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Abstract

We address the problem of privacy-preserving access control in distributed systems. Users commonly
reveal more personal data than strictly necessary to be granted access to online resources, even though
existing technologies, such as anonymous credential systems, offer functionalities that would allow for
privacy-friendly authorization. An important reason for this lack of technology adoption is, as we believe,
the absence of a suitable authorization language offering adequate expressiveness to address the privacy-
friendly functionalities. To overcome this problem, we propose an authorization language that allows for
expressing access control requirements in a privacy-preserving way. Our language is independent from
concrete technology, thus it allows for specifying requirements regardless of implementation details while
it is also applicable for technologies designed without privacy considerations. We see our proposal as an
important step towards making access control systems privacy-preserving.

1 Introduction

Current industry trends such as software as a service and cloud computing drive businesses to open up their
software infrastructures to a wider online audience. Enterprises that used to populate their internal user
directories by doing their own identity vetting are now moving away from their closed-world assumption and
start relying more and more on external identity providers instead. On the other hand, as users’ personal
data move outside the enterprise boundaries, privacy protection becomes an even bigger concern than before.
Clearly, companies have to strike a trade-off between the protection of their resources and the privacy of
their users. A crucial tool in implementing this trade-off is an adequate language to express access control
requirements in a way that does not force users to reveal more personal information than strictly necessary.

A plethora of technologies exist to authenticate users and bind attributes to them, including X.509
certificates, SAML, OpenID, trusted LDAP directories, and anonymous credentials [18, 11, 15]. The latter
offer a number of appealing privacy features, such as proving predicates over attributes, disclosing attributes
to third parties, accountable anonymity, and privacy-friendly consumption control. In this paper, we abstract
all of these technologies into a generic model of digital “cards” that captures the advanced features they offer,
but makes abstraction of the technical details. The idea of using an abstraction is not new. In particular,
the Identity Metasystem [29] advocates an abstraction called “identities” which is similar to our card model
(cf. Section 2 for details).
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We model a card as an authenticated list of attribute-value pairs issued by an issuer to a card owner.
To obtain access to a server’s resource, the card owner creates a claim, i.e., a statement about some of the
attributes of one or more of her cards. She also generates (technology-dependent) evidence for the claim
that is basis for the server (also called the relying party) to verify the authenticity of the claim, the freshness
of the evidence, and fulfillment of the policy protecting the resource.

In this paper, we propose a card-based access control requirements language (CARL) that allows the
server to express the requirements that a user’s cards have to satisfy in order to gain access to a resource,
without having to worry about the specifics of the underlying technology. Moreover, our language is privacy-
preserving in the sense that it expresses the minimal claim that a user has to present. It does so in terms
of which cards have to be involved in the claim, which attributes of those cards have to be revealed, and
which conditions have to hold over the attributes (whether these were revealed or not). This approach allows
the user to minimize the amount of data that she reveals to the server, which is important as cards often
contain sensitive personal information. Moreover, some of the supported technologies (including SAML,
OpenID, and in particular anonymous credentials) allow to derive claims that do not necessarily reveal all
of the attributes of a card, but only a subset of them, or even just the fact that their values satisfy a
certain boolean condition. Our language leverages these technologies to their full potential, without making
compromises on compatibility with older technologies though, since the user can always choose to reveal
more information than required.

We summarize the core features of our language below. While some of the individual features may also
be supported in previous work, we see as important contribution that the CARL supports all these features
simultaneously. See the next section for a detailed comparison with related work.

Privacy preservation. The CARL is privacy-preserving in the sense that it supports the principle of min-
imal information disclosure. Rather than assuming that all attributes in a card are revealed by default, it
explicitly specifies which attributes must be revealed, and clearly distinguishes between the requirement to
reveal the value of an attribute (e.g., the date of birth) and the requirement that an attribute has to satisfy
a certain condition (e.g., age greater than 18). Our language also supports accountability, so that anonymity
can be revoked by a third party in case of abuse.

