specified all pairs of worlds to properly reflect our intuitive
privacy goal. To address this problem, we introduce in this paper a novel and
declarative way to specify privacy goals, called α-β privacy, and relate it to
static equivalence. This new approach is based on specifying two formulae
α and β in first-order logic with Herbrand universes, where α reflects the
intentionally released information and β includes the actual cryptographic
(“technical”) messages the intruder can see. Then α-β privacy means that
the intruder cannot derive any “non-technical” statement from β that he
cannot derive from α already. We describe by a variety of examples how
this notion can be used in practice. Even though α-β privacy does not
directly contain a notion of distinguishing between worlds, there is a close
relationship to static equivalence of frames that we investigate formally.
This allows us to justify (and criticize) the specifications that are currently
used in verification tools, and obtain partial tool support for α-β privacy.

1 Introduction

Context and motivation. Several formal notions of privacy have been proposed
over the last decade, e.g., [1, 3, 5–7, 9, 13, 17]. Although these notions are quite dif-
ferent, we can probably agree that defining privacy is actually quite subtle and not
as easy as it is supposed to be. One of the main reasons is that classical secrecy
notions do not apply for data that are not themselves secrets, e.g., a vote is not
itself a secret value like a private key. Rather, the information we would like to
protect is the relation between the (usually non-secret) values, e.g., which voter
has cast what vote.

For this reason, the vast majority of the popular approaches to formalizing
privacy is based not on the question of what the intruder can deduce from a set of

? This work was partially supported by the EU FP7 Projects no. 318424, “FutureID:
Shaping the Future of Electronic Identity” (futureid.eu), and no. 257876, “SPaCIoS:
Secure Provision and Consumption in the Internet of Services” (spacios.eu) and the
PRIN 2010-11 project “Security Horizons”. Much of this work was carried out while
L. Viganò was at Dipartimento di Informatica, Università di Verona, Italy.

known messages, but rather whether he can distinguish two different worlds.4 An
interesting follow-up question is thus: what is the “right” set of distinguishability
questions to define privacy? For instance, in a voting protocol where each user can
just vote yes or no, we may check that the intruder cannot distinguish the world
where a given voter voted yes from the one where this voter voted no. However,
this is not enough: even if the intruder cannot determine the votes, he should also
not be able to tell whether two voters have voted the same.

When we look at privacy-friendly identity management, we have even more
different kinds of data and possible relations between them, such as date of birth,
home address, or different uses of the same credentials. So, how can we ever be
confident that a given set of distinguishability questions is sufficient for privacy,
i.e., that we have not overlooked some possible connection the intruder could make
that we prefer him not to be able to make?

Contributions. In this paper, we take a step back and approach the problem
from a different angle. Our main goal is to find a formal description that reflects the
idea of privacy in a “natural” and less technical way and that can then be related
to the existing privacy notions, supporting or criticizing them. In fact, ultimately
we want to use the existing results in this field, but we take the scientific liberty
to first think in a slightly different direction.

More specifically, in this paper, we introduce a novel, simple and declarative
approach to specify privacy goals, called α-β privacy, which is based on specifying
two formulae α and β in First-Order Logic with Herbrand Universes [12].

α formalizes the intentionally released information, i.e., the information that we
can legitimately give to the intruder, which we also refer to as payload. For instance,
in a privacy-friendly zero-knowledge credential system (such as IBM’s Idemix [13])
a user may prove that she is a female older than 18 years (according to an electronic
passport she owns), without releasing any more information, such as her name or
the precise date of birth. Hence, we have an immediate specification of the data
that the user deliberately released, i.e., the statement proved in the zero-knowledge
proof, and it is intuitive that we then have a violation of privacy whenever the server
who verified the zero-knowledge proof can derive more about the user than the user
deliberately released by the proof. Of course, we must exclude from this definition
everything that is already entailed by the proved statement, e.g., the fact that the
user is also over 15 years old is entailed by the proved statement, so that is not
a violation of privacy, but if the server is able to derive that the user is actually
over 21 years, then there is a violation. It is thus quite natural to formalize such
statements as formulae in some logic and to define privacy as the inability of the
intruder to derive statements that are not entailed by what the users have released.

As a counterpart to the “ideal knowledge” provided by the payload α, we also
need the technical information β, which represents the “actual knowledge” that
the intruder has, describing the information (e.g., names, keys ...) that he initially

4 This is not unlike the earlier paradigm shift in cryptographic definitions from deducibil-
ity questions (such as: can the intruder obtain the plaintext of an encrypted message?)
to distinguishability questions (such as: can the intruder distinguish the encryption of
different chosen values?).

knows, which actual cryptographic messages he has observed and what he knows
about these messages. For instance, he may be unable to decrypt a message but
anyway know that it has a certain format and contains certain (protected) infor-
mation, like a vote.

α-β privacy then means that the intruder cannot derive any “non-technical”
statement from β that he cannot derive from α already. We believe that this is
indeed a simple way to define privacy, and is a more declarative way to talk about
privacy than distinguishability of frames. Essentially, the modeler should not think
about what technical information the intruder could exploit, but rather what in-
formation he is fine to release (α) and what messages are actually exchanged (β).

Another interesting and very declarative feature of our approach is that it is
straightforward to model what happens when two intruders collaborate and share
their knowledge. α-β privacy allows us to formalize this simply by taking the log-
ical conjunction of the formulae describing the knowledge that the two intruders
have, reflecting in a natural way what we can ask the system to provide: The best
technology cannot prevent dishonest agents from pooling all the information that
they were intentionally given and deriving all possible conclusions from that—but
we can ask that they cannot derive more than that.

We describe by a variety of examples how α-β-privacy can be used in practice,
and define transition systems based on it. Even though α-β privacy does not directly
contain a notion of distinguishing between worlds, there is a close relationship to
static equivalence of frames that we investigate formally. This allows us to justify
(and criticize) the specifications that are currently used in verification tools and
obtain partial tool support for α-β privacy (but we do not discuss these two issues
in full detail in this paper). We also prove several results that help in reasoning
about α-β privacy in general and give a decision procedure for a fragment of it.

