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Abstract—The security goals of a protocol are often studied
with the protocol running in isolation. However, in reality, several
protocols are running in parallel or are otherwise interacting
with each other. It is thus desirable to obtain results for
composing protocols securely. While there are many results for
goals like secrecy and authentication, it is harder to achieve
compositionality for privacy properties. We consider protocols in
a symbolic typed model where privacy goals are expressed with
alpha-beta privacy and can be verified as a reachability property.
We support a large class of stateful protocols and algebraic
theories, and we identify composable protocols, for which we
show how to derive the security of a composed protocol from
the security of its components.

Index Terms—Privacy, Formal Methods, Security Protocols,
Protocol Composition

I. INTRODUCTION

The model of Dolev-Yao for security protocols, i.e., an
intruder who can control the network and act as a protocol
participant but who cannot break cryptography, has proved to
be a very effective basis for automated verification approaches,
e.g., ProVerif [1], Tamarin [2], or CPSA [3].

Using a communication medium like the Internet where
a variety of protocols run in parallel, sharing a public-key
infrastructure, begs the question of protocol composition:
whether any attacks can arise even if each protocol in isolation
is secure. It certainly does not make sense to verify the
composition directly, not the least because any new protocol
and any protocol update would require one to start verification
from scratch. There are compositionality results that show:
this composition is secure, if the messages of the component
protocols are sufficiently disjoint [4], which can be achieved,
e.g., using tags [5], [6], [7].

Beyond protocols that only share network and public-key
infrastructure, there are some compositionality results that
allow for some interaction between the component protocols,
e.g., one protocol P1 negotiates a key that is then used by
another protocol P2. There needs to be an interface between
the components; for instance, P1 gives guarantees of secrecy,
authentication, and freshness of the negotiated keys, and P2

may guarantee that it does not leak those keys to another party.
This also allows one to verify that components can be replaced
by ones that offer the same interface to the other protocol: for
P2 it does not matter how exactly P1 achieves its goals and
vice-versa.

For privacy-type goals like unlinkability (an outsider cannot
tell if two protocol sessions were executed by the same
or different participants, let alone know their identity), the
standard Dolev-Yao model is not sufficient because it cannot
directly model weak secrets like the name of a participant: the
intruder may know the name of all participants, and the secret
is rather which user has performed a particular action. It is
standard to use equivalence notions here: we consider a pair
of worlds and verify that the intruder cannot tell which world
is the case. For instance, for unlinkability we have one world
where some agent runs several protocol sessions and another
world where different agents run one session each.

For normal trace properties, the compositionality argument
consists in demonstrating that any attack trace against the
composed protocol can be split into traces for the compo-
nent protocols in isolation such that the goals of at least
one component are violated. This reasoning is substantially
more complicated when considering an equivalence notion of
traces instead. Thus, there exist but a few compositionality
results for privacy-type goals and they have rather restrictive
assumptions; this is discussed in detail in the final section.

To overcome these difficulties, we employ for our composi-
tionality result an alternative model of privacy: (α, β)-privacy.
Here, a protocol is modeled as a set of reachable states where
each state represents just one reality and contains a logical
characterization of what the intruder knows about the state of
the world. This allows for turning privacy into a reachability
problem without losing the expressive power of equivalence-
based notions. We can thus resort to the standard approach
for compositional reasoning, i.e., showing that an attack trace
against the composed protocol can be mapped into traces for
the component protocols, and in fact obtain a general result:

• The component protocols do not need to be disjoint: they
can have a set of shared secrets, and these secrets can also
be declassified in the course of the protocol.

• A component protocol can be used as a subprotocol
called by another protocol, e.g., to query a key server
and proceed with the result from the key server.

• The component protocols can include long-term state
(that lasts beyond a single session) and this long-term
state can also be shared.

Moreover, the logical approach of (α, β)-privacy is fully
supported for the specification of the goals; for instance, for
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unlinkability one simply specifies that the intruder is only
allowed to know that each actor xi is in the set Agent; it is thus
an attack if the intruder can deduce x1

.
= x2 for example. (This

is more complicated when an intruder can be a participant, as
discussed in the running example.)

In this paper, we restrict the cryptographic operators to
constructor-destructor theories. Moreover we assume a typed
model, where the intruder is only sending messages of the
correct types. This makes the reasoning about attack traces
much easier and typing results for similar protocol models
show that this is without loss of attacks for well-tagged
protocols [7], [8], [9], [10], [11], [12].

Our first contribution is to extend (α, β)-privacy to gener-
alize the class of protocols that can be modeled, with new
constructs useful for protocol composition. Our second and
main contribution is the compositionality result itself: we
identify requirements for composable protocols, which allow
for the modular verification of privacy goals with an “assume-
guarantee” approach, i.e., we verify one component with the
interface of the other component.

The paper is organized as follows. In §II, we introduce
(α, β)-privacy and protocol composition through an example
based on Needham-Schroeder. In §III, we give the grammar
of protocol specifications and define the supported algebraic
theories. In §IV, we define the semantics of protocols as a sym-
bolic execution performed by the intruder, giving rise to a state
transition system. In §V, we define the class of composable
protocols that can be composed securely. In §VI, we present
our results and finally we conclude in §VII with the discussion
of related work. All the proofs and intermediate results are
provided in appendix, together with a larger example protocol.

II. RUNNING EXAMPLE

As a simple example we play a bit with the famous
Needham-Schroeder-Lowe public-key protocol (NSL) [13],
[14]. Privacy was not a concern in the original protocol, but
we can easily add this as a requirement: when A contacts B,
nobody else but A and B should learn who is communicating
here. In fact, A and B may not know each other in advance
and need to first get each other’s public key from a key server
who thus also learns their identities. In the original protocol,
the key-exchange with the server is not encrypted, so that
everybody can see that A is looking up B’s public key and
vice-versa, so we are going to encrypt this exchange. As an
example for compositionality we actually split the protocol
into two components: P1 the three-way handshake between A
and B and P2 the lookup protocol for the key server, so we
can verify handshake and key server protocol separately.

We give the specification of P1 the handshake protocol
in Fig. 1 (on the left); the notation is adapted from (α, β)-
privacy [15] with some extensions for composition and pro-
cedure calls. (We give in the next sections the precise syntax
and semantics.) We use the color blue to highlight the parts
in a protocol that the other protocol must know about.

In the first component, we have two roles, Initiator and
Responder, which each consist of a number of transactions.

A transaction is a sequence of steps that will be executed
atomically (without interleaving by other transactions). The
transactions are separated by semicolons. This is relevant for
privacy as we assume that the intruder knows the protocol and
can observe when an agent reaches the end of a transaction
in our semantics, because typically the agent is inactive and
waiting for another input message.

The first transaction in the Initiator role is that we choose
two privacy variables xA and xB from the sets Honest and
Agent. These can be any finite sets (that we do not specify
here) where Honest ⊆ Agent and the intruder can control a
number of dishonest agents in Agent \Honest. The symbol ⋆
means here that the intruder is allowed to learn the domains of
xA and xB . More precisely every state will contain a formula
α, also called the payload, which contains all the information
that was deliberately released to the intruder; in this case the
conjunct xA ∈ Honest ∧ xB ∈ Agent. Note that the variables
will be freshly renamed for every session, i.e., instantiation
of the role. One may wonder why xA ∈ Honest rather than
Agent. This is because xA would be the agent executing this
role; since a dishonest agent may not follow the protocol,
their behavior is covered by the intruder rules, and thus it
is convenient to restrict the execution here to the honest xA
(while xB may well be a dishonest agent). The first thing that
xA really does is to look up the public key of xB . Whatever
happens here will be the job of the other protocol P2, so we
just consider here that this results in a key PKB .

In its second transaction, xA generates nonces NA and
R and sends out the first real message of the protocol:
crypt(PKB , f1(NA, xA), R) where crypt stands for public key
encryption, R is a randomization value to avoid deterministic
encryption, and f1 is abstracting the data format of the first
message of the protocol. This is a slight generalization of
the usual tagging schemes where the messages of different
meaning contain a tag to tell them apart; rather formats like f1
represent an arbitrary way to implement the message formats
(e.g., XML or JSON) and we just assume that they are
unambiguous and pairwise disjoint.

Note that in this way, the protocol would be violating
privacy: if xB is honest, then the intruder would learn this
fact from the outgoing message, assuming the intruder knows
the private keys of all dishonest agents. (This is the worst-case
assumption behind Dolev-Yao that all dishonest agents work
together and we can thus think of them as one single intruder.)
Moreover, if the intruder is dishonest, then they learn at this
point both the values of xA and xB . Both is hardly avoidable,
and so we just specify as part of this transaction that we release
this information, again to be stored in the formula α. Here
xA

.
= γ(xA) refers to a third formula γ that is present besides

α and β in every state: it represents the truth, mapping every
privacy variable to its true value. Thus if γ(xA) = a, then we
release here the formula xA

.
= a. Initially, the nonce NA is

a shared secret of the two protocols, but in the dishonest xB
case, the intruder is now able to learn NA since xB is the
intended recipient for it and the nonce has to be declassified,
while in the honest xB case it would count as a leakage if the
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Role Initiator

⋆ xA ∈ Honest.

⋆ xB ∈ Agent.

PKB := lookup(xA, xB)

;

νNA, R.

snd(crypt(PKB , f1(NA, xA), R)).

if xB ∈ Honest then

⋆ xB ∈ Honest

else

⋆ xA
.
= γ(xA) ∧ xB

.
= γ(xB).

snd(NA)

;

rcv(crypt(pk(xA), f2(NA, NB , xB), _)).
νR′.

snd(crypt(PKB , f3(NB), R
′))

Role Responder

rcv(crypt(pk(B), f1(NA, A), _)).
if B /∈ Honest then

stop

;

PKA := lookup(B,A)

;

νNB , R.

snd(crypt(PKA, f2(NA, NB , B), R)).

if A /∈ Honest then

snd(NB)

;

rcv(crypt(pk(B), f3(NB), _))

Procedure lookup(A,B)

νN,R.

snd(scrypt(sk(A, s), req(B,N), R))

;

rcv(scrypt(sk(A, s), resp(B,PKB , N), _)).
assert(PKB

.
= pk(B)).

return(pk(B))

Role Server

rcv(scrypt(sk(A, s), req(B,N), _)).
νR.

snd(scrypt(sk(A, s), resp(B, pk(B), N), R))

Fig. 1. Specification based on the Needham-Schroeder-Lowe public-key protocol

intruder finds out NA as it is then between two honest agents.
The third and final transaction consists of both receiving the

answer from xB and sending the reply. Here, the receive mes-
sage is with pattern matching: xA only accepts the incoming
message if it is encrypted with the public key pk(xA) of xA
and contains the format f2 of the second step of the protocol,
where the first item is nonce NA that xA created earlier and
xB is the same name as before. Moreover, the variable NB

is bound at this point to whatever (apparently) xB has sent
as their nonce. The semantics of this pattern matching is that
the role will just abort when receiving a message that does
not fit; this also prevents that the intruder can send several
messages attempting an online-guessing attack. We will later
discuss in more detail why this pattern matching is not a
further restriction on top of the assumption of a typed model,
and how this can be reduced to simpler concepts.

Let us turn now to the Responder role. Here, we start with a
receive message that contains again a pattern with variables B,
NA and A (the underscore corresponds to variable that is not
used); similarly as before, we stop if the input has not the right
form, but the variables B and NA and A can be arbitrary and
this is their binding occurrence. Thus, curiously, B “learns”
its name from this message. Since we want that this is only
executed by an honest agent, we stop here if B /∈ Honest.
The stop means that in this case the following transactions of
this role are not going to be executed. (In fact, this is the same
stop that occurs when the pattern of a receive is not matched.)
Our semantics assumes that the intruder can observe such a
stop, because the agent ceases to communicate. The rest of
the responder role is similar to the initiator role.

Let us now describe the protocol P2 (given in Fig. 1, on
the right). Here the first role is the procedure lookup, i.e., this

role cannot spontaneously start or be triggered by a received
message, but rather this is started by an invocation from P1,
binding the agent names A and B. Here we assume that each
honest agent has a shared key sk(A, s) with the trusted key
server s. Note that s is a constant of type agent i.e., this
represents a fixed honest server that cannot be played by the
intruder. The first message is an encrypted request (message
format req) for the public key of B, including a fresh nonce
N . We leave it as an exercise for the reader to consider a
variant of the protocol where we omit this random number
and the randomization value R of the encryption to show that
this induces privacy, authentication, and freshness problems.

When the lookup receives the answer from the server, we
have the assertion PBK

.
= pk(B). This reflects a protocol

goal: it should never happen that the server returns another key
pk(B) as answer to a request for public key of B. If such a
mismatch should ever happen, then it would count as an attack;
in this way we make this assertion part of the verification of
the security of the lookup protocol. Finally, if the assertion has
succeeded, the lookup returns the key it has received from the
server. Since we can at this point be sure that PBK .

= pk(B),
we can simply return pk(B). Thus lookup is guaranteed to
always give back the correct key, or fail with an attack before
returning something.

A. The Composition

Now the composition is in some sense obvious: the call to
lookup in the initiator and responder role shall be replaced
with the lookup role under the respective instantiation of
the formal parameters, and replacing PKB and PKA in the
initiator and responder roles with the return values pk(B)
and pk(A), respectively. The composed protocol consists then
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of this expanded initiator and responder roles of P1 and the
server role of P2 (because the server is “called” by incoming
messages, not a procedure call).

This gives the entire protocol as a monolith, and we rather
want to verify the two protocols as components in isolation.
However, in complete isolation, neither component really
makes sense. This is because P1 cannot really do anything
without some form of mechanism to get the key of the intended
recipient. While P2 can work sort of independently, it really
gets its actual goals from the context with P1, namely that it
is transporting the names and public keys of agents that are
privacy variables chosen in P1; we need this context to make
clear that P2 has the obligation to keep these values private.

We thus need to define an interface between the two
protocols, and we do so by highlighting in each protocol
which steps are relevant to the other protocol. This is the
blue highlighting in the figures before. Basically this is saying:
when verifying either protocol, one needs to consider at least
the blue steps from the other protocol, because these are
relevant things happening in the other protocol. Most notably
this includes the non-deterministic choices like xA ∈ Honest,
because here a privacy-critical information is introduced, as
well as all released information that is released in α, like
xA

.
= γ(xA) . . .. Procedure calls are replaced with the body

of procedures so we do not highlight them here, but they
are obviously relevant to the other protocol. Creation of fresh
nonces is also highlighted, because it introduces fresh secrets
that can in principle be used in either protocol.

All other kinds of steps are not necessarily highlighted:
it depends on whether this step is deemed relevant for the
other protocol. We will have below some requirements on the
highlighting, but besides these requirements it is the choice
of the modeler what to highlight. Naturally, we want as few
highlighted steps as possible, because the more details can be
hidden, the easier the verification task gets.

As can be seen in the specification, we have highlighted
all the conditionals: in the Initiator, releases depend on the
condition, in the first conditional of the Responder, it depends
on the condition whether we proceed in the first place, and
the second conditional is again containing a release. Of all the
protocol messages we have only highlighted the first message
of P1. This is because the message is binding several of the
variables in the responder role upon reception, in particular A
and B that are again relevant for highlighted steps. Thus this
binding occurrence is also relevant.

Highlighting a snd(t) step has another important meaning
in our composition: it means that the message t is now declas-
sified, i.e., the intruder may know it. We use declassification
in the initiator role with snd(NA) in the case xB is dishonest:
the intruder is just allowed to know NA in this case, because
one of the dishonest agents is the intended recipient of NA.

We thus regard as a component protocol the individual steps
of that component protocol plus all the highlighted steps of the
other component protocol. In a nutshell, the compositionality
result below is that an attack trace against the composed
protocol can be transformed into an attack trace against one

of the components. Thus it suffices to verify the security of
the components to show the security of their composition—
provided they satisfy the requirements of our compositionality
theorem.

III. SPECIFICATION

A. (α, β)-Privacy

We consider terms over an alphabet Σ, containing function
and relation symbols with their arity, and interpret the terms
in the quotient algebra modulo a congruence relation ≈. Func-
tions can be either public or private (accessible/not accessible
to the intruder); the set of public functions is Σpub ⊆ Σ.
For our purpose, the congruence allows for constructors (e.g.,
encryption, hashing, pairing) and destructors (e.g., decryption,
projection), where decryption failure yields a distinguished
constant ff; the set of constructors is Σc ⊆ Σ. Definition III.4
describes the precise class of algebraic theories that we
support. Formulas (typically α, β, or ϕ) are in Herbrand
logic [16], which is like standard First-Order Logic where the
universe is said quotient algebra.

We use standard definitions like: fv(·) returning the free
variables of a term or formula; ground terms (terms without
any variable); linear terms (every variable occurs at most
once); the interpretation I mapping all variables to the uni-
verse, and n-ary relations to a set of n-tuples of the universe;
the models relation I |= ϕ expressing that I is a satisfying
interpretation for ϕ; ≡ for logic equivalence of formulas (and
for defining formulas).

The main idea of (α, β)-privacy is that every state of
the world contains a formula α that represents what the
intruder is allowed to know and the formula β represents what
the intruder has actually observed. A state violates (α, β)-
privacy iff some model of α can be ruled out by the intruder
knowledge in β, i.e., the intruder has learned more than
what is allowed. We use a sub-alphabet Σ0 ⊂ Σ containing
the payload symbols, which are used to express the privacy
goals. The complement Σ\Σ0 contains the technical symbols,
which are used to represent the intruder knowledge (e.g., the
cryptographic messages observed).

Definition III.1 ((α, β)-privacy [17]). Given two formulas α
over Σ0 and β over Σ with fv(α) ⊆ fv(β), we say that (α, β)-
privacy holds iff for every I |= α there exists I ′ |= β such that
I and I ′ agree on the variables in fv(α) and on the relation
symbols in Σ0.

A frame is a notion that is commonly used to characterize
the knowledge of the intruder: we have a set of distinguished
constants called labels that do not occur in normal messages;
a frame F maps such labels to messages. The domain of
a frame is the set of the labels that the frames maps. The
labels allow for describing intruder actions like encryption and
decryption by a recipe r: a term built from labels and public
functions. Here, F (r) is the term that results by replacing
all labels in r with the corresponding message from F ; we
ensure throughout the paper that F (r) is only used when all
labels in r occur in the domain of F . Whereas some works
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view frames as substitutions, for our purpose the order of
the mappings is significant: we will use frames to record the
messages observed by the intruder and their order.

We speak of an experiment for a frame F when the intruder
checks whether two recipes r1 and r2 over the domain of F
give the same result, i.e., whether F (r1) ≈ F (r2). We say
two frames F1 and F2 are statically equivalent, written F1 ∼
F2, iff there is no experiment to distinguish them, i.e., every
experiment will either give the same result in both frames, or
different results in both frames. (This implicitly requires that
the frames have the same domain.)

B. Protocols

We distinguish two sorts of variables: the privacy variables,
denoted with lowercase letters, are introduced in steps of the
form x ∈ D (where D is called the domain of x) and represent
non-deterministic choices; the intruder variables, denoted with
uppercase letters, represent messages that may depend on the
intruder, e.g., messages received by honest agents.

Definition III.2 (Protocol specification). A protocol specifica-
tion consists of

• a number of roles and procedures according to the syntax
below;

• a number of memory cells, e.g., cell(·), together with a
ground context C[·] for each memory cell defining the
initial value of the memory, so that initially cell(t) =
C[t]; and

• a set Γ0 of ground interpretations of the relations occur-
ring in the roles and procedures.

R Role or procedure
::= Pl;R Sequence
| Pl Transaction

Pl Left process
::= ⋆ x ∈ D.Pl Non-deterministic choice
| rcv(t).Pl Receive
| let X = t.Pl Let statement
| X := proc(t, . . . , t) Procedure call
| Pc Center process

Pc Center process
::= X := cell(t).Pc Cell read
| if ϕ then Pc else Pc Conditional statement
| let X = t.Pc Let statement
| stop Stop
| νn1, . . . , nk.Pr Fresh constants

Pr Right Process
::= snd(t).Pr Send
| cell(t) := t.Pr Cell write
| ⋆ ϕ.Pr Release
| assert(ϕ).Pr Assertion
| let X = t.Pr Let statement
| return(t) Return
| 0 Nil process

where D is a finite set of public constants, t ranges over
destructor-free messages (that do not contain ff) and ϕ ranges
over quantifier-free Herbrand logic formulas.

The non-deterministic choices, receives, let statements, pro-
cedure calls, cell reads and fresh constants are binding.

We require that every role is closed. Every procedure has a
number of parameters, which are the free variables of the
procedure’s body, and every procedure call must give the
appropriate number of arguments. Moreover, the last step of a
procedure must be either a return statement or stop. Finally,
there must be no cycle in the graph of procedure calls.

Definition III.3 (Syntactic sugar). For ease of notation, we
allow the following in specifications:

• Trailing 0 and else 0 can be omitted.
• Variables bound in a message received but otherwise

never used can be written with a wildcard _ instead of a
variable name.

• A step of a right process can be written in the left or
center part with the meaning that this step is executed in
every branch.

Moreover, we will need for the semantics in Table I that the
terms in messages received are linear with only fresh variables
and no constants. In order to ensure this, we transform a
message received, that may contain variables bound earlier or
some constants, into a linear term with only fresh variables
and no constants. We then insert a conditional statement to
check that the fresh variables have the expected values.

Formally, for a message received of the form
R;P1.rcv(t).P2.P3, where R is a sequence of transactions,
P2.P3 is a left process and P3 is a center process, we
obtain a linear term t′ by replacing in t every variable
already bound in R or P1 and every constant with fresh
intruder variables, and we replace rcv(t).P2.P3 with
rcv(t′).P2.if t

.
= t′ then P3 else stop.

We have already presented informally most of the steps in
processes when describing the example in §II. We explain
below the rest of protocol specifications. The details of the
semantics for processes are given in Definition IV.8.

The specification defines a set Γ0 of interpretations for the
relations that are used in the processes, and we consider that
the intruder knows that in every concrete execution, the true
interpretation is in Γ0 (but they do not know a priori which
one). Relations can model some context about the agents
participating in the protocol. For instance, in our model of
NSL, we could have a relation talk(·, ·) over agent names
that represents whether some agent wants to talk to another
one. Then the set of interpretations could contain, e.g., some
interpretations where Alice (denoted a) wants to talk to Bob
(denoted b), i.e., where talk(a, b) holds, and some other
interpretations where it is not the case, modeling that the
intruder does not know whether Alice actually wants to talk
to Bob. We could then require that all interpretations agree on
talk(x, y) whenever x is dishonest, modeling that initially the
intruder knows who dishonest agents want to talk to.
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In a let statement, a fresh variable can be bound to a
message, where the scope of the binding is the rest of the
role or procedure (and not just the current transaction).

The memory cells make protocols stateful: transactions can
read from or write to memory, so the execution of the protocol
may depend on the state of the memory.

The class of algebraic theories that we support can be used
to model common cryptographic operators such as symmetric
and asymmetric encryption/decryption, pairing and projection
(opening of pairs), digital signatures and opening/verification
of the signatures etc. The behavior of the cryptographic
operators is defined as a set of rewrite rules and gives rise
to a congruence relation.