Technology independence. Our language is independent of the technology underlying the cards, so that
different technologies or even a mix of technologies can be used without modifying the policy specifications.
Also, its concepts are detailed enough to leverage the advanced features of available technologies (in particular
those of anonymous credentials) such as consumption control and attribute disclosure to third parties.

Multi-card claims. Our policy language can express requirements involving multiple cards at the same
time and has a way to refer to individual cards and the attributes they contain. It can thereby impose
“cross-card” conditions, e.g., a car rental service can request to see an identity card, a driver’s license, and
a credit card, which are all registered to the same name. The card type determines the attributes a card
contains, and the policy can specify a card to be of a certain type. For example, the car rental service may
want to see the address as stated on the credit card, not on the driver’s license. Being able to reference
individual cards is also important when a user has multiple cards of the same type. For example, when a
user has two credit cards, the policy should be unambiguous about whether it wants to see the credit card
number and security code of the same card or of different cards. (We refer to this issue as the card mixing
problem.)

Formal semantics. We provide a formal semantics for our language that mathematically defines an ideal
system that determines what a particular realization must implement. This ideal system defines the proof
goal for any realization with a concrete technology. We do not define a particular kind of realization in terms
of a concrete set of actions (such as an exchange of particular messages), because this would be technology
dependent.1 Defining a formal semantics has helped us to surface subtle problems that might otherwise go
unnoticed, such as the card mixing problem mentioned above.

In this paper, we focus only on the language that is used to describe card requirements. When designing a
comprehensive access control language, various additional aspects have to be taken into account, such as how

1An example of such a realization was done by Mödersheim and Sommer [30].
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to specify the resources and requested actions to which the policy applies, how to express trust relationships
and trust delegation, how to state data handling policies, how to combine multiple applicable policies, etc.
In Section 6, we sketch how our language can be integrated into XACML [33] to profit from the mechanisms
for defining the applicable resources and actions, and how it can be integrated into existing authorization
languages like SecPal [6] and DKAL [24] to express delegation and other complex trust structures.

2 Related Work

Card-based access control can be seen as a generalization of a variety of access control models. Role-based
access control [21, 35] can be seen as a special case of our card-based setting by encoding a user’s roles as
attributes in a card. Attribute-based access control [9, 33, 37] comes closer to our concept of card-based
access control, but it does not see attributes as grouped together in cards.

The idea of technology independence for authentication mechanisms is not new. In particular, the Identity
Metasystem [29] advocates a very similar abstraction, but focuses solely on use cases where only a single
card (called “identity” in their framework) is used at each authentication session. The associated WS-*
suite of policy languages and the CardSpace implementation support selective attribute disclosure and even
a limited set of predicates over attributes, but again only for a single card per authentication. We think
that multi-card authentication is an important use case, even though it necessarily adds to the complexity of
the policy language; hence the need for our language. Advanced features such as disclosure to third parties,
signing statements, and consumption control are also not supported in the Identity Metasystem.

Bonatti and Samarati [9] propose a language for specifying access control rules based on “credentials”,
the equivalent of our cards. The language focuses on card ownership and does not allow for more advanced
requirements such as revealing of attributes or signing statements. The same is true for the language proposed
in [3].

Winsborough et al. [38] present a credential-based access control language that allows one to impose
attribute properties on credentials, but does not support advanced features such as revealing of attributes,
signing statements, or consumption control. The extension by Li et al. [27] supports revealing of attributes,
but not the other features.

The PolicyMaker [8] and KeyNote [7] trust management system uses ‘credentials’ to bind ‘assertions’ to
keys. In PolicyMaker, assertions can be described in any safe language, while KeyNote fixes a language.
Both could be used to encode attribute-value pairs in the assertion to implement our card concept, but
selective attribute disclosure would not be possible, unless new credentials are re-issued at each login.

P3P [36] defines a format for websites to express their privacy practices. EPAL [?] is a framework that
allows enterprises to manage personal data they have collected on the basis of privacy statements. However,
no support for credentials is offered.

The languages mentioned above are not targeted to anonymous transactions and thus lack language
constructs that allow for obtaining accountability in anonymous transactions, which we do achieve through
a combination of signing statements and disclosure to third parties. The first paper towards third-party
disclosure is due to Backes et al. [5]. Gevers and De Decker [23] extend P3P to describe credentials and
necessary access control requirements, including verifiable encryption (which we generalized to disclosure to
third parties), but no precise syntax or semantics are specified.

The recent language by Ardagna et al. [2] features a card typing mechanism and advanced features such
as consumption control and signing statements. It focuses only on anonymous credential systems though,
hence cannot be used in combination with other technologies. It also lacks a formal semantics and suffers
from the card mixing problem.

Several logic-based approaches for authentication and distributed access control have been devised to
achieve similar goals as this work: a technology-neutral, declarative specification of distributed access con-
trol [1, 10, 22, 28]. The fundamental idea is to describe access control requirements by formulae in authen-
tication logic and to provide a calculus for proving such formulae. To gain access, the requester constructs
a valid proof for the formula based on the credentials she owns and sends it, together with the relevant cre-
dentials, to the server. However, none of these approaches is fully privacy-preserving: they do not support
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selective disclosure of attributes (as opposed to transmitting entire credentials/cards), proving predicates
over attributes (as opposed to disclosing these attributes), disclosing attributes to third parties, and signing
statements with respect to the proved attribute properties.

In contrast, CARL specifies the minimal amount of information each involved party has to learn for access
to be granted. The formal semantics is specified not as a calculus but as conditions on the cards/credentials
that the requester holds and the precise amount of information the involved parties gain. It is then the duty
of an implementation to show that users can only prove statements that hold on their credentials and that
involved parties do not learn more information than specified. We briefly discuss how to combine CARL with
existing logic-based approaches in the extended version [26, Section 6.1]; we leave an in-depth investigation
of such combinations for future work.

3 Background

In the following we explain in more detail our abstract model of a “card”. We also discuss some of the
technologies that can be used to instantiate this model and the functionalities that they offer, because they
have strongly influenced the design of our language. Finally, we sketch how our language fits into the bigger
picture of a complete privacy-enhanced card-based access control solution.

3.1 Our Card Model

The language that we present is geared towards enabling user-centric and privacy-preserving access control
based on certified cards. While it leverages the advanced features offered by anonymous credential systems,
it is technology-agnostic in the sense that it makes abstraction of the particular technology that is used to
certify the cards.

To better understand our model, we will at each step illustrate the concepts by describing how they
are instantiated by X.509 v3 certificates [19]. These allow a certification authority (CA) to bind arbitrary
community-specific attributes to a user’s public key by creating a signature (under the CA’s public key) of
the user’s attributes and her public key. In the next subsection, we sketch how a number of other technologies
can also be seen to implement the same concepts.

A card is issued by a card issuer to a card owner. The issuer vouches for the correctness of the information
on the card with respect to the intended owner. The information is meant to affirm qualification, typically
in the form of identity or authority. However, the meaning of the information has no technical relevance and
is subject to interpretation of the party relying on it. In an X.509 certificate, the CA acts as card issuer.
While we are mainly interested in cards that can be presented to third parties, some cards may be intended
for internal use only and be verifiable only by the issuer; think for example of a company-internal LDAP
directory.

A card consists of a list of attribute-value pairs and of technology-specific auxiliary data called the
pre-evidence. The pre-evidence can contain meta-data (cryptographic or other) that the owner needs when
presenting the card to a relying party. In an X.509 certificate, e.g., the pre-evidence contains the CA’s public
key pkCA, the user’s public key pkU, the user’s secret key skU, and the CA’s signature σCA on the list of
attributes and pkU. (For simplicity, we assume that the CA is a root authority; otherwise, the pre-evidence
also contains the certificate chain of pkCA to a root authority.) The issuing process may be carried out
on-line, e.g., by visiting the issuer’s website, as well as off-line, e.g., at the local town hall.