Organization. Section 2 provides the basis for our approach: we discuss First-
Order Logic with Herbrand Universes, messages and frames. In Section 3, we for-
malize α-β-privacy and consider some concrete examples. In Section 4, we discuss
automation and the relation of α-β privacy to static equivalence and in Section 5, we
draw conclusions. In the accompanying technical report [14], we provide additional
examples of how α-β privacy may be employed to model randomized and deter-
ministic encryption, non-determinism, strong secrecy, guessing attacks, anonymous
credential systems and pooling of knowledge.

We introduce primitives of our new α-β privacy approach step by step, where
Table 1 gives an overview of where they are introduced.

2 Preliminaries

2.1 Herbrand Logic

To formalize our approach, we need to choose an appropriate logic. An obvious
candidate is first-order logic (FOL), but this has one difficulty when it comes to the
interpretation of the constants and the cryptographic operators. As it is standard
in security protocol verification, we would like to interpret these operators either

Table 1. Roadmap of the primitives introduced.

Σ, V, TΣ(V) §2.1/p.3 Finite alphabet, disjoint set of variables, and terms of our Her-
brand Logic (FOL with Herbrand Universes)

zi §2.3/p.7 Frame (as in static equivalence), adapted to Herbrand Logic
mi §2.3/p.7 Memory location i, storing a piece of intruder knowledge
α §3/p.8 Payload, information that the intruder may legitimately obtain,

over V0 ⊆ V and Σ0 ⊆ Σ
β §3/p.8 Technical information of and about observed protocol mes-

sages, over V and Σ
concr §2.3/p.7 Encoding of concrete intruder knowledge, ground terms from

TΣ
eval §3.2/p.9 Encoding of structural intruder knowledge, terms from TΣ(V)
φaxiom Table 3 Axioms for generable terms, concrete and structural knowledge

in the free algebra or in the initial algebra induced by a set of algebraic equations;
we also call this the Herbrand Universe.5 In general, we cannot enforce the desired
interpretation by axioms in FOL (see, e.g., Example 2). There are some work-
arounds for this, e.g., [4, 11, 16, 18] use first-order Horn theories that are inconsistent
(in standard FOL) iff there is an attack in the least Herbrand model, but this
construction is not possible for our work because we want to talk about deductions
that hold in all Herbrand models of a formula (which does not necessarily have a
unique least Herbrand model).

As proposed in [12], FOL with Herbrand universes, or Herbrand Logic for short,
can be seen as a logic in its own right—as justified, e.g., by Example 2 below.
We define Herbrand Logic as follows (discussing differences with respect to the
definition of [12] below).

Definition 1 (Syntax of Herbrand Logic). Let Σ = Σf]Σi]Σr be an alphabet
that consists of a set Σf of free function symbols, a set Σi of interpreted function
symbols and a set Σr of relation symbols, all with their arities. To distinguish
notation, we write f(t1, . . . , tn) when f ∈ Σf and f [t1, . . . , tn] when f ∈ Σi, and
we denote the set of considered cryptographic operators by the subset Σop ⊆ Σf .
Constants are the special case of free function symbols with arity 0.

Let V be a countable set of variable symbols, disjoint from Σ. We denote with
TΣ(V) the set of all terms that can be built from the function symbols in Σ and
the variables in V. We simply write TΣ when V = ∅, and call its elements ground
terms (over signature Σ).

We define the set LΣ(V) of formulae over the alphabet Σ and the variables V as
usual: relations and equality of terms are atomic formulae, and composed formulae
are built using conjunction ∧, negation ¬, and existential quantification ∃.

5 Note that it is common to define the Herbrand Universe as the free term algebra but
for our purposes it is crucial to also include algebraic properties of the operators, as
illustrated in Example 1.

We employ the standard syntactic sugar and write, for example, ∀x. φ for
¬∃x.¬φ. We also write x ∈ {t1, . . . , tn} to abbreviate x = t1 ∨ . . . ∨ x = tn.
The function fv returns the set of free variables of a formula as expected.

Definition 2 (Herbrand Universe and Algebra). Formulae in Herbrand logic
are always interpreted with respect to a given fixed set Σf of free symbols (since
this set may contain symbols that do not occur in the formulae) and a congruence
relation ≈ on TΣf

. We may annotate all notions of the semantics with Σf and ≈
when it is not clear from the context.

We write [t]≈ = {t′ ∈ TΣf
| t ≈ t′} to denote the equivalence class of a term

t ∈ TΣf
with respect to ≈. Further, let U = {[t]≈ | t ∈ TΣf

} be the set of all
equivalence classes. We call U the Herbrand universe (since it is freely generated
by the function symbols of Σf modulo ≈). Based on U , we define a Σf -algebra A
that interprets every n-ary function symbol f ∈ Σf as a function fA : Un → U in
the following standard way. fA([t1]≈, . . . , [tn]≈) = [f(t1, . . . , tn)]≈, where the choice
of the representatives t1, . . . , tn of the equivalence classes is irrelevant because ≈
is congruent. A is sometimes also called the quotient algebra (in the literature
sometimes denoted with TΣf

/ ≈).

Example 1. As an example, suppose the congruence relation ≈ is given by a set of
equations like ∀x, y. x+y ≈ y+x for some binary function symbols + and − in Σf .
Then we have in the quotient algebra 5+3 ≈ 3+5 but still 3+5 6≈ (7−4)+5. Thus,
the quotient algebra is the finest (or “free-est”) interpretation still compatible with
the given algebraic properties. �

Definition 3 (Semantics of Herbrand Logic). An interpretation I maps every
interpreted function symbol f ∈ Σi of arity n to a function I(f) : Un → U on the
Herbrand universe, every relation symbol r ∈ Σr of arity n to a relation I(r) ⊆ Un
on the Herbrand universe, and every variable x ∈ V to an element of U .

We extend I to a function on TΣ(V) as expected: I(f(t1, . . . , tn)) = fA(I(t1), . . . ,
I(tn)) for f ∈ Σf and I(f[t1, . . . , tn]) = I(f)(I(t1), . . . , I(tn)).

We define that I is a model of formula φ, in symbols I |= φ, as follows:

I |= s = t iff I(s) = I(t)
I |= r(t1, . . . , tn) iff (I(t1), . . . , I(tn)) ∈ I(r)
I |= φ ∧ ψ iff I |= φ and I |= ψ
I |= ¬φ iff not I |= φ
I |= ∃x. φ iff there is a c ∈ U such that I[x 7→ c] |= φ

where I[x 7→ c] denotes the interpretation that is identical to I except that x is
mapped to c. Entailment φ |= ψ is defined as I |= φ implies I |= ψ for all inter-
pretations I. We write φ ≡ ψ when both φ |= ψ and ψ |= φ. We also use ≡ in the
definitions of formulae.

Example 2. Similar to [12], we can axiomatize arithmetic in Herbrand logic; simply
let Σf = {z/0, s/1}, representing 0 and (+1), let ≈ be syntactic equality on TΣf

,
and let Σi = {add/2,mult/2} and Σr = {<} with the following formula:

φ ≡ ∀x, y. add [z, y] = y ∧ add [s(x), y] = add [x, s(y)] ∧ mult [z, y] = z ∧
mult [s(x), y] = add [y,mult [x, y]] ∧ x < s(x) ∧ x < y =⇒ x < s(y)

Table 2. Example set Σop : standard cryptographic constructors, destructors and verifiers.

Constructors Destructors Verifiers Meaning

crypt(k, r, t) dcrypt(k, t) vcrypt(k, t) Asymmetric encryption of t with public
key k and randomness r. Decryption with
private key k.

scrypt(k, r, t) dscrypt(k, t) vscrypt(k, t) Symmetric encryption of t with secret key
k and randomness r.

sign(k, t) retrieve(t) vsig(k, t) Signature of t with private key k; verifica-
tion with public key k.

pub(s), priv(s) Asymmetric key pair generated from seed
s.

pair(t1, t2) proji(t) vpair(t) Concatenation of messages t1 and t2.
h(t) Hash of message t.

Then φ |= ψ iff ψ is a true arithmetic statement. It is well-known that (as a
consequence of Löwenheim-Skolem’s theorem or of Gödel’s incompleteness theorem,
see [10]) an equivalent axiomatization cannot be achieved in standard FOL. �

We note the following three differences with respect to the definition of Her-
brand logic in [12]. First, in [12] and as is standard, the Herbrand universe is
the free term algebra, forbidding one to model algebraic properties of the free
operators. Our definition is a generalization to equivalence classes modulo the ≈
relation (and ≈ can simply be set to be the syntactic equality on TΣf

to get the
free algebra). Second, the logic in [12] treats free variables as implicitly universally
quantified, which is quite non-standard. In our definition, an interpretation of a
formula includes the interpretation of the free variables as is standard. This is, of
course, without loss of expressiveness since one can quantify variables when this
is what one wants to express. Third, the logic in [12] does not have interpreted
functions and, in fact, these are syntactic sugar: an interpreted n-ary function
symbol f can be modeled by an n + 1-ary relation Rf symbol with the axiom
∀x1, . . . , xn.∃y.Rf (x1, . . . , xn, y) ∧ ∀y′. Rf (x1, . . . , xn, y

′) =⇒ y = y′.

2.2 Messages, Operators and Algebraic Properties

We adopt the common black-box (“Dolev-Yao style” [8]) algebraic model of the
cryptographic operations. We consider, in this paper, the example set Σop of stan-
dard operators given, together with their intuitive meanings, in Table 2. Let ≈ be
the smallest relation so that for all terms s, r, t, t1, t2 in TΣf

and for i ∈ {1, 2}:

dcrypt(priv(s), crypt(pub(s), r, t)) ≈ t vcrypt(priv(s), crypt(pub(s), r, t)) ≈ yes
retrieve(sign(priv(s), t)) ≈ t vsig(pub(s), sign(priv(s), t)) ≈ yes
dscrypt(k, scrypt(k, r, t)) ≈ t vscrypt(k, scrypt(k, r, t)) ≈ yes
proji(pair(t1, t2)) ≈ ti vpair(pair(t1, t2)) ≈ yes

The equations induce a congruence relation ≈ on terms, and we interpret all
functions in the Herbrand universe modulo this congruence as explained above, i.e.,
two terms are equal iff that is a consequence of ≈ with respect to Σop .

2.3 Frames

Frames and the notion of their static equivalence are a standard way to formalize
privacy goals in formal methods, e.g., [5–7]. We define them here in a slightly non-
standard way that is more convenient to directly formalize them in Herbrand logic
and later relate them to our concept of α-β privacy (we point the reader to [14] for
a detailed discussion on the differences between the standard definition of frames
and the one we consider here). Frames are written as

z = {m1 7→ t1, . . . ,ml 7→ tl}

where the mi are distinguished constants and the ti are ground terms that do
not contain any mi. This frame represents that the intruder knows l messages
t1, . . . , tl that he can “refer to” as m1, . . . ,ml. In contrast to the standard Dolev-
Yao intruders, we thus do not model the intruder knowledge by a set of messages
{t1, . . . , tl}, but we give each message a unique label mi. This allows us to talk
about checks that the intruder can make, e.g., whether hashing the value at m1

gives the same value as the one stored at m2. We may thus refer to the mi as
memory locations in the intruder’s memory.

We define the terms that the intruder can generate from his knowledge as the
least set that contains m1, . . . ,ml and is closed under all the cryptographic oper-
ators that the intruder can employ. For the example operators of Σop shown in
Table 2, we can formalize this in Herbrand Logic with a formula φgen(l), which
uses a new predicate gen(t) to represent that the intruder can generate t. Hence,
in contrast to the standard Dolev-Yao definition, the intruder does not directly
compose the terms he knows but rather he builds what is sometimes called recipes
by applying operators to the memory locations he has.

The axiom φgen(l) is shown in Table 3, together with the other axioms that we
will employ in α-β privacy. For a different set Σop of cryptographic operators the
definition is analogous: using semi-formal notation, φgen(l) would have the form

φgen(l) ≡ ∀x. gen(x) ⇐⇒ (x ∈ {m1, . . . ,ml} ∨∨
f∈Σop

∃x1 . . . xn. x = f(x1, . . . , xn) ∧ gen(x1) . . . gen(xn))

The axiom φFr(z) in Table 3 allows us to encode the frame z = {m1 7→
t1, . . . ,ml 7→ tl} into Herbrand logic using an interpreted function symbol concr [·]
that yields the concrete message stored for a memory location, and the axiom φconcr
extends the definition of concr [·] congruently for the application of cryptographic
operators, so that concr [t] is determined for all terms t that the intruder can
generate.

In the following, we use examples with two frames z0 and z1, both with the
same length l. We use functions concr0[t] and concr1[t] for their respective encod-
ings (and denote the above axiom as φconcr0

and φconcr1
as expected).

Example 3. Consider the frame (from [6]): z0 = {m1 7→ scrypt(k, r1, n1),m2 7→ pair
(n1, n2),m3 7→ k}. We have, for instance, that the intruder can obtain n1. Let Φ ≡
φFr(z0) ∧ φconcr0

∧ φgen(3). Then we have, e.g., Φ |= gen(dscrypt(m3,m1)) ∧
concr0[dscrypt(m3, m1)] = n1. Note that we have Φ |= concr0[dscrypt(m3,m1)] =

Table 3. Axioms used in α-β privacy (for the example set Σop).

φgen(l) ≡ ∀x. gen(x) ⇐⇒ (x ∈ {m1, . . . ,ml} ∨
(∃x1, x2, x3. x = crypt(x1, x2, x3) ∧ gen(x1) ∧ gen(x2) ∧ gen(x3)) ∨
(∃x1, x2. x = dcrypt(x1, x2) ∧ gen(x1) ∧ gen(x2)) ∨ . . .∨
(∃x1. x = h(x1) ∧ gen(x1))) for a length l

φFr(z) ≡ concr [m1] = t1 ∧ . . . ∧ concr [ml] = tl for a frame z of length l
φconcr ≡ ∀x1, x2, x3, y1, y2, y3. (concr [x1] = y1 ∧ concr [x2] = y2 ∧ concr [x3] = y3) =⇒

(concr [crypt(x1, x2, x3)] = crypt(y1, y2, y3) ∧
concr [dcrypt(x1, x2)] = dcrypt(y1, y2) ∧ . . . ∧ concr [h(x1)] = h(y1))

φeval ≡ ∀x1, x2, x3, y1, y2, y3. (eval [x1] = y1 ∧ eval [x2] = y2 ∧ eval [x3] = y3) =⇒
(eval [crypt(x1, x2, x3)] = crypt(y1, y2, y3) ∧
eval [dcrypt(x1, x2)] = dcrypt(y1, y2) ∧ . . . ∧ eval [h(x1)] = h(y1))

φstruct ≡ ∀x, y. (concr [x] = concr [y] ⇐⇒ eval [x] = eval [y])

concr0[proj1(m2)], i.e., the intruder can check that the decrypted term is equal to
the first component of m2. ut

Definition 4 (Static Equivalence of Frames). Two frames z0 and z1 of the
same length l are statically equivalent (in symbols, z0 ∼ z1) iff for any pair
of generable terms either both frames give the same result or both frames give a
different result. Formally, z0 ∼ z1 iff

φgen(l) ∧ φFr(z0) ∧ φFr(z1) ∧ φconcr0 ∧ φconcr1 |=
∀x, y. (gen(x) ∧ gen(y)) =⇒ (concr0[x] = concr0[y] ⇐⇒ concr1[x] = concr1[y])

Example 4. We can distinguish z0 of Example 3 from the frame z1 = {m1 7→
scrypt(k, r1, n3),m2 7→ pair(n1, n2),m3 7→ k} since the check concr1[dscrypt(m3,m1)]
= concr1[proj1(m2)] fails, whereas it succeeds for concr0. ut

3 A New Privacy Model: α-β Privacy

We introduce α-β privacy step by step: First, in Section 3.1 we introduce the
distinction between payload formulae α and technical formulae β as well as the
notion of interesting derivation from β. Second, in Section 3.2, we establish the
methodology to reason over such formulae, introducing a further function eval [·]
similar to concr [·] that represents the structural information the intruder has about
his knowledge. Third, in Section 3.3 we extend the privacy notion to transition
systems, and, finally, in Section 3.4 we discuss further examples of α-β privacy.

3.1 Payload and Technical Information

Our model is inspired by zero-knowledge proofs for privacy (as they are used, e.g.,
in IBM’s Idemix [13]). The following points are characteristic for such proofs:

– The prover (intentionally) conveys some information to the verifier, i.e., the
statement being proved to the verifier. We call this statement the payload α.

– The participants also (inevitably) convey some cryptographic information (e.g.,
commitments, challenges, and responses) that, if the scheme is secure, do not
reveal anything “interesting” besides α; this, of course, is the very reason why
such a scheme is called zero-knowledge. We call this kind of information the
technical information β.

Here the term “interesting” is often defined in the cryptographic world by the
fact that it is computationally easy to produce a fake transcript of zero-knowledge
proofs that is statistically indistinguishable from a real transcript. Hence, whatever
information could possibly be obtained from β one may have created oneself. This
kind of definition is, however, quite unhandy in logical reasoning, and it applies
only to (some types of) zero-knowledge proofs.

In this paper, we show that it is fortunately possible to define the term “inter-
esting” on a logical basis that makes sense for many actual situations in which we
want to talk about privacy. The key idea is that the payload α may be formulated
over a restricted alphabet Σ0 (Σ, whereas the technical information β may talk
about the full alphabet Σ. For instance, all cryptographic operators are part of
Σ \Σ0.

Definition 5. Let Σ0 (Σ. Given a payload formula α ∈ LΣ0(V) and a technical
formula β ∈ LΣ(V), where β |= α and fv(α) = fv(β) and both α and β are
consistent, we say that a statement α′ ∈ LΣ0

(fv(α)) is an interesting derivation
from β (with respect to α) if β |= α′ but α 6|= α′. We say that β respects the
privacy of α if the intruder cannot derive any interesting statement from β, and
that β violates the privacy of α otherwise.

We have defined the notion of an interesting derivation α′ as anything the
intruder may be able to derive from his observations β as long as it is a non-
technical statement (i.e., of LΣ0

) and it does not follow from α alone, i.e., from
what he is permitted to know anyway. This allows us to capture that the intruder
may well see a few technical details, e.g., that two messages come from the same
IP address, but that in itself is not very interesting as long as he cannot tie that
to a relevant information α′.

Another aspect of this definition is that by the information α that we gave
out, also all information that can be derived from α is given out, because the best
cryptographic systems cannot protect us from the intruder drawing conclusions. In
general, the weaker α is (i.e., the less information we deliberately release to the
intruder) and the stronger β is (i.e., the more information we assume the intruder
might actually have), the stronger is the notion of privacy. So, as a rule of thumb,
when a modeler is in doubt, one should be restrictive on α and generous on β.

3.2 Privacy on Messages

We look at a fixed state of a complex system and ask whether the intruder can
violate privacy in this state. Let us start with an example:

Example 5. Let the payload alphabet be Σ0 = {a, b, c} and let us model that
users choose values x from Σ0. This is the only information we want to give the
intruder. Suppose there is a protocol in place where each user sends out a message
h(pair(n, x)) that the intruder can observe, that is, a hash of the choice x and a fixed
number n (that is a secret from Σ \Σ0). Obviously, using such a fixed number, even
though secret from the intruder, is a risk for “guessing attacks”. Suppose further
that the intruder has previously observed the message h(pair(n, a)) and thus that
he knows that the choice in this case was a. Let us finally assume that a user has
chosen x = b and thus sent out h(pair(n, b)). ut

We want to reflect that, in this example, the intruder knows not only the con-
crete message h(pair(n, b)), but also the structural information that this message
has the form h(pair(n, x)) where x is the choice we are interested in.

For this reason, we use the concr function as before to represent concrete knowl-
edge and further introduce, as a fundamental part of α-β privacy, an interpreted
unary function symbol eval that works similar to concr and maps memory locations
to the structural information that the intruder has about the terms in his knowledge.
Here is one possible way to model Example 5 in Herbrand logic:

α ≡ x ∈ {a, b, c}
β ≡ α ∧ φgen(5) ∧ φconcr ∧ φeval ∧ φstruct ∧ concr [m1] = eval [m1] = a ∧

concr [m2] = eval [m2] = b ∧ concr [m3] = eval [m3] = c ∧
concr [m4] = eval [m4] = h(pair(n, a)) ∧ concr [m5] = h(pair(n, b)) ∧
eval [m5] = h(pair(n,x))

where the axioms φeval and φstruct are as defined in Table 3 (we will explain them
in detail below).

For most part, the structural information is identical to the concrete infor-
mation, only for the field m5 we have a difference between eval and concr . This
is indeed a major point for our model: for the choice x = b (i.e., “what really
happened”), and only for this choice, we have that concr [m5] = eval [m5] but the
intruder a priori has no way to check that. However, the axiom φeval allows him to
derive the structure of terms he can generate, and most importantly φstruct tells
us that two generable terms have the same concrete value iff they have the same
structure. In this example, we can exploit φstruct : from concr [m4] 6= concr [m5] (re-
member that all terms are interpreted in the Herbrand universe) we can conclude
eval [m4] 6= eval [m5], so that h(pair(n, a)) 6= h(pair(n, x)) and thus x 6= a (again
since terms are interpreted in the Herbrand universe). Hence, the intruder can de-
rive from β the Σ0-formula α′ ≡ x ∈ {b, c} that does not follow from α. Thus, in
this example, β does not respect the privacy of α. Note that the intruder cannot
derive more, which is—very declaratively—because β has both a model in which
x = b, and one where x = c, so the intruder was not even able to determine the
choice x, he was only able to exclude one interpretation, namely x = a.

Message Analysis The form of α and β that we have used for Example 5 is
at the core of many specifications, namely, when the intruder has observed a set
of messages and knows their structure. For this reason, we define a particular

fragment of α-β privacy (for which we give some decidability results in Section 4.2)
that deals only with combinatoric α and only with the analysis of messages similar
to the previous example.6

Definition 6. We call α ∈ LΣ0
(V) combinatoric if Σ0 is finite and consists only

of free constants. Let α be combinatoric and σ a substitution of the free variables of
α to elements of Σ0 so that σ(α) is consistent. We say that β is a message-analysis
problem (with respect to α and σ) iff there are t1, . . . , tl ∈ TΣ(fv(α)) such that

β ≡ α ∧ φgen(l) ∧ φconcr ∧ φeval ∧ φstruct ∧
∧l
i=1 concr [mi] = σ(ti) ∧ eval [mi] = ti

In general, such a β allows us to model a system where messages ti have been
exchanged that depend on some payload values fv(α) and the intruder has seen the
concrete instantiations σ(ti) of these messages. Typically, the intruder knowledge
will contain all the values of Σ0 but he does not know the substitution σ, i.e., how
the payload variables were actually chosen from Σ0. What he knows, however, is
the structure of the terms, i.e., where these variables occur in the ti, because this
structural information is usually part of a publicly available protocol description.
He can try to exploit comparisons (φstruct) with the actual terms σ(ti) and their
compositions (φconcr and φeval).

Some Variants of Example 5 One may, of course, consider a similar use of
variables for non-payload secrets, like the value n in Example 5. However, since we
require that α and β have the same set of free variables, one would then existentially
quantify that value; for instance, for Example 5:

β ≡ ∃y. . . . concr [m4] = h(pair(n, a)) ∧ eval [m4] = h(pair(y, a)) ∧
concr [m5] = h(pair(n, b)) ∧ eval [m5] = h(pair(y, x))

Without the existential quantifier (if y were left free), the intruder could derive,
e.g., that y 6= a (by generating h(pair(m1,m1)) and comparing the result with m4).
The ∃ thus intuitively expresses that we are not interested in the concrete value of
y—the goal is not the protection of the nonces in the hash-values, so if they are
found out, then it is not in itself a violation of privacy (but may lead to one).

Let us briefly also consider three variants of the example. First, if the intruder
also knows n, say, concr [m6] = eval [m6] = n, then he can indeed derive x = b,
because he can verify that h(pair(m6,m2)) gives the same concrete value as m4.

Second, if users use different nonces that the intruder does not know, i.e., β ≡
. . . concr [m4] = eval [m4] = h(pair(n1, a)) ∧ concr [m5] = h(pair(n2, b)) ∧ eval [m5] =
h(pair(n2, x)), then β indeed preserves the privacy of α. To see this, note that β
has models with x = a, with x = b, and with x = c. Thus, every Σ0-formula α′

that follows β also follows from α.
Third, we have so far seen the message in m4 as a message that was sent

previously by some agent and we are not interested in protecting that, and, in fact,

6 We could consider other forms of “combinatoric” α, e.g., such that Σ0 may contain
infinitely many free constants and function symbols as long as α admits only finitely
many models (up to isomorphism). We leave a detailed investigation to future work.

we had assumed that the intruder already knows that it contained the choice a. We
can now also model that we are interested in protecting both choices as follows:

α ≡ x1 ∈ {a, b, c} ∧ x2 ∈ {a, b, c}
β ≡ . . . concr [m4] = h(pair(n1, a)) ∧ eval [m4] = h(pair(n1, x1)) ∧

concr [m5] = h(pair(n2, b) ∧ eval [m5] = h(pair(n2, x2))

Here again β respects the privacy of α because we can find a model for each
combination of values for x1, x2 ∈ {a, b, c}. In contrast, if we had used the same
nonce (replacing both n1 and n2 with n), we would have that concr [m4] 6= concr [m5]
and thus x1 6= x2, which does not follow from α. Again the intruder does not find
out x1 or x2 but only that the two users voted differently. The crucial point here
(and the strength of α-β privacy) is that we do not have to specify checks for all
the different things that the intruder may be able to figure out, or even think about
them, but simply just specify a formula α that describes what he is cleared to know
and a formula β containing all information that may be available to him.

3.3 α-β-Privacy in Transition Systems

We now show how we can extend α-β-privacy to transition systems. The key idea
is that we can define an α-β state as the pair (α, β) of formulae and privacy as
reachability in the resulting transition system. Formally, with Σ, Σ0 ⊆ Σ, V and
≈ as before:

Definition 7. An α-β state is a pair (α, β) of formulae where α ∈ LΣ0(V) and
β ∈ LΣ(V). Let S denote the set of all α-β-states. An α-β transition system is a
pair (I,R) where I ∈ S and R ⊆ S ×S. As is standard, the set of reachable states
is the smallest set that contains I and that is closed under R, i.e.: if S is reachable
and (S, S′) ∈ R, then also S′ is reachable. We say that an α-β-transition system
satisfies privacy iff in every reachable state (α, β), β respects the privacy of α.

As an example of privacy as reachability, consider a simple transition system
with an initial state that has no information, and four successor states Si,j with
i, j ∈ {0, 1} depending on two independent choices i and j of the user. In all four
states, we have α ≡ x ∈ {0, 1}. Let now βi,j ≡ α ∧ φgen(2) ∧ φconcr ∧ φeval ∧
φstruct ∧ concr [m1] = scrypt(kj , rj , i) ∧ eval [m1] = scrypt(kj , rj , x) ∧ concr [m2] =
eval [m2] = k1, where kj and rj are new constants. In the states with j = 0, the
intruder cannot deduce anything interesting as he does not have the key needed
for decryption, but in the states with j = 1 we have βi,0 |= x = i. Thus, there are
reachable states in which the intruder can find out more than he is supposed to.

3.4 Modeling Further Example Scenarios

We chose the following three major areas to model further examples of α-β privacy,
which are discussed in [14]: randomized vs. non-randomized encryption including
non-determinism and the notion of strong secrecy, guessing attacks (in which we
discuss different approaches to encode passwords and guessing in α-β privacy and

show unique features of our logic), and privacy-friendly identity management in-
cluding pooling of knowledge.

In particular, in [14], we discuss in detail an example of how to model anonymous
credential systems, which highlights two interesting aspects of our approach: (i) we
can have formulae α that talk also about relations between data (e.g., y < 1996
to specify that a user if at least 18 years old), and (ii) we can easily model that
two dishonest agents collaborate and pool their knowledge. To that end, suppose
we have individual privacy specifications α1 and α2 (i.e., the information that was
deliberately given to the two agents individually) and their actual knowledge is
β1 and β2, respectively, where we further assume that all free variables that occur
in both α1 and α2 actually refer to the same values. Then, in our α-β privacy
approach, we simply use logical conjunction and ask whether β1 ∧ β2 respects the
privacy of α1 ∧ α2. The rationale is that two agents can always pool their actual
knowledge and draw conclusions from it, i.e., we should consider β1 ∧ β2 to be
available to them, and even the best credential system cannot prevent that they
can derive everything that can be derived from what we gave them individually,
i.e., we have to at least allow them to derive α1 ∧ α2.

4 Automation and the Relation to Static Equivalence

The concept of α-β-privacy is very expressive, because Herbrand logic is. Consid-
ering Example 2, we recall that we can axiomatize arithmetic (of natural numbers)
by a Herbrand formula α so that α |= γ iff γ is a true sentence of arithmetic. Let
valid be a further nullary relation symbol in Σ0 and β ≡ α ∧ (γ =⇒ valid); then
β respects the privacy of α iff γ is a true sentence of arithmetic. Thus, in general,
α-β privacy (or its complement) is not even semi-decidable.

We see this expressive power as a feature, because it allows us to think about
privacy without the tight corset imposed by automated methods. In this section,
we explore a decidable fragment and the relation to static equivalence of frames
for which many decidability results already exist. Because of its expressive power,
it is no surprise that α-β-privacy subsumes static equivalence of frames:

Theorem 1. Let z0 and z1 be two frames, Σ0 consist of the nullary relation
symbol neq, α ≡ true and β ≡ α ∧ φgen(l) ∧ φFr(z0) ∧ φFr(z1) ∧ φconcr0

∧
φconcr1 ∧ (¬neq =⇒ (∀x, y. (gen(x) ∧ gen(y)) =⇒ (concr0[x] = concr0[y] ⇐⇒
concr1[x] = concr1[y]))). Then, β respects the privacy of α iff z0 ∼ z1.

Proof. From the definition of ∼ in Herbrand logic it follows that neq is derivable
from β iff the frames are not statically equivalent. If neq is not derivable, there is
no Σ0-formula that follows from β and not from α. ut

The simple argument of this theorem may seem a bit unfair towards static
equivalence of frames, since we are not truly using α for the high-level payload in-
formation available to the intruder, but rather considering everything as technical,
and then just exploit the expressive power of Herbrand logic. In addition, we show

in [14] that a large fragment of the static-equivalence problem for frames can be
encoded into the message-analysis fragment of α-β privacy (cf. Def. 6).

Looking deeper at the two concepts, we observe the following situation. Static
equivalence of frames is essentially the question whether the intruder can distin-
guish two concrete worlds. For instance, the frames z0 and z1 in the Examples 3
and 4 represent two concrete worlds that the intruder can distinguish: z0 6∼ z1. In
contrast, α-β privacy expresses with α all possible worlds (there may be more than
two) and with β one concrete world, asking whether the intruder can exclude some
of the worlds of α. This, in particular, requires a distinction between high-level
payload information and low-level technical information that frames do not have.

4.1 Limiting the Interesting Derivations

In order to show that many α-β-privacy problems can indeed be reduced to static
equivalence of frames, we need to overcome one obstacle: α-β-privacy asks for any
Σ0-formula α′ that can be derived from β but not from α. In general, there is a
(countably) infinite choice for α′ to consider. Recall that we call α combinatoric if
Σ0 is a finite set of free constants. Then the Herbrand Universe for α is finite and
so there are finitely many possible different interpretations of the free variables of
α. We can use this to limit the number of α′ we need to consider:

Theorem 2. Consider an (α, β) pair where α is combinatoric and consistent.
Then, there is a finite number n > 0 of satisfying interpretations of the free vari-
ables of α, and we can give N = 2n − 2 formulae α′1, . . . , α

′
N ∈ LΣ0

(fv(α)) such
that α 6|= α′i for all i ∈ {1, . . . , N} and β violates the privacy of α iff β |= α′i for
some i ∈ {1, . . . , N}.

Before we prove Theorem 2, let us recall that when α is combinatoric, then Σ0

is a finite set of free constants, so that the Herbrand Universe for α is finite and
thus there are finitely many possible different interpretations of the free variables
of α. The key observation is that we can use this to limit the number of α′ we need
to consider. For example, if α ≡ x ∈ {0, 1, 2} then it obviously suffices to check the
following six candidates for α′:

α′1 ≡ x = 0 α′2 ≡ x = 1 α′3 ≡ x = 2
α′4 ≡ x ∈ {0, 1} α′5 ≡ x ∈ {0, 2} α′6 ≡ x ∈ {1, 2}

In other words, any of the proper, non-empty subsets of the original choice {0, 1, 2}
are candidates to check—the empty set is excluded because x must be one of the
values, and the whole choice {0, 1, 2} is excluded because that already follows from
α. In fact, all other possible α′ that one could come up with (with the same set of
free variables) must be equivalent to one of the above candidates, e.g., α′ ≡ x ∈
{0, 1} =⇒ x /∈ {0} is equivalent to α′6.

Proof (Theorem 2). The Herbrand universe for α is simply Σ0, so every model of
α must map the free variables of α to elements of Σ0, which gives us a finite set of
choices since Σ0 is finite. In fact, this set of choices can be effectively be computed,

since α can only consists of variables, constants of Σ0, equality, Boolean connectives
and quantifiers (so, basically, Quantified Boolean Logic). We can effectively write
each model in the form γ ≡ x1 = ci1 ∧ . . . ∧ xk = cik . Let G = {γ1, . . . , γn} be the
set of all possible models that satisfy α, i.e., α ≡ γ1 ∨ . . . ∨ γn. Consider the set
GP = {G0 | ∅ 6⊂ G0 (G} of proper, non-empty subsets of G. GP has N = 2n − 2
elements {g1, . . . , gN}. Define now the α′i to be the disjunction of all formulae in
gi for each i ∈ {1, . . . , N}, i.e., α′i =

∨
φ∈gi gi. For any i ∈ {1, . . . , N}, α 6|= α′i since

one of the possible valuations of the free variables of α is not satisfied (since we
chose only proper subsets of G; note that we could exclude the empty set as at
least one valuation will true).

Suppose now that β violates the privacy of α. Then, there is a formula α′ ∈
LΣ0

(fv(α)) such that β |= α′ and α 6|= α′. From Definition 5, it follows that
fv(α′) ⊆ fv(β): suppose x ∈ fv(α′) \ fv(β), then β |= ∀x. α′ and still α 6|= ∀x. α′.
Since α 6|= α′ there is a valuation γi of the free variables of α so that γi |= α but
γi 6|= α′. Also there must be some γj with γj |= α and, since β |= γ, also γj |= α′.
Thus, the set of models of α′ is a proper, non-empty subset of the G, so some
gi ∈ GP describes exactly the models of α′, and therefore, finally, α′i ≡ α′. ut

4.2 Reduction to Frames and Decidability

We now reduce message-analysis problems (cf. Def. 6) to finitely many static equiva-
lence problems of frames. Note that α in a message-analysis problem is by definition
combinatoric, and thus, by Theorem 2, there are finitely many satisfying interpre-
tations of the free variables of α (and nothing else is to interpret since Σ0 does
not contain non-constant function or relation symbols). We denote these models
simply as substitutions σi (that map from fv(α) to Σ0).

Theorem 3. Consider (α, β) in the message-analysis problem fragment of α-β
privacy (i.e., according to Def. 6), with terms t1, . . . , tl. Let {σ1, . . . , σn} be the
models of α, and define zi = {m1 7→ σi(t1), . . . , ml 7→ σi(tl)}. Then, β respects
the privacy of α iff z1 ∼ z2 ∼ . . . ∼ Fn.

Proof (Theorem 3). We proceed by proving that β respects the privacy of α iff
∀i.zi ∼ z1, which is equivalent as ∼ is an equivalence relation. Let eq([x1 7→
t1, . . . , xj 7→ tj]) for some j denote the formula x1 = t1 ∧ . . . ∧ xj = tj . Then
α ≡

∨n
i=1 eq(σi). Consider the formula

α′ ≡
∨

{i|zi∼z1}

eq(σi)

Let further αi ≡ eq(σi) ∨ eq(σ1), i.e., the restriction of α to the choice between σ1
and σi. It follows, for every i ∈ {1, . . . , n}, that zi ∼ z1 iff β respects the privacy
of αi (see [14] for a proof of this claim). Therefore, β |= α′. The conjunction of
α′ has at least one element, since φi ∼ φ1 at least for i = 1. There are then two
possible cases:

– If there is also at least one i ∈ {2, . . . , n} such that zi 6∼ z1, then α 6|= α′, and
thus β violates the privacy of α.

– Otherwise (note: trivially α |= α′ in this case), by Theorem 2, there is no α′

that follows from β but not from α, thus β respects the privacy of α. ut

Since this result is independent of the considered set Σop of cryptographic
operations and algebraic theory, we immediately have that if we can decide static
equivalence for a given theory (e.g., [2, 5]), then we can decide the message-analysis
problem fragment of α-β privacy for that theory.

Note that, instead of relying on static equivalence, we could have also given a
direct decision procedure for our example theory, without an enumeration of all
models. In a nutshell, the key idea of such a proof is that in the restricted form of
α and β considered in the message-analysis problem, we can find a violation of α-β
privacy iff we can make use of the axiom concr [s] = concr [t] ⇐⇒ eval [s] = eval [t].
Then, we can show that there is a violation of α-β privacy iff β has a witness,
i.e., there are terms s, t ∈ TΣ such that concr and eval are defined for s and t,
and concr [s] = concr [t] while eval [s] 6= eval [t]. Then, we can remove all analysis
steps (i.e., decryptions and decompositions) from β by encoding them in additional
memory positions. The resulting β′ preserves the privacy of α iff β does, and has
a witness iff it has one in the free algebra, for which it is straightforward to find
witness or to prove their absence, and thus conclude the proof. This argument is,
of course, similar to what one does to decide static equivalence in frames. However,
static equivalence looks at the more basic problem to compare a pair of frames,
while α-β privacy asks to look at all models of α (as did the above reduction).

5 Concluding Remarks

We have introduced α-β privacy as, we believe, a simple and declarative way to
specify privacy goals: the intruder should not be able to derive any “non-technical”
statement from the technical information β that he cannot derive from the inten-
tionally released information α already. We have given a variety of examples that
describe how α-β privacy can be used in practice and investigated formally its close
relationship to static equivalence of frames, which allows to use existing methods
for deciding a fragment of α-β privacy.

α-β privacy bears some similarities with the non-interference approach (e.g.,
[15]) since it also distinguishes (at least) two levels of information, usually low-level
and high-variables. These are, however, fundamentally different from our payload α
and technical information β since they are formulae that express relations between
values (rather than directly being public or private values). We actually do not
mind that the intruder gets hold of (some) technical information as long as he
cannot use it to obtain anything interesting besides the payload.

There are also privacy notions building on database abstractions. The two pre-
dominant notions are the k-anonymity family [17], asking whether an intruder is
unable to reduce the anonymity set below a threshold of k users, and differential
privacy [9], asking whether an intruder can detect significant changes in a proba-
bility distribution on statistical data released by a curator on data sets differing in
one element. For k-anonymity, we observe that the property that α has at least k

models, and that the intruder cannot deduce an α′ with less choices, is encodable
in α-β privacy and will be part of future work. As differential privacy is a property
established on the information release function of the curator, a relation to our
notion is not straightforward.

We have mentioned above and in the previous sections a few directions for future
work. In addition to these, we have already started to consider further examples,
to formalize a language for specifying α-β transition systems, and to generalize our
decidability results to larger fragments of α-β privacy.

References

1. M. Abadi. Private authentication. In PET, LNCS 2482, pages 27–40. Springer, 2003.
2. M. Abadi and V. Cortier. Deciding knowledge in security protocols under (many

more) equational theories. In CSFW, pages 62–76. IEEE CS, 2005.
3. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In

POPL, pages 104–115. ACM, 2001.
4. B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In

CSFW, pages 82–96. IEEE CS, 2001.
5. B. Blanchet, M. Abadi, and C. Fournet. Automated verification of selected equiva-

lences for security protocols. JLAP, 75(1):3–51, 2008.
6. V. Cortier, M. Rusinowitch, and E. Zalinescu. Relating two standard notions of

secrecy. Logical Methods in Computer Science, 3(3), 2007.
7. S. Delaune, M. D. Ryan, and B. Smyth. Automatic verification of privacy properties

in the applied pi-calculus. In IFIPTM, pages 263–278. Springer, 2008.
8. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on

Information Theory, 29(2):198 – 208, 1983.
9. C. Dwork. Differential Privacy: A Survey of Results. In TAMC, LNCS 4978, pages

1–19. Springer, 2008.
10. H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical logic. Springer, 1994.
11. J. Goubault-Larrecq. Finite models for formal security proofs. J. Comput. Secur.,

18(6):1247–1299, 2010.
12. T. Hinrichs and M. Genesereth. Herbrand logic. Technical Report LG-2006-02, Stan-

ford University, CA, USA, 2006. http://logic.stanford.edu/reports/LG-2006-02.pdf.
13. IBM Research – Zurich. Specification of the identity mixer cryptographic library.

version 2.3.4. Technical report, IBM Research, 2012.
14. S. Mödersheim, T. Groß, and L. Viganò. Defining Privacy is Supposed to be Easy

(Extended Version). Technical Report 2013-21, DTU Compute, Lyngby, Denmark,
2013.

15. P. Ryan and S. Schneider. Process algebra and non-interference. In CSFW. IEEE
CS, 1999.

16. P. Selinger. Models for an Adversary-Centric Protocol Logic. Electronic Notes in
Theoretical Computer Science, 55(1):69–84, 2003.

17. L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

18. C. Weidenbach. Towards an Automatic Analysis of Security Protocols in First-Order
Logic. In H. Ganzinger, editor, CADE 16, LNCS 1632, pages 314–328. Springer, 1999.