Definition III.4 (Algebraic theory). A constructor/destructor
rule is a rewrite rule of one of the following forms:

• Decryption: d(k, c(k′, X1, . . . , Xn)) → Xi where d is
a destructor, c is a constructor, the Xj are distinct
variables, i ∈ {1, . . . , n} and fv(k) = fv(k′).

• Projection: di(c(X1, . . . , Xn)) → Xi where i ∈
{1, . . . , n}, di is a public destructor called a projector, c
is a constructor of arity n and the Xj are distinct vari-
ables. There must be such a rule for every i ∈ {1, . . . , n}
and c is then called transparent.

• Private extraction: d(c(t1, . . . , tn)) → t0 where d is
a private destructor called a private extractor, c is a
constructor and t0 is a subterm of one of the ti.

Let E be a set of such rules, where we require that every
destructor d occurs in exactly one rule of E and E forms a
convergent term-rewriting system. Moreover, each constructor
c cannot occur both in decryption and projection rules.

Define ≈ to be the least congruence relation on ground
terms such that

d(k, t) ≈


ti if t ≈ c(k′, t1, . . . , tn) and for some σ,

(d(k, c(k′, t1, . . . , tn))→ ti) ∈ σ(E)

ff otherwise

and for unary destructors the definition is the same but k, k′

are omitted. Moreover, we require for every decryption rule
d(k, c(k′, X1, . . . , Xn)) → Xi that k = k′ or k ≈ f(k′) or
k′ ≈ f(k) for some public function f .

IV. SYMBOLIC EXECUTION

The grammar of specifications allows for procedure calls,
where one protocol is calling a process that may be specified
by another protocol. Procedure calls can be used to define
the interface between two protocols, e.g., one protocol obtains
a key that is established by another protocol. The semantics
of a procedure call is essentially to inline the body of the
procedure. Formally, we define the replacement of procedure
calls with the processes they represent as procedure call
expansion.

Definition IV.1 (Procedure call expansion). Let R1, R2 be
sequences of transactions such that R1 does not contain any

procedure call and let P.X := proc(t1, . . . , tn) be a transac-
tion, where proc is a procedure with parameters X1, . . . , Xn

and body R.

expand(R1;P.X := proc(t1, . . . , tn);R2)

= R1; expand(P.σ(R
′);R2)

where σ = [X1 7→ t1, . . . , Xn 7→ tn] and R′ is the same as R
except that every return(t) is replaced with let X = t.0, i.e.,
the return value is bound to variable X .

Remark. Since the graph of procedure calls is acyclic, the
expansion terminates. ◁

The semantics of protocols is a symbolic execution per-
formed by the intruder, giving rise to a state transition system.
In every state, there is a formula α called payload that
expresses the information released so far, a formula γ called
truth that interprets every relation and privacy variable in one
protocol execution (the intruder does not know γ a priori),
and a set P of possibilities that correspond to all the branches
in the processes that the intruder has not ruled out yet:
the intruder has made some concrete observations, and may
eliminate some possibilities if they can be distinguished from
their observations.

Every state also contains a sequence ρ called choice of
recipes that stores the recipes used by the intruder whenever
the protocol was receiving a message, a boolean flag that
tracks whether some assertion was broken, and a thread ID
TID that keeps track of the interleaving of transactions: the
stop step in a process is stopping the transactions coming from
one particular role instance, i.e., one thread, and thus we have
to remember which thread is affected by a stop.

Definition IV.2 (State). A state is a tuple
(α, γ,P, ρ,flag ,TID) such that:

• α is a Σ0-formula, the payload;
• γ is a Σ0-formula, the truth;
• P is a set of possibilities, which are each of the form

(R,ϕ, struct , δ), where R is a sequence of processes, ϕ
is a Σ-formula, struct is a frame and δ is a sequence of
memory updates of the form cell(s) := t for messages s
and t;

• ρ is a sequence of recipes, the choice of recipes made so
far for every message sent by the intruder;

• flag is either true or false, where the flag set to true
represents that some assertion did not hold;

• TID represents the thread ID of the current transaction
executed.

Definition IV.3 (Well-formed state). Let P =
{(R1, ϕ1, struct1, δ1), . . . , (Rn, ϕn, structn, δn)} be the
possibilities in a state S = (α, γ,P, ρ, _, _). Then S is
well-formed iff

• α |=
∨

γ0∈Γ0
γ0;

• γ |= α ∧
∨n

i=1 ϕi;
• the ϕi are such that |= ¬(ϕi∧ϕj) for i ̸= j and fv(ϕi) ⊆

fv(α);
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• the struct i are frames with the same labels occurring in
the same order;

• the recipes in ρ are over the domain of the struct i.
S is a milestone iff every sequence Ri starts with the nil

process, and S is an intermediate state otherwise.

In the rest of the paper, we only consider well-formed states
(our semantics ensures that the reachable states of a protocol
are well-formed).

In a given state, the privacy goals are expressed through
the payload α. The intruder knowledge is expressed through a
formula β, which is defined based on the possibilities in that
state. The intruder has made concrete observations, recorded in
a frame concr , they consider a set of possibilities containing
ϕi, struct i such that, if condition ϕi holds, then the concrete
instances of struct i are statically equivalent with concr .1

Definition IV.4 (Intruder knowledge). Given a well-formed
state S = (α, γ,P, _, _, _), let concr = γ(structj) where
(_, ϕj , structj , _) ∈ P is the unique possibility such that γ |=
ϕj . The intruder knowledge in state S is defined as

β(S) ≡ α ∧
n∨

i=1

ϕi ∧ concr ∼ struct i .

We say that S satisfies privacy iff (α, β(S))-privacy holds.

A. Typed Model

In this paper, we consider that a protocol specification
contains type annotations so that every message in a protocol
execution has a type. We have a set of atomic types, e.g., a
type for nonces and a type for agent names, and composed
types are built with atomic types and public constructors.

Definition IV.5 (Typing function). A typing function Γ is such
that:

• Γ(c) is atomic for every function c ∈ Σ of arity 0.
• Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for every con-

structor f ∈ Σ of arity n > 0.
• Γ(x) is a type (atomic or composed) for every variable
x ∈ V .

Note we do not define the typing for destructors, as the
point is that we will only consider destructor-free messages
based on our congruence relation (but recipes chosen by the
intruder may well use destructors).

Definition IV.6 (Well-typed substitution). A substitution σ
is well-typed iff for every x ∈ dom(σ), we have Γ(x) =
Γ(σ(x)).

We assume that in a state, for every label, the different
frames map the label to messages of the same type. We are
working in this paper in a typed model where we assume
that the intruder only uses well-typed messages: whenever
the possibilities are receiving a message rcv(t), the intruder
chooses a recipe r such that Γ(struct(r)) = Γ(t), where

1The details of formalizing frames and their static equivalence in Herbrand
logic are found in [18].

struct is the frame in one of the possibilities (the type of the
message produced by the recipe is the same in every frame
because we assume that the different frames map, for a given
label, to messages of the same type).

B. State Transition System

A protocol specification defines a set of roles, which are
sequences of transactions, and a concrete protocol execution
corresponds to an interleaving of such transactions. We attach
a thread ID to every transaction and use the thread IDs in
order to consider sequences with correct interleaving, and to
express the semantics of stopping a role.

Definition IV.7 (Thread filtering). Let P1; . . . ;Pn be a
sequence of transactions (after expansion), where every
transaction is annotated with a thread ID. We define
filter=TID(P1; . . . ;Pn) as the largest subsequence that only
contains transactions with thread ID equal to TID . Con-
versely, filter ̸=TID(P1; . . . ;Pn) is the largest subsequence
that does not contain any transaction with thread ID equal
to TID .

The symbolic execution is defined through a set of rules
that are transitions between states. Each transition evaluates
one step of the processes.

Definition IV.8 (Semantics). The semantics of the symbolic
execution is given in Table I. The changes to the state are
colored in blue. The semantics defines a relation → on states.
Let S, S′ be two milestones. We define −→ as the relation
such that S −→ S′ iff S →∗ S′ and with the requirement
that whenever the Eliminate rule is applicable, then it must
be applied.

Remark. The symbolic execution maintains some invariants,
assuming that every possibility starts initially with the same
sequence of transactions, with the same thread IDs:

• The non-deterministic choices happen at the same time
in every possibility, because these steps occur before any
branching.

• The receives also happen at the same time in every pos-
sibility, because these steps occur before any branching
and also because we are only considering well-typed
instantiations and messages received are linear with only
fresh intruder variables and no constants, so in every
frame, the matching problem has a solution.

• The thread ID of the transaction being executed is the
same in every possibility and is also the thread ID in the
current state, because the possibilities are synchronized
when starting the next transaction in the sequence.

• There is always a single possibility with condition ϕ such
that γ |= ϕ in the current state, which means that when
every possibility is either stopping, sending a message or
reaching a milestone, then exactly one of the rules Stop,
Send and Milestone is applicable. If any possibility starts
with a different step, then another rule must be applied.

• The messages in the frames can be considered destructor-
free without loss of generality, even though they may
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TABLE I
SEMANTICS OF THE SYMBOLIC EXECUTION

Choice
(α, γ, {(⋆ x ∈ D.Pi;Ri, ϕi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag,TID)
→ (α ∧ x ∈ D, γ ∧ x .

= c, {(Pi;Ri, ϕi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag,TID)
for every c ∈ D

Receive
(α, γ, {(rcv(t).Pi;Ri, ϕi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag,TID)
→ (α, γ, {(σi(Pi;Ri), ϕi, structi, δi) | i ∈ {1, . . . , n}}, ρ.r,flag,TID)
for every r over the domain of the structi, where σi is such that σi(t) = structi(r)

Let (α, γ, {(let X = t.P ;R, ϕ, struct , δ)} ⊎ P, ρ,flag,TID)
→ (α, γ, {((P ;R)[X 7→ t], ϕ, struct , δ)} ∪ P, ρ,flag,TID)

Cell read

(α, γ, {(X := cell(s).P ;R, ϕ, struct , δ)} ⊎ P, ρ,flag,TID)
→ (α, γ, {(P ′;R, ϕ, struct , δ)} ∪ P, ρ,flag,TID)
where the updates on cell in δ are cell(s1) := t1. · · · .cell(sk) := tk , the initial value of cell is given with ground context C[·]
and P ′ = if s

.
= s1 then let X = t1.P else . . . if s

.
= sk then let X = tk.P else let X = C[s].P

Cell write (α, γ, {(cell(s) := t.P ;R, ϕ, struct , δ)} ⊎ P, ρ,flag,TID)
→ (α, γ, {(P ;R, ϕ, struct , cell(s) := t.δ)} ∪ P, ρ,flag,TID)

Conditional (α, γ, {((if ψ then P1 else P2);R, ϕ, struct , δ)} ⊎ P, ρ,flag,TID)
→ (α, γ, {(P1;R, ϕ ∧ ψ, struct , δ), (P2;R, ϕ ∧ ¬ψ, struct , δ)} ∪ P, ρ,flag,TID)

Release
(α, γ, {(⋆ ψ.P ;R, ϕ, struct , δ)} ⊎ P, ρ,flag,TID)
→ (α′, γ, {(P ;R, ϕ, struct , δ)} ∪ P, ρ,flag,TID)
where α′ ≡ α ∧ ψ if γ |= ϕ and α′ ≡ α otherwise

Assert
(α, γ, {(assert(ψ).P ;R, ϕ, struct , δ)} ⊎ P, ρ,flag,TID)
→ (α, γ, {(P ;R, ϕ, struct , δ)} ∪ P, ρ,flag ′,TID)
where flag ′ = true if γ |= ϕ ∧ ¬ψ and flag ′ = flag otherwise

Eliminate
(α, γ, {(P ;R, ϕ, struct , δ)} ⊎ P, ρ,flag,TID)
→ (α, γ,P, ρ,flag,TID)
if β |= ¬ϕ, where β is the intruder knowledge in the predecessor state

Stop
(α, γ, {(stop;Ri, ϕi, structi, δi) | i ∈ {1, . . . , n}} ⊎ P, ρ,flag,TID)
→ (α, γ, {(0;filter ̸=TID (Ri), ϕi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag,TID)
if γ |=

∨n
i=1 ϕi and every process in P starts with snd(·) or 0

Send
(α, γ, {(snd(ti).Pi;Ri, ϕi, structi, δi) | i ∈ {1, . . . , n}} ⊎ P, ρ,flag,TID)
→ (α, γ, {(Pi;Ri, ϕi, structi.l 7→ ti, δi) | i ∈ {1, . . . , n}}, ρ,flag,TID)
if γ |=

∨n
i=1 ϕi and every process in P starts with stop or 0, where l is a fresh label

Milestone
(α, γ, {(0;Ri, ϕi, structi, δi) | i ∈ {1, . . . , n}} ⊎ P, ρ,flag,TID)
→ (α, γ, {(0;Ri, ϕi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag,TID)
if γ |=

∨n
i=1 ϕi and every process in P starts with stop or snd(·)

Next
(α, γ, {(0;Ri, ϕi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag,TID)
→ (α, γ, {(Ri, ϕi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag,TID ′)
where TID ′ is the thread ID of the first transaction in the sequences Ri

contain privacy variables. The intruder can always com-
pare the outcome of a destructor with what happens in the
concrete frame, since we allow destructors in recipes. The
Eliminate rule allows for eliminating all frames that are
not statically equivalent to the concrete frame observed
by the intruder. Therefore, for every message received by
a process, even if a recipe chosen by the intruder contains
a destructor, either the destructor gives a subterm in every
frame, or the constant ff in every frame. ◁

Definition IV.9 (Fresh role instance). Let R be a role. A fresh
instance R′ of R is obtained by

1) Renaming all variables apart in the role R and in the
procedures it calls.

2) Expanding the role.
3) Removing every step νn1, . . . , nk by instantiating the ni

with fresh constants.
4) Giving every transaction in the resulting R′ the same

fresh thread ID.

We now have all the necessary concepts to define the overall
state transition system and the traces of a protocol. A trace
consists of the sequence of transactions executed, the inter-
pretation of all relations and privacy variables chosen in those
transactions, and the recipes chosen for the messages sent
by the intruder (i.e., messages received in the transactions).
Recall that the intruder does not know a priori what is the
true interpretation of relations: the protocol specifies a set Γ0

of possible interpretations, and for the symbolic execution we
need to fix this interpretation. Thus, for the set of reachable
states we consider several initial states where for each, we fix
some γ0 ∈ Γ0.

Definition IV.10 (State transition system). A sequence of
transactions P1; . . . ;Pn is valid iff there exist role instances
R1, . . . , Rm, with thread IDs TID1, . . . ,TIDm, such that for
every j ∈ {1, . . . ,m}, filter=TIDj

(P1; . . . ;Pn) is a prefix of
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Rj .
Let γ be a Σ0-formula such that γ |=

∨
γ0∈Γ0

γ0 and
P1; . . . ;Pn be a valid sequence of transactions. Then the initial
state w.r.t. γ and P1; . . . ;Pn is

init(γ, P1; . . . ;Pn)

= (
∨

γ0∈Γ0

γ0, γ, {(0;P1; . . . ;Pn, true, [], [])}, [], false, 0)

where [] denotes the empty frame, empty memory and empty
choice of recipes.

A tuple (P1; . . . ;Pn, γ, ρ) is a trace iff P1; . . . ;Pn is
valid, γ |=

∨
γ0∈Γ0

γ0 and there exists a milestone S =
(_, γ, _, ρ, _, _) such that init(γ0, P1; . . . ;Pn) −→ S, where
γ0 ∈ Γ0 is the interpretation of relations such that γ |= γ0.
The milestone S is then called a reachable state.

V. COMPOSITION AND COMPOSABILITY

A. Composition

We consider a composed protocol as the composition of
two smaller specifications (the definitions and results can be
generalized to an arbitrary number of specifications, we use
two here for convenience of notation). Our main result is that,
for the class of composable protocols (see Definition V.4),
an attack trace on the composed protocol can be projected
to an attack on one smaller protocol. To achieve this, every
protocol specifies its interface and our projection corresponds
to an individual protocol composed with the interface of the
other protocol.

In the following we adopt the marking convention from [11]
where all protocol steps are marked as 1, 2, or ⋆ for individual
steps of the component protocols P1 and P2 and the interface,
respectively. We used highlighting for the interface in Fig. 1
to avoid confusion with the ⋆ of non-deterministic choices and
releases.

Definition V.1 (Protocol composition). Let Spec1 and Spec2
be protocols. The composition Spec1 ∥ Spec2 is the protocol
defined with:

• the union of the roles, procedures, memory cells2 and
algebraic theories from Spec1 and Spec2; and

• the set of interpretations Γ0, where we assume that both
protocols specify the same set.

In the context of a composed protocol, we consider that
some steps of the processes specified are marked with either
a protocol-specific index or the symbol ⋆. Let i ∈ {1, 2} and
P be a transaction from Speci. In the specification of P , the
steps for receives, let statements, procedure calls, conditional
statements, cell reads or writes, sends and assertions are
marked with either i or ⋆. However, the steps for non-
deterministic choices, stops, fresh constants, releases and nil
processes are not marked because they are always relevant for
the composition.

2If there are shared memory cells, then both protocols must specify the
same ground contexts for the initial values of these cells.

During procedure call expansion, every statement let X = t
that replaces a return(t) is marked with the same mark as the
procedure call that is being expanded.

In frames, every mapping has the mark of the corresponding
snd(·) step.

Our main result is that we can project an attack on a
composed protocol to an attack on a smaller protocol. In the
context of composition, every step in a process has a mark that
says whether it is part of the protocol’s interface, i.e., it must
always be present in the projection, or it is protocol-specific
and can be abstracted away in the projection.

Definition V.2 (Projection to one component). Let i, j ∈
{1, 2, ⋆}. The projection of a transaction (after expansion) is
defined below.

(⋆ x ∈ D.P )|j = ⋆ x ∈ D.P |j

(i : rcv(t).P )|j =

{
rcv(t).P |j if i ∈ {j, ⋆}
P |j otherwise

(i : let X = t.P )|j =

{
let X = t.P |j if i ∈ {j, ⋆}
P |j otherwise

(i : X := cell(s).P )|j =

{
X := cell(s).P |j if i ∈ {j, ⋆}
P |j otherwise

(i : if ϕ then P else Q)|j =


if ϕ then P |j

else Q|j if i ∈ {j, ⋆}
P |j otherwise

(stop)|j = stop

(νn1, . . . , nk.P )|j = νn1, . . . , nk.P |j

(i : snd(t).P )|j =

{
snd(t).P |j if i ∈ {j, ⋆}
P |j otherwise

(i : cell(s) := t.P )|j =

{
cell(s) := t.P |j if i ∈ {j, ⋆}
P |j otherwise

(⋆ ϕ.P )|j = ⋆ ϕ.P |j

(i : assert(ϕ).P )|j =

{
assert(ϕ).P |j if i ∈ {j, ⋆}
P |j otherwise

(0)|j = 0

The notion of projection is extended to sequences of trans-
actions and protocols. For a frame F , we define F |i as the
projection of the frame to mappings marked with i or ⋆.

B. Composability

In general, the composition of secure protocols is not neces-
sarily secure. In this section, we identify a set of requirements
that form the class of protocols called composable. These
requirements control the interface between protocols and the
messages they share.

As mentioned in previous sections, in this paper we only
consider well-typed instantiations. In an execution of the
protocol, the concrete messages observed are ground instances
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of the terms that occur in the specification. We define below
the notion of (ground) sub-message patterns and we will
express our requirements using these ground patterns.

Definition V.3 ((Ground) sub-message patterns). The set of
sub-message patterns, SMP(M), of a set of terms M is the
least set closed under the following rules:

1) If t ∈M , then t ∈ SMP(M).
2) If t ∈ SMP(M) and t′ is a subterm of t, then t′ ∈

SMP(M).
3) If t ∈ SMP(M) and σ is a well-typed substitution, then

σ(t) ∈ SMP(M).
4) If t ∈ SMP(M), k and t′ are terms such that for some

destructor d we have d(k, t)→ t′ as an instance of the
rewrite rule for d, then k ∈ SMP(M).

The set of ground sub-message patterns, GSMP(M), of M
is {t ∈ SMP(M) | t is ground}.

Let Tpub = T (Σc ∩ Σpub , ∅) denote the set of destructor-
free public ground terms. Let Spec = Spec1 ∥ Spec2 be
a composed protocol and Secrets be a set of ground terms
disjoint from Tpub . The set Secrets represent shared messages
that are specified as secrets, i.e., they should not be known
by the intruder. Our result is parameterized over this set of
secret terms. It can be convenient to have protocols that share
terms, where the terms themselves are not secrets but contain
secrets as subterms. For instance, some protocols may use the
same public key certificates signed with a trusted private key.
We support this by specifying such terms as secrets, and when
messages are sent they can be marked as declassified so that
the intruder is now allowed to learn those messages.

Let GSMP i denote the ground sub-message patterns of the
terms occurring in Spec|i for i ∈ {1, 2}, and let GSMP⋆ =
GSMP1 ∩GSMP2. The intersection GSMP⋆ corresponds to
all ground messages (and their subterms) that are shared by
the protocols.

We now list our requirements on composed protocols and
we provide an intuitive explanation for them just afterwards.

Definition V.4 (Composability). Spec is composable w.r.t.
Secrets iff

1) For every conditional statement if ϕ then P else Q, if
the branching is not marked with ⋆, then Q = stop.

2) GSMP⋆ ⊆ Tpub ∪ Secrets .
3) Every role in Spec|1 and Spec|2 is well-formed (in the

sense of Definition III.2).
4) Every cell read or cell write is marked with ⋆ iff the

memory cell is shared (i.e., occurs in both Spec1 and
Spec2).

5) If a process calls a procedure from the other protocol,
then the procedure call is marked with ⋆.

6) In every formula released ϕ, all the variables fv(ϕ)
are privacy variables chosen earlier in that role or
procedure.

7) In every transaction, if there are two branches that send
the same number of messages, then the marks of the
messages sent must match.

1) If the branching is protocol-specific, we want the pro-
jection to abstract it away. Given an attack trace on the
composed protocol, we will argue why it is not necessary
for the intruder to reach the second branch given that it
stops immediately, so that we only have to consider the
projection of the first branch.

2) Messages shared by the two protocols must be either
public or specified as secrets. We will have to verify
that the components do not leak any secret, and if that
is the case then we can show (also using Item 6) that the
intruder never needs to use a protocol-specific message,
say from protocol 1, when executing protocol 2.

3) When projecting to 1 or 2, the resulting (expanded)
roles must be well-formed so that the semantics is well-
defined for the projected protocols; in particular, the
projected roles must be closed.

4) Shared memory cells are a way for the two protocols to
interact, and in order for the projection to faithfully rep-
resent the behavior of the original role or procedure, all
reads and writes must also be present in the projection.

5) Procedure calls are another way for the two protocols
to interact, and the values returned by these calls must
also be present in the projection.