Cards are always of a certain card type that specifies the list of attributes that the card contains. For
example, a national ID card may contain the first name, last name, date of birth, and address of the owner,
while a movie ticket contains the time and date of the showing and a seat number. We consider a hierarchical
ontology of card types so that types can inherit from other types; see Section 4.1 for details. A card serves as
a means for proving qualification, i.e., it typically serves to prove identity, authority, or both. For example,
a national ID card can be used to prove identity, a movie ticket to prove authority to attend a particular
movie showing from a particular seat, and a driver’s license to prove identity as well as the authorization to
drive motor vehicles of a certain category.
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For gaining access to a resource protected by a policy, the server has to be convinced that the policy is
fulfilled. To do so, in our system model the card owner makes a claim about the cards she owns and about
the attributes they contain. Claims are made independent from concrete technology, and are authenticated
by accompanying evidence. The evidence is, however, specific to the technology underlying the cards. In the
ideal case of privacy-preserving technologies, this claim reflects exactly the policy. For other technologies,
the claim is something stronger than required. With X.509, e.g., all cards’ attributes are revealed, no matter
what the policy requires.

The evidence is derived from the card’s pre-evidence, and used by the server to check (1) the integrity of
the claim, (2) the freshness of the evidence, and (3) the rightful ownership of the card. Depending on the
technology, the user may be able to derive the evidence herself, or she may need to interact with the card
issuer. Likewise, the server may be able to independently verify the evidence, or may need the help of the
issuer.

For X.509, for example, the evidence consists of pkCA, pkU, σCA, and a signature σU created by the
owner on the claim statement and a random nonce chosen by the relying party. Here, σCA protects the
integrity of the attributes, while σU simultaneously acts as a proof of freshness of the claim and a proof of
ownership (through the knowledge of skU) of the card. The evidence is independently created by the owner;
the relying party may have to contact the issuer however to check that pkU has not been revoked.

3.2 Example Technologies

By above card abstraction our policy language can specify access control restrictions without having to worry
about the underlying technology. This means that a card of any supported technology can be used to satisfy
a policy, and even that cards of different technologies can be combined in a single claim.

We already described how X.509 certificates fit our card model. Below, we sketch how anonymous
credentials, trusted LDAP directories, OpenID, Kerberos, SAML, and even everyday email accounts can be
seen to fit our model as well. This list is by no means exhaustive; in fact, we envision that most existing
and even future technologies will fit our model.

Anonymous Credentials Much like an X.509 certificate, an anonymous credential [18, 11, 15] can be
seen as a list of attribute-value pairs signed by the issuer with an underlying secret signing key for the user.
Unlike X.509 certificates, however, anonymous credentials have the advantage that the owner can reveal
subsets of the attributes, or merely prove that a condition over the attributes holds. Also, they provide
additional privacy guarantees like unlinkability, meaning that, even when colluding with the issuer, a server
cannot link multiple visits by the same user or link a visit to the issuing of the card.

Two main anonymous credential systems have been implemented today, namely Identity Mixer [15,
17] and UProve [20]. We will focus mainly on Identity Mixer in this paper because of its multitude of
associated cryptographic tools such as verifiable encryption and consumption control (also known as “limited
spending”), but we stress that UProve credentials can be used as a technology for our policy language as
well.

LDAP The Lightweight Directory Access Protocol defines a standard interface to directory servers con-
taining information about users. If the LDAP server is trusted, one can see each user directory entry as a
card belonging to that user and issued by the LDAP server. The user authenticates to the LDAP server
using a password or using a more advanced authentication mechanism.The evidence of a claim is simply the
LDAP server’s URL, the relying party can verify the attributes simply by looking them up in the directory.
Any subset of attributes can be revealed, even though a cheating server can always look up other attributes
as well.

OpenID In OpenID [34] each account is identified by a unique URL bound to the user by the OpenID
provider. The recent OpenID Attribute Exchange extension [25] allows for the exchange of user-defined
attributes. When logging on to a website, the user sends her unique URL to the relying party. The user
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is then redirected to her OpenID provider where she authenticates using a password. If the authentication
is successful, the OpenID provider either sends a confirmation and the requested attributes directly to the
relying party, or sends these through the user with integrity protection with a MAC (under a key that the
provider and relying party agreed upon directly).

An OpenID account can be seen as a card issued by the OpenID provider. Any subset of attributes can
be revealed in a claim, which is good for privacy, but on the negative side all transactions with the same card
are linkable through the unique URL. Also, since claim creation and verification both involve the OpenID
provider, he learns which user authenticates to which server at which time. The user’s password acts as a
proof of ownership; the integrity of the attributes is protected by MACs.

Kerberos A Kerberos user account [31] could also be seen as a card issued by the key distribution center
(KDC) containing the user’s identity. Each claim derived from this card contains the user’s identity; the
Kerberos ticket acts as the evidence. The pre-evidence is the user’s password and perhaps connection
information to the KDC. Both claim creation by the user and verification by the relying party require
interaction with the KDC.

SAML SAML [32] is an XML-based framework for communicating user authentication, entitlement, and
attribute information. The user’s attributes are stored by an Identity Provider (IP). When logging in to
a relying party, the user authenticates to the IP and requests a signed claim (called assertion in SAML)
containing the attribute values that the relying party requires. SAML is somewhat technology agnostic in
the sense that it does not specify how the user has to authenticate to the identity provider, but the evidence
of the claim is always an XML Signature by the IP. The user’s account at the IP containing all the attributes
can be seen as a card in our framework. The IP is the issuer of the card, the user’s pre-evidence consists of
her authentication secret with respect to the IP.

Email Even a simple email account can be seen as a card: the only attribute is the email address itself, the
mail server acts as the issuer. The user’s pre-evidence is her account password, the integrity and ownership
of the email address are checked by the owner’s ability to click on a link or enter a code sent to her by email.

3.3 Functionality

We now describe a number of special features of cards that our policy language supports and sketch how
these features are or could be implemented in the different technologies.

Proof of ownership To bind a card to its legitimate owner, the card’s pre-evidence may contain infor-
mation that is used to authenticate the owner. This could be a picture of the user, a PIN code, a password,
or a signing key. Proving card ownership in our notion means that the owner authentication is success-
fully performed with whatever mechanism is in place. Depending on the employed mechanism, successful
authentication may also provide a liveness guarantee (to prevent replay attacks).

The actual implementation of the ownership proof is technology dependent. For X.509 certificates,
ownership can be proven by signing a random nonce. In anonymous credentials, users construct a zero-
knowledge proof of knowledge of an underlying master secret. OpenID, LDAP, Kerberos, and email accounts
all work with a password-based approach.

Related to the question of ownership is the transferability of a card from one user to another. Some cards
may be transferable (e.g., movie tickets) while others may not (e.g., driver’s licenses and identification cards
in general). We do not further elaborate this concept here, but rather assume that the underlying technology
prevents abuse if necessary, for example by letting the underlying authentication secret be the same as that
of a highly sensitive card, e.g., the signing key of a national ID card.
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Selective attribute disclosure Some technologies allow attributes within a card to be revealed selectively,
i.e., the relying party only learns the value of a subset of the attributes contained in the card.

Not all technologies support this feature. Verification of the issuer’s signature on an X.509 certificate
requires all attribute values to be known. The LDAP protocol specifies the attributes to fetch, but the user
has no control over which attributes a cheating server looks up. Anonymous credentials, SAