
A Decision Procedure for Alpha-Beta Privacy
for a Bounded Number of Transitions
Laouen Fernet
DTU Compute

Danmarks Tekniske Universitet
Kgs. Lyngby, Danmark

lpkf@dtu.dk

Sebastian Mödersheim
DTU Compute

Danmarks Tekniske Universitet
Kgs. Lyngby, Danmark

samo@dtu.dk

Luca Viganò
Department of Informatics

King’s College London
London, United Kingdom

luca.vigano@kcl.ac.uk

Abstract—We present a decision procedure for verifying
whether a protocol respects privacy goals, given a bound on
the number of transitions. We consider multi message-analysis
problems, where the intruder does not know exactly the structure
of the messages but rather knows several possible structures and
that the real execution corresponds to one of them. This allows
for modeling a large class of security protocols, with standard
cryptographic operators, non-determinism and branching. Our
main contribution is the definition of a decision procedure for a
fragment of alpha-beta privacy. Moreover, we have implemented
a prototype tool as a proof-of-concept and a first step towards
automation.

Index Terms—Privacy, Security Protocols, Unlinkability, For-
mal Methods, Automated Verification.

I. INTRODUCTION

The concept of (α, β)-privacy was introduced as an al-
ternative way to define privacy-type properties in security
protocols [1], [2]. The most widespread models of privacy use
an equivalence notion between two processes to describe the
goal that the intruder cannot distinguish between two possible
realities. In contrast, (α, β)-privacy considers states that each
represent one possible reality, and what the intruder knows
about the reality in that state. This knowledge is not only
in form of messages as in classic intruder models, but also
in form of relations between messages, agents, etc. Together
with a notion of what the intruder is allowed to know in
a given state, we define a privacy violation if the intruder
in any reachable state knows more than allowed. Privacy is
then a question of reachability — a safety property — which
is often easier to reason about and to specify than classical
equivalence notions. First, one does not have to boil the
privacy goal down to a distinction between two situations,
which is often unnatural for more complicated properties.
Second, one specifies goals positively by what the intruder is
allowed to know rather than what they are not allowed to know
(and thus unable to distinguish). This essentially means that in
the worst case one is erring on the safe side, i.e., allowing less
than the protocol actually reveals, and thus can be alerted by a
counterexample. The expressive power of equivalence notions
and of (α, β)-privacy is actually hard to relate in general, due
to the different nature of the approaches. However, on concrete
examples it seems one can always give reasonable adaptations
from one approach to the other [1], [2].

(α, β)-privacy shifts the problem from a notion of equiva-
lence (that is a challenge for automation) to a simple reachabil-
ity problem where however the privacy check for each reached
state is more involved. So far, there is only one work [3] that
considers a solution to checking a given state in (α, β)-privacy.
However, that work is only applicable to specifications without
conditional branching and it is based on an exploration of
all concrete messages that the intruder can send, which are
infinitely many unless one bounds the intruder.

Our main contribution in this paper is a decision procedure
for the full notion of transaction processes defined by [2] for
constructor/destructor theories [4], [5], [6], [7], [8]. This notion
in fact entails that the intruder performs a symbolic execution
of the transaction that in general yields several possibilities
(due to conditional branching if the intruder does not know
the truth value of the condition) and the intruder can then
contrast this with all observations and experiments (construct-
ing different messages and comparing them) to potentially rule
out some possibilities. The core of our work is in a procedure
to model this intruder analysis without bounding the number
of steps that the intruder can make in this process. To that
end, we use a popular constraint-based technique to represent
the intruder symbolically, i.e., without exploring infinite sets
of possibilities. In fact, we use several layers of symbolic
representation to make the approach feasible.

Our decision procedure tells us whether from a given state
we can reach a state that violates privacy for a fixed bound
on the number of transitions. Our procedure is limited to such
a bound on transitions, corresponding to the restriction to a
bounded number of sessions in many approaches [9]. This
is similar to the bounds needed in tools like APTE [10],
AKiSs [11], SPEC [12], [13] and DeepSec [6]. In fact, this
paper draws from the techniques used in these approaches,
such as the symbolic representation of the intruder, a notion
of an analyzed intruder knowledge, and methods for deciding
the equivalence of frames. There are, however, several basic
differences and generalizations. In particular, we use a sym-
bolic handling of privacy variables (that in the equivalence-
based approaches are simply one binary choice) and this is
linked to logical formulas about relations between elements of
the considered universe. In fact, in the prototype implemen-
tation of our decision procedure that we provide as a further

contribution, we employ the SMT solver cvc5 [14] to handle
these logical evaluations. Moreover, we have multiple frames
with constraints for the different possibilities resulting from
conditional branching and we analyze if the intruder can rule
out any possibilities in any instance.

In contrast, the tools ProVerif [4] and Tamarin [15] do
handle unbounded sessions but require the restriction to so-
called diff-equivalence [16], [8], which drastically limits the
use of branching in security protocols. The recent work [17]
relaxes some conditions. It seems thus in general that one has
to choose between expressive power and unbounded sessions,
and our approach is decidedly on the side of expressive power.

We proceed as follows. In §II, we present the notion of
(α, β)-privacy in transition systems and define the problem
that our procedure decides. In §III, we define how we symbol-
ically represent messages sent by the intruder and how to solve
constraints with the lazy intruder rules. In §IV, we introduce
the notion of symbolic states with their semantics. In §V, we
explain how the intruder can perform experiments and make
logical deductions relevant for privacy by comparing messages
in their knowledge. In §VI, we summarize how the different
parts of the procedure are integrated. In §VII, we discuss the
prototype tool we have developed and its application to some
examples. In §VIII, we discuss related and future work. The
appendix contains additional technical details and the proofs
of correctness.

II. PRELIMINARIES AND PROBLEM DEFINITION

[1] introduces (α, β)-privacy as a reachability problem in a
state transition system, where each state contains two formulas
α and β. Intuitively, α represents what the intruder may know
(e.g., the result of an election) and β what the intruder has seen
(e.g., the encrypted votes). Then, a state (α, β) violates privacy
iff some model of α can be excluded by the intruder knowing
β, i.e., the intruder in that state can rule out more than allowed.
The entire transition system violates (α, β)-privacy iff some
reachable state does.

A. (α, β)-Privacy for a State

[1] focuses on how to define (α, β) pairs for a fixed state,
and describes a state transition relation only briefly by an
example. Let us also start with a fixed state. The formulas
α and β are in Herbrand logic [18], a variant of First-
Order Logic (FOL), with the difference that the universe is
the quotient algebra of the Herbrand universe (the set of all
terms that can be built with the function symbols) modulo
a congruence relation ≈. This congruence specifies algebraic
properties of cryptographic operators. For concreteness, we use
the congruence defined in Fig. 1; for the class of properties
supported by our result see Definition VI.1. The quotient
algebra consists of the ≈-equivalence classes of terms.

Given an alphabet Σ, an interpretation I interprets variable
and relation symbols as usual (the interpretation of the function
symbols is determined by the Herbrand universe) and we have
a model relation |=Σ as expected. By construction, I |=Σ s

.
= t

iff I(s) ≈ I(t). We say that φ entails ψ, and write φ |=Σ ψ,

dcrypt(s1, s2) ≈ t if s1 ≈ inv(k) and s2 ≈ crypt(k, t, r)

dscrypt(k, s) ≈ t if s ≈ scrypt(k, t, r)

open(k, s) ≈ t if s ≈ sign(inv(k), t)

pubk(s) ≈ k if s ≈ inv(k)

proj1(s) ≈ t1 if s ≈ pair(t1, t2)

proj2(s) ≈ t2 if s ≈ pair(t1, t2)

and . . . ≈ ff otherwise

Fig. 1. The congruence used in this paper: crypt and dcrypt are asymmetric
encryption and decryption, scrypt and dscrypt are symmetric encryption and
decryption, sign and open are signing and verification/opening, pair is a
transparent function and the proji are the projections, inv gives the private key
corresponding to a public key, and pubk gives the public key from a private
key. Here k, t, r and the ti are variables standing for arbitrary messages.
When the conditions are not met, the functions give ff, which is a constant
indicating failure of decryption or parsing. If crypt and scrypt are used as
binary functions, we consider their deterministic variants where the random
factor r has been fixed and is omitted for simplicity.

when all models of φ are models of ψ. We write φ ≡ ψ when
φ |=Σ ψ and ψ |=Σ φ; we may also use ≡ to define formulas.

We now fix the alphabet Σ that contains all symbols we use,
namely cryptographic functions, a countable set of constants
representing agents, nonces and so on, and some relation
symbols. We also have the set of variable symbols V . Each
protocol specification will fix a sub-alphabet Σ0 ⊂ Σ of
payload symbols; we call Σ \ Σ0 the technical symbols. All
α formulas use only symbols in Σ0 (besides variables). In the
rest of the paper, we will omit the alphabet and write |= for
|=Σ0 unless explicitly written.

The main idea of (α, β)-privacy is that we distinguish
between the actual privacy goal (e.g., an unlinkability goal
talking only about agents) and the means to achieve it (e.g.,
the cryptographic messages exchanged).

Definition II.1 (Adapted from [1]). Given two formulas α
over Σ0 and β over Σ with fv(α) ⊆ fv(β), where fv denotes
the free variables, we say that (α, β)-privacy holds iff for every
I |=Σ0

α there exists I ′ |=Σ β such that I and I ′ agree on
the variables in fv(α) and on the relation symbols in Σ0.

Payload. We call the formula α the payload, defining the
privacy goal. For example, for unlinkability in an RFID-tag
protocol, we may have a fixed set {t1, t2, t3} of tags and in a
concrete state, the intruder has observed that two tags have run
a session. Then α in that state may be x1, x2 ∈ {t1, t2, t3},
meaning that the intruder is only allowed to know that both x1

and x2 are indeed tags, but not, for instance, whether x1
.
= x2.

In our approach, the formulas α that can occur fall into a
fragment where we can always compute a finite representation
of all models, in particular the variables like the xi in the
example will always be from a fixed finite domain.

Frames. For the formula β, we employ the concept of
frames: a frame has the form F = l1 7→ t1. · · · .ln 7→ tn,
where the li are distinguished constants called labels and the
ti are messages (that do not contain labels). This represents

that the intruder has observed (or initially knows) messages
t1, . . . , tn and we give each message a unique label. We call
the set {l1, . . . , ln} the domain of F . A frame can be used as
a substitution, mapping labels to messages.

Recipes. To describe intruder deductions, we define a subset
Σpub of the function symbols to be public: they represent
operations the intruder can perform on known messages. For
instance, all symbols used in Fig. 1 are public except for inv,
since getting the private key is not an operation that everyone
can do themselves. 1 A recipe (in the context of a frame F)
is any term that consists of only labels (in the domain of F)
and public function symbols, so it represents a computation
that the intruder can perform on F . We write F{| r |} for the
message generated by the recipe r with the frame F .

Static equivalence. Two frames F1 and F2 with the same
domain are statically equivalent, written F1 ∼ F2, iff for every
pair (r1, r2) of recipes, we have F1{| r1 |} ≈ F1{| r2 |} ⇔
F2{| r1 |} ≈ F2{| r2 |}. This means that the intruder cannot
distinguish F1 and F2, since any experiment they can make
(i.e., compare the outcome of two computations r1, r2) either
gives in both frames the same result or in both frames not.

Message-analysis problem. While static equivalence is
typically used to formulate that two states are indistinguishable
for the intruder, [1] employs instead two frames in each state:
concr representing the concrete knowledge of the intruder
and struct the structural knowledge. The messages in struct
contain the privacy variables from α and concr is one concrete
instance of struct , representing what is actually the case
in that state. A message-analysis problem is then defined
to have the form β ≡ α ∧ concr ∼ struct (see [1] for
details on formalizing frames in Herbrand logic), where struct
contains only variables from α and concr = I(struct) for one
interpretation I |= α.

As an example, let α ≡ x1, x2 ∈ {0, 1}, struct = l1 7→
h(k, x1).l2 7→ h(k, x2) and concr = l1 7→ h(k, 0).l2 7→
h(k, 1). Observe that there are four models I |= α, and in two
of them concr ∼ I(struct) while concr 6∼ I(struct) in the
other two. The goal of the intruder is to rule out models that are
not consistent with β. Note that β requires concr ∼ struct :
the intruder knows that concr is an instance of struct and thus
any experiment must yield the same result under the actual
model I |= α such that concr = I(struct). Thus, at this
point, the intruder can exclude two models (namely those in
which x1

.
= x2), so (α, β)-privacy does not hold.

Automation. A naive way to decide (α, β)-privacy for a
message-analysis problem (in an algebra where static equiv-
alence is decidable) is to compute all models I1, . . . , In of
α and check whether I1(struct) ∼ · · · ∼ In(struct) (note
that in such problems fv(α) = fv(β)). [3] gives a more
efficient procedure that avoids the enumeration of all models:
it generalizes the classical procedure for static equivalence
of frames to deal with privacy variables, namely checking

1The use of inv is just one possible model, and one could choose to model
private keys differently, e.g., with public functions for key pair generation and
secret seeds. In this paper we use inv as it makes our examples simpler.

whether any experiment or decryption step works for every
instance of the variables.

B. (α, β)-Privacy for a Transition System

So far we have been talking about only a single (α, β) pair,
i.e., a single state of a larger transition system. [2] defines a
language for specifying transition systems where the reachable
states and their (α, β) pairs are defined by executing atomic
transactions. We present their formalization with some minor
adaptations to ease our further development.

We distinguish two sorts of variables: the privacy variables
Vprivacy , which are denoted with lower-case letters like x and
are all introduced in the form x ∈ D for a finite domain D of
public constants from Σ0, and the intruder variables Vintruder ,
which are denoted with upper-case letters like X for messages
received and cell reads in a transaction.

We also distinguish destructor and constructor function sym-
bols. In Fig. 1 we have that dcrypt, dscrypt, open, pubk, proj1
and proj2 are destructors whereas the rest are constructors.
Moreover, we call pair and inv transparent functions, because
one can get all their arguments without any key (but recall
that inv is not a public function).

Definition II.2 (Protocol specification). A protocol specifica-
tion consists of

• a number of transaction processes Pi, where the Pi are
left processes according to the syntax below, describing
the atomic transactions that participants in the protocol
can execute;

• a number of memory cells, e.g., cell(·), together with
a ground context C[·] for each memory cell defining the
initial value of the memory, so that initially cell(t) = C[t].

We define left, center, and right processes as follows:

Pl Left process
::= mode x ∈ D.Pl Non-deterministic choice
| rcv(X).Pl Receive
| Pc Center process

Pc Center process
::= try X

.
= d(t, t) Destructor application

in Pc catch Pc
| X := cell(t).Pc Cell read
| if φ then Pc else Pc Conditional statement
| νn1, . . . , nk.Pr Fresh constants

Pr Right Process
::= snd(t).Pr Send
| cell(t) := t.Pr Cell write
| ? φ.Pr Release
| 0 Terminate (nil process)

where mode is either ? or �, φ is a quantifier-free Herbrand
formula, and d is a destructor. Destructors cannot occur else-
where in terms. For simplicity, we have denoted destructors as
binary functions, but we may similarly use unary destructors
(like proji and pubk in the example).

We require that a transaction P is a closed left process,
i.e., fv(P) = ∅ — we define the free variables fv(P) of a
process P as expected, where the non-deterministic choices,
receives, cell reads and fresh constants are binding. Moreover,
for destructor applications:

fv(try X
.
= d(k, t) in P1 catch P2) =

fv(d(k, t)) ∪ (fv(P1) \ {X}) ∪ fv(P2)

Finally, a bound variable cannot be instantiated a second time
and the only place destructors are allowed is in a destructor
application with try.

Example II.1 (Running example). Let us consider the follow-
ing transaction where a server non-deterministically chooses
an agent x and a yes/no-decision y, receives a message, tries
to decrypt it with their own private key and then sends the
decision encrypted with the public key of x:

? x ∈ Agent. ? y ∈ {yes, no}.
rcv(M).

try N
.
= dcrypt(inv(pk(s)),M) in

if y
.
= yes then

νr.snd(crypt(pk(x), pair(yes, N), r)).0

else νr.snd(crypt(pk(x), no, r)).0

catch 0

Here the ? means that the choice of x and y is privacy
relevant and the intruder may (at least for now) only learn
that x ∈ Agent and y ∈ {yes, no}. The outgoing message has
a different form depending on y: in the positive case the server
also includes the content N of the encrypted message M they
received (and if the message is not of the right format, then the
transaction simply terminates); in either case the encryption is
randomized with a fresh r. We may omit r if we want to model
non-randomized encryption. pk is a public function (modeling
a fixed public-key infrastructure known to everybody). C

Much of these processes thus follows standard process
calculus constructs. The special constructs of (α, β)-privacy
are the non-deterministic choice and release. Choice comes
in two flavors: ? if the choice is privacy relevant (as in the
example), and � if not. The latter means that the intruder does
not a priori learn the choice, but if they find it out, it is not a
violation of privacy as such. Accordingly the formula x ∈ D
is added to α when it is marked ?, and to β when it is marked
�. The release is used to declare that a certain fact φ may now
be known to the intruder; we discuss this construct and what
formulas can be released a bit later.

Observe that privacy variables are introduced only by non-
deterministic choices mode x ∈ D. If the mode is ?, the
transaction augments α by x ∈ D, thus specifying that
the intruder may not know more about x unless we also
explicitly release some information about x. If the mode is
�, the transaction augments β by x ∈ D. In this case it
is not automatically a violation of privacy if the intruder
learns more about x, but it may lead to a privacy violation

if this allows for finding out more about the variables in α.
This is useful if one wants to keep the privacy specification
independent of some rather technical secret. In our model, the
intruder knows which transaction is executed, but in general
does not know which branch is taken. Using, for example,
� z ∈ {1, 2}.if z .

= 1 then P1 else P2, one can reduce the
visibility of transactions P1 and P2 by putting them in a single
transaction. In some execution the intruder may find out, e.g.,
z
.
= 1, and it is not a privacy violation in itself.
Semantics. The semantics follows [2], with small adapta-

tions. It is defined as a state transition system where each
transition corresponds to the execution of one transaction.
Thus, transactions are atomic: they cannot run concurrently
with another transaction. In particular, when reading from
and writing to memory cells, no race conditions can occur
and we thus do not need locking mechanisms. A transaction
thus consists in receiving input, checking this input (possibly
reading from memory), then making a decision (possibly
updating the memory), and finally sending an output and
releasing information.

The atomicity of transactions has an advantage: we can
easily formalize how the intruder can reason about what is
happening. In particular, we assume that the intruder at each
point knows which transaction is executed and what process
a transaction contains. What the intruder does not know in
general are the concrete values of the variables and the truth
values of conditions, and thus in which branch of an if-then-
else or try-catch we are. However, the intruder can always
contrast this knowledge with the observations about incoming
and outgoing messages: if an observed sent message does not
fit with one branch of the transaction, then the intruder knows
that branch was not taken, and thus they also learn something
about the truth value of the corresponding conditions. In other
cases, the intruder may know what is in a received message
and thus know the truth value of some condition. The intruder
thus performs a symbolic execution of the transaction, leaving
open what they do not know, keeping a list of possibilities,
and in fact the semantics of transactions formally models this
symbolic execution by the intruder.

To formalize the symbolic execution by the intruder, let
a possibility be a tuple (P, φ, struct , δ), where P is the
transaction being executed, φ is the conditions under which
this possibility was reached, struct is the structural knowledge
about the messages in this possibility and δ is a sequence of
memory updates.

A state is a tuple (α, β0, γ,P) where α, β0 and γ are
Σ0-formulas, and P is a non-empty finite set of possibilities
P = {(P1, φ1, struct1, δ1), . . . , (Pn, φn, structn, δn)}, where
one of the possibilities is marked by underlining as the
possibility that is actually the case in the real execution (but
the intruder does not know which one, in general). In this
paper, we consider only well-formed states, where a state is
well-formed iff all struct i have the same domain, γ describes a
unique model of α∧β0 and the φi both are mutually exclusive,
i.e., |= ¬(φj ∧ φk), for j 6= k, and cover all models, i.e.,
α ∧ β0 |=

∨n
j=1 φj . We define the concrete frame concr as

the instantiation of the struct i from the underlined possibility
by the model γ.

Definition II.3 (Multi message-analysis problem (MMA)).
Given a well-formed state S = (α, β0, γ,P), let concr =
γ(struct i) for the knowledge in the marked possibility. Define

MMA(α, β0,P, concr) = α∧β0 ∧
n∨
i=1

φi ∧ concr ∼ struct i .

We say that S satisfies privacy iff (α,MMA(α, β0,P, concr))-
privacy holds.

The possibilities will be used to represent that the intruder
in the symbolic execution of a transaction cannot tell which
conditions are true, and thus which path the execution actually
takes. The struct i will contain the structural messages (i.e.,
containing privacy variables) that the transaction sends in the
respective case, and φi is the condition under which this
case was entered. In contrast, concr contains the actually
observed concrete messages (i.e., privacy variables are instan-
tiated according to the their true value described by γ). The
intruder knows that exactly one of the φi is the case, and that
concr ∼ struct i, i.e., the concrete messages are an instance
of the messages sent in the execution path actually taken.

A state is called finished when all processes Pi are 0. The
semantics thus defines an evaluation relation → on states that
work off the processes in each possibility until a finished
state is reached. This represents the symbolic execution by
the intruder of a given a transaction. The branching of →
represents the non-deterministic choices of the process as well
as choices of messages by the intruder.

To give a gentle introduction to (α, β)-privacy in transition
systems, we present the symbolic execution at hand of the
running example from Example II.1. For the complete defini-
tion of the rules, see Appendix A. As a starting point for the
symbolic execution, we use the singleton set of possibilities
{(P, true, [], [])} where P is the process from the running
example. Let α, β0, and γ be true; [] denotes the empty frame
and empty memory.

1) Non-Deterministic Choice: The first step in P in the
example are the non-deterministic choices ? x ∈ Agent. ?
y ∈ {yes, no}. For this, the →-relation has actually several
successors, one for each possible choice of x and y. (In the
decision procedure below we use a more clever way to handle
all these successors as one.) The general rule defines for every
c ∈ D the following successor:

{(mode x ∈ D.P1, φ1, struct1, δ1), . . . ,

(mode x ∈ D.Pn, φn, structn, δn)}
→ {(P1, φ1, struct1, δ1), . . . , (Pn, φn, structn, δn)}

where γ is augmented with x
.
= c, and if mode = ? (resp.

mode = �) then α (resp. β0) is augmented with x ∈ D. γ thus
represents what really happened (which the intruder cannot
see) and the information about the domain is released to α or
β0, depending on whether x is privacy relevant. Note that x is
not replaced in the Pi — this is a symbolic execution by the

intruder. Also note that this rule assumes that all possibilities
start with the same mode x ∈ D; this is ensured since this
choice can only occur in the left part of the transaction, before
any branching on conditions and tries can occur.

For the example, let us follow x = a and y = yes; this is
added to γ, and we add to α that x ∈ Agent and y ∈ {yes, no}.

2) Receive: The next step is rcv(M). Again the construc-
tion ensures that every process in the possibilities starts with
a receive step (with the same variable). Here, the intruder can
choose an arbitrary recipe r (over the domain of the struct i)
for the message that should be received as M . In fact, in
general, we have here infinitely many possible r and thus
infinitely many successors. (Our decision procedure below
uses a constraint-based approach to handle this in a finite
way.) The general rule allows for every r over the domain
of the struct i the following transition:

{(rcv(X).P1, φ1, struct1, δ1), . . . ,

(rcv(X).Pn, φn, structn, δn)}
→ {(P1[X 7→ struct1{| r |}], φ1, struct1, δ1), . . . ,

(Pn[X 7→ structn{| r |}], φn, structn, δn)}

Observe that the message that is being received depends
on the possibility: it is struct i{| r |} in the ith possibility,
i.e., whatever the recipe r yields in the respective intruder
knowledge struct i.

As the intruder knowledge at this point is empty in the
example, r can only be a recipe built from public constants
and functions. Let us consider r = crypt(pk(s), a, h(a)), which
then replaces M in the process.

3) Cell Read: The memory δ contains the sequence of
updates cell(s1) := t1. · · · .cell(sk) := tk for the given cell,
and the initial value is given with ground context C[·].

{(X := cell(s).P, φ, struct , δ)}] P
→ {(if s .

= s1 then P [X 7→ t1] else

. . .

if s
.
= sk then P [X 7→ tk] else

P [X 7→ C[s]], φ, struct , δ)} ∪ P

4) Cell Write: A memory update is added to the sequence
δ. Note that it is important to prepend the update so that when
we do a cell read, the most recent state is used first in a
conditional, effectively overwriting the previous memory state.

{(cell(s) := t.P, φ, struct , δ)}] P
→ {(P, φ, struct , cell(s) := t.δ)} ∪ P

5) Conditional Statement: The next step in the running
example is try N

.
= ... in P0 catch 0. For the sake of this

semantics, we can just consider try X .
= t in P1 catch P2 as

syntactic sugar for if (t
.
= ff) then P2 else P1[X 7→ t]. (For

the decision procedure it is important that destructors only
occur in this try-catch form, however.)

We have a general rule that can fire when the next step in
one of the possibilities is an if-then-else. In this case we split

that possibility into two, one for the case that the condition
is true and we go into the then branch, and one for the else
branch:

{(if ψ then P1 else P2, φ, struct , δ)}] P
→ {(P1, φ ∧ ψ, struct , δ), (P2, φ ∧ ¬ψ, struct , δ)} ∪ P

In our example, we thus have to evaluate the condition
dcrypt(inv(pk(s)), crypt(pk(s), a, h(a)))

.
= ff, which we can

simplify to false, i.e., the intruder knows that the received
message will decrypt correctly. We thus have the two possi-
bilities {(0, false, [], []), (if..., true, [], [])}, of which the second
is underlined, and an evaluation rule allows removing possi-
bilities with the condition false. The underlined possibility is
what really happened (which is here obvious).

We thus apply a second time the condition rule, again
splitting into two possibilities:

{(νr.snd(...(yes, N), r), y
.
= yes, [], []),

(νr.snd(...no, r), y 6 .= yes, [], [])}

Here the first possibility is what really happens (as stated by
γ) and is thus underlined, but here the intruder does not know
which one is the case.

The ν operator can be implemented by replacing the place-
holder by a fresh non-public constant, say r1. We can in fact
do this as a preparation before executing the transaction.

6) Send: When all the rules for the other constructs have
been applied as far as possible, each of the remaining processes
must be either a send or 0. If the intruder observes that a mes-
sage is sent, this rules out all possibilities where the remaining
process is 0. For all others, each struct i is augmented by the
message sent in the respective possibility:

{(snd(t1).P1, φ1, struct1, δ1), . . . ,

(snd(tk).Pk, φk, structk, δk)}] P
→ {(P1, φ1, struct1.l 7→ t1, δ1), . . . ,

(Pk, φk, structk.l 7→ tk, δk)}

where β0 ← β0 ∧
∨k
i=1 φi, l is a fresh label and all the

processes in P must be the 0 process. This requirement
forbids applying the send rule as long as the next step of
any possibility is different from send and 0 (so some of the
other rules has to be applied first).

In our example we thus reach the state with

{(0, y .
= yes, l 7→ crypt(pk(x), pair(yes, a), r1), []),

(0, y 6 .= yes, l 7→ crypt(pk(x), no, r1), [])}

and concr{| l |} = crypt(pk(a), pair(yes, a), r1) which is a
finished state, and the intruder has thus finished the symbolic
execution of this transaction.

Example II.2. Let us point out a few more interesting features
of this example. At the finished state, without further knowl-
edge, the intruder is unable to tell which of the two possibili-
ties is the case. This would be different if the encryption were
not randomized: suppose we drop the third argument of crypt.

Then the intruder could now construct crypt(pk(x′), no) for
each value x′ ∈ Agent and compare the result with the learned
message. Since this does not succeed in any case, the intruder
learns that the second possibility is excluded, thus y .

= yes,
violating (α, β)-privacy. Even worse, if we look at the state
where the non-deterministic choice was y = no, the intruder
would find out x because exactly one of the guesses succeeds.

Reverting to randomized encryption, suppose that there
had been an earlier transaction where the intruder learned
l 7→ crypt(pk(z), no, r2) for some privacy variable z ∈ Agent.
If the intruder uses this as input for the next transaction,
then the decryption works iff z .

= s. Thus, we have a third
possibility at the final sending step, namely (0, z 6 .= s, l 7→
crypt(pk(z), no, r2), []). Then from the fact that a message was
sent, the intruder can rule out this third possibility and thus
deduce that z .

= s, again violating (α, β)-privacy. C

7) Release: This construct is used to declare information
that the intruder is now allowed to learn, for instance in some
cases we may want to intruder to learn the true value of a
privacy variable. In our running example, we do not use the
release. However, in case the server is replying to the intruder,
then the intruder can decrypt the message and observe what
was the decision. Thus they would learn both the value of
x (i.e., the agent was the intruder) and y (i.e., the know the
server’s decision). We could thus refine the transaction and
add a release if x is the intruder.

The formula released by the marked possibility is added to
the payload and formulas released by other possibilities are
ignored.

{(? ψ.P, φ, struct , δ)}] P → {(P, φ, struct , δ)} ∪ P

and α ← α ∧ ψ. We consider it a specification error if
when applying this symbolic execution rule, the formula φ
released contains symbols which are in Σ \ Σ0 and variables
not in fv(α). Thus, the specification can use symbols from the
technical level in a relation as long as the evaluated terms use
only symbols in Σ0 and fv(α) (i.e., the payload level) when
executing the protocol. This means that releasing technical
information in the payload is not allowed. Additionally for our
decision procedure below, the same requirement applies to a
formula R(t1, . . . , tn) in the symbolic execution of conditional
statements. This kind of specification error can be detected
during the symbolic execution and means that insufficient
checks are made over the terms before the conditional state-
ment or release.

8) Terminate: The intruder observes that the execution has
terminated because no messages are sent, so they can rule out
all possibilities that are not terminated.

{(0, φ1, struct1, δ1), . . . , (0, φk, structk, δk)}] P
→ {(0, φ1, struct1, δ1), . . . , (0, φk, structk, δk)}

where every process in P starts with a send step and β0 ←
β0 ∧

∨k
i=1 φi.

9) The Problem: We have defined the relation→ that works
off the steps of a transaction, modeling an intruder’s symbolic
execution of a transaction P . We now define a transition
relation −→ on finished states (i.e., the process in every
possibility is 0) where S −→ S′ iff there is a transaction
P such that init(P, S) →∗ S′ where init(P, S) denotes
replacing the 0-process in every possibility of S by process P .
Let the initial state be S0 = (true, true, true, {(0, true, [], [])}).

Definition II.4 (The problem). A protocol specification satis-
fies privacy iff (α, β)-privacy holds for every S s.t. S0 −→∗ S.

The contribution of the present paper is a procedure to
decide whether for a given bound k, a violation is reachable in
at most k steps, under the restriction of the algebraic properties
to constructor/destructor theories of Definition VI.1.

III. FLICS: FRAMED LAZY INTRUDER CONSTRAINTS

The semantics of the transition system says that, in a state
where the processes are receiving a message, the intruder can
choose any recipe built on the domain of concr (respectively,
the struct i: they all have the same domain). The problem is
that there are in general infinitely many recipes the intruder
can choose from. A classic technique for deciding such infinite
spaces of intruder possibilities is a constraint-based approach
that we call the lazy intruder [19], [9], [20]: it is lazy in that
it avoids, as long as possible, instantiating the variables of
receive steps like rcv(X). The concrete intruder choice at this
point does not matter; only when we check a condition that
depends on X , we consider possible instantiations of X as
far as needed to determine the outcome of the condition. Note
that this is another symbolic layer of our approach, where a
symbolic state with variable X represents all concrete states
where X is replaced with a message that the intruder can
construct. In fact what the intruder can construct depends on
the messages the intruder knew at the time when the message
represented by X was sent. Due to the symbolic execution, in
a state there is in general several struct i, and thus we need
not only to represent the messages sent by the intruder with
variables but also the recipes that they have chosen, because a
given recipe can produce different messages in each struct i.

To keep track of this, we define an extension of frames
called framed lazy intruder constraints (FLICs): the entries of
a standard frame represent messages that the intruder received
and we write them now with a minus sign: −l 7→ t. We extend
this by also writing entries for messages the intruder sends
with a plus sign: +R 7→ t, where R is a recipe variable
(disjoint from privacy and intruder variables). When solving
the constraints, R may be instantiated with a more concrete
recipe, but only using labels that occurred in the FLIC before
this receive step; the order of the entries is thus significant.
The messages t can contain variables representing intruder
choices that we have not yet made concrete. We require that
the intruder variables first occur in positive entries as they
represent intruder choices made when sending a message.

Since we deal with several possibilities in parallel, we will
have several FLICs in parallel, replacing the struct i in the
ground model. Each FLIC has the same sequence of incoming
labels and outgoing recipes. The intruder does not know in
general which possibility is the case, but knows how they
constructed the message from their knowledge, i.e., the recipe,
which may result in a different message in each possibility.

A FLIC is a constraint, namely that the intruder can indeed
produce messages of the form needed to reach a particular state
of the execution. We show that we can solve such FLICs, i.e.,
find a finite representation of all solutions (as said before, there
are in general infinitely many possible concrete choices) using
the lazy intruder technique, similarly to other works doing
constraint-based solving with frames such as [21], [6]. In the
rest of this section, we will focus first on defining and solving
constraints by considering just one FLIC and not the rest of the
possibilities, and we explain afterwards how the lazy intruder
is used for the transition system with several possibilities.

A. Defining Constraints
Definition III.1 (FLIC). A framed lazy intruder constraint
(FLIC) A is a sequence of mappings of the form −l 7→ t or
+R 7→ t, where each label l and recipe variable R occurs at
most once, each term t is built from function symbols, privacy
variables, and intruder variables. The first occurrence of each
intruder variable must be in a message sent.

We write −l 7→ t ∈ A if −l 7→ t occurs in A, and similarly
+R 7→ t ∈ A. The domain dom(A) is the set of labels of A
and vars(A) are the privacy and intruder variables that occur
in A; similarly, we write rvars(A) for the recipe variables.

The message A{| r |} produced by r in A is:

A{| l |} = t if −l 7→ t ∈ A
A{|R |} = t if +R 7→ t ∈ A

A{| f(r1, . . . , rn) |} = f(A{| r1 |}, . . . ,A{| rn |})

For recipes that use labels or recipe variables not defined in
the FLIC, the result is undefined.

We also define an ordering between recipes and labels:
r <A l iff every label l′ in r occurs before l in A.

Example III.1. Consider the transaction from Example II.1,
step rcv(M). Using FLICs, we add +R 7→ M to the FLIC
(where both R and M are fresh variables). We are lazy in
the sense that we do not explore at this point what R and M
might be, because any value would do. Now the server checks
whether M can be decrypted with the private key inv(pk(s)).
This is the case iff M has the form crypt(pk(s), ·, ·). We later
consider the rule on the symbolic level for handling a try. In
the positive case, M is instantiated with crypt(pk(s), X, Y)
for two fresh intruder variables X and Y , thus requiring that
what R yields is indeed of this form. The constraint solving
in §III-B computes a finite representation of all solutions
for R. The negative case is considered separately, where we
remember the negated equality M 6 .= crypt(pk(s), ·, ·). C

Definition III.2 (Semantics of FLICs). Let A be a FLIC such
that vars(A) = ∅, i.e., all the messages in A are ground. We

say that A is constructable iff there exists a ground substitution
of recipe variables ρ0 such that A1{| ρ0(R) |} ≈ t for every
recipe variable R where A = A1.+R 7→ t.A2. (This implies
that only labels from dom(A1) can occur in ρ0(R).) We then
say that ρ0 constructs A.

Let A be an arbitrary FLIC and I be an interpretation of
all privacy and intruder variables. We say that I is a model
of A, written I |≡ A, iff I(A) is constructable. We say that
A is satisfiable iff it has a model.

A FLIC is thus satisfiable if there exist a suitable interpre-
tation for the variables in messages and intruder choice for the
variables in recipes such that all the constraints are satisfied.

Example III.2. Suppose that Alice has sent a signed message
m to the intruder, and the constraint is to send some signed
message to Bob. This is recorded in the following FLIC A:

−l1 7→ inv(pk(i)).−l2 7→ crypt(pk(i), sign(inv(pk(a)),m)).

+R 7→ crypt(pk(b), sign(inv(pk(X)), Y))

Here I1 = [X 7→ a, Y 7→ m] is a model, since I1(A) is con-
structable using R = crypt(pk(b), dcrypt(l1, l2)). For every
ground recipe r over dom(A) also Ir = [X 7→ i, Y 7→ A{| r |}]
is a model, using R = crypt(pk(b), sign(l1, r)); note there are
infinitely many such r. C

B. Solving Constraints

We now present how to solve constraints when the intruder
does not have access to destructors, i.e., as if all destructors
were private functions and thus cannot occur in recipes. Thus
the only place where destructors can occur are in transactions
using try-catch. We can thus work in the free algebra for now
and with only destructor-free terms. We show in §VI how
to integrate the lazy intruder without destructors and special
transactions, so that the correctness of our decision procedure
is valid for the intruder model with access to destructors.

Definition III.3 (Simple FLIC). A FLIC A is called simple iff
every message sent is an intruder variable, and each intruder
variable is sent only once, i.e., every message sent is of the
form +Ri 7→ Xi and the Xi are pairwise distinct.

Simple FLICs are always satisfiable, since there are no more
constraints on the messages, and the intruder can choose any
recipes they want. In order to solve constraints in a non-simple
FLIC, we instantiate privacy, intruder and recipe variables until
we reach a simple FLIC. Computing a finite representation of
all solutions is then done by keeping track of the substitutions
applied to instantiate the variables.

Definition III.4. Let σ be a substitution that does not contain
recipe variables. We define σ(−l 7→ t.A) = −l 7→ σ(t).σ(A)
and σ(+R 7→ t.A) = +R 7→ σ(t).σ(A).

For the substitutions of recipe variables, however, we cannot
directly define the instantiation of recipe variables for an
arbitrary FLIC, because we always need to make sure we
instantiate both the recipe and the intruder variables according

to the constraints. We thus define how to apply a substitution
of recipe variables for simple FLICs.

Definition III.5 (Choice of recipes). A choice of recipes for
a simple FLIC A is a substitution ρ mapping recipe variables
to recipes, where dom(ρ) ⊆ rvars(A).

Let [R 7→ r] be a choice of recipes for A that maps only one
recipe variable, where A = A1.+R 7→ X.A2. Let R1, . . . , Rn
be the fresh variables in r, i.e., {R1, . . . , Rn} = rvars(r) \
rvars(A), taken in a fixed order (e.g., the order in which they
first occur in r). Let X1, . . . , Xn be fresh intruder variables.
The application of [R 7→ r] to the FLIC A is defined as [R 7→
r](A1.+R 7→ X.A2) = A′.σ(A2) where A′ = A1.+R1 7→
X1. · · · .+Rn 7→ Xn and σ = [X 7→ A′{| r |}].

For the general case, let ρ be a choice of recipes for A.
Then we define ρ(A) recursively where one recipe variable
is substituted at a time, and we follow the order in which the
recipe variables occur in A: if ρ = [R 7→ r]ρ′, where R occurs
in A before any R′ ∈ dom(ρ′), then ρ(A) = ρ′([R 7→ r](A)).
Every application [R 7→ r](A) corresponds to a substitution
σ = [X 7→ A′{| r |}] (as defined above), and we denote with σAρ
the idempotent substitution aggregating all these substitutions
σ from applying ρ to A.

Remark. If ρ is a choice of recipes for a simple FLIC A, then
ρ(A) is simple, because the fresh recipe variables added in
ρ(A) map to fresh intruder variables. C

Unification. We use an adapted version of syntactic uni-
fication, where we orient so that privacy variables are never
substituted with intruder variables, e.g., an equality x .

= X of a
privacy variable x and an intruder variable X yields the unifier
[X 7→ x]. We denote with mgu(s1

.
= t1 ∧ · · · ∧ sn

.
= tn) the

result, called most general unifier (mgu), of unifying the si and
ti, which is either some substitution or ⊥ whenever no unifier
exists. Slightly abusing notation, we consider a substitution
[x1 7→ t1, . . . , xn 7→ tn] as the formula x1

.
= t1∧· · ·∧xn

.
= tn

and ⊥ as false. Moreover, every privacy variable is associated
to a domain by a formula x ∈ D. Thus, we filter out the
mgus that are inconsistent w.r.t. the domain specifications (e.g.,
[x 7→ a] is filtered out if a /∈ dom(x)).

The lazy intruder rules. In order to solve the constraints,
we define a reduction relation on FLICs. The idea is that
 is Noetherian and a FLIC that cannot be further reduced is
either simple or unsatisfiable. Moreover, is not confluent,
but rather is meant to explore different ways for the intruder
to satisfy constraints, and thus we will consider the set of all
simple FLICs that are reachable from a given one: the simple
FLICs together will be equivalent to the given FLIC. Since
is not only Noetherian, but also finitely branching, the set of
reachable simple FLICs is always finite by Kőnig’s lemma.

Definition III.6 (Lazy intruder rules). The relation is a
relation on triples (ρ,A, σ) of a choice of recipes ρ, a FLIC A
and a substitution σ, where ρ and σ keep track of all variable
substitutions performed in the reduction steps so far. We re-
quire that dom(ρ)∩rvars(A) = ∅ and dom(σ)∩vars(A) = ∅.
The rules are defined in Table I.

TABLE I
LAZY INTRUDER RULES

Unification (ρ,A1.−l 7→ s.A2.+R 7→ t.A3, σ) (ρ′, σ′(A1.−l 7→ s.A2.A3), σ′) if A1.−l 7→ s.A2 is simple, s, t /∈ V
where ρ′ = [R 7→ l]ρ and σ′ = mgu(σ ∧ s .

= t) and σ′ 6= ⊥

Composition (ρ,A1.+R 7→ f(t1, . . . , tn).A2, σ) (ρ′,A1.+R1 7→ t1. · · · .+Rn 7→ tn.A2, σ) if A1 is simple, f ∈ Σpub and σ 6= ⊥
where the Ri are fresh recipe variables and ρ′ = [R 7→ f(R1, . . . , Rn)]ρ

Guessing (ρ,A1.+R 7→ x.A2, σ) (ρ′, σ′(A1.A2), σ′) if A1 is simple, c ∈ dom(x) and σ′ 6= ⊥
where ρ′ = [R 7→ c]ρ and σ′ = mgu(σ ∧ x .

= c)

Repetition (ρ,A1.+R1 7→ X.A2.+R2 7→ X.A3, σ) (ρ′,A1.+R1 7→ X.A2.A3, σ) if A1.+R1 7→ X.A2 is simple and σ 6= ⊥
where ρ′ = [R2 7→ R1]ρ

Unification When the intruder has to send a message, they
can use any message previously received and that unifies, by
choosing a label for the recipe variable. Then there is one less
message to send, but the unifier might make other constraints
non-simple. This rule is not applicable for variables: the
intruder is lazy.

Composition When the intruder has to send a composed
message f(t1, . . . , tn), they can generate it themselves if f is
public and they can generate the ti. The intruder thus chooses
to compose the message themselves, so the recipe R is the
application of f to other recipes.

Guessing When the intruder has to send a privacy variable
x, they can guess the actual value of x, say c. In fact, this is
a guessing attack as we let the privacy variables range over
small domains of public constants. This rule represents the
case that the intruder guesses correctly, and the variable x is
replaced by the guessed value c. Note that using the Guessing
rule does not yet mean that the intruder knows that c is the
correct guess: in the rest of the procedure, whenever there is
such a guess we model both the right and wrong guesses, and
the intruder may not be able to tell what is the case.

Repetition If the intruder has to send an intruder variable
that they have already sent earlier, they use the same recipe.
While there may be several ways to generate the same mes-
sage, we are lazy and just use the same recipe. The only
interesting situation where we need to deal with several recipes
for the same message is for the messages received by the
intruder, so that they can make comparisons. This is not part of
the lazy intruder rules but rather of the experiments explained
in §V.

The lazy intruder rules compute the different choices of
recipes that satisfy the constraints. A choice of recipes ρ
may actually be a solution to the constraints only under some
interpretation of the privacy variables, but we are interested in
applying the same ρ to all the FLICs in a given state. Therefore
the lazy intruder results only contain the choices of recipes ρ:
the application of ρ to the FLICs will instantiate all the recipe
and intruder variables as required by the constraints.

Definition III.7 (Lazy intruder results). Let A be a FLIC and
σ be a substitution. Let ε be the identity substitution. We define
LI (A, σ) = {ρ | (ε, σ(A), σ) ∗ (ρ,A′, _),A′ is simple}.

Example III.3. Following Example III.1, let us assume that
the intruder has already observed a message encrypted for

the server from another agent x′, and is now symbolically
executing the transaction. With the constraint induced by
the decryption from the server, the FLIC is now −l 7→
crypt(pk(s), x′, r).+R 7→ crypt(pk(s), X, Y). Since we as-
sume that the public-key infrastructure is public, the lazy
intruder would return two choices of recipes: ρ1 = [R 7→ l],
meaning the intruder replays the message from the knowledge
(since it unifies), and ρ2 = [R 7→ crypt(pk(s), R1, R2)],
meaning the intruder composes the message themselves where
R1 and R2 stand for arbitrary recipes. C

Definition III.8 (Representation of choice of recipes). Let A
be a FLIC, I |≡ A, ρ0 be a ground choice of recipes and ρ be
a choice of recipes. We say that ρ represents ρ0 w.r.t. A and
I iff there exists ρ′0 such that ρ′0 is an instance of ρ and for
every R ∈ rvars(A), I(A){| ρ′0(R) |} = I(A){| ρ0(R) |} and:
• If ρ(R) ∈ dom(A), then ρ0(R) ∈ dom(A) and either
ρ′0(R) = ρ0(R) or ρ′0(R) <A ρ0(R).

• If ρ(R) is a composed recipe and ρ0(R) ∈ dom(A), then
ρ′0(R) <A ρ0(R).

This notion of representation gives the lazy intruder some
“liberty”, namely to be lazy in not instantiating recipe variables
that do not matter, and to replace subrecipes with equivalent
ones (that may be smaller according to our ordering between
recipes and labels). Part of the completeness proofs is to show
that, despite all these liberties, the lazy intruder still returns
enough recipes to find any experiments that violate privacy.
The lazy intruder rules are sound, complete and terminating:

Theorem III.1 (Lazy intruder correctness). Let A be a FLIC,
σ be a substitution, I |≡ A such that I |= σ and let ρ0 be
a ground choice of recipes. Then ρ0 constructs I(A) iff there
exists ρ ∈ LI (A, σ) such that ρ represents ρ0 w.r.t. A and I.
Moreover, LI (A, σ) is finite.

IV. THE SYMBOLIC STATES

Our approach explores a symbolic transition system, i.e.,
transitions on symbolic states, where each symbolic state
represents an infinite set of ground states. Our notion of ground
states is an adaptation of the states defined in [2]. We denote
symbolic states by S, S ′, etc., and ground states by S, S′, etc.

A ground state may actually contain privacy variables,
representing the possible uncertainty of the intruder in this
state, but each variable has one concrete value that represents

the truth in that state, which will be expressed by a formula γ
that the intruder does not have access to (and the frame concr
is an instance of one of the struct i under γ). This is the reason
why we call it a ground state, even though it contains variables.
A symbolic state includes actually two symbolic layers. First,
it merges all those states that differ only in the concrete γ and
thus the concrete frame concr , i.e., where the intruder has
the same uncertainty. In fact, the symbolic states do not have
γ and concr anymore, and since no possibility is underlined
we now have a formula αi for each possibility, corresponding
to the additional payload information which the process in
that possibility may have released. Second, we use intruder
variables and FLICs to avoid enumerating the infinite choices
that the intruder has when sending messages, thus the frames
struct i are generalized to FLICs Ai in symbolic states.

Like a ground state, a symbolic state S contains processes
(one for each Ai) that represent pending steps of a transaction
being executed. Only when these steps have been worked off
and we have only 0-processes remaining (and certain evalu-
ations have been made), the resulting finished symbolic state
is a reachable (symbolic) state of the transition system. This
in particular ensures that transactions can only be executed
atomically. Moreover, to keep track of the intruder experiments
that have already been performed (i.e., comparing the outcome
of two recipes — details in §V), in a symbolic state we have
a set Checked that contains pairs of a label and a recipe.

Definition IV.1 (Symbolic state). A symbolic state is a tuple
(α0, β0,P,Checked) such that:
• α0 is a Σ0-formula, the common payload;
• β0 is a Σ0-formula, the intruder reasoning about possi-

bilities and privacy variables;
• P is a set of possibilities, which are each of the form

(P, φ,A,X , α, δ), where P is a process, φ is a Σ0-
formula, A is a FLIC, X is a disequalities formula, α is
a Σ0-formula called partial payload, and δ is a sequence
of memory updates of the form cell(s) := t for messages
s and t;

• Checked is a set of pairs (l, r), where l is a label and r
is a recipe.

where disequalities formulas are of the following form:

X := X ∧ X | ∀X̄. ¬X0 Disequalities formula
X0 := X0 ∧ X0 | t

.
= t Equalities formula

A symbolic state is finished iff all the processes in P are 0.

We may write S[e ← e′] to denote the symbolic state
identical to S except that e is replaced with e′.

We have augmented the FLICs Ai here with disequalities
Xi, i.e., negated equality constraints, which allows us to
restrict the choices of the intruder in a symbolic state. This
is needed when we want to make a split between the case
that the intruder makes a particular choice and the case that
they choose anything else. This is formalized in the following
definition of applying a recipe substitution which is only
possible when all the respective Xi are consistent with it:

Definition IV.2 (Choice of recipes for a symbolic state). Let
S = (_, _,P,Checked) be a symbolic state and ρ be a recipe
substitution. We say that ρ is a choice of recipes for S iff ρ
is a choice of recipes for all FLICs in P and for every FLIC
A and associated disequalities X in P , the formula σAρ (X) is
consistent, i.e., ρ does not contradict the disequalities attached
to any FLIC. Moreover, we define

ρ(P) = {(σAρ (P), φ, ρ(A), σAρ (X), α, σAρ (δ)) |
(P, φ,A,X , α, δ) ∈ P}

ρ(Checked) = {(l, ρ(r)) | (l, r) ∈ Checked}
ρ(S) = S[P ← ρ(P),Checked ← ρ(Checked)]

When writing ρ(S) in the following, we implicitly assume
that all disequalities in S are satisfiable under ρ, and that ρ(S)
is discarded otherwise. To decide whether disequality X is
satisfiable it suffices to replace the free variables with distinct
fresh constants and check that the corresponding unification
problems have no solution. Moreover, we will always use the
lazy intruder in the context of a symbolic state, so we further
assume that LI (·, ·) only returns choices of recipes for the
current symbolic state, i.e., any ρ that would contradict some
disequalities is not returned.

From a symbolic state we can define all the choices of
recipes (instantiations of the recipe and intruder variables)
for the messages sent by the intruder and all the concrete
executions (instantiations of privacy variables) that the in-
truder considers possible. A symbolic state represents a set
of ground states, where each ground state corresponds to one
multi message-analysis problem. For every ground state, the
common payload α0 is augmented with the partial payload
αi released by the corresponding possibility. Moreover, every
model γ of the privacy variables needs to be augmented by the
interpretation of relation symbols. In our approach, we assume
that the protocol specification contains a fixed interpretation
of the relation symbols, formalized as a Σ0-formula γ0.

Meta-notation. In the specification of transactions, we al-
low in formulas released the use of the meta-notation γ(t) for
a message t: Recall that in every ground state, the real values
of privacy variables is defined by a ground interpretation γ.
Thus, for instance, releasing ? x .

= γ(x) means allowing the
intruder to learn the true value of x. In the symbolic execution
for ground states, the meta-notation can be implemented by
using γ as a substitution before adding the formula to α.

Example IV.1. In Example II.1, in case the server is replying
to the intruder, then the intruder can decrypt the message and
observe what was the decision. Thus they would learn both the
value of x (i.e., the agent was the intruder) and y (i.e., they
know the server’s decision). This leads to a privacy violation,
unless we “declassify” x and y with a release. If x is the
intruder, we can release ? x .

= γ(x) ∧ y .
= γ(y). Releasing

this information is still not enough because the intruder can
also deduce that x is honest if they cannot decrypt with their
own private key, so we additionally need to release ? x 6 .= i in
that case to remove the privacy violation. C

In a symbolic state, however, there is no γ since the
symbolic state represents all possible γ at once. Hence, in
order to define the semantics, we need to resolve the meta-
notation that we allow in the αi. Given αi and the truth γ,
let [αi]

γ be the instantiation of the meta-notation in αi, i.e.,
replacing every occurrence of a term γ(x) in αi (for a variable
x) with the actual value of x in the given γ. For instance, if
γ(x) = i, then [x

.
= γ(x)]γ = x

.
= i.

Definition IV.3 (Semantics of symbolic states). Let S =
(α0, β0,P, _) be a finished symbolic state. The ground states
represented by S are given by

[[S]] = {(α0 ∧ [αi]
γ , β0, γ, ρ(P)) | (0, φi,Ai, _, αi, _) ∈ P,

ρ is a ground choice of recipes for S,
γ is a model of α0 ∧ β0 ∧ γ0 ∧ φi} ,

where ρ(P) returns possibilities of the form
(0, φj , structj , δj), i.e., the additional components of
symbolic possibilities are dropped because they are irrelevant
for ground states (note that the αi have already been used
as part of the payload α); moreover, the possibility for which
γ |= φi is underlined.

We say that a symbolic state S satisfies privacy iff every
ground state S ∈ [[S]] satisfies privacy.

Remark. Given a symbolic state S = (α0, β0,P, _) and a pos-
sibility with formula φi. If α0∧β0∧γ0∧φi is unsatisfiable, then
the possibility can be removed from P , as it corresponds to no
ground state. In our procedure, we discard such possibilities
whenever a transition is taken. C

When computing the mgu between messages or solving
constraints with the lazy intruder rules, we may deal with
substitutions that contain both privacy and intruder variables.
However, it is important to remember that the instantiation of
privacy variables does not depend on the intruder, it is actually
the goal of the intruder to learn about the privacy variables.
On the other hand, intruder variables are instantiated according
to the recipes chosen by the intruder. Thus, we distinguish
substitutions that only substitute privacy variables.

Definition IV.4 (Privacy substitution). Given a substitution σ,
the predicate isPriv is defined as: isPriv(σ) iff dom(σ) ⊆
Vprivacy . Moreover, define isPriv(⊥) = false. 2

The intruder can make experiments on their knowledge
by comparing the outcome of two recipes in every FLIC. It
can happen that a pair of recipes gives the same message in
one FLIC and different messages in another FLIC, allowing
conclusions about the respective φi. In §V, we show how to
extract all these conclusions and obtain a set of symbolic states
in which every experiment either gives the same result in all
FLICs or different results in all FLICs. This is formalized in
the following equivalence relation between recipes:

2In our procedure, we will apply isPriv to mgus, which can be either
substitutions or ⊥.

Definition IV.5. Let S = (α0, β0,P, _) be a symbolic state
with P = {(_, φ1,A1, _, _, _), . . . , (_, φn,An, _, _, _)}. Let r1

and r2 be two recipes and σi = mgu(Ai{| r1 |}
.
= Ai{| r2 |})

(i ∈ {1, . . . , n}). We define r1 ' r2 iff r1 @A r2 or r1 ./ r2,
where

r1 @A r2 iff for every i ∈ {1, . . . , n},
isPriv(σi) and α0 ∧ β0 ∧ φi |= σi

r1 ./ r2 iff for every i ∈ {1, . . . , n}, LI (Ai, σi) = ∅
or (isPriv(σi) and α0 ∧ β0 ∧ φi |= ¬σi)

Intuitively, r1 @A r2 means that the two recipes produce the
same message in every FLIC. Conversely, r1 ./ r2 means that
the two recipes produce different messages in every FLIC,
under any possible instantiation of the variables: either the
unifier depends on intruder variables but the intruder cannot
solve the constraints in any way, or the unifier depends only
on privacy variables and its instances are already excluded by
the intruder reasoning.

Example IV.2. Based on Example II.1, suppose that we
reached the following symbolic state containing two possi-
bilities with φ1 ≡ y

.
= yes, φ2 ≡ y 6

.
= yes ∧ x 6 .= a and

A1 = +R 7→ N.−l 7→ crypt(pk(x), pair(yes, N))

A2 = +R 7→ N.−l 7→ crypt(pk(x), no)

Here we again assume non-randomized encryption for the sake
of the example. Then we have l ./ crypt(pk(a), no), because
in A1 there is no unifier and in A2 the unifier [x 7→ a] is
excluded by φ2. C

We define well-formed symbolic states, where in particular
what has been checked cannot distinguish the possibilities.

Definition IV.6 (Well-formed symbolic state). Let S =
(α0, β0,P,Checked) be a symbolic state, with the possibilities
P = {(_, φ1,A1,X1, α1, _), . . . , (_, φn,An,Xn, αn, _)}. We
say that S is well-formed iff
• the φi are such that |= ¬(φi ∧ φj) for i 6= j, fv(φi) ⊆

fv(α0) ∪ fv(β0) and α0 ∧ β0 |=
∨n
i=1 φi;

• the Ai are simple FLICs with the same labels and same
recipe variables, occurring in the same order;

• the Xi are consistent (the disequalities can be satisfied);
• the αi are such that fv(αi) ⊆ fv(α0) and α0 ∧β0 ∧ γ0 ∧
φi |= αi; and

• for every (l, r) ∈ Checked , we have l ' r.
Recipe variables can only occur in the FLICs Ai. Since
dom(A1) = · · · = dom(An), we may write dom(S) for the
domain of the symbolic state.

The initially empty set Checked keeps track of which
experiments the intruder has performed (cf. §V) and well-
formedness requires that these experiments indeed no longer
distinguish the possibilities. We now define a set of experi-
ments Pairs(S) that will be relevant: for every label l in the
state and every FLIC A, we try any other way to construct
A{| l |} (except l). To that end, we use the lazy intruder to solve

the constraint A.+R 7→ A{| l |} for a fresh recipe variable R.
For each solution ρ, the experiment is the pair (l, ρ(R)):

Definition IV.7 (Pairs and normal symbolic state). Let S =
(_, _,P,Checked) be a symbolic state. The set of pairs of
recipes to compare in S is

Pairs(S) = {(l, ρ(R)) | l ∈ dom(S), (_, _,A, _, _, _) ∈ P,
ρ ∈ LI (A.+R 7→ A{| l |}, ε), ρ(R) 6= l}
\ Checked

We say that S is normal iff S is finished and Pairs(S) = ∅.

In a normal symbolic state, there are no more pairs of
recipes that could distinguish the possibilities (they have all
been checked). Thus, given a ground choice of recipes, all the
concrete instantiations of frames are statically equivalent.

Lemma IV.1. Let S = (α0, β0, _, _) be a normal symbolic
state, where the possibilities have conditions φ1, . . . , φn and
FLICs A1, . . . ,An. Let S ∈ [[S]], ρ0 be the ground choice of
recipes defining S and concr be the concrete frame in S. Let
θ |= α0 ∧ β0 ∧ φi for some i ∈ {1, . . . , n} and concr ′ =
θ(ρ0(Ai)). Then concr ∼ concr ′.

The idea is now that in a normal symbolic state, the FLICs
do not contain any more insights for the intruder, and all
remaining violations of (α, β)-privacy can only result from
any other information β0 that the intruder has gathered. We
thus define that a symbolic state is consistent iff β0 cannot
lead to violations either:

Definition IV.8 (Consistent symbolic state). We say that a
finished symbolic state S is consistent iff (α, β0)-privacy holds
for every (α, β0, _, _) ∈ [[S]].

Remark. By construction, β0 can only contain symbols in Σ0.
Even though [[S]] is infinite, we need to consider only finitely
many (α, β0) pairs. This is because the corresponding α and
β0 in S do not contain intruder variables and we only need
to resolve the meta-notation if present. For truth γ, we also
have only to consider finitely many instances of the privacy
variables (as they range over finite domains). For each α and
β0, the Σ0-models are computable as we show in Appendix C.
While that algorithm is based on an enumeration of models as
a simple means to prove we are in a decidable fragment, our
prototype tool uses the SMT solver cvc5 to check consistency
more efficiently. C

Example IV.3. Let us consider again Example II.1, where for
now we assume that encryption is not randomized. Let S =
(α0, β0,P, ∅) be the symbolic state such that:

α0 ≡ x ∈ Agent ∧ y ∈ {yes, no}
β0 ≡ y

.
= yes ∨ y 6 .= yes

P = {(0, y .
= yes,A1, true, true, []),

(0, y 6 .= yes,A2, true, true, [])}
A1 = +R 7→ N.−l 7→ crypt(pk(x), pair(yes, N))

A2 = +R 7→ N.−l 7→ crypt(pk(x), no)

Since there is no release in either possibility, we have that
S is consistent iff (α0, β0)-privacy holds, i.e., iff for every
I |= x ∈ Agent ∧ y ∈ {yes, no}, also I |= y

.
= yes ∨ y 6 .= yes.

This clearly holds, so S is consistent.

Note that if the intruder makes the experiment, e.g., of
comparing l and crypt(pk(a), no) and considers the states
where the recipes produce different messages, we would have
y 6 .= yes ∧ x 6 .= a for the second possibility and the symbolic
state would then not be consistent (same payload but the new
β0 rules out the model [x 7→ a, y 7→ no]). C

In a symbolic state that is both normal and consistent, we
can combine the two properties to define, for each ground
state in the semantics and model of the payload, a model of
the full β and not just β0, using the static equivalence between
concrete frames. Thus, to verify whether a normal symbolic
state satisfies privacy, it suffices to verify consistency.

Theorem IV.2. Let S be a normal symbolic state. Then S
satisfies privacy iff S is consistent.

V. THE INTRUDER EXPERIMENTS

An intruder experiment is to compare pairs of recipes
and the messages they produce in every frame: in a ground
state, the intruder can check whether two messages are equal
in the frame concr . In a symbolic state, each possibility
considered by the intruder contains a different simple FLIC.
When doing the comparison on the FLICs, the intruder may
find out equalities that must hold (constraints on privacy and
intruder variables) for messages to be equal. The intruder
considers in separate symbolic states the possibilities where
the two concrete messages are equal, and the possibilities
where they are not. The result of such experiments can provide
information about the values of privacy variables. Instead of
comparing two arbitrary recipes, for every message t received,
the intruder can try to compose t in a different way. We
call these experiments compose-checks. We define a reduction
relation � on symbolic states. Similarly to the lazy intruder
rules, the idea is that � is Noetherian, but not confluent, and
a symbolic state that cannot be reduced further is normal.

Definition V.1 (Compose-checks). The relation � is a bi-
nary relation on finished symbolic states. Let S be a sym-
bolic state (_, β0,P,Checked), with the possibilities P =
{(0, φ1,A1,X1, α1, δ1), . . . , (0, φn,An,Xn, αn, δn)}.

Privacy split When the intruder compares the messages
produced by a label l and a recipe r, the messages may
be equal under some unifiers, which depend only on privacy
variables or which require a choice of recipes that has already
been excluded. The formula β0 is updated by considering in
one symbolic state that the messages are equal (l @A r) and
in the other symbolic state that the messages are unequal

(l ./ r).

S � S[β0 ← β0 ∧
n∧
i=1

(
φi ⇒

{
σi if isPriv(σi)

false otherwise

)
P ← {(0, φi ∧ σi,Ai,Xi, αi, δi) |

i ∈ {1, . . . , n}, isPriv(σi)}
Checked ← Checked ∪ {(l, r)}]

S � S[β0 ← β0 ∧
n∧
i=1

(
φi ⇒

{
¬σi if isPriv(σi)

true otherwise

)
P ← {(0, φi ∧ ¬σi,Ai,Xi, αi, δi) |

i ∈ {1, . . . , n}, isPriv(σi)}
∪ {(0, φi,Ai,Xi, αi, δi) |
i ∈ {1, . . . , n}, not isPriv(σi)}

Checked ← Checked ∪ {(l, r)}]

if (l, r) ∈ Pairs(S) and for every i ∈ {1, . . . , n}, isPriv(σi)
or LI (Ai, σi) = ∅, where σi = mgu(Ai{| l |}

.
= Ai{| r |}).

Recipe split When the intruder compares the messages
produced by a label l and a recipe r, the messages may be
equal under some unifiers, which at least in one FLIC depend
on intruder variables. Such a unifier makes one FLIC non-
simple. For each lazy intruder result, there is one symbolic
state in which the intruder takes a choice of recipes ρ and
the whole symbolic state is updated accordingly. Additionally,
there is one symbolic state in which the intruder chooses
something else for the recipes so one unifier is excluded.

S � ρ1(S), . . . ,S � ρk(S),S � S[Xi ← Xi ∧ ¬σi]

if (l, r) ∈ Pairs(S) and there exists i ∈ {1, . . . , n} such
that not isPriv(σi) and LI (Ai, σi) = {ρ1, . . . , ρk}, where
σi = mgu(Ai{| l |}

.
= Ai{| r |}).

Example V.1. The symbolic state S from Example IV.3 is not
normal since, e.g., (l, crypt(pk(a), no)) ∈ Pairs(S).

We can perform a compose-check, in this case by ap-
plying the privacy split rule. In A1 we have to unify
crypt(pk(x), pair(yes, N)) and crypt(pk(a), no), which is not
possible. In A2 we have to unify crypt(pk(x), no) and
crypt(pk(a), no), which gives the mgu σ = [x 7→ a].

Then we get two symbolic states S1 and S2, which have
the same α0 as S but we update β0 and P . Moreover, in both
S1 and S2 we have Checked = {(l, crypt(pk(a), no))}.

S1 β0 ≡ (y
.
= yes ∨ y 6 .= yes) ∧ (y

.
= yes⇒ false)

∧ (y 6 .= yes⇒ x
.
= a)

P = {(0, y 6 .= yes ∧ x .
= a,A2, true, true, [])}

S2 β0 ≡ (y
.
= yes ∨ y 6 .= yes) ∧ (y

.
= yes⇒ true)

∧ (y 6 .= yes⇒ x 6 .= a)

P = {(0, y .
= yes,A1, true, true, []),

(0, y 6 .= yes ∧ x 6 .= a,A2, true, true, [])} C

Using the compose-checks, we can transform a symbolic
state into a set of normal symbolic states, since by definition a

symbolic state is normal when there are no more pairs to com-
pare. Moreover, the compose-checks preserve the semantics of
symbolic states by partitioning the ground states represented.

Theorem V.1 (Compose-check correctness). Let S be a fin-
ished symbolic state, (l, r) ∈ Pairs(S) and {S1, . . . ,Sn} be
the symbolic states after one rule application given the pair
(l, r). Then [[S]] =

⊎n
i=1[[Si]], where

⊎
denotes the disjoint

union. Moreover, there is a finite number of S ′ such that
S �∗ S ′ and S ′ is normal.

VI. PUTTING IT ALL TOGETHER

We have so far just looked at a given symbolic state, how
the intruder can solve constraints and make experiments on the
FLICs — and that without destructors and algebraic properties.
However, all important building blocks of the approach are
now in place and we just have to use them.

We now first briefly summarize how all the rules defining
the transitions from §II can be adapted to our symbolic
representation. This gives us a decision procedure for a very
restricted intruder model: where the intruder has no access to
destructors. As a second step we then lift the entire approach
to an intruder model with a destructor theory. This is quite
economical as we do not have to integrate the destructor
reasoning into the constraint solving and experiments.

We outline here only the most important points of the
adaptation of the symbolic execution rules. The details are
found in Appendix A. Let us follow the running example
again. The non-deterministic choice is quite simple: instead
of splitting into one successor state for each value in the
domain, all these are handled in one symbolic state where
we only add the domain constraint to α0 or β0, respectively.
For a receiving step rcv(X), recall that the ground model has
here an infinite branching over all the recipes that the intruder
could use. This is the very reason for introducing the FLICs in
the symbolic model: we simply choose a fresh recipe variable
R and augment every FLIC with +R 7→ X , saying that the
intruder can choose any recipe R (over the labels of the FLIC
so far) to form the input message X .

For conditions, we do not treat try as syntactic sugar in
the symbolic approach. Consider a symbolic state S where
one possibility has process try X

.
= d(t1, t2) in P1 catch P2,

condition φ, and FLIC A. We define below the precise class
algebraic theories we can support, but for now it suffices that
there is only one rule for the destructor d, say d(s1, s2)→ s3

where s3 is a proper subterm of s2 and let all variables in
the si be renamed apart from the ti and X . We compute the
most general unifier σ for s1

.
= t1 ∧ s2

.
= t2 ∧ s3

.
= X and

use the lazy intruder to solve FLIC A for it: LI (A, σ) =
{ρ1, . . . , ρk}. Then we proceed with the following symbolic
states S ′,S1, . . . ,Sk, where S ′ is the symbolic state that
results from replacing the try process with P2 and adding
the disequality ∀Ȳ .¬σ where Ȳ are the intruder variables
not bound by A. This represents all grounds states where
the intruder chose to send something for which the destructor
would definitely fail. The other symbolic states Si result from

applying the choice of recipes ρi to S, and then resolving
the try as follows. With ρi the intruder has chosen messages
that have the right structure for the destructor to succeed, but
it may still depend on the privacy variables in general. For
instance if the destructor is asymmetric description with key
inv(pk(a)) and the intruder chooses a message encrypted with
pk(x), this succeeds iff x .

= a. Let σ0 be the substitution on
privacy variables under which the destructor works. We can
replace the possibility in question by the following two: one
where we set condition φ ∧ σ0 and go to process P1; and
one where we set condition φ ∧ ¬σ0 and go to process P2.
The if-then-else conditional is handled in a very similar way,
obtaining a most general unifier σ under which the condition
is true. (A condition composed with negation and disjunction
can be first broken down into digestible pieces.) When the
condition is a relation applied to some terms, the rule is the
same as before: we simply split on whether the relation holds.

For releasing α information, recall that we have an αi in
each possibility that we can augment with the formula re-
leased. The rules for sending and 0 process require no changes.
When all symbolic executions have terminated, we shall check
whether the reached symbolic state satisfies privacy. For this,
we apply the normalization procedure, i.e., perform all intruder
experiments, and check consistency. Privacy is violated in the
given symbolic state iff that check fails.

A. Lifting to Algebraic Properties

The above gives us a decision procedure for (α, β)-privacy
(under a bound k on the number of transitions) as long as
the intruder has no access to destructors. Note that transac-
tions can apply destructors already. This allows for a very
convenient and economical way to extend the intruder model
with destructors as well without painfully extending all the
above machinery to destructors: we define a set of special
transactions called destructor oracles, one for each destructor.
They receive a term and decryption key candidate, and send
back the result of applying the destructor unless it fails. Note
that these rules do not count towards the bound on the number
of transitions, but rather we apply them to a reached symbolic
state until destructors yield no further results.

1) The Supported Algebraic Theories: We have given in
Fig. 1 a concrete example theory, but our result can be quite
easily used for many similar theories. For instance, many
modelers prefer for asymmetric cryptography that private keys
are defined as atomic constants and the corresponding public
key is obtained by a public function pub (so one can do
without private functions). We like, in contrast, to start with
public keys and have a private function inv to obtain the
respective public key. This allows us to define a public function
from agent names to public keys, which can be convenient in
reasoning about privacy when the public-key infrastructure is
fixed. Similarly, one may want to define further functions, in
particular transparent functions like pair, i.e., functions that de-
scribe message serialization and where the intruder can extract
every subterm. Finally, in some cases it is convenient to model
some private extractor functions when we are dealing with

messages where the recipient has to perform a small guessing
attack. For instance, in a protocol like Basic Hash [22] (found
also in our examples basic_hash.nn) the reader actually
needs to try out every shared key with a tag to find out which
tag it is. Rather than describing transitions that iterate over all
tags and try to decrypt, it is convenient to model a private
extract function that “magically” extracts the name of the
tag, if the message is of the correct form, and returns false
otherwise. This extraction must be a private function since
the intruder should not be able to see this unless they know
the respective shared keys; if they do, then the experiments
in our method automatically allow the intruder to perform the
guessing attack.

We thus distinguish three kinds of algebraic properties of
destructors that can be used arbitrarily in our approach:

Definition VI.1 (Algebraic theory). A constructor/destructor
rule is a rewrite rule of one of the following forms:
• Decryption: d(k, c(k′, X1, . . . , Xn)) → Xi where d is

a destructor symbol, c is a constructor symbol, i ∈
{1, . . . , n}, fv(k) = fv(k′) and the Xi are variables.

• Transparency: di(c(X1, . . . , Xn))→ Xi where the di are
destructors and c is a constructor c of arity n. We then
say that c is transparent.

• Private extractors: d(c(t1, . . . , tn)) → t0 where d is a
private destructor, c is a constructor and t0 is a subterm
of one of the ti.

Let E be a set of such rules, where we require that every
destructor d occurs in exactly one rule of E and E forms a
convergent term-rewriting system. Moreover, each constructor
c cannot occur both in decryption and transparency rules.

Define ≈ to be the least congruence relation on ground
terms such that

d(k, t) ≈

ti if t ≈ c(k′, t1, . . . , tn) and for some σ,

(d(k, c(k′, t1, . . . , tn))→ ti) ∈ σ(E)

ff otherwise

and for unary destructors the definition is the same but k
is omitted. Moreover, we require for every decryption rule
d(k, c(k′, X1, . . . , Xn)) → Xi that k ≈ f(k′) or k′ ≈ f(k)
for some public function f .

Remark. The requirement k ≈ f(k′) or k′ ≈ f(k) for
some public f means that, given the decryption key k one
can derive the encryption key k′, or the other way around.
In particular, in most asymmetric encryption schemes, the
public key can be derived from the private key; for signatures
the private key takes the role of the “encryption key”. This
requirement forces us to define in our example theory the rule
pubk(inv(k))→ k. Suppose that we omitted this rule, denying
the intruder to derive the public key to a given private key.
Suppose further that the intruder has received two messages
l1 7→ inv(pk(x)) and l2 7→ pk(y) and is wondering whether
maybe x .

= y. Then they could make the experiment whether
dcrypt(l1, crypt(l2,m, r)) ≈ ff and this would be the case iff
x 6 .= y. For our method, we want however to ensure that the

intruder never needs to decrypt messages that they encrypted
themselves. In the example, with the public-key extraction
rule, the intruder can derive pubk(inv(pk(x))) ≈ pk(x) and
now directly compare this with l2. The requirement allows
us to show that the intruder cannot learn anything new from
decrypting terms that they have encrypted themselves. C

Observe that every ground term t is equivalent to a unique
destructor-free ground term t0 (that we call the ≈-normal
form) and that can be computed by applying a rewrite rule,
when possible, to an inner-most destructor 3 in t and replacing
by ff if no rewrite rule is applicable, and repeating this until
all destructors are eliminated.

2) Destructor Oracles: The idea is that transactions can
already apply destructors and we can thus model oracles
that provide decryption services for the intruder, namely the
intruder has to provide a term to decrypt and the proposed
decryption key and the oracle gives back the result of apply-
ing the destructor. More formally, given any decryption rule
(d(k, c(X1, . . . , Xn))→ Xi) ∈ E, we define the transaction

rcv(X).rcv(Y).try Z
.
= d(X,Y) in snd(Z).snd(X).0 catch 0

and call it the destructor oracle for said rewrite rule. For a
transparent function of arity n, there is no need for a key and
for each i ∈ {1, . . . , n}, the ith subterm can be retrieved with
destructor di, so we define one oracle per transparent function
(returning all subterms) with the following transaction:

rcv(Y).try Z1
.
= d1(Y) in . . . try Zn

.
= dn(Y) in

snd(Z1). · · · .snd(Zn) catch 0 . . . catch 0

Finally, private extractors are not available to the intruder,
anyway.

Obviously, such transactions are redundant if the intruder
has access to the destructors and also it is sound to add such
transactions. Also redundant is the output snd(X), because
X is already an input, but this ensures that different ways of
composing the key will be considered by our compose-checks.

The reader may wonder why we do not do the same also for
constructors, e.g., rcv(X1). · · · .rcv(Xn).snd(c(X1, . . . , Xn)),
so we could use an intruder who neither encrypts nor decrypts
and just uses oracles for both jobs. The reason is that construc-
tors give rise to an infinite set of terms that can be generated
and it is difficult to limit that—this is why we use the lazy
intruder technique as a way to finitely represent the infinitely
many choices in a finite and yet complete way. For destructors
on the other hand, we do not have the same problem since it is
limited what we can achieve here. In particular there is no need
for the intruder to destruct terms that they have constructed
themselves, thus allowing us to limit the use of destructors,
respectively the destructor oracle rules, in a simple way.

3Here by the expression “inner-most” we mean that no proper subterm has a
destructor. This “call by value” reduction strategy is necessary as the following
example shows: dscrypt(dscrypt(k, c), scrypt(dscrypt(k, d), s, r)) ≈ s and
it is not equivalent to ff (which an “outer-most” or “call by name” strategy
would produce), because scrypt(dscrypt(k, d), s, r) ≈ scrypt(ff, s, r) ≈
scrypt(scrypt(k, c), s, r) and thus the outer-most destructor must result in s
according to Definition VI.1. Also observe that at most one rewrite rule can
be applied to an inner-most destructor subterm of t since E is convergent.

3) Term Marking and Analysis Strategy: In general the
oracle rules are applicable without boundary. We use a special
strategy in which to apply them that does not lead into non-
termination, but covers all applications that are necessary for
any attack. Note also that the application of oracle rules does
not count towards the bound on the number of transitions.

All received terms and subterms in a FLIC shall be marked
with one of three possible markings: ? for terms that may
be decrypted but have not been; + for terms that cannot be
decrypted at the given intruder knowledge for any instance of
the variables; and X for terms that either have already been
decrypted or have been composed by the intruder himself (so
the intruder knows already the subterms that may result from
a decryption). We call a symbolic state analyzed if it does not
contain any ?-marked terms anymore.

Definition VI.2 (Term marking). We introduce first a marking
for all terms that the intruder receives in a FLIC (i.e., that a
label maps to) and their subterms. The default initial marking
is ?, representing a term that can potentially be decomposed
using the destructor oracles. The exceptions are privacy and
intruder variables, as well as functions that do not have a
public destructor; all such terms (and subterms if they have)
are marked with X.

We keep the marks throughout the state transition system,
where marks can change according to the analysis strategy ex-
plained below. In particular, when a variable gets instantiated,
the resulting term keeps its X marking.

Besides ? and X, we will also use the marking + which
represents that a term cannot presently be decomposed since
the intruder currently does not know the decryption key, but
may learn it later.

There is a strategy for applying the oracle rules to a given
symbolic state S to obtain a finite set of analyzed symbolic
states S1, . . . ,Sn that are together equivalent to S except
that the FLICs are augmented with the results of decryptions,
which we call shorthands.

Definition VI.3 (Destructor oracle application strategy). Let
S be a normal symbolic state. (Recall that in S all FLICs
are simple, and thus intruder variables represent messages the
intruder composed; and S is normal, i.e., all compose-checks
have been made.)

We now define the following strategy that is applied as long
as there is a label l that maps to a ?-marked term. Let l
be the first label (in the order of the FLICs’ domain) that
maps to a ?-marked term c(t1, . . . , tn) in some FLIC; note
that by construction, it can only be a constructor term. If c is
an encryption and if (d(k, c(t1, . . . , tn)) → ti) ∈ σ(E) is an
appropriate instance of a destructor rule (i.e., the intruder can
decrypt iff they can produce k), then we apply the destructor
oracle for that rule under the specialization that the recipe for
Y (the oracle input for the constructor term) must be the label
l. If c is a transparent function, then we use the appropriate
oracle that applies all its destructors and returns all subterms.

Applying the oracle transaction leads to a finite number of

successor states S1, . . . ,Sm (there is at least one, so m ≥ 1)
that are again normal and have simple FLICs. In each Si the
decryption has either worked in every FLIC, or failed in every
FLIC. We now update the marks in the Si as follows.

If Si is a state where decryption has failed in every FLIC,
assuming that c is the constructor for which we had attempted
the destructor oracle rule, then in every FLIC where l 7→
c(t1, . . . , tn) that is marked ?, we change to mark + because
it is currently not decipherable. If it was already marked X,
we do not change the label. (Note that in some FLIC, l may
map to a term with a different constructor c′; if that term is
marked ?, it maintains this marking, so that one of the next
analysis steps will be to check if the respective destructor for
c′ can be applied.)

In an Si where decryption has worked, we update and
introduce markings in each FLIC as follows. If it was a
decryption rule, and thus in a given FLIC, l maps to some
term c(k′, t1, . . . , tn) and the result of the analysis is bound to
a new label l′ 7→ ti (for some i ∈ {1, . . . , n}); the decryption
key is bound to new label l′′ 7→ k. If mi is the mark of ti in l,
then the new occurrence of ti at l′ shall also be marked with
mi. In turn, c(k′, t1, . . . , tn) are now all marked X, because
they are fully analyzed. Similarly the key term l′′ 7→ k and
all its subterms receive the X mark, because they have been
produced by the intruder already (and are thus taken from
another label that is already analyzed, or composed by the
intruder and thus not interesting for decryption). All labels
that were marked + are changed with marking ?, because the
newly analyzed term may allow for some decryption that was
impossible before. If the destructor is not a decryption but a
transparency rule, the marking is similar for the new subterms.

We repeat this process of attempting to decrypt the first ?-
marked term until there are no more ?-marks. A symbolic state
is called analyzed if it contains no more ?-marked terms.

We also call a label l in a symbolic state S a shorthand,
if there exists a recipe r over labels before l such that
A{| l |} ≈ A{| r |} for every FLIC A in S . The destructor oracle
application strategy augments FLICs only by shorthands and
thus does not change what is derivable for an intruder who
can decompose.

Theorem VI.1 (Analysis correctness). For a symbolic state S,
the destructor oracle application strategy produces in finitely
many steps a set {S1, . . . ,Sn} of symbolic states that are
analyzed. Further, for every ground state S ∈ [[S]] there exists
S′ ∈ [[Si]], for some i ∈ {1, . . . , n}, such that S and S′ are
equivalent except that the frames in S′ may contain further
shorthands; and vice versa, for every S′ ∈ [[Si]] there exists
S ∈ [[S]] such that S′ is equivalent to S except for shorthands.

For instance in the symbolic state reached after executing
the transaction from Example II.1, there is one FLIC that con-
tains a received message −l 7→ crypt(pk(x), pair(yes, N), r)
(marked ?) as well as −l0 7→ inv(pk(i)), then the strategy will
apply the oracle rule for asymmetric decryption for label l,
and this gives two states S1 where for this possibility we unify

x
.
= i and the intruder has a new label −l1 7→ pair(yes, N)

and S2 where we have x 6 .= i and the intruder cannot decrypt
l (given the intruder knows no other private keys inv(pk(·))).
The encrypted message at label l is now marked X in S1 and
+ in S2. In analyzed states, the intruder does not need any
destructors anymore:

Lemma VI.2. Let S be a normal analyzed state, S ∈ [[S]]
and r be any recipe over the domain of S. Then there is a
destructor-free recipe r′ such that struct{| r |} ≈ struct{| r′ |}
in every frame struct of S.

Note that we defined that a state is normal with respect to
intruder experiments performed with destructor-free recipes.
We now allow intruder experiments that contain destructors:

Lemma VI.3. Let S be an analyzed state and normal w.r.t.
destructor-free recipes. Then it is also normal w.r.t. arbitrary
recipes.

We can now conclude the correctness of our decision
procedure. All the proofs are in Appendix B. Note that we
need a bound on the number of transitions, and this bound
is restricting the number of transactions that are executed.
All “internal” transitions taken by our compose-checks and
analysis steps do not count towards that bound.

Theorem VI.4 (Procedure correctness). Given a protocol
specification for (α, β)-privacy, a bound on the number of
transitions and an algebraic theory allowed by Definition VI.1,
our decision procedure is sound, complete and terminating.

VII. TOOL SUPPORT

We have developed a prototype tool implementing our
decision procedure (available with the extended version [23]).
The tool is a proof-of-concept showing that automation for
(α, β)-privacy is achievable and practical. The user must
provide as input the protocol specification, consisting of the
transactions that can be executed, and a bound on the number
of transactions to execute. For the cryptographic operators,
we make available by default primitives for asymmetric en-
cryption/decryption, symmetric encryption/decryption, signa-
tures and pairing (cf. Fig. 1). The user can define custom
operators with the restriction to constructor/destructor theories
(cf. Definition VI.1). We have also implemented an interactive
running mode (the default is automatic, i.e., exploring of all
reachable states) in which the user is prompted whenever there
are multiple successor states, so that one can manually explore
the symbolic transition system.

In case there is a privacy violation, the tool provides an
attack trace that includes the sequence of atomic transactions
executed and steps taken by the intruder (i.e., the recipes they
have chosen) to reach an attack state, as well as a countermodel
proving that the privacy goals in that state do not hold, i.e.,
a witness that the intruder has learned more in that state than
what is allowed by the payload.

As case studies, we have focused on unlinkability goals:
for the running example, we get a violation in presence of a

corrupted agent. When permitting that in the corrupted case
the intruder can learn the identity, the tool discovers another
problem, namely that the intruder now also learns in the
uncorrupted case that the involved agent is not corrupted.
When releasing also that information, no more violations are
found. This illustrates how the tool can help to discover all
private information that is leaked, and thus either fix the
protocol or permit that leak, and then finally verify that no
additional information is leaked. We plan to strengthen the
tool support further to make this exploration easier.

We also applied our approach to the Basic Hash [24] and
the OSK [25] protocols, where OSK is particularly challenging
as a stateful protocol. We have verified that the Basic Hash
protocol satisfies unlinkability, but fails to provide forward
privacy [22]. For the OSK protocol, we have modeled two
variants where, respectively, no de-synchronization and one
step de-synchronization is tolerated. For both versions the tool
finds the known linkability flaws [26].

As further benchmarks we use the formalization in (α, β)-
privacy of several variants of the BAC protocol by the
ICAO [27] and the private authentication protocol by Abadi
and Fournet [28] (denoted AF for short) that is found in [29].
For BAC, the tool finds the known problems in some imple-
mentations [30], [31], [32].

Table II gives an overview of the results of our tool. Finding
a privacy violation is usually fast, because the tool stops as
soon as it finds one without exploring the rest of the transition
system. Most protocols take a few seconds to analyze, but
when incrementing the bound on the number of transitions we
can notice a steep increase in the verification time. Indeed,
in our model, transactions can always be executed so there
is in general a large number of possible interleavings. The
tool seems thus to be limited by the substantial size of
the search space, like earlier tools for deciding equivalence
(APTE [10]). In our decision procedure, we are not deciding
static equivalence between frames, but the experiments made
by the intruder to try and distinguish the different possibilities
seem to have a comparable complexity. For unlinkability
goals, in particular, our tool and others (for bounded sessions)
essentially provide similar privacy guarantees. We share the
challenges and techniques such as symbolic representation of
constraints for the unbounded intruder. Thus, we believe that
optimizations implemented in tools such as DeepSec [33], e.g.,
forms of symmetries and partial order reductions, could be
adapted to our decision procedure.

VIII. RELATED AND FUTURE WORK

It is a striking parallel between (α, β)-privacy and
equivalence-based privacy models that the vast amount of
possibilities leads to very high complexity for procedures, see,
e.g., [16]. In equivalence-based approaches, the underlying
problem is the static equivalence of (concrete) frames, rep-
resenting two possible intruder knowledges. In (α, β)-privacy,
we have instead the multi message-analysis problem: there is
just one concrete frame concr , the observed messages, and
one or more struct i that result from a symbolic execution of

TABLE II
EVALUATION OF THE TOOL

Protocol Bound Result Time

Runex 2 0.35s
Runex (fix attempt) 2 0.42s
Runex (fixed) 2 0.45s

Basic Hash 4 1.28s
Basic Hash (compromised tag) 2 0.13s

OSK (no desynchronization) 3 0.21s
OSK (1 desynchronization step) 4 0.89s

BAC (different error messages) 3 0.14s
BAC (same error message) 4 0.62s
BAC (parallel) 4 0.80s
BAC (sequential) 4 0.82s

AF0 2 0.98s
AF0 (fixed) 2 3.14s
AF0 (fixed) 3 3min52s
AF 2 5.21s
AF 3 8min41s

= No violation, = Violation
Machine used: laptop with i7-4720HQ @ 2.60GHz, 8GB RAM
GHC 9.6.2, cvc5 1.0.8

the transactions by the intruder, where the privacy variables are
not instantiated. Each possibility has a corresponding condition
φi, exactly one of which is actually true, and the intruder
knows that concr is an instance of the corresponding struct i,
i.e., under the true instance of the privacy variables, concr ∼
struct i for the true φi. Thus, evaluating the static equivalence
can exclude several instantiations of privacy variables (even
if there is just one struct) or rule out an entire possibility
φi. The methods for solving these two problems bear many
similarities, in particular one essentially in both cases looks
for a pair of recipes that distinguishes the frames, i.e., the
experiments that the intruder can do on their knowledge.

Like many other tools for a bounded number of sessions
such as APTE [10] and DeepSec [6], we also use the sym-
bolic representation of the lazy intruder, using variables for
messages sent by the intruder that are instantiated only in a
demand driven way when solving intruder constraints, turning
frames into FLICs. This makes the frame distinction problems
a magnitude harder (see for instance [34]). In recipes we
have to also take into account variables that represent what
the intruder has sent earlier and the actual choice may allow
for different experiments now. We tackle this problem by first
considering a model where the intruder cannot use destructors.
It suffices then to check only if any message in any struct i
can be composed in a different way, which in turn can be
solved with intruder constraint solving. This is the idea behind
the notion of a normal state, i.e., where all said experiments
have been done, and we can thus check if the results of the
experiments exclude any model of α.

What makes the handling of destructors relatively easy is
our requirement that all destructors yield a subterm or ff,
which the intruder and honest agents can see. Thus we have
no problem with “garbage terms” like decryption of a nonce.

This allows us to show that it is sufficient that the intruder has
applied destructors as far as possible to their knowledge using
the oracles — the notion of an analyzed knowledge: for any
recipe that contains destructors, there is an equivalent recipe
that uses the result of a destructor oracle.

One may wonder if a procedure for an unbounded number
of steps is possible. If we look at the equivalence-based ap-
proaches, it seems the best option for this is the notion of diff-
equivalence [16], [8] as used in ProVerif [4] and Tamarin [15].
Roughly speaking, diff-equivalence sidesteps the problem of
the intruder’s uncertainty in branching by requiring that the
conditions are either true in both executions or both false. This
seems to correspond to the restriction in (α, β)-privacy that the
intruder can always observe whether a condition was true or
false, and we thus have just one struct i in each state. We are
currently investigating whether this can allow for a unbounded-
step procedure similar to ProVerif for (α, β)-privacy. Again it
is a striking similarity with equivalence-based approaches that
one may either need a tight bound on the number of transitions
or substantial restrictions on the processes one can model.

The main difference with other tools is in the properties
being verified. Our tool looks at the reachable states from
an (α, β)-privacy specification of a protocol, and the privacy
goals are constructed by the tool when exploring the transition
system. Instead of verifying whether a number of properties
hold, we thus verify whether the intruder is ever able to
learn more than the information allowed (payload α). One
advantage is that, in case of successful verification, we ensure
that the intruder cannot learn anything more (about the privacy
variables) than what the protocol is intentionally releasing.
For some protocols such as AF, we believe that a charac-
terization of the privacy goals with (α, β)-privacy can give a
better understanding of which guarantees the protocol actually
provides, as we do not see an obvious way of expressing all
the privacy goals with equivalences between processes.

REFERENCES

[1] S. Mödersheim and L. Viganò, “Alpha-beta privacy,” ACM Trans. Priv.
Secur., vol. 22, no. 1, pp. 1–35, 2019.

[2] S. Gondron, S. Mödersheim, and L. Viganò, “Privacy as reachability,”
in CSF 2022. IEEE, 2022, pp. 130–146.

[3] L. Fernet and S. Mödersheim, “Deciding a fragment of (alpha, beta)-
privacy,” in STM, ser. LNCS, vol. 13075. Springer, 2021, pp. 122–142.

[4] B. Blanchet, “An efficient cryptographic protocol verifier based on
Prolog rules,” in CSFW 2001. IEEE, 2001, pp. 82–96.

[5] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” J Log Algebr Program,
vol. 75, no. 1, pp. 3–51, 2008.

[6] V. Cheval, S. Kremer, and I. Rakotonirina, “DEEPSEC: Deciding
equivalence properties in security protocols theory and practice,” in SP
2018. IEEE, 2018, pp. 529–546.

[7] D. Aparicio-Sánchez, S. Escobar, R. Gutiérrez, and J. Sapiña, “An
optimizing protocol transformation for constructor finite variant theories
in Maude-NPA,” in ESORICS 2020, ser. LNCS, vol. 12309. Springer,
2020, pp. 230–250.

[8] V. Cheval, S. Kremer, and I. Rakotonirina, “The hitchhiker’s guide
to decidability and complexity of equivalence properties in security
protocols,” in Logic, Language, and Security, ser. LNCS. Springer,
2020, vol. 12300, pp. 127–145.

[9] M. Rusinowitch and M. Turuani, “Protocol insecurity with a finite
number of sessions and composed keys is NP-complete,” Theor. Comput.
Sci., vol. 299, no. 1, pp. 451–475, 2003.

[10] V. Cheval, “APTE: An algorithm for proving trace equivalence,” in
TACAS 2014, ser. LNCS, vol. 8413. Springer, 2014, pp. 587–592.

[11] R. Chadha, V. Cheval, Ş. Ciobâcă, and S. Kremer, “Automated verifica-
tion of equivalence properties of cryptographic protocols,” ACM Trans.
Comput. Logic, vol. 17, no. 4, pp. 1–32, 2016.

[12] A. Tiu and J. Dawson, “Automating open bisimulation checking for the
spi calculus,” in CSF. IEEE, 2010, pp. 307–321.

[13] A. Tiu, N. Nguyen, and R. Horne, “SPEC: An equivalence checker for
security protocols,” in APLAS, ser. LNCS, vol. 10017. Springer, 2016,
pp. 87–95.

[14] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, “cvc5:
A versatile and industrial-strength SMT solver,” in TACAS 2022, ser.
LNCS, vol. 13243. Springer, 2022, pp. 415–442.

[15] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN prover
for the symbolic analysis of security protocols,” in CAV 2013, ser. LNCS,
vol. 8044. Springer, 2013, pp. 696–701.

[16] S. Delaune and L. Hirschi, “A survey of symbolic methods for estab-
lishing equivalence-based properties in cryptographic protocols,” J. Log.
Algebraic Methods Program., vol. 87, pp. 127–144, 2017.

[17] V. Cheval and I. Rakotonirina, “Indistinguishability beyond diff-
equivalence in ProVerif,” in CSF 2023. IEEE, 2023, pp. 184–199.

[18] T. Hinrichs and M. Genesereth, “Herbrand logic,” Stanford University,
USA, Tech. Rep. LG-2006-02, 2006. [Online]. Available: http:
//logic.stanford.edu/reports/LG-2006-02.pdf

[19] J. Millen and V. Shmatikov, “Constraint solving for bounded-process
cryptographic protocol analysis,” in CCS. ACM, 2001, pp. 166–175.

[20] D. Basin, S. Mödersheim, and L. Viganò, “OFMC: A symbolic model
checker for security protocols,” Int. J. Inf. Secur., vol. 4, no. 3, pp. 181–
208, 2005.

[21] V. Cheval, H. Comon-Lundh, and S. Delaune, “A procedure for deciding
symbolic equivalence between sets of constraint systems,” Inf Comput,
vol. 255, pp. 94–125, 2017.

[22] M. Brusó, K. Chatzikokolakis, and J. den Hartog, “Formal verification
of privacy for RFID systems,” in CSF 2010. IEEE, 2010, pp. 75–88.

[23] L. Fernet, S. Mödersheim, and L. Viganò, “A decision procedure
for alpha-beta privacy for a bounded number of transitions,” DTU
Compute; KCL Informatics, Tech. Rep., 2023. [Online]. Available:
https://people.compute.dtu.dk/lpkf

[24] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels, “Security
and privacy aspects of low-cost radio frequency identification systems,”
in Security in Pervasive Computing, ser. LNCS, vol. 2802. Springer,
2004, pp. 201–212.

[25] M. Ohkubo, K. Suzuki, and S. Kinoshita, “Cryptographic approach to
“privacy-friendly” tags,” in RFID Privacy Workshop 2003, 2003.

[26] D. Baelde, S. Delaune, and S. Moreau, “A method for proving unlink-
ability of stateful protocols,” in CSF 2020. IEEE, 2020, pp. 169–183.

[27] ICAO, “Machine readable travel documents,” Doc Series, Doc 9303,
https://www.icao.int/publications/pages/publication.aspx?docnum=9303.

[28] M. Abadi and C. Fournet, “Private authentication,” Theor. Comput. Sci.,
vol. 322, no. 3, pp. 427–476, 2004.

[29] L. Fernet and S. Mödersheim, “Private authentication with alpha-
beta-privacy,” in OID 2023, ser. LNI. GI, 2023. [Online]. Available:
https://people.compute.dtu.dk/lpkf

[30] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan, “Analysing unlinkabil-
ity and anonymity using the applied pi calculus,” in CSF 2010. IEEE,
2010, pp. 107–121.

[31] T. Chothia and V. Smirnov, “A traceability attack against e-passports,”
in FC 2010, ser. LNCS, vol. 6052. Springer, 2010, pp. 20–34.

[32] I. Filimonov, R. Horne, S. Mauw, and Z. Smith, “Breaking unlinkability
of the ICAO 9303 standard for e-passports using bisimilarity,” in
ESORICS 2019, ser. LNCS, vol. 11735. Springer, 2019, pp. 577–594.

[33] V. Cheval, S. Kremer, and I. Rakotonirina, “Exploiting symmetries when
proving equivalence properties for security protocols,” in CCS 2019.
ACM, 2019, pp. 905–922.

[34] M. Baudet, “Deciding security of protocols against off-line guessing
attacks,” in CCS. ACM, 2005, pp. 16–25.

APPENDIX

http://logic.stanford.edu/reports/LG-2006-02.pdf
http://logic.stanford.edu/reports/LG-2006-02.pdf
https://people.compute.dtu.dk/lpkf
https://www.icao.int/publications/pages/publication.aspx?docnum=9303
https://people.compute.dtu.dk/lpkf

A. Correctness of the Representation with Symbolic States

The authors of [2] define rules for the symbolic execution
of transactions and explain how to define (α, β)-privacy as
reachability, in a transition system with ground states. We
follow a similar approach but we have two additional layers of
symbolic representation, namely the lumping of several ground
states into symbolic states and the intruder variables for the
lazy intruder. We say that the rules from [2] are working on
“the ground level”, while the adapted rules from this paper are
working on “the symbolic level”.

On the ground level, there is always one possibility that
is marked (underlined in the rules). The marked possibility
corresponds to the concrete execution observed by the intruder.
On the symbolic level, there is no marked possibility because
we actually represent together all different instantiations for
the marked possibility. Our rules work so that each possibility
“could” be the marked one, and which one is marked is defined
in the semantics of the symbolic states.

We now argue that our rules on the symbolic level are cor-
rect w.r.t. the ground level, i.e., the symbolic states generated
by our rules represent the ground states generated by the rules
on the ground level. In the following, we recall the rules on
the ground level and present our version of the rules next to
each other.

We now define how to perform the symbolic execution of
a number of transactions. Whenever an atomic transaction P
is executed, we need to consider what can happen for the
different possibilities in the symbolic state. This is done with
evaluation rules that work out the steps of the processes. Once
all the processes are 0, we have reached a finished symbolic
state. The rules thus generate a transition system representing
all the reachable states of the protocol.

Definition A.1 (Initial symbolic state). Let S = (_, _,P, _)
be a finished symbolic state, P be a transaction process and
σ be a substitution such that σ substitutes the variables in
n1, . . . , nk (from a νn1, . . . , nk.Pr specification) with fresh
and distinct constants from Σ\Σ0 that do not occur elsewhere
in S or P , and such that σ substitutes all other variables
with fresh variables that do not occur elsewhere. The initial
symbolic state for P w.r.t. S and σ is

S[P ← {(σ(P), φ,A,X , α, δ) | (0, φ,A,X , α, δ) ∈ P}]

We write init(P,S) and omit σ to denote an initial symbolic
state, because the point is that all variables are substituted
with fresh and distinct constants or fresh variables, so the
actual values are not relevant.

The definition is the same for ground states, thus we also
write init(P, S) for a state S.

We define the rules by focusing on the set of possibilities
P , which contains the transaction to execute. The rules update
the current (symbolic) state by updating P , and the rest of
the (symbolic) state is not changed unless explicitly stated.
We use the symbol] to denote the disjoint union of sets.
For simplicity, we ignore the redundancy rules defined in [2]

in this paper: the redundant possibilities do not change the
semantics of symbolic states, and we already said that they
are discarded in the procedure.

1) Non-Deterministic Choice: All possibilities have this
choice step at the same time. On the ground level, the variable
x is chosen non-deterministically from the values in the
domain D. There is a transition for every value c ∈ D that
the variable can take:

{(mode x ∈ D.P1, φ1, struct1, δ1), . . . ,

(mode x ∈ D.Pn, φn, structn, δn)}
→ {(P1, φ1, struct1, δ1), . . . , (Pn, φn, structn, δn)}

where γ is augmented with x
.
= c, and if mode = ? (resp.

mode = �) then α (resp. β0) is augmented with x ∈ D.
On the symbolic level, we have a single transition and we

only update α0 or β0 with the formula x ∈ D.

{(mode x ∈ D.P1, φ1,A1,X1, α1, δ1), . . . ,

(mode x ∈ D.Pn, φn,An,Xn, αn, δn)}
⇒ {(P1, φ1,A1,X1, α1, δ1), . . . , (Pn, φn,An,Xn, αn, δn)}

and if mode = ? (resp. mode = �) then α0 (resp. β0) is
augmented with x ∈ D.

The semantics of the symbolic states include all models of
α0 ∧ β0 ∧ γ0 ∧ φi, so we represent all models γ |= x

.
= c for

every c ∈ D (and such that γ is consistent with the rest of the
formulas).

2) Receive: By construction, every possibility starts with
a receive step (with the same variable). On the ground level,
there is a transition for every recipe r that the intruder can
generate, and the variable standing for the message received
is directly substituted with what the recipe produces in each
structural frame.

{(rcv(X).P1, φ1, struct1, δ1), . . . ,

(rcv(X).Pn, φn, structn, δn)}
→ {(P1[X 7→ struct1{| r |}], φ1, struct1, δ1), . . . ,

(Pn[X 7→ structn{| r |}], φn, structn, δn)}

On the symbolic level, we have the lazy intruder represen-
tation. Thus, we have a single transition, where the recipe
and the corresponding message are left as recipe and intruder
variables, respectively.

{(rcv(X).P1, φ1,A1,X1, α1, δ1), . . . ,

(rcv(X).Pn, φn,An,Xn, αn, δn)}
⇒ {(P1, φ1,A1.+R 7→ X,X1, α1, δ1), . . . ,

(Pn, φn,An.+R 7→ X,Xn, αn, δn)}

where R is a fresh recipe variable.
Note that there are several transitions on the symbolic

level, while on the ground level there is just one transition.
However, this is because we have removed the infinite number
of transitions in the receive steps with the lazy intruder.
The intruder variables are not instantiated, unless we need to
consider different values in order to resolve the conditions. The

semantics of the symbolic states include all ground choices
of recipes, so all instantiations for the recipe variable (which
determine the instantiations of the intruder variable in each
structural frame).

3) Cell Read: On the ground level, the memory δ contains
the sequence cell(s1) := t1. · · · .cell(sk) := tk for the given
cell, and the initial value is given with ground context C[·].

{(X := cell(s).P, φ, struct , δ)}] P
→ {(if s .

= s1 then P [X 7→ t1] else

. . .

if s
.
= sk then P [X 7→ tk] else

P [X 7→ C[s]], φ, struct , δ)} ∪ P

On the symbolic level, the rule is the same.

{(X := cell(s).P, φ,A,X , α, δ)}] P
⇒ {(if s .

= s1 then P [X 7→ t1] else

. . .

if s
.
= sk then P [X 7→ tk] else

P [X 7→ C[s]], φ,A,X , α, δ)} ∪ P

4) Cell Write: On the ground level, a memory update is
prepended to the sequence δ.

{(cell(s) := t.P, φ, struct , δ)}] P
→ {(P, φ, struct , cell(s) := t.δ)} ∪ P

On the symbolic level, the rule is the same.

{(cell(s) := t.P, φ,A,X , α, δ)}] P
⇒ {(P, φ,A,X , α, cell(s) := t.δ)} ∪ P

5) Destructor Application: On the ground level, try-catch
is syntactic sugar around if-then-else, so there is only the rule
for conditional statements. On the symbolic level, we handle in
a specific way the destructor applications in try-catch because
of our assumptions that this is the only place in a specification
where destructors are allowed.

This rule is applicable whenever a process is trying to apply
a destructor, e.g., decrypting a message. For every destructor
d, there must be a unique constructor c and a unique rewrite
rule d(k, c(k′, X1, . . . , Xn))→ Xi (for some i ∈ {1, . . . , n}),
and assuming the variables in k, k′ and the Xj have been
renamed with fresh intruder variables. To resolve the destruc-
tor application try X

.
= d(t1, t2), we compute the unifier

σ = mgu(t1
.
= k ∧ t2

.
= c(k′, X1, . . . , Xn) ∧X .

= Xi). The
meaning is that t2 must be of the form c(k′, X1, . . . , Xn) and
t1 must be the corresponding decryption key term, otherwise
the destructor application would yield ff, and X is bound to
the result of the destructor application. If d is actually a unary
destructor for a transparent function, then there are no terms
t1 and k but all the rest is done in the same way.

We would like to split the possibility into two possibilities:
one in which σ holds and one in which it does not. However,
we cannot in general split with φ ∧ σ and φ ∧ ¬σ because σ

may contain intruder variables and we need to reason about
solving the constraints.
• If there is no unifier, i.e., σ = ⊥, then the process simply

goes to the catch branch.

{(try X .
= d(t1, t2) in P1 catch P2, φ,A,X , α, δ)}] P

⇒ {(P2, φ,A,X , α, δ)} ∪ P

• Otherwise, we use the lazy intruder to solve the con-
straints in FLIC A: LI (A, σ) = {ρ1, . . . , ρm}. There
is one transition for every choice of recipes returned,
where the intruder applies ρi to the entire symbolic state.
This resolves the constraints on intruder variables. Let
σ0 be the substitution of privacy variables for which the
decryption succeeds. Then we split into two possibilities:
one with φ ∧ σ0 and we continue with process P1, and
one with φ ∧ ¬σ0 and we continue with process P2.

{(try X .
= d(t1, t2) in P1 catch P2, φ,A,X , α, δ)}] P

⇒ ρi({(P1, φ ∧ σ0,A,X , α, δ),
(P2, φ ∧ ¬σ0,A,X , α, δ)} ∪ P)

Moreover, the intruder can always take a choice of recipes
which is definitely not a solution to the constraints, so we
also have an additional transition where σ is excluded.

{(try X .
= d(t1, t2) in P1 catch P2, φ,A,X , α, δ)}] P

⇒ {(P2, φ,A,X ∧ ∀Ȳ . ¬σ, α, δ)} ∪ P

where Ȳ = ivars(σ) \ ivars(A), i.e., the intruder vari-
ables that are not occurring in the FLIC are universally
quantified when excluding the unifier. The function ivars
gives the intruder variables of a FLIC, i.e., ivars(A) =
vars(A)∩Vintruder ; we extend this function to substitu-
tions.

Example A.1. Executing the transaction Example II.1
leads to a possibility with the process try N

.
=

dcrypt(inv(pk(s)),M) in P0 catch 0 and the FLIC
A = +R 7→ M . Then we use the rewrite rule
dcrypt(inv(X1), crypt(X1, X2, X3)) → X2 and we get σ =
[M 7→ crypt(pk(s), N,X3), X1 7→ pk(s), X2 7→ N]. We have
for instance ρ = [R 7→ crypt(pk(s), R2, R3)] ∈ LI (A, σ),
so the intruder considers one symbolic state where they have
chosen ρ and the unifier does not depend on intruder variables
anymore. In this case, the split leads to one possibility with
process P0 and FLIC A′ = +R2 7→ X2.+R3 7→ X3, i.e.,
the intruder knows that the try succeeds (the other possibility
is deleted immediately because it would have the condition
false). Moreover, there is a symbolic state where we remember
the disequality ∀X1, X2, X3, N. M 6 .= crypt(pk(s), N,X3) ∨
X1 6

.
= pk(s) ∨ X2 6

.
= N , which can be simplified to

∀X3, N. M 6
.
= crypt(pk(a), N,X3). C

6) Conditional Statement: On the ground level, we split a
possibility into two, one for the case that the condition is true
and we go into the then branch, and one for the else branch.
By construction, if the marked possibility is split then there

is only one branch that is consistent with the current truth γ
and it is marked accordingly.

{(if ψ then P1 else P2), φ, struct}] P
→ {(P1, φ ∧ ψ, struct), (P2, φ ∧ ¬ψ, struct)} ∪ P

On the symbolic level, there are two base cases: when the
condition is a relation R(t1, . . . , tn) and when the condition is
an equality s .

= t. For an arbitrary formula, we can eliminate
the negation by swapping the branches and eliminate the
conjunction by nesting conditional statements.

• If the condition is a relation: The possibility is split into
two possibilities, just like on the ground level.

{(if R(t1, . . . , tn) then P1 else P2, φ,A,X , α, δ)}] P
⇒ {(P1, φ ∧R(t1, . . . , tn),A,X , α, δ),

(P2, φ ∧ ¬R(t1, . . . , tn),A,X , α, δ)} ∪ P

Recall that all the ti must be terms using only symbols
from Σ0 and fv(α0) a that point, otherwise we consider
it a specification error.

• If the condition is an equality: We first compute the
unifier σ = mgu(s

.
= t) and then the transitions are

just like for destructor application.

Example A.2. Suppose that there is the possibility (if X
.
=

Y then P1 else P2, φ,A,X , α, δ) in the current symbolic state,
where A = +R1 7→ X.+R2 7→ Y . Then σ = [X 7→ Y]
and the only intruder result is ρ = [R2 7→ R1]. The intruder
considers one symbolic state where they have chosen ρ (all
the FLICs and the rest of the symbolic state is updated
accordingly), and one symbolic state where σ is excluded
for the FLIC A, so we remember that X 6 .= Y in this
possibility. C

We “unfold” the condition until we reach atomic formulas,
by nesting conditional statements or swapping the branches.
This does not change the semantics. When the condition does
not depend on intruder variables, we then split into two pos-
sibilities. However, when the condition introduces constraints
to solve on intruder variables, we have a transition for every
solution to the constraints returned by the lazy intruder. After
applying a choice of recipes that solves the constraints, the
condition does not depend on intruder variables anymore so
we can then split in two possibilities, as on the ground level.
Additionally, we also have one transition corresponding to any
choice of recipes which is not a solution. By correctness of the
lazy intruder, we thus represent all ground choices of recipes.
Therefore, we are simply partitioning the ground choices of
recipes.

7) Send: On the ground level, if the intruder observes that
a message is sent, this rules out all possibilities where the
remaining process is 0. Note that this rule can only be applied
if all possibilities start either with snd(·) or 0; otherwise
another evaluation rule must be applied. For all others, each

struct i is augmented by the message sent in the respective
possibility:

{(snd(t1).P1, φ1, struct1, δ1), . . . ,

(snd(tk).Pk, φk, structk, δk)}] P
→ {(P1, φ1, struct1.l 7→ t1, δ1), . . . ,

(Pk, φk, structk.l 7→ tk, δk)}

where β0 ← β0 ∧
∨k
i=1 φi, l is a fresh label and all the

processes in P must be the 0 process.
On the symbolic level, the rule is the same.

{(snd(t1).P1, φ1,A1,X1, α1, δ1), . . . ,

(snd(tk).Pk, φk,Ak,Xk, αk, δk)}] P
⇒ {(P1, φ1,A1.−l 7→ t1,X1, α1, δ1), . . . ,

(Pk, φk,Ak.−l 7→ tk,Xk, αk, δk)}

where β0 ← β0 ∧
∨k
i=1 φi, l is a fresh label and all the

processes in P must be the 0 process.
8) Release: On the ground level, the formula released by

the marked possibility is added to the payload or the truth
(depending on the mode), and formulas released by other
possibilities are ignored.

{(mode ψ.P, φ, struct)}] P → {(P, φ, struct)} ∪ P

and α← α ∧ ψ if mode = ? or γ ← γ ∧ ψ if mode = �.
On the symbolic level, we have that each possibility could

be the marked one. Therefore, we do not update the common
payload but rather the partial payload attached to the given
possibility.

{(? ψ.P, φ,A,X , α, δ)] P ⇒ {(P, φ,A,X , α ∧ ψ, δ)} ∪ P

The formula released should be consistent with all models
of α0 ∧ β0 ∧ γ0 ∧ φ, i.e., the truths that this possibility
symbolically represents. If that is not the case, it counts as a
privacy violation: it would mean that after the transaction for
some ground state we have a pair (α, β) where the payload
is inconsistent and thus (α, β)-privacy trivially holds. For the
procedure we can either assume that all releases are consistent
or, as an option, we can detect inconsistent releases and give
a warning to the user, because this indicates that something is
wrong in the model.

In the semantics of the symbolic states, we consider all
payloads α0 ∧ [αi]

γ that the intruder can observe so our
rules cover the releases with mode = ?. We do not support
releases with mode = � in γ in this paper. We have not seen
examples of protocols requiring this construct so it is left out
at the moment. However, we could include them if needed,
for instance we could add a component for “partial truth” γi
similarly to the partial payloads, that would be used in the
semantics when defining the models.

9) Terminate: On the ground level, the intruder observes
that the execution has terminated because no messages are

sent, so they can rule out all possibilities that are not termi-
nated.

{(0, φ1, struct1, δ1), . . . , (0, φk, structk, δk)}] P
→ {(0, φ1, struct1, δ1), . . . , (0, φk, structk, δk)}

where every process in P starts with a send step and β0 ←
β0 ∧

∨k
i=1 φi.

On the symbolic level, the rule is the same.

{(0, φ1,A1,X1, α1, δ1), . . . , (0, φk,Ak,Xk, αk, δk)}] P
⇒ {(0, φ1,A1,X1, α1, δ1), . . . , (0, φk,Ak,Xk, αk, δk)}

where every process in P starts with a send step and the rest of
the symbolic state is updated as follows: β0 ← β0 ∧

∨k
i=1 φi.

Note that on the ground level, eventually the marked possi-
bility either sends or terminates and the corresponding rule is
applied. Since other steps are done in different evaluation rules
that must be applied before, the processes that do not send are
actually terminating (nil process). Thus, on the symbolic level
both the send and terminate rules are in general applicable at
the same time.

10) Correctness: Our evaluation rules correspond to in-
ternal transitions for the symbolic execution of transactions,
which is distinct from the overall transition system where
the transactions are atomic. We define −→

P
to be the relation

between an initial ground state of a transaction P and a
finished state, using the relation→ of evaluation rules until all
processes in P have terminated. Then we can define S−→

P
the

set of ground states that are reached by executing the transac-
tion P , i.e., we can talk about one transition corresponding to
the execution of one atomic transaction. Similarly, we define
S=⇒

P
to be the set of symbolic states after the execution of

one atomic transaction:

S−→
P

= {S′ | init(P, S) −→
P

S′}

S=⇒
P

= {S ′ | init(P,S) =⇒
P
S ′}

The symbolic version of the transitions is correct w.r.t. the
transitions that can happen on the ground level.

Proposition A.1 (Reachability correctness). Let S be a fin-
ished symbolic state and P be a transaction process. Let
[[S=⇒

P
]] be the ground states after transitions between symbolic

states, and [[S]]−→
P

be the ground states after transitions
between ground states:

[[S=⇒
P

]] = {S | S ′ ∈ S=⇒
P

and S ∈ [[S ′]]}

[[S]]−→
P

= {S′ | S ∈ [[S]] and S′ ∈ S−→
P
}

Then we have [[S=⇒
P

]] = [[S]]−→
P

.

B. Proofs

In this appendix, we give the proofs of the theorems and
lemmas that we stated in the body of the paper. To this end,
we also prove a number of auxiliary results.

Lemma A.2. Let A be a FLIC, ρ be a choice of recipes
such that dom(ρ)∩ rvars(A) = ∅ and let σ be a substitution
such that dom(σ) ∩ vars(A) = ∅. Let (ρ′,A′, σ′) such that
(ρ,A, σ) (ρ′,A′, σ′). Then for every recipe r, we have
σ′(A{| r |}) = σ′(A′{| ρ′(r) |}).

Proof. For a recipe variable that is changed by the rule
application:
• Unification: A = A1.−l 7→ s.A2.+R 7→ t.A3, A′ =
σ′(A1.−l 7→ s.A2.A3), ρ′(R) = l and σ′ |= s

.
= t so

σ′(A′{| ρ′(R) |}) = σ′(s) = σ′(t) = σ′(A{|R |}).
• Composition: A = A1.+R 7→ f(t1, . . . , tn).A2, A′ =
A1.+R1 7→ t1. · · · .+Rn 7→ tn.A2 and ρ′(R) =
f(R1, . . . , Rn) so A′{| ρ′(R) |} = f(t1, . . . , tm) = t =
A{|R |}.

• Guessing: A = A1.+R 7→ x.A2, A′ = σ′(A1.A2),
ρ′(R) = c and σ′ |= x

.
= c so σ′(A′{| ρ′(R) |}) = σ′(c) =

σ′(x) = σ′(A{|R |}).
• Repetition: A = A1.+R1 7→ X.A2.+R2 7→ X.A3,
A′ = A1.+R1 7→ X.A2.A3 and ρ′(R2) = R1 so
A′{| ρ′(R2) |} = X = A{|R2 |}.

For a recipe variable R that is not changed by the rule
application, we also have σ′(A{|R |}) = σ′(A′{| ρ′(R) |}) and
similarly for labels. For a composed recipe, this holds by
induction on the structure of the recipe.

The next four lemmas prove the soundness, completeness,
correctness and termination of the lazy intruder that we
consider in this paper.

Lemma A.3 (Lazy intruder soundness). Let A be a FLIC, ρ
be a choice of recipes such that dom(ρ)∩rvars(A) = ∅, let σ
be a substitution such that dom(σ)∩vars(A) = ∅, let I |≡ A
such that I |= σ and let ρ0 be a ground choice of recipes such
that ρ0 |= ρ and ρ0 constructs I(A). Let (ρ′,A′, σ′) such that
(ρ,A, σ) (ρ′,A′, σ′), ρ′ represents ρ0 with ρ′0 w.r.t. A and
I, ρ′0 constructs I(A′) and I |= σ′. Then ρ0 constructs I(A).

Proof. We start by showing that ρ′0 constructs I(A). Let R be
a recipe variable such that I(A) = A1.+R 7→ t.A2. First, we
consider the case that R /∈ dom(ρ′). Then I(A′) = A′1.+R 7→
t.A′2 and A′1{| ρ′0(R) |} = t, so A1{| ρ′0(R) |} = t.

Next, we consider the case that R ∈ dom(ρ′). We proceed
by distinguishing which lazy intruder rule has been applied.
• Unification: Then I(A) = A1.−l 7→ t.A2.+R 7→ t.A3

and ρ′0(R) = l so A1{| ρ′0(R) |} = t.
• Composition: Then I(A) = A1.+R 7→
f(t1, . . . , tn).A2, I(A′) = A′1.+R1 7→
t1. · · · .+Rn 7→ tn.A′3 and ρ′0(R) =
f(ρ′0(R1), . . . , ρ′0(Rn)). Therefore A1{| ρ′0(R) |} =
f(I(A′){| ρ′0(R1) |}, . . . , I(A′){| ρ′0(Rn) |}) =
f(t1, . . . , tn) = t.

• Guessing: Then I(A) = A1.+R 7→ c.A2 and ρ′0(R) = c
so A1{| ρ′0(R) |} = c.

• Repetition: Then I(A) = A1.+R
′ 7→ t.A2.+R 7→

t.A3, +R′ 7→ t ∈ I(A′) and ρ′0(R) = ρ′0(R′).
Let A0 = A1.+R

′ 7→ t.A2. Then A0{| ρ′0(R) |} =
I(A′){| ρ′0(R′) |} = t.

We have shown that ρ′0 constructs I(A). Since ρ′ represents ρ0

with ρ′0, for every R ∈ rvars(A), we have I(A){| ρ′0(R) |} =
I(A){| ρ0(R) |}. Thus ρ0 constructs I(A).

Lemma A.4 (Lazy intruder completeness). LetA be a FLIC, ρ
be a choice of recipes such that dom(ρ)∩rvars(A) = ∅, let σ
be a substitution such that dom(σ)∩vars(A) = ∅, let I |≡ A
such that I |= σ and let ρ0 be a ground choice of recipes such
that ρ0 |= ρ and ρ0 constructs I(A). Then either A is simple
or there exists (ρ′,A′, σ′) such that (ρ,A, σ) (ρ′,A′, σ′),
ρ′ represents ρ0 with ρ′0 w.r.t. A and I, ρ′0 constructs I(A′)
and I |= σ′.

Proof. Assume that A is not simple. Let +R 7→ t ∈ A
denote the first non-simple constraint. First, we consider the
case that ρ0(R) ∈ dom(A) and there exists a label l, either
the same label or occurring before ρ0(R), such that A =
A1.−l 7→ s.A2.+R 7→ t.A3 and s, t /∈ V . Then Unification
is applicable, producing (ρ′,A′, σ′) where ρ′ = [R 7→ l]ρ,
A′ = σ′(A1.A2) and σ′ = mgu(σ∧s .

= t). Let ρ′0(R) = l and
ρ′0(R′) = ρ0(R′) for other recipe variables. Then ρ′ represents
ρ0 with ρ′0 w.r.t. A and I, because the only recipe variable in
rvars(A) ∩ dom(ρ′) is R, and either ρ′0(R) = ρ0(R) = l or
ρ′0(R) = l <A ρ0(R). Moreover, since ρ0 constructs I(A), we
have ρ′0 constructs I(A′) and also I(s) = I(t), thus I |= σ′.

Next, we consider the case that t = f(t1, . . . , tn) and either
ρ0(R) = f(r1, . . . , rn) or ρ0(R) ∈ dom(A) but there is
no label l, either the same or occurring before ρ0(R), such
that A{| l |} /∈ V . Then A = A1.+R 7→ f(t1, . . . , tn).A2.
Therefore, Composition is applicable, producing (ρ′,A′, σ′)
where ρ′ = [R 7→ f(R1, . . . , Rn)]ρ, A′ = A1.+R1 7→
t1. · · · .+Rn 7→ tn.A2 and σ′ = σ, where the Ri are fresh
recipe variables. If ρ0(R) = f(r1, . . . , rn), let ρ′0(Ri) = ri
for i ∈ {1, . . . , n} and ρ′0(R′) = ρ0(R′) for other recipe
variables. Otherwise there exists r <A ρ0(R) such that
I(A){| ρ0(r) |} = t and ρ0(r) = f(r1, . . . , rn); we let
ρ′0(Ri) = ri for i ∈ {1, . . . , n} and ρ′0(R′) = ρ0(R′) for
other recipe variables. Then ρ′ represents ρ0 with ρ′0 w.r.t. A
and I, because the only recipe variable in rvars(A)∩dom(ρ′)
is R, and either ρ0(R) = ρ′0(R) = f(r1, . . . , rn) or ρ′0(R) =
f(r1, . . . , rn) <A ρ0(R). Moreover, since ρ0 constructs I(A),
we have ρ′0 constructs I(A′).

Next, we consider the case that t ∈ Vprivacy and either
ρ0(R) ∈ dom(t) or ρ0(R) ∈ dom(A) but there is no
label l, either the same or occurring before ρ0(R), such that
A{| l |} /∈ V . Then A = A1.+R 7→ t.A2 and I(t) = c for some
c ∈ dom(t). Therefore, Guessing is applicable, producing
(ρ′,A′, σ′) where ρ′ = [R 7→ c]ρ, A′ = σ′(A1.A2) and
σ′ = mgu(σ ∧ t .= c). If ρ0(R) = c, let ρ′0 = ρ0. Otherwise
let ρ′0(R) = c and ρ′0(R′) = ρ0(R′) for other recipe variables.
Then ρ′ represents ρ0 with ρ′0 w.r.t. A and I, because the
only recipe variable in rvars(A) ∩ dom(ρ′) is R and either
ρ0(R) = ρ′0(R) = c or ρ′0(R) = c <A ρ0(R). Moreover,
since ρ0 constructs I(A), we have ρ′0 constructs I(A′) and
also I(t) = c, thus I |= σ′.

Finally we consider the case that t ∈ Vintruder . Then
A = A1.+R

′ 7→ t.A2.+R 7→ t.A3. Therefore, Repetition

is applicable, producing (ρ′,A′, σ′) where ρ′ = [R 7→ R′]ρ,
A′ = A1.+R

′ 7→ t.A2.A3 and σ′ = σ. Let ρ′0(R) = ρ0(R′)
and ρ′0(R′′) = ρ0(R′′) for other recipe variables. Then ρ′

represents ρ0 with ρ′0 w.r.t. A and I, because the only recipe
variable in rvars(A) ∩ dom(ρ′) is R and I(A){| ρ0(R) |} =
I(A){| ρ′0(R) |}. Moreover, since ρ0 constructs I(A), we have
ρ′0 constructs I(A′).

Lemma A.5. Let A be a FLIC, ρ be a choice of recipes such
that dom(ρ) ∩ rvars(A) = ∅, let σ be a substitution such
that dom(σ) ∩ vars(A) = ∅, let I |≡ A such that I |= σ
and let ρ0 be a ground choice of recipes such that ρ0 |= ρ.
Then ρ0 constructs I(A) iff there exists (ρ′,A′, σ′) such that
(ρ,A, σ) ∗ (ρ′,A′, σ′), ρ′ represents ρ0 with ρ′0 w.r.t. A and
I, ρ′0 constructs I(A′) and I |= σ′.

Proof. By induction, using Lemmas A.3 and A.4.

Lemma A.6 (Lazy intruder termination). Let A be a FLIC, ρ
be a choice of recipes such that dom(ρ)∩ rvars(A) = ∅ and
let σ be a substitution such that dom(σ)∩vars(A) = ∅. Then
there is a finite number of (ρ′,A′, σ′) such that (ρ,A, σ) ∗

(ρ′,A′, σ′).

Proof. We define the weight of a FLIC A to be the pair (v, s),
where
• v is the number of intruder variables in the FLIC: v =

#ivars(A); and
• s is the sum of the size of the messages sent: s =∑

+R 7→t∈A size(t), where the size of a message is defined
as 1 for a variable and size(f(t1, . . . , tn)) = 1 +∑n
i=1 size(ti) for a composed message.

The weights with the lexicographic order form a well-founded
ordering. Every rule decreases the weight.
• Unification: The mgu may instantiate intruder variables

so v would decrease, and if not then v stays the same but
one message sent is removed so s decreases.

• Composition: v stays the same, but the message is
decomposed by removing the outermost function appli-
cation so s decreases (by 1).

• Guessing and Repetition: v stays the same, but one
message sent is removed so s decreases (by 1).

There cannot be an infinite sequence of decreasing weights so
the lazy intruder terminates.

Theorem III.1 (Lazy intruder correctness). Let A be a FLIC,
σ be a substitution, I |≡ A such that I |= σ and let ρ0 be
a ground choice of recipes. Then ρ0 constructs I(A) iff there
exists ρ ∈ LI (A, σ) such that ρ represents ρ0 w.r.t. A and I.
Moreover, LI (A, σ) is finite.

Proof. This follows directly from Lemmas A.5 and A.6.

We now prove our results for normal symbolic states.

Lemma IV.1. Let S = (α0, β0, _, _) be a normal symbolic
state, where the possibilities have conditions φ1, . . . , φn and
FLICs A1, . . . ,An. Let S ∈ [[S]], ρ0 be the ground choice of
recipes defining S and concr be the concrete frame in S. Let

θ |= α0 ∧ β0 ∧ φi for some i ∈ {1, . . . , n} and concr ′ =
θ(ρ0(Ai)). Then concr ∼ concr ′.

Proof. Assume that the frames are not statically equivalent.
This means there exists a witness, i.e., a pair of ground recipes
(r1, r2) such that

concr{| r1 |} = concr{| r2 |}
concr ′{| r1 |} 6= concr ′{| r2 |}

We show that for each witness (r1, r2), either it contradicts
that S is normal or there is a smaller witness according to the
following well-founded ordering:

(r1, r2) < (r′1, r
′
2) iff w(r1) < w(r′1) and w(r2) ≤ w(r′2)

or w(r1) ≤ w(r′1) and w(r2) < w(r′2)

or w(r1) < w(r′2) and w(r2) ≤ w(r′1)

or w(r1) ≤ w(r′2) and w(r2) < w(r′1)

where the weight w(r) of recipe r is defined as the lex-
icographically ordered pair (s, h) where s is the size of
concr{| r |} and h is the number of the highest label in r, i.e.
that occurs on the hth position in concr ; and h = 0 if there
are no labels in r.

We first handle the case that both r1 and r2 are composed.
Then r1 = f(r1

1, . . . , r
n
1) and r2 = f(r1

2, . . . , r
n
2) for the same

f (otherwise they cannot produce the same value in concr).
Then at least one of the pairs (ri1, r

i
2) is already a witness that

is smaller in the ordering.
Thus, in all remaining cases we have a pair (l, r) where l

is a label and r is a ground recipe. Without loss of generality,
we can assume that if r is also a label then l occurs after r in
the frames. By definition of [[S]], there exist j ∈ {1, . . . , n},
one FLIC Aj and one model γ |= α0 ∧ β0 ∧ γ0 ∧ φj such
that concr = γ(ρ0(Aj)). Let R be a fresh recipe variable and
A = Aj .+R 7→ Aj{| l |}. Let I be the interpretation such that
I and γ agree on the privacy variables and for every R′ such
that Aj = A0.+R

′ 7→ X.A′0, I(X) = concr{| ρ0(R′) |}. Let
us extend ρ0 with ρ0(R) = r, where r is the ground recipe
such that (l, r) is a witness. Then we have that ρ0 constructs
I(A). By Theorem III.1, there exists ρ ∈ LI (A, ε) such
that ρ represents ρ0 w.r.t. A and I. Let ρ′0 be the respective
instance of ρ. Since S is normal, we know that l ' ρ(R), i.e.,
we have checked that for every ground choice of recipes ρ′,
(l, ρ′(ρ(R))) is not a witness.

Let us consider the case that ρ(R) = R′ ∈ rvars(Aj),
which can only happen if the repetition rule has been used,
which in turn can only happen if Aj = A0.+R

′ 7→
X.A′0.−l 7→ X.A′′0 , so l maps to a message that the intruder
has sent earlier and that they received back from some agent.
As mentioned above, since S is normal, the pair (l, ρ0(R′))
is not a witness (the intruder can check that in all FLICs they
received back at l whatever they sent at R′). Thus, the pair
(ρ0(R′), r) must be a witness, and this is smaller than (l, r),
because the size of the produced message is the same, but
ρ0(R′) can only use labels from A0 and has thus a lower
weight than l.

Next we consider the case that ρ(R) ∈ dom(S). Since
ρ represents ρ0 with ρ′0, we have ρ0(R) ∈ dom(S) and
either ρ′0(R) = ρ0(R) or ρ′0(R) <A ρ0(R). The subcase
ρ′0(R) = ρ0(R) = l′ is however impossible, because as
mentioned above, S is normal so (l, l′) is checked and cannot
be a witness. For the subcase ρ′0(R) = l′ <A ρ0(R) = l′′, we
have that (l, l′′) is a witness and l ' l′, so (l′, l′′) must be a
witness, and this is smaller because l′ <A l′′ <A l.

Finally we consider the case that ρ(R) is a composed
recipe. Since ρ represents ρ0 with ρ′0, we have either
ρ′0(R) = f(r′1, . . . , r

′
n) and ρ0(R) = f(r1, . . . , rn) such

that I(A){| r′i |} = I(A){| ri |} for i ∈ {1, . . . , n} or
ρ0(R) ∈ dom(S) and ρ′0(R) <A ρ0(R). For the subcase
ρ′0(R) = f(r′1, . . . , r

′
n) and ρ0(R) = f(r1, . . . , rn) such that

I(A){| r′i |} = I(A){| ri |} for i ∈ {1, . . . , n}, again since S is
normal, (l, f(r′1, . . . , r

′
n)) has been checked and cannot be a

witness. Thus, for (l, f(r1, . . . , rn)) to be a witness, at least
one of the pairs (r′i, ri) has to be a witness. This is smaller
than (l, r) since the recipes r′i, ri produce proper subterms of
the message concr{| l |}. For the subcase ρ0(R) ∈ dom(S)
and ρ′0(R) <A ρ0(R) = l′, we have that (l, l′) is a witness
and l ' ρ′0(R), so (ρ′0(R), l′) must be a witness, and this is
smaller because ρ′0(R) <A l

′ <A l.
Thus for every witness we can find a smaller witness, which

is impossible along a well-founded ordering, and thus we can
be sure that there are no witnesses.

Theorem IV.2. Let S be a normal symbolic state. Then S
satisfies privacy iff S is consistent.

Proof. Let P = {(0, φ1,A1, _, α1, _), . . . , (0, φn,An, _, αn, _)}
be the possibilities in S. First we assume that S
satisfies privacy and show that S is consistent. Let
S = (α, β0, γ,P ′) ∈ [[S]], ρ be the ground choice of
recipes defining S and concr be the concrete frame in S. Let
β ≡ MMA(α, β0,P ′, concr) and I |=Σ0

α. Since S satisfies
privacy, (α, β)-privacy holds so there exists I ′ |=Σ β such
that I and I ′ agree on fv(α) and on the relations in Σ0.
Since β |= β0, I ′ |=Σ0 β0. Therefore (α, β0)-privacy holds.
Thus S is consistent.

Next we assume that S is consistent and show that S
satisfies privacy. Let S = (α, β0, γ,P ′) ∈ [[S]], ρ be the ground
choice of recipes defining S and concr be the concrete frame
in S. Let β ≡ MMA(α, β0,P ′, concr), struct i = ρ(Ai) for
i ∈ {1, . . . , n} and I |=Σ0

α. Since S is consistent, (α, β0)-
privacy holds, i.e., there exists I ′ |=Σ0 β0 such that I and
I ′ agree on fv(α0) and the relations in Σ0. Since α ∧ β0 |=∨n
i=1 φi, there exists i ∈ {1, . . . , n} such that I ′ |= φi. By

Lemma IV.1, concr ∼ I ′(struct i) so I ′ |=Σ concr ∼ struct i.
Therefore I ′ |=Σ β, so (α, β)-privacy privacy holds, i.e., S
satisfies privacy. This is true for every S ∈ [[S]], thus S satisfies
privacy.

The following lemma is used to prove the termination of
the compose-checks in the next theorem, and we then show
that these intruder experiments are correct.

Lemma A.7. Let A be a simple FLIC, r1, r2 be recipes and
σ = mgu(A{| r1 |}

.
= A{| r2 |}).

• If isPriv(σ), then for every choice of recipes ρ, we
have isPriv(σ′), where σ′ = mgu(ρ(A){| ρ(r1) |} .

=
ρ(A){| ρ(r2) |}).

• If not isPriv(σ), then for every ρ ∈ LI (A, σ), we
have isPriv(σ′), where σ′ = mgu(ρ(A){| ρ(r1) |} .

=
ρ(A){| ρ(r2) |}).

Proof. First we consider the case that isPriv(σ). Let ρ
be a choice of recipes and σ′ = mgu(ρ(A){| ρ(r1) |} .

=
ρ(A){| ρ(r2) |}). If A{| r1 |} contains an intruder variable as a
subterm, then A{| r2 |} contains the same intruder variable in
the same position; otherwise, the intruder variable would be
substituted and we would not have isPriv(σ). The argument
is similar if A{| r2 |} contains intruder variables. Since the in-
truder variables are not relevant for unifying the two messages,
the intruder variables can be instantiated in any way. Then we
have σ(ρ(A){| ρ(r1) |}) = σ(ρ(A){| ρ(r2) |}), which means that
σ is an instance of σ′ and thus isPriv(σ′).

Next we consider the case that not isPriv(σ). We de-
note with σ the substitution of privacy variables but not
intruder variables, i.e., σ(x) = σ(x) if x ∈ Vprivacy
and σ(x) = x otherwise. Let ρ ∈ LI (A, σ), σ′ =
mgu(ρ(A){| ρ(r1) |} .

= ρ(A){| ρ(r2) |}) and A′, σ′′ be such
that (ε, σ(A), σ) ∗ (ρ,A′, σ′′) and A′ is simple. We
have A′ = σ′′(ρ(A)). Since ρ(A) and A′ are simple, the
application of ρ already substitutes the intruder variables
in dom(σ′′), so we have A′ = σ′′(ρ(A)). Then we have
σ′′(A′{| ρ(r1) |}) = σ′′(ρ(A){| ρ(r1) |}) and σ′′(A′{| ρ(r2) |}) =
σ′′(ρ(A){| ρ(r2) |}). Moreover, we have σ′′(A′{| ρ(r1) |}) =
σ′′(A{| r1 |}) and σ′′(A′{| ρ(r2) |}) = σ′′(A{| r2 |}). Since σ′′ |=
σ, we have σ′′(A{| r1 |}) = σ′′(A{| r2 |}), which is the same
as σ′′(ρ(A){| ρ(r1) |}) = σ′′(ρ(A){| ρ(r2) |}). Then σ′′ is an
instance of σ′ and thus isPriv(σ′).

Theorem A.8 (Compose-check termination). Let S be a
symbolic state. Then there is a finite number of symbolic states
S ′ such that S �∗ S ′.

Proof. Let A1, . . . ,An be the FLICs in S. We define the
weight of S to be the pair (p, s), where

• p is the number of pairs recipes to check: p =
#Pairs(S); and

• s is the sum, over the pairs of recipes, of the
number of FLICs in which the unifier depends
on intruder variables and there exists a solution
to the constraints: s =

∑
(l,r)∈Pairs(S) #{Ai |

not isPriv(σi) and LI (Ai, σi) 6= ∅}, where σi =
mgu(Ai{| l |}

.
= Ai{| r |}) for i ∈ {1, . . . , n} (and (l, r) ∈

Pairs(S)).

The weights with the lexicographic order form a well-founded
ordering. Every rule decreases the weight. Let S ′ be a sym-
bolic state such that S � S ′. First we consider that S ′ is
produced by the rule Privacy split. One pair (l, r) is now
checked and the FLICs are not changed, so p decreases.

Next we consider the case that S ′ is produced by the rule
Recipe split. There exist (l, r) ∈ Pairs(S) and i ∈ {1, . . . , n}
such that not isPriv(σi) and LI (Ai, σi) 6= ∅, where σi =
mgu(Ai{| l |}

.
= Ai{| r |}). The first subcase is that S ′ is

produced by applying some choice of recipes ρ ∈ LI (Ai, σi).
For every pair (l′, r′) ∈ Pairs(S), there is at most one
corresponding pair (l′, ρ(r′)) ∈ Pairs(S ′) so p may decrease
(e.g., if some choice of recipes used to compute the pairs in S ′
is not an instance of ρ) but p cannot increase. By Lemma A.7,
if the unifier only depends on privacy variables, this is still the
case in S ′, and for the FLIC ρ(Ai), the unifier does not depend
on intruder variables anymore, thus s decreases.

The second subcase is that S ′ is produced by excluding σi.
Then the FLICs are not changed so p stays the same, but s
decreases because now LI (Ai, σi) = ∅, since σi is excluded.

There cannot be an infinite sequence of decreasing weights
so the compose-checks terminate.

Theorem V.1 (Compose-check correctness). Let S be a fin-
ished symbolic state, (l, r) ∈ Pairs(S) and {S1, . . . ,Sn} be
the symbolic states after one rule application given the pair
(l, r). Then [[S]] =

⊎n
i=1[[Si]], where

⊎
denotes the disjoint

union. Moreover, there is a finite number of S ′ such that
S �∗ S ′ and S ′ is normal.

Proof. Let P denote the possibilities in S, where
P = {(0, φ1,A1,X1, α1, δ1), . . . , (0, φn,An,Xn, αn, δn)}.
First we consider the case that Privacy split is applicable.
For every i ∈ {1, . . . , n}, isPriv(σi) or LI (Ai, σi) = ∅,
where σi = mgu(Ai{| l |}

.
= Ai{| r |}). We are partitioning

the set of ground states based on the interpretations of
privacy variables. Let S1 and S2 be the symbolic states
produced by the first and second subcase of the rule,
respectively. We start by showing that [[S]] ⊆ [[S1]]] [[S2]]. Let
S = (α, β0, γ,P ′) ∈ [[S]], ρ be the ground choice of recipes
defining S and concr = γ(struct i) for some i ∈ {1, . . . , n}
be the concrete frame in S, where structj = ρ(Aj) for
j ∈ {1, . . . , n}. Let β ≡ MMA(α, β0,P ′, concr).

• If isPriv(σi) and γ |= σi: Then we show that S ∈ [[S1]].
Let β′ ≡ MMA(α, β′0,P ′′, concr) where

β′0 ≡ β0 ∧
n∧
j=1

(
φj ⇒

{
σj if isPriv(σj)

false otherwise

)
P ′′ = {(0, φj ∧ σj ,Aj ,Xj , αj , δj) |

j ∈ {1, . . . , n}, isPriv(σj)}

We need to show that β ≡ β′. Let I |=Σ β. There exists
j ∈ {1, . . . , n} such that I |=Σ φj ∧ concr ∼ structj .
Since γ |= σi and concr = γ(ρ(Ai)), concr{| l |} =
concr{| r |}. Then I(structj){| l |} = I(structj){| r |}, so
I |= σj . Then I |=Σ φj ∧ σj ∧ concr ∼ σj(structj),
so I |=Σ β′. Conversely, for every I |=Σ β′, we have
I |=Σ β. Thus β ≡ β′.

• Otherwise, we show that S ∈ [[S2]]. Let β′ ≡
MMA(α, β′0,P ′′, concr) where

β′0 ≡ β0 ∧
n∧
j=1

(
φj ⇒

{
¬σj if isPriv(σj)

true otherwise

)
P ′′ = {(0, φj ∧ ¬σj ,Aj ,Xj , αj , δj) | j ∈ {1, . . . , n},

isPriv(σj)}
∪ {(0, φj ,Aj ,Xj , αj , δj) | j ∈ {1, . . . , n},

not isPriv(σj)}

We need to show that β ≡ β′. Let I |=Σ β. There exists
j ∈ {1, . . . , n} such that I |=Σ φj ∧ concr ∼ structj .
Since γ |= ¬σi or LI (Ai, σi) = ∅, concr{| l |} 6=
concr{| r |}. Then I(structj){| l |} 6= I(structj){| r |}, so
if isPriv(σj) then I |=Σ φj ∧ ¬σj ∧ concr ∼ structj .
Then I |=Σ β′. Conversely, for every I |=Σ β′, we have
I |=Σ β. Thus β ≡ β′.

The cases are mutually exclusive, so [[S]] ⊆ [[S1]]] [[S2]].
Similarly, we have [[S1]]] [[S2]] ⊆ [[S]].

Next we consider the case that Recipe split is applicable.
There exists i ∈ {1, . . . , n} such that not isPriv(σi) and
LI (Ai, σi) = {ρ1, . . . , ρk}, where σi = mgu(Ai{| l |}

.
=

Ai{| r |}). We are partitioning the set of ground states based
on the ground choices of recipes. Let Sj = ρj(S) for
j ∈ {1, . . . , k}, and S ′ be the symbolic state in which σi
is excluded for Ai. Let S ∈ [[S]] and ρ be the corresponding
ground choice of recipes. Then S ∈ [[Sj]] if ρ is represented
by ρj (note that the ρj are mutually exclusive); otherwise
S ∈ [[S ′]]. Conversely, [[S ′]]]

⊎n
j=1[[Sj]] ⊆ [[S]].

The termination follows from Theorem A.8.

Theorem VI.1 (Analysis correctness). For a symbolic state S,
the destructor oracle application strategy produces in finitely
many steps a set {S1, . . . ,Sn} of symbolic states that are
analyzed. Further, for every ground state S ∈ [[S]] there exists
S′ ∈ [[Si]], for some i ∈ {1, . . . , n}, such that S and S′ are
equivalent except that the frames in S′ may contain further
shorthands; and vice versa, for every S′ ∈ [[Si]] there exists
S ∈ [[S]] such that S′ is equivalent to S except for shorthands.

Proof. It is quite straightforward to see that all states that we
reach by analysis steps are equivalent modulo the augmenta-
tion with shorthands: the intruder learns only terms that could
be obtained with access to destructors anyway, and none of
the transactions puts a constraint on the intruder since in the
worst case the decryption fails and the intruder just does not
learn anything from it.

For termination, we define a measure (a, b) for symbolic
states S as a lexicographical ordering of the following two
well-founded components a and b:
• a is the total number of ? marks and + marks in the

FLICs.
• b is the total number of ? marks in the FLICs.

Consider going from a symbolic state S to S ′ with a destructor
oracle transaction according to our strategy. We show that on
the transition from S to S ′ the measure can only decrease.

In an intermediate state of the symbolic execution, when
we evaluate the try-catch, we split each possibility into two
further cases (the one where the try succeeds, and where it
fails), but from the snd steps only one possibility survives —
the intruder observes from the outcome whether the destructor
works or not. Thus the number of possibilities can only remain
the same or decrease from S to S ′. (We have a decrease
if in some FLICs the decryption works and in others not,
because then each S ′ is reduced either to those that worked or
those that did not.) Any instantiations of intruder variables that
happen are neutral for the measure, because intruder variables
in received messages are already marked X, and thus also the
instantiation is marked X. The only changes in the measures
are from updating the mark of the term under analysis and
the marking of the newly received terms (i.e., the result of the
analysis and the decryption key that is repeated by the oracle).

We now distinguish the two cases whether S ′ represents
a successful decryption or failure (w.r.t. the destructor oracle
rule that brings us from S to S ′).

In the first case, if the destructor fails, then in every FLIC
where l maps to a term marked ?, we replace it by + (others
we leave alone). This does not change the a measure, but
reduces the b measure by at least one (since there was at least
one ?-marked term we have addressed).

In the second case, if the destructor is successful, let us
consider decryption again. In every FLIC where the label l
maps to c(k′, t1, . . . , tn) marked ?, recall that the strategy
marks the newly received l′ 7→ ti with the same mark as the
respective subterm ti in l; in turn the term c(k′, t1, . . . , tn)
with all its subterms gets marked X (and similarly in a
transparency rule). This reduces the a measure by at least one:
even if l′ 7→ ti now contains several ? or + marks, these marks
were counted in the previous marking of l 7→ c(k′, t1, . . . , tn),
which is now marked with X for c and the subterms, so the
mark ? that c bore is not counted anymore. If there are any
FLICs where l is mapped to a term marked + or X, we do
not necessarily have a reduction, but new l′-terms can only
contain ? and + marks that are removed from l. Since there is
always at least one ?-marked term in S to apply a destructor
oracle rule, the a measure is strictly reduced from S to S ′.

The measure is well-founded and thus proves there is no
infinite chain of analysis steps, and since the branching is also
finite (because applying a transaction leads to finitely many
successor states), it thus follows by Kőnig’s lemma that for
every state S, we obtain a finite number of analyzed states
S1, . . . ,Sn with the destructor oracle strategy.

Lemma VI.2. Let S be a normal analyzed state, S ∈ [[S]]
and r be any recipe over the domain of S. Then there is a
destructor-free recipe r′ such that struct{| r |} ≈ struct{| r′ |}
in every frame struct of S.

Proof. Note that this proof works on a ground state S which
does not contain intruder variables anymore (but still privacy
variables). Thus, the FLICs are now frames that contain
just incoming messages. We also formulate this only for
decryption, transparency is in all cases very similar.

We have to show how to replace any subterm rd = d(r1, r2)
of r with a destructor-free equivalent recipe. We can also
w.l.o.g. assume that r1 and r2 are destructor-free (by starting
with the inner-most occurrence of a destructor). Thus r2 is
either a label or a composed recipe:

1) Case r2 = c(r′1, . . . , r
′
n) for some public function c.

If c is not a constructor corresponding to destructor d,
then we can already replace rd with ff and are done.
Otherwise rd means the intruder applies a destructor to
a term they constructed themselves. We distinguish three
subcases:

a) If rd does not yield ff in any frame, then the
result of the destructor must be the ith subterm
(for some i ∈ {1, . . . , n}) of r2 in every frame,
i.e., struct{| rd |} ≈ struct{| r′i |} for every FLIC
struct , and we can thus replace rd by r′i.

b) If rd yields ff in all frames, i.e. struct{| rd |} ≈ ff

in every frame struct , we can just replace rd by
ff.

c) If rd yields ff in some frame struct1 and does not
yield ff in another frame struct2, it means that
comparing rd with ff is an intruder experiment
that distinguishes the frames. We show that this
contradicts the fact that S is analyzed and normal.
The only reason that struct1 and struct2 give
different results is that the encryption and decryp-
tion key do not match in struct1 but do match
in struct2. Recall that in a decryption rule with
decryption key k and encryption key k′, we require
that either k ≈ f(k′) or k′ ≈ f(k) for some public
function f . We only prove the case k ≈ f(k′),
the other case is analogous. In struct2, r1 and
r′1 correspond to k and k′, respectively. Thus,
comparing r1 with f(r′1) is also an experiment
that distinguishes the frames. If f is a constructor,
this directly contradicts that S is normal. If f is
a destructor, we now show that this has already
been analyzed, i.e., there must be a label l′ that
is a shorthand for f(r′1) and thus this contradicts
that S is normal (because then the intruder has
already compared r1 with l′). If r′1 is a label, then
directly the analysis rule f(r′1) must have been
applied; if r′1 = c(r′′1 , . . . , r

′′
n) and since f is unary,

c is transparent, i.e., it is directly equivalent to one
of r′′i . Thus the experiment to compare r1 with
r′′i already distinguishes the frames and that must
have been done already since S is normal and these
recipes are destructor-free. Thus, in all cases this
contradicts that S is normal.

2) Case r2 = l for a label l. We distinguish two subcases:
a) Case l maps to a term t in at least one of the

frames such that t was at some point marked ?,
i.e., t is a term for which a destructor exists and
the respective destructor rule has been tried for l
by the analysis strategy. (The other cases being

that the t in every frame is marked X, because it
has no destructor or originated from the intruder.)
The state resulting from the application of the
respective destructor oracle rule has the property
that the destructor either succeeded in all frames or
failed in all frames. In the case of failure, we can
simply replace rd by ff and are done. In the case
of success, there are labels holding the result of the
destructor, say, l1 for decryption result and l2 re-
peating the decryption key if it is a decryption rule.
(For the case of transparency the proof is similar.)
One may wonder if comparing r1 with l2 could
distinguish the frames. This would contradict that
S is normal because r1 and l2 have no destructors.
Thus, struct{| r1 |} ≈ struct{| l2 |} in every frame
struct , and thus struct{| rd |} ≈ struct{| l1 |} and
we can replace rd by l1.

b) Case l maps in all frames to terms that have been
marked X throughout. If they are all terms that
have no destructor, then we can of course directly
replace rd with ff. Otherwise, in at least one frame
struct , l maps to a term c(s1, . . . , sm) where c was
composed by the intruder, i.e., there are destructor-
free recipes r′1, . . . , r

′
m that produce si in struct ,

thus struct{| l |} = struct{| c(r′1, . . . , r′m) |}. As
these recipes are all destructor-free, this is an
experiment that must work in all frames (otherwise
S is not normal). Thus, we can first replace rd =
d(r1, c(r

′
1, . . . , r

′
m)) which then can be reduced to

a destructor-free recipe following the case 1) of
this proof.

Lemma VI.3. Let S be an analyzed state and normal w.r.t.
destructor-free recipes. Then it is also normal w.r.t. arbitrary
recipes.

Proof. Suppose S is analyzed and normal w.r.t. destructor-
free recipes, and let S ∈ [[S]]. Suppose there are recipes r1

and r2 with destructors such that comparing r1 and r2 is an
experiment that distinguishes concr from a struct i in S, then
by Lemma VI.2, there exist equivalent destructor-free r′1 and
r′2 that thus also distinguish concr and struct i and thus S
(thus S) is not normal w.r.t. destructor-free recipes.

Theorem VI.4 (Procedure correctness). Given a protocol
specification for (α, β)-privacy, a bound on the number of
transitions and an algebraic theory allowed by Definition VI.1,
our decision procedure is sound, complete and terminating.

Proof. This is essentially lifting Proposition A.1 to the case
where the intruder has access to destructors (except private
extractors, of course). A problem is however that the states that
our lifting produces include shorthands, i.e., the terms obtained
from the destructor oracle rules. The construction ensures that
such shorthands are indeed just shorthands in the sense that
each corresponds to a recipe with destructor (that gives the

same term in each FLIC as the shorthand). We can thus regards
states with shorthands as an equivalent representation of the
state without shorthands.

Let now S be a symbolic state that is analyzed and normal
w.r.t. destructor-free recipes. By Lemma VI.3, it is also normal
w.r.t. arbitrary recipes. In the model where destructors are
private, by Proposition A.1, we have for transaction process P
that [[S=⇒

P
]] = [[S]]−→

P
, i.e., what is reachable on the symbolic

level is equivalent to what is reachable on the ground level
using P . We now show how to arrive at the same result for the
case where the intruder can access destructors (except private
extractors). Consider first the recipes for messages that the
intruder may send during this transaction. These recipes can
only use labels that already occur in S — whatever messages
the process sends out in response is not available to the
intruder when sending. Given a ground state S ∈ [[S]] and
some recipes with destructors that the intruder sends during
this transition, they are equivalent to destructor-free recipes
due to Lemma VI.2. Thus, [[S]]−→

P
is the same when allowing

destructors in recipes the intruder sends for the messages that
P receives.

Observe that the symbolic states S=⇒
P

that are reached from
S with P are not yet analyzed and only normalized w.r.t.
destructor-free experiments. By applying the destructor oracle
strategy to every symbolic state in S=⇒

P
, we obtain finitely

many analyzed states S1, . . . ,Sn such that [[S=⇒
P

]] =
⋃n
i=1[[Si]]

by Theorem VI.1. By Lemma VI.3 these symbolic states in
S1, . . . ,Sn are also normal w.r.t. recipes with destructors.

Thus, starting at a normal analyzed symbolic state S and
given a transaction process P , our procedure computes a finite
set of normal analyzed symbolic states that represent exactly
those states that can be reached on the ground level with P
from any state represented by S. Thus, by repeatedly applying
this procedure, we obtain a correct finite representation of all
states reachable from S after a given number of transactions.

C. Decidability of Our Fragment of Herbrand logic

We support the fragment such that:
• The alphabet Σ0 is finite (in particular, there are finitely

many constants).
• The equivalence class [t]E of every Σ0-term t is com-

putable (and thus finite).
• Every variable x (both bound and unbound) must range

over a fixed domain of constants, dom(x) ⊆ Σ0
0.

Before giving a decision procedure, we first need some def-
initions. Given the Herbrand universe U induced by Σ0 and
given α, we define the relevant part of U for α as follows:

Uα0 = {[σ(ti)]E | R(t1, . . . , tn) occurs in α and
for all x ∈ fv(t1, . . . , tn), σ(x) ∈ dom(x)}

We say that θ is an interpretation representation (w.r.t. α) iff
θ maps every x ∈ fv(α) to some element of dom(x) and
every n-ary relation symbol R to a subset of (Uα0)n. We say

that θ represents interpretation I iff θ(x) = I(x) for every
x ∈ fv(α) and ~t ∈ θ(R) iff ~t ∈ I(R) for every n-ary relation
symbol R and ~t ∈ (Uα0)n.

We now describe an algorithm that, given α, returns the set
of all interpretation representations that represent a model of
α (which implies a decision procedure for the model relation).
We first compute all interpretation representations for α. This
is finite since there are only finitely many variables and they
have finite domains; moreover, Uα0 is finite, since finitely many
relations R(t1, . . . , tn) are used, their variables can range over
finitely many values, and the equivalence classes of every term
is finite. Thus there are finitely many possible interpretations
of every R over Uα0 . For a given interpretation representation
θ, we can check the model relation with α as follows:

θ |= s
.
= t iff [θ(s)]E = [θ(t)]E

θ |= R(t1, . . . , tn) iff ([θ(t1)]E , . . . , [θ(tn)]E) ∈ θ(R)

θ |= φ ∧ ψ iff θ |= φ and θ |= ψ

θ |= ¬φ iff not θ |= φ

θ |= ∃x. φ iff there exists c ∈ dom(x) such that
θ[x 7→ c] |= φ

	Introduction
	Preliminaries and Problem Definition
	(alpha, beta)-Privacy for a State
	(alpha, beta)-Privacy for a Transition System
	Non-Deterministic Choice
	Receive
	Cell Read
	Cell Write
	Conditional Statement
	Send
	Release
	Terminate
	The Problem

	FLICs: Framed Lazy Intruder Constraints
	Defining Constraints
	Solving Constraints

	The Symbolic States
	The Intruder Experiments
	Putting it All Together
	Lifting to Algebraic Properties
	The Supported Algebraic Theories
	Destructor Oracles
	Term Marking and Analysis Strategy

	Tool support
	Related and Future Work
	References
	Appendix
	Correctness of the Representation with Symbolic States
	Non-Deterministic Choice
	Receive
	Cell Read
	Cell Write
	Destructor Application
	Conditional Statement
	Send
	Release
	Terminate
	Correctness

	Proofs
	Decidability of Our Fragment of Herbrand logic