6) We exclude releasing information on variables that are
bound in messages received, procedure calls or cell
reads, i.e., variables that are not necessarily privacy vari-
ables. This is a strong restriction that seems necessary
to obtain an intermediate result, which in short means
that whenever a protocol is receiving a message, we can
consider that the intruder sends a message from that
same protocol (and not the other one) without loss of
generality. Intuitively, since releases are changing the
information allowed about privacy variables, it makes
sense that an agent only releases information about the
choices they have made themselves and not arbitrary
messages that may or may not contain privacy variables
chosen in other transactions.

7) In every reachable state, the frames in the different
possibilities are indistinguishable and we must further
have that a given label has the same mark in every
possibility. Intuitively, the intruder should know whether
a message is protocol-specific (and then from which
protocol it comes from) or shared (and then it is always
present in the projections).

VI. THE COMPOSITIONALITY RESULTS

A. Compositionality on the Frame Level

In the rest of the paper, we consider a composable proto-
col Spec. Before concluding on the compositionality for the
protocol itself, we present results on frames. We give here
short and informal proof sketches and all detailed proofs and
intermediate results are provided in appendix.

Definition VI.1. A ground frame F is well-formed iff for every
mapping i : l 7→ t in F , we have i ∈ {1, 2, ⋆} and t ∈ GSMP i.
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The set of declassified terms of F is declassified(F ) = {t |
∃r. F |⋆(r) ≈ t}. We say that F leaks a secret from Secrets
iff there exist t ∈ Secrets \ declassified(F ), i ∈ {1, 2} and r
such that F |i(r) ≈ t. The frame F is leakage-free iff F does
not leak any secrets.

Remark. We define that a secret is leaked when it is leaked
in one projection of the frame instead of the full frame. This
is crucial, because leakage-freeness is a requirement of the
composition; due to our construction it is only necessary to
check that the component protocols do not leak (rather than
having to check their composition for leakage). ◁

We introduce the notion of homogeneous recipes to describe
recipes that can be used in a projection of the composed
protocol, i.e., recipes that are not using protocol-specific
messages from two different protocols.

Definition VI.2. Let F be a ground frame. A recipe r over
dom(F ) is homogeneous iff there exists i ∈ {1, 2} such that
every label in r is marked with i or ⋆. A pair of recipes (r1, r2)
is homogeneous iff there exists i ∈ {1, 2} such that every label
in r1 and r2 is marked with i or ⋆.

The results in this section are formulated for ground frames,
and we will later use them with frames from a reachable state.
Thus we only consider frames that have the same domain, with
the same marks for the labels.

Definition VI.3. Two ground frames F1 and F2 are compa-
rable iff they have the same domain and for every label, they
agree on its mark.

The first result is that, if a frame does not leak any secret,
then for every message occurring in the protocol execution, we
can obtain a homogeneous recipe to produce that message.

Lemma VI.1. Let F be a leakage-free frame, i ∈ {1, 2, ⋆} and
r be a recipe such that F (r) ∈ GSMP i. Then there exists a
recipe r′ such that F (r) ≈ F (r′) and every label in r′ is
marked with i or ⋆.

Proof sketch. If r is not homogeneous, then there is a subterm
of F (r) that is in GSMP⋆ and thus this subterm must be either
public or a secret. If it is a secret, then it must be declassified
since the frame is leakage-free. Then the protocol-specific
label producing the subterm can be replaced with either a
public term or a recipe containing only labels marked with
⋆ (for the declassified case). ◁

The second result is that, if both frames do not leak any
secret and are not statically equivalent, then we can find a
witness against static equivalence that is homogeneous. Recall
that the intruder knowledge in a state is defined through static
equivalence between the frames that the intruder considers
possible in that state. Thus the lemma is useful to prove that
a violation of privacy in a reachable state of the composed
protocol can be mapped to a violation of privacy in a state of
a projection of the protocol.

Theorem VI.1. Let F1, F2 be leakage-free comparable
frames. If for every i ∈ {1, 2}, F1|i ∼ F2|i, then F1 ∼ F2.

Proof sketch. We proceed by contraposition and assume that
F1 ̸∼ F2, so there exists a witness against static equivalence.
Then we apply a reduction strategy that successively replaces
some labels in the witness with homogeneous recipes until the
witness is homogeneous. During these reduction steps, we may
find another simpler homogeneous witness, e.g., if two recipes
for key terms suffice to distinguish the frames without needing
to apply decryption. The main argument in the reduction is
that if a recipe is not homogeneous, then there is a term that
is shared between protocols and since the frames are leakage-
free, we can find a homogeneous recipe for that term. In the
end we get a homogeneous witness, which means that we can
project the frames such that the witness is still well-defined
(i.e., using only labels available in the projected frames). ◁

B. Compositionality on the State Level

Definition VI.4 (Leakage-free state and protocol). A state S
is leakage-free iff the concrete frame concr in that state is
leakage-free. A protocol is leakage-free iff every reachable
state is leakage-free.

The properties that we are verifying for a protocol are
reachability properties, even privacy, so a protocol has an
attack iff some reachable state has an attack.

Definition VI.5 (Attack state and attack trace). A milestone
S is an attack state iff at least one of the following is true:

• The flag in S is set to true.
• S is not leakage-free.
• S does not satisfy privacy.
Let (P1; . . . ;Pn, γ, ρ) be a trace and S0, . . . , Sn be the

milestones such that for every i ∈ {1, . . . , n}, executing Pi,
starting from Si−1, leads to Si (following the truth γ and using
the recipes in ρ). (P1; . . . ;Pn, γ, ρ) is an attack trace iff

• For every i ∈ {0, . . . , n− 1}, Si is not an attack state.
• Sn is an attack state.

Finally we can state our main result: if no projection of the
protocol has an attack, then also the composed protocol has
no attack.

Theorem VI.2. If for every i ∈ {1, 2}, Spec|i has no attack,
then Spec has no attack.

Proof sketch. We proceed by contraposition and assume that
there exists an attack trace on the composed protocol. Our goal
is to prove the existence of an attack trace on a projection of
the protocol, i.e., to show that there is an attack on one protocol
composed with the interface of the other protocol.

The first step is to show that we can assume the intruder
chooses homogeneous recipes without loss of generality, i.e.,
whenever a protocol is receiving a message, then the intruder
uses labels from that same protocol (or declassified messages).
Since we only consider well-typed instantiations, we can
use our result of Lemma VI.1 to show that whenever a
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process is receiving a message, then the intruder can use
a homogeneous recipe to produce that message. This step
is actually quite difficult because we need to show that the
change to homogeneous recipe does not significantly alter the
reached state.

As a second step, we consider transactions that went into an
else branch for a conditional that is not marked ⋆, i.e., that is
protocol specific. Here the problem is that such a branching is
not possible in the projection to the other protocol, but we can
use our requirement that the else branch for protocol-specific
conditionals must be stop. Thus, the transaction can only have
the effect to show that the respective condition is false. So
either that gives an attack on privacy, or we can remove this
transaction from the trace.

Finally, we make a case distinction on the kind of attacks:
if some assertion was broken or some secret was leaked, then
the projected attack trace also leads to a broken assertion or
secret leaked. If the attack is instead a violation of privacy, i.e.,
there is a model of privacy variables allowed by the payload α
that the intruder can actually rule out given their knowledge,
then we show that either we find a “simpler” attack that is just
a secret leaked or we also have a violation of privacy from
the projected trace. ◁

VII. RELATED AND FUTURE WORK

There is a number of works that show compositionality for
standard trace-based properties in the symbolic (Dolev-Yao-
style) model [19], [20], [21], [22], [11]. The closest to ours is
the work of Hess et al. [11] which shows a compositionality
result for stateful protocols. Here the state is represented by a
family of sets of messages, e.g., a set of key registered as valid
at a server. These sets can be shared between the component
protocols. This is similar to our work where we have instead a
family of memory cells which can only hold one message and
also in our case these can be shared between the components.
This is because previous work on (α, β)-privacy [15] uses
such memory cells, but we want to investigate in future work
whether we can also support sets. From [11] we adopted the
idea that the protocols do not need to be completely disjoint
but can share a set of messages that either are public or initially
secret.

As already mentioned there are very few works on symbolic
compositionality for privacy-type goals. The standard model
for privacy goals is based on a notion of indistinguishability,
i.e., the intruder cannot tell two processes apart. In a nutshell,
for every trace that one process can exhibit, one has to
show that the other process can have the a similar trace in
the sense that the intruder frames are indistinguishable. This
is particularly challenging in case of conditionals, because
the intruder may in general not be able to tell whether the
condition was true and thus the then or the else branch
was the case. Note that in (α, β)-privacy this is handled by
maintaining a number of possibilities P: the rule Conditional
in Table I says that a possibility with a conditional statement
is split into two possibilities for the positive and negative
branch. Moreover, the rule Eliminate says that the intruder

can then discard possibilities that are not compatible with
observations, and keeps all that are. As this is a major difficulty
in approaches for unbounded session verification of trace
equivalence, a restriction is often considered: bi-processes and
diff-equivalence [23], [24]. Here, the two processes that should
be indistinguishable for the intruder differ only in the concrete
terms which come in two variants, and one requires that all
conditionals are satisfied for both or for neither variant, so
that it is always either the then or the else case. This allows
to easily turn the problem into a trace problem that is much
easier to deal with.

The most advanced work on compositionality for trace-
equivalence that we are aware of [21] also uses the restriction
to bi-processes and diff-equivalence. (They do also have a
result for the standard trace properties that does not need this
restriction, of course.) They show results for both the parallel
case and a sequential case where one protocol generates
a key and another protocol uses it. Our compositionality
result is significantly more general than this: we do not need
the restriction to bi-processes, i.e., we consider the standard
model of (α, β)-privacy where all branches of conditionals are
possible and maintained. For what concerns different types of
composition, the generality of our result blurs the boundaries
between concepts like parallel and sequential composition: in
our parallel composition the components can actually commu-
nicate with each other, this just has to be part of the interface,
either via memory cells and via shared messages (and declassi-
ficaton). Communication via memory cells actually allows for
sequential composition. Moreover, we can employ components
as subprotocols that can be invoked by other components.

We believe that the reason we can make such a general-
ization with complicated but still manageable proofs is due
to the technically more simple concepts of (α, β)-privacy:
we deal with a simple reachability problem where each state
carries enough information to model the intruder reasoning,
namely which models of the relations and privacy variables
are still compatible with all observations (and messages sent
by the intruder). This allows us to show that any trace of
the composed system, when projected to the steps of one
component and the shared (⋆-marked) steps, still works with
that component alone; thus the security of every component
implies the security of the composition.

There are however also some aspects where [21] is more
general. First, they allow for one component to use Diffie-
Hellman (however it cannot be shared between components),
which is valuable for key-exchange protocols. We plan to
investigate as future work how to support more algebraic
properties. Moreover, we require a typed model while the
requirements of [21] seem less restrictive—except for Diffie-
Hellman where they essentially have a strictly typed model.

One may wonder how fair the comparison between privacy
in trace-equivalence models and (α, β)-privacy actually is.
[15] gives an argument how trace-equivalence properties can
be translated into (α, β)-privacy problems and vice-versa.
Nonetheless there are several substantial differences in the
models. (α, β)-privacy assumes that the intruder can always
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see which transaction is executed, and may be just unclear
about the concrete values like privacy variables, and which
branch of a conditional is taken. In contrast, the trace-
equivalence approaches are focused on a trace of messages
that the intruder sent or received, thus the intruder is a priori
unable to tell which position in the considered process has
produced a particular output, and where a particular input was
received. Thus, the intruder gets a little more information in
(α, β)-privacy than typically in the model in other approaches;
this can actually be often justified in practice since the intruder
can know which inputs and outputs belong to the same session,
and they are a substantial simplification for automated and
compositional reasoning.
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APPENDIX

A. Proofs

1) Compositionality on the Frame Level:

Definition A.1. A shorthand i : l ← r consists of a label l
associated with a recipe r and marked with i. We extend the
notion of recipes so that they can use labels from shorthands:
a recipe containing label l from a shorthand l ← r produces
the same message as the recipe where l is replaced with r.

Let F be a ground frame. A frame F ′ is an extension of F
with shorthands iff dom(F ) ⊆ dom(F ′) and for every label
l ∈ dom(F ′) \ dom(F ) such that F ′ = F1.i : l ← r.F2, we
have labels(r) ⊆ dom(F1), F1(r) ∈ GSMP i and every label
in r is marked with i or ⋆.

We extend the notion of comparable frames as well: two
frames are comparable iff they have the same domain, the
same shorthands and for every label, the frames agree on its
mark.

The notion of shorthands does not impact the static equiv-
alence between frames.

Lemma A.1. Let F1, F2 be ground frames and let F ′
1, F

′
2 be

extensions of the respective frames with the same shorthands.
Then F1 ∼ F2 iff F ′

1 ∼ F ′
2.

Proof. Case F1 ̸∼ F2: Then there exists a witness (r1, r2)
that distinguishes the frames, which is then also a witness
that distinguishes F ′

1 and F ′
2.

Case F ′
1 ̸∼ F ′

2: Then there exists a witness (r1, r2) that
distinguishes the frames. Any label l that comes from a
shorthand l ← r can be replaced with r while preserving
the fact that the pair of recipes if a witness. Then there exists
a witness that distinguishes F1 and F2.

In the rest of this section, we only consider ground frames.

Lemma A.2. Let F1, F2 be leakage-free comparable frames,
i ∈ {1, 2, ⋆} and r be a destructor-free recipe such that
F1(r), F2(r) ∈ GSMP i. Then at least one of the following
is true:

1) There exist a destructor-free homogeneous recipe r′ and
frames F ′

1, F
′
2 extensions of F1, F2 with the same short-

hands such that F1(r) ≈ F ′
1(r

′) and F2(r) ≈ F ′
2(r

′).
2) There exists a homogeneous witness against static equiv-

alence of F1 and F2.
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Proof. Assume that i = 1 and that there is a label l in r
marked with 2 (the cases that i = 2 or i = ⋆ are handled
similarly). Let t1 = F1(l) and t2 = F2(l). Since l is marked
with 2, t1, t2 ∈ GSMP2. Since r is destructor-free, t1 is a
subterm of F1(r) and thus t1 ∈ Tpub ∪ Secrets .

• Case t1 ∈ Tpub : If t1 = t2, then we continue with the
recipe r[l 7→ t1]. Otherwise, (l, t1) is a witness and thus
Item 2 is true, since this pair of recipes is homogeneous.

• Case t1 ∈ Secrets: Since F1 is leakage-free and
F1|2(l) = t1, t1 /∈ Secrets \ declassified(F1). Thus
t1 ∈ declassified(F1), which means by definition of
declassified(F1) that there exists a recipe r′ such that
F1(r

′) ≈ t1 and all labels in r′ are marked with ⋆. If
(l, r′) is a witness, then Item 2 is true since this pair of
recipes is homogeneous. Otherwise, we add the shorthand
⋆ : l′ ← r′ in both frames. Then we have F1(l

′) ≈ t1 and
F2(l

′) ≈ t2, so we continue with the recipe r[l 7→ l′].
By repeating these steps, we can successively replace all
labels in the recipe r with equivalent labels (possibly using
shorthands) so that the recipe becomes homogeneous, or we
may find a homogeneous witness during some step.

Lemma A.3. Let F be a leakage-free frame, i ∈ {1, 2, ⋆} and
r be a destructor-free recipe such that F (r) ∈ GSMP i. Then
there exists a recipe r′ such that F (r) ≈ F (r′) and every
label in r′ is marked with i or ⋆.

Proof. By Lemma A.2, when considering twice the same
frame, there exist an extension F ′ of F with shorthands and
a destructor-free homogeneous recipe r′′ such that F (r) ≈
F ′(r′′). Then we obtain the recipe r′ from r′′ by replacing
any label from a shorthand with the recipe it is assigned to
(and removing the shorthands preserves homogeneity, since
the recipe in a shorthand is homogeneous w.r.t. the mark of
the shorthand).

Lemma VI.1. Let F be a leakage-free frame, i ∈ {1, 2, ⋆} and
r be a recipe such that F (r) ∈ GSMP i. Then there exists a
recipe r′ such that F (r) ≈ F (r′) and every label in r′ is
marked with i or ⋆.

Proof. If r is destructor-free, then the lemma holds by
Lemma A.3. Otherwise, we consider an inner-most destructor
in r. We have r = r0[d(rk, rt)] where rk and rt are destructor-
free and r0[·] is a recipe context. (A recipe context is a recipe
with a hole, and the hole is filled when the context is applied to
a recipe.) We have the rewrite rule d(k, c(k′, X1, . . . , Xn))→
Xj , where j ∈ {1, . . . , n}. If F (d(rk, rt)) ≈ ff, then we
continue with the recipe r0[ff]. Otherwise:

• Case rt = c(r′k, r
′
1, . . . , r

′
n): The decryption succeeds, so

we continue with the recipe r0[r′j ].
• Case rt = l ∈ dom(F ): The decryption succeeds.

By definition of GSMP , we have F (rk) ∈ GSMP i.
By Lemma A.3, there exists a homogeneous recipe r′k
such that F (rk) ≈ F (r′k). Then we add the shorthand
l′ ← d(r′k, l) with the same mark as for l. Note that
every label in d(r′k, l) has the same mark as l or ⋆, so

the shorthand is well-defined. Then we continue with the
recipe r0[l′].

By repeating these steps, we can successively replace all
destructor applications in the recipe with equivalent labels
(possibly using shorthands) so that we can get an extension
F ′ of F with shorthands and a destructor-free recipe r1 such
that F (r) ≈ F ′(r1). By Lemma A.3, there exists a recipe r2
such that F ′(r1) ≈ F ′(r2) and every label in r2 is marked
with i or ⋆. Then we obtain the recipe r′ from r2 by replacing
any label from a shorthand with the recipe it is assigned to.

Lemma A.4. Let F1, F2 be leakage-free comparable frames. If
there exists a destructor-free witness against static equivalence
of F1 and F2, then there exists a homogeneous witness.

Proof. For recipe r1, r2, let labels(r1, r2) denote the set of
labels occurring in r1 or r2 that are not marked with ⋆. Given
a pair of recipes (r1, r2), we define the weight of the pair as:

wF1,F2
(r1, r2) =


(#labels(r1, r2), size(F1(r1)))

if F1(r1) ≈ F1(r2) and F2(r1) ̸≈ F2(r2)

(#labels(r1, r2), size(F2(r1)))

if F1(r1) ̸≈ F1(r2) and F2(r1) ≈ F2(r2)

and wF1,F2
(r1, r2) is undefined otherwise (i.e., the weight is

only defined for witnesses).
Assume that there exists a destructor-free witness (r1, r2)

against static equivalence of F1 and F2. If both recipes are
composed, then they must have the same constructor at the
top-level, because they produce the same term in exactly one
frame: r1 = c(r11, . . . , r

n
1 ) and r2 = c(r12, . . . , r

n
2 ). Then at

least one of the (ri1, r
i
2) must already be a witness. We can thus

move to a smaller witness: if labels(r11, r
1
2) ⊊ labels(r1, r2),

then the first component of the weight decreases; otherwise,
the second component of the weight decreases (the recipes
produce a strict subterm of the original message). This is well-
founded: at some point, at least one of the recipes is no longer
composed and thus a label. Therefore there exists a witness
(l, r) such that l is a label and r is destructor-free. Assume
that:

• F1(l) ≈ F1(r) and F2(l) ̸≈ F2(r).
• l is marked with 1 and r contains a label l′ marked with

2.
Note that these assumptions are without loss of generality,
because we can just rename the frames and the case that l is
marked with 2 or ⋆ is handled in a similar way as below. Since
l is marked with 1, F1(l), F2(l) ∈ GSMP1. Let t = F1(l

′).
Since l′ is marked with 2, t ∈ GSMP2. Since r is destructor-
free, t is a subterm of F1(l) and thus t ∈ Tpub ∪ Secrets .

• Case t ∈ Tpub : If (l′, t) is a witness, then it is a
homogeneous one and the lemma holds. Otherwise, we
continue with the witness (l, r[l′ 7→ t]). This witness is
smaller because we are removing a label not marked with
⋆, so the first component of the weight decreases.

• Case t ∈ Secrets: Since F1 is leakage-free and
F1|2(l′) = t, t /∈ Secrets \ declassified(F1). Thus
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t ∈ declassified(F1), which means by definition of
declassified(F1) that there exists a recipe r′ such that
F1(r

′) ≈ t and all labels in r′ are marked with ⋆. If (l′, r′)
is a witness, then it is a homogeneous one and the lemma
holds. Otherwise, we add the shorthand ⋆ : l′′ ← r′ in
both frames. Then we have, F1(l

′) ≈ F1(l
′′) and F2(l

′) ≈
F2(l

′′), so continue with the witness (l, r[l′ 7→ l′′]). This
witness is smaller because we are removing a label not
marked with ⋆ and the label we introduce is a shorthand
marked with ⋆, so the first component of the weight
decreases.

By repeating these steps, we can successively replace all
labels in the recipe r with equivalent labels (possibly using
shorthands) so that the witness becomes homogeneous, and at
every step we decrease the weight of the witness, or we may
find a homogeneous witness during some step.

Lemma A.5. Let F1, F2 be leakage-free comparable frames.
If there exists a witness against static equivalence of F1 and
F2, then there exists a homogeneous witness.

Proof. Assume that there exists a witness (r1, r2) against
static equivalence of F1 and F2. If the witness is destructor-
free, then the lemma holds by Lemma A.4. Otherwise, we
assume w.l.o.g. that r1 is not destructor-free. We consider
an inner-most destructor in r1. We have r1 = r[d(rk, rt)]
where rk and rt are destructor-free. We have the rewrite rule
d(k, c(k′, X1, . . . , Xn)) → Xj , where j ∈ {1, . . . , n}, and
either k = k′ or there exists some public function f such
that k ≈ f(k′) or k′ ≈ f(k). If F1(d(rk, rt)) ≈ ff and
F2(d(rk, rt)) ≈ ff, then (r[ff], r2) is a witness. Otherwise:

• Case rt = c(r′k, r
′
1, . . . , r

′
n):

– Case k = k′: If (rk, r
′
k) is a witness, then by

Lemma A.4 there exists a homogeneous witness and
the lemma holds. Otherwise, the decryption succeeds
in both frames so we continue with the witness
(r[r′j ], r2).

– Case k ≈ f(k′): If (rk, f(r
′
k)) is a witness, then

we continue with that simpler witness (it produces a
strict subterm of the original witness). Otherwise, the
decryption succeeds in both frames so we continue
with the witness (r[r′j ], r2).

– Case k′ ≈ f(k): Similar to the previous case.
• Case rt = l ∈ dom(F1): By Lemma A.2, we may find a

homogeneous witness so that the lemma holds, or there
exist a destructor-free homogeneous recipe r′k and frames
F ′
1, F

′
2 extensions of F1, F2 with the same shorthands

such that F1(rk) ≈ F ′
1(r

′
k) and F2(rk) ≈ F ′

2(r
′
k). If

(d(rk, l), ff) is a witness, then (d(r′k, l), ff) is also a
witness and since it is homogeneous, the lemma holds.
Otherwise, the decryption succeeds in both frames and
we add the shorthand i : l′ ← d(r′k, l) where i is the
same mark as for l. Then we continue with the witness
(r[l′], r2).

By repeating these steps, we can successively replace all
destructor applications in the witness with equivalent labels

(possibly using shorthands) so that the witness becomes ho-
mogeneous, or we may find a homogeneous witness during
some step.

Theorem VI.1. Let F1, F2 be leakage-free comparable
frames. If for every i ∈ {1, 2}, F1|i ∼ F2|i, then F1 ∼ F2.

Proof. We proceed by contraposition. Assume that F1 ̸∼ F2.
By Lemma A.5, there exists a homogeneous witness (r1, r2)
against static equivalence of F1 and F2 and thus there exists
i ∈ {1, 2} such that all labels in r1 and r2 are marked with i
or ⋆. Then (r1, r2) is a witness against static equivalence of
F1|i and F2|i.

2) Equivalence Between States:

Definition A.2. Let S = (α, γ,P, _,flag ,TID) where
P = {(R1, ϕ1, struct1, δ1), . . . , (Rn, ϕn, structn, δn)}
and let S′ = (α′, γ′,P ′, _,flag ′,TID ′) where
P ′ = {(R′

1, ϕ
′
1, struct

′
1, δ

′
1), . . . , (R

′
n, ϕ

′
n, struct

′
n, δ

′
n)}.

S and S′ are equivalent iff
• α ≡ α′;
• γ ≡ γ′;
• flag = flag ′;
• TID = TID ′;
• For every i ∈ {1, . . . , n}, β(S) ∧ ϕi ≡ β(S′) ∧ ϕ′i and

there exists a substitution σi such that σi(Ri) = σi(R
′
i),

β(S)∧ ϕi |= σi, σi(struct i) = σi(struct
′
i) and σi(δi) =

σi(δ
′
i).

The notation mgu(s
.
= t) returns the most general unifier

between s and t. As a slight abuse of notation, we consider
a substitution [X1 7→ t1, . . . , Xn 7→ tn] as the conjunction of
equalities X1

.
= t1 ∧ · · · ∧ Xn

.
= tn and thus we also use

mgu(σ ∧ τ) to denote the mgu that unifies all equalities in σ
and τ .

Lemma A.6. The relation in Definition A.2 is an equivalence
relation.

Proof. Straightforward, it suffices to expand the definitions.

Two equivalent states represent the same intruder knowl-
edge.

Lemma A.7. Let S, S′ be equivalent states. Then β(S) ≡
β(S′).

Proof. We only show β(S) |= β(S′), the other direction
follows by symmetry. Let I |= β(S). Then there exists a
possibility with condition ϕ in S such that I |= ϕ. Since S
and S′ are equivalent, there exists a possibility with condition
ϕ′ in S′ such that β(S)∧ϕ ≡ β(S′)∧ϕ′. Then I |= β(S′)∧ϕ′
and thus I |= β(S′).

Lemma A.8. Let S1, S
′
1 be equivalent states. Then for every

state S2 such that S1 → S2, there exists a state S′
2 such that

S′
1 → S′

2 and S2 and S′
2 are equivalent.

Proof. By definition of equivalence, S1 and S′
1 have the same

payload α, truth formula γ, assertion flag flag and thread ID
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TID . Moreover, for every possibility (Ri, ϕi, struct i, δi) in
S1, there is a corresponding possibility (R′

i, ϕ
′
i, struct

′
i, δ

′
i) in

S′
1 and a substitution σi such that σi(Ri) = σi(R

′
i), β(S1) ∧

ϕi |= σi, σi(struct i) = σi(struct
′
i) and σi(δi) = σi(δ

′
i).

Let S2 be a state such that S1 → S2. We proceed by case
distinction of the rule applied in the transition S1 → S2. Note
that for every step in a process in S1, there is a corresponding
step in a process in S′

1, where only the instantiations of
privacy variables may differ. Thus there exists a state S′

2 such
that S′

1 → S′
2. We show that every transition preserves the

equivalence.

• Choice: The truth formula is extended in the same way
in S2 and S′

2.
• Receive: For the message received rcv(t), the intruder

uses a recipe r, then the variables bound in the linear
term t are substituted in the rest of the process according
to what the recipe r produces in the respective frame.
The messages struct i(r) and struct ′i(r) may be differ-
ent, therefore the bound variables may be substituted
differently in the rest of the process, but we have that
σi(struct i(r)) = σi(struct

′
i(r)). Thus the messages

occurring in the rest of the process are still related by
the substitutions σi in S2, S

′
2.

• Let: For a step let X = t in S1, there is a corresponding
step let X = t′ in S′

1 and a substitution σi such that
σi(t) = σi(t

′). The variable X may be substituted
differently but the messages in the rest of the process
are still related by the σi in S2, S

′
2.

• Cell read: For the possibility with memory δi that is doing
a cell read in S1, there is a corresponding possibility with
memory δ′i that is also doing a cell read and a substitution
σi such that σi(δi) = σi(δ

′
i). The cell read introduces

conditional statements with the memory updates and the
variable bound to the cell read is substituted in each
branch according to the respective memory update. The
values read from δi and δ′i may be different, therefore the
bound variable may be substituted differently in the rest
of the process, but the messages occurring in the rest of
the process are still related by the σi in S2, S

′
2.

• Cell write: For a step cell(s) := t in S1, there is a
corresponding step cell(s′) := t′ in S′

1 and a substitution
σi such that σi(s) = σi(s

′) and σi(t) = σi(t
′). The

sequences of memory updates are still related by the σi
in S2, S

′
2.

• Conditional: For a statement branching on condition ψ
in the possibility with condition ϕi in S1, there is a
corresponding branching on condition ψ′ in a possibility
with condition ϕ′i in S′

1 and a substitution σi such that
ψ ∧ σi ≡ ψ′ ∧ σi and β(S1) ∧ ϕi ≡ β(S′

1) ∧ ϕ′i. The
possibility can be split in two in each state. Then we
have that γ |= ϕi ∧ ψ iff γ |= ϕ′i ∧ ψ′, and γ |= ψi ∧ ¬ψ
iff γ |= ϕ′i ∧ ¬ψ′.

• Release: For a step ⋆ ψ in the possibility with condition
ϕi in S1 such that γ |= ϕi, there is the same step ⋆ ψ in
a possibility with condition ϕ′i in S′

1 such that γ |= ϕ′i.

Thus the new payload in S2 and S′
2 is the same. Note

that we have the same formula ψ in both cases because
the variables in ψ can only be privacy variables chosen
in previous transactions following Definition V.4. If we
did not make this restriction, then the formulas released
would be related by the σi but the payload might be
different and thus we would not obtain equivalent states.

• Assert: For a step assert(ψ) in the possibility with
condition ϕi in S1 such that γ |= ϕi, there is a corre-
sponding step assert(ψ′) in a possibility with condition
ϕ′i in S′

1 such that γ |= ϕ′i and a substitution σi such
that ψ ∧ σi ≡ ψ′ ∧ σi. Moreover, γ |= σi because
β(S1) ∧ ϕ |= σi, γ is consistent with β(S1) and γ |= ϕ.
Thus γ |= ψ iff γ |= ψ′ and the assertion flag is the same
in S2 and S′

2.
• Stop or Milestone: For every possibility that starts with

stop in S1, there is a corresponding possibility that also
starts with stop in S′

1 (and similarly for 0 instead of
stop). Then corresponding possibilities are discarded in
the same way in the transitions to S2, S

′
2.

• Send: For every step snd(t) in S1, there is a correspond-
ing step snd(t′) in S′ and a substitution σi such that
σi(t) = σi(t

′). Thus the frames in S2 and S′
2 are still

related by the σi in S2, S
′
2. Moreover, for every possibility

in S1 that is discarded (because it starts with stop or 0)
in the transition to S2, there is a possibility in S′

1 that is
also discarded in the transition to S′

2.
• Eliminate: For a possibility with condition ϕi in S1 such

that β(S1) ̸|= ϕi, there is a possibility with condition ϕ′i
in S′

1 such that β(S′
1) ̸|= ϕ′i.

• Next: The same thread ID is set in S2 and S′
2.

3) Compositionality on the State Level: Given a state S,
we denote with concr(S) the concrete frame in that state.

Lemma A.9. Let (P1; . . . ;Pn, γ, ρ) be an attack trace and
S0, . . . , Sn be the milestones such that for every j ∈
{1, . . . , n}, executing Pj , starting from Sj−1, leads to Sj

(following the truth γ and using the recipes in ρ).
Then there exists ρ′ such that (P1; . . . ;Pn, γ, ρ

′) is an attack
trace leading to milestones S′

0, . . . , S
′
n where Sj and S′

j are
equivalent (for j ∈ {0, . . . , n}) and for every step i : rcv(t)
during the execution of the transactions, where i ∈ {1, 2, ⋆},
every label in the recipe given by ρ′ to produce t is marked
with i or ⋆.

Proof. Let j ∈ {1, . . . , n} and concr = concr(Sj−1).
Consider a step i : rcv(t) (i ∈ {1, 2, ⋆}) in the transaction
Pj , let r be the recipe given by ρ for this message received
and t′ = concr(r). We have t′ ∈ GSMP i, because we con-
sider only well-typed instantiations and by definition GSMP i

contains all the well-typed instances of t. By Lemma VI.1,
there exists a homogeneous recipe r′ such that concr(r′) ≈ t′
and every label in r′ is marked with i or ⋆. Thus we can
consider ρ′ that is the same as ρ except that it uses r′ instead
of r for this message received.
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Thus we know that the intruder is able to use a ho-
mogeneous recipe to produce the same message. How-
ever, we now need to argue that using a homogeneous
r′ instead of r is correct w.r.t. the symbolic execution.
Indeed, the two recipes produce the same message in
concr , i.e., the concrete messages are equal, but changing
recipes can make a difference for the instantiation of pri-
vacy variables. Let (_, γ,P, _, _, _) = Sj−1 where P =
{(0;R1, ϕ1, struct1, δ1), . . . , (0;Rm, ϕm, structm, δm)}. The
underlined possibility is what really is the case, i.e., γ |= ϕ1
and concr = γ(struct1). For every k ∈ {1, . . . ,m}, the
intruder knows that β(S) ∧ ϕk |= concr ∼ structk. Since r
and r′ produce the same in concr , the intruder also knows
that β(S) ∧ ϕk |= structk(r)

.
= structk(r

′). Let σk =
mgu(structk(r)

.
= structk(r

′)). The state S′
j−1 obtained from

Sj−1 by applying the σ1, . . . , σm to the respective possibilities
is equivalent to Sj−1. Thus by Lemma A.8, the states reached
when using a homogeneous r′ instead of r leads are equivalent.

This argument holds for every message received in the
transaction Pj and for every transaction in the trace.

Every possibility that the intruder has not ruled out corre-
sponds to some concrete execution.

Lemma A.10. Let S = (α, γ,P, ρ, _, _) be a state reached
with trace (P1; . . . ;Pn, γ, ρ). Then for every possibility
(_, ϕ, struct , _) ∈ P and interpretation γ′ |= β(S) ∧ ϕ,
(P1; . . . ;Pn, γ

′, ρ) is a trace and it leads to a state S′ such
that concr(S′) = γ′(struct).

Proof. We consider the transitions, in the symbolic execution,
that depend on the truth formula.

• Release: The formulas released in the possibility under-
lined by γ′ are added to the payload α′ of S′ while
the releases in other possibilities are ignored. Thus the
payload in S and S′ may be different, but the possibilities
contain the same frames in both states.

• Stop, Send or Milestone: Since the possibility with
ϕ, struct remains in S, i.e., it was not ruled out by the
intruder, its process was stopping, sending or reaching a
milestone at the same time as the possibility underlined
by γ, so the same transitions can be taken when consid-
ering the truth γ′.

• Assert: The assertions in the possibility underlined by
γ′ are checked while the assertions in other possibilities
are ignored. Thus the assertion flag in S and S′ may be
different, but the possibilities contain the same frames in
both states.

• Eliminate: The intruder knowledge in the intermediate
states to reach S and S′ may be different, so the elimi-
nated possibilities may be different, but the intruder did
not rule out the possibility with ϕ, struct in S, so also
in S′ there is a possibility with the same frame.

The other transitions in the symbolic execution do not depend
on the truth formula, thus when executing the transactions
following truth γ′, there is a possibility with frame struct
considered by the intruder and it is actually the underlined

one, so concr(S′) = γ′(struct). Note that by well-formedness
of states, we have α′ |=

∨
γ0∈Γ0

γ0, where α′ is the payload
in S′. Thus even if γ and γ′ do not agree on the relations in
Σ0, there exists some γ0 ∈ Γ0 such that γ′ |= γ0 and thus
(P1; . . . ;Pn, γ

′, ρ) is a trace and S′ is a reachable state.

Theorem VI.2. If for every i ∈ {1, 2}, Spec|i has no attack,
then Spec has no attack.

Proof. We proceed by contraposition. We assume that the
composed protocol Spec has an attack and we show that one
of the projections to a component, i.e., Spec|1 or Spec|2, also
has an attack. Let (P1; . . . ;Pn, γ, ρ) be an attack trace. The
symbolic execution of the transactions, following recipes in ρ
and truth formula γ, defines the milestones S0, . . . , Sn such
that for every j ∈ {1, . . . , n}, executing Pj , starting from
Sj−1, leads to Sj . Recall that by definition of attack traces,
Sn is an attack state but all the milestones S0, . . . , Sn−1 do
not have any attack.

By Lemma A.9, we can assume w.l.o.g. that in the at-
tack trace, only homogeneous recipes are used. Now, con-
sider the symbolic execution of a conditional statement
if ϕ then P else Q occurring in one of the P1, . . . , Pn−1

such that:

• The conditional statement is marked with a protocol-
specific index, i.e., 1 or 2 but not ⋆.

• The underlined possibility, i.e., what really happened
concretely, went into branch Q.

Since the branching is protocol-specific, we know that Q =
stop (following Definition V.4), and the execution of stop
is observable by the intruder. Moreover, a transaction cannot
have any effects (e.g., writing to memory, sending a message
or releasing a formula) before reaching stop because this
step is in the center part of processes. Since reaching this
stop step did not result in a privacy violation (as we are
considering transactions before the last one), we can simplify
the trace by removing the execution of this transaction and the
successive ones that the stop would have filtered out. Thus,
w.l.o.g. we can assume that whenever there is a protocol-
specific branching occurring in the attack trace before the
last transaction, the underlined possibility went into the first
branch.

Let j ∈ {1, . . . , n}. We will go over the different steps that
can occur in Pj , and argue that for the appropriate projection,
the steps are either present or have been soundly abstracted.

We know that the last transaction is the one that introduces
an attack. Due to procedure call expansion, this transaction
may contain steps from both protocols, i.e., some steps marked
with 1 and other steps marked with 2: it may happen that the
left part of the process has been specified by, say, protocol 1,
then during the procedure call expansion a center process spec-
ified by protocol 2 was inserted. However, given a transaction,
we can always uniquely identify the protocol that specifies the
center process in that transaction (because procedure calls can
only happen in the left part of the process). Let i be the index
of the protocol that specifies the center process in the final
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transaction Pn. We show the existence of an attack by looking
at the execution of the transactions P1|i; . . . ;Pn|i.

• Non-deterministic choice, release or nil process: The
step remains in Pj |i because it is always present in any
projection.

• Receive: If the message received is marked with i or ⋆,
then it remains in Pj |i and we know that the intruder uses
a recipe with labels marked with i or ⋆. Otherwise, since
the role containing Pj |i is closed, the variables bound in
that message are not used in the projection so the step
can be skipped.

• Let statement or cell read: If the step is marked with i
or ⋆, then it remains in Pj |i. Otherwise, since the role
containing Pj |i is closed, the variable bound by this step
is not used in the projection so the step can be skipped.

• Cell write: If the cell write is marked with i or ⋆, then
it remains in Pj |i. Otherwise, the memory cell does not
occur in Spec|i so the step can be skipped.

• Conditional statement: If the branching is marked with i
or ⋆, then it remains in Pj |i. Otherwise, we know that
the underlined possibility went into the first branch (as
justified above), so executing Pj |i (where this branching
does not occur if j < n) preserves the attack.

• Assertion: If the assertion is marked with i or ⋆, then
it remains in Pj |i. Otherwise, the assertion was not
present in the underlined possibility or was true (since
the transactions before the last one do not lead to any
attack) so the step can be skipped.

• Stop: This step is never reached in the transactions before
the last one (as justified above). For the last transaction
Pn, the stop remains in Pn|i because it is always present
in any projection.

• Send: If the message sent is marked with i or ⋆, then it
remains in Pj |i and the message is added to the frames
with the same mark. Otherwise, the step can be skipped
since in the projected transactions, the intruder only uses
labels marked with i or ⋆.

Let ρ′ be the same as ρ except that we remove the recipes
corresponding to receive steps skipped when projecting to i.

We now consider different cases of attacks:

• If the flag in Sn is set to true: Then executing the
trace (P1|i; . . . ;Pn|i, γ, ρ′) leads to a state with the same
assertion that does not hold. Thus Spec|i has an attack.

• If the flag in Sn is set to false and Sn is not leakage-free:
Then there exist t ∈ Secrets \ declassified(concr(Sn)),
i′ ∈ {1, 2} and r such that concr(Sn)|i′(r) ≈ t. Since
it is the last transaction that leads to the attack, we have
i′ = i. Then executing the trace (P1|i; . . . ;Pn|i, γ, ρ′)
leads to a state leaking the same secret t. Thus Spec|i is
not leakage-free.

• Otherwise, i.e., the flag in Sn is set to
false, Sn is leakage-free and does not satisfy
privacy: Let (α, γ,P, ρ, false, _) = Sn where
P = {(_, ϕ1, struct1, _), . . . , (_, ϕm, structm, _)}.
Then we have that (α, β)-privacy does not hold, so

there exists a model I such that I |= α and I ̸|= β.
Executing the trace (P1|i; . . . ;Pn|i, γ, ρ′) leads to a state
S′ = (α, γ,P ′, ρ′, false, _).

– If there exists j ∈ {1, . . . ,m} such that I |= ϕj :
Then I ̸|= concr(Sn) ∼ structj , so concr(Sn) ̸∼
I(structj). Since Sn is leakage-free, we know that
concr is leakage-free. However, to apply our results
on frames we need to have both frames leakage-free.
∗ If I(structj) is leakage-free: Then by Theo-

rem VI.1, there exists i′ ∈ {1, 2} such that
concr(Sn)|i′ ̸∼ I(structj)|i′ . Since it is the
last transaction that leads to the attack, we have
i′ = i. Moreover, there exists a possibility
(_, ϕ′j , struct

′
j , _) ∈ P ′ such that ϕj |= ϕ′j and

structj |i = struct ′j . Note also that concr(S′) =
concr(Sn)|i. Then I |= α ∧ ϕ′ and concr(S′) ̸∼
I(struct ′), so S′ does not satisfy privacy. Thus
Spec|i does not satisfy privacy.

∗ Otherwise: Then by Lemma A.10, there is a reach-
able state where the concrete frame is I(structj),
i.e., there is a reachable state that leaks a secret
and we can show (as done in a previous case) that
one component of the protocol has an attack.

– Otherwise, i.e., I ̸|=
∨m

j=1 ϕj : The same branch-
ing occurs in the full trace (P1; . . . ;Pn, γ, ρ) and
the projected trace (P1|i; . . . ;Pn|i, γ, ρ′), except for
protocol-specific branching that has been abstracted,
but in this case the intruder observed in the full
trace which branch was taken (as justified earlier).
Moreover, if there are branches in the transactions
P1, . . . , Pn−1 that are distinguishable before the pro-
jection but not after (e.g., due to one branch sending
a protocol-specific message), then the intruder can
eliminate one of the branches in the projected trace
because observing which branch was taken did not
violate privacy, so even if the condition depended
on privacy variables, then it was allowed by the
payload. Thus β(S′) |=

∨m
j=1 ϕj . Then I |= α and

I ̸|= β(S′), so S′ does not satisfy privacy and thus
Spec|i does not satisfy privacy.

B. Example of Composition with Simplified TLS
Our results are formalized with two protocols, but we can

similarly handle the composition of three or more protocols:
we could generalize all notions with a set of indices instead
of just {1, 2}, and we would then consider one protocol
composed with the projection of all other protocols.

As a further example, we model the establishment of a
fresh key between some agent and a trusted server. In Fig. 2,
we model a simplified version of TLS, where the server is
always the same trusted server s, and we also assume that
agents already know the public key of that server so we do
not model certificates. This protocol could for instance be used
inside lookup, where the agent that makes the request is calling
tls_client to get a fresh key instead of a long-term shared
secret.
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Procedure tls_client(C : agent)

νNC : nonce,PMS : pms, R : nonce.

snd(NC).

snd(ox(PMS )).

snd(crypt(pk(s), g1(PMS , NC), R))

;

rcv(NS : nonce).

rcv(scrypt(kdf(PMS , NC , NS), g2(NS), _ : nonce)).

return(kdf(PMS , NC , NS))

Procedure tls_server()
rcv(NC : nonce).

rcv(ox(PMS : pms)).

rcv(crypt(pk(s), g1(PMS , NC), _ : nonce)).

νNS : nonce, R : nonce.

snd(NS).

snd(scrypt(kdf(PMS , NC , NS), g2(NS), R)).

return(kdf(PMS , NC , NS))

Fig. 2. Specification of the TLS0 protocol

Note that we highlighted the reception of server random NS

because we need to bind it before returning the value for the
fresh key. In the projection, the intruder could freely choose
any nonce, e.g., some value that the server does not know, and
this does not matter because in the projection the server does
not actually need to be executed: as in the previous model of
the lookup, the correct public key is directly returned without
actual communication with the server. Additional “trick”: we
use a private function ox so that PMS is bound also in the
projections of the TLS0 procedures. Since the function is
private, PMS is still a secret.

We further develop the model of TLS to make the server
identity a parameter, where inside the lookup the argument is
a fixed trusted server. See Fig. 3.

Here we do not assume that the client knows the public key
of the server, but we assume that they know the public key
of a trusted certificate authority so that they can check the
certificate sent by the server.
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Procedure tls_client(C : agent, S : agent)

νNC : nonce.

snd(NC)

;

rcv(g0(NC , sign(inv(pk(ca)), cert(S,PKS )))).

νPMS : pms, R : nonce.

snd(ox(PMS )).

snd(crypt(PKS , g1(PMS , NC), R))

;

rcv(NS : nonce).

rcv(scrypt(kdf(PMS , NC , NS), g2(NS), _ : nonce)).

return(kdf(PMS , NC , NS))

Procedure tls_server(S : agent)

rcv(NC : nonce).

snd(g0(NC , sign(inv(pk(ca)), cert(S, pk(S))))).

;

rcv(ox(PMS )).

rcv(crypt(pk(S), g1(PMS : pms, NC), _ : nonce)).

νNS : nonce, R : nonce.

snd(NS).

snd(scrypt(kdf(PMS , NC , NS), g2(NS), R)).

return(kdf(PMS , NC , NS))

Fig. 3. Specification of the simplified TLS protocol
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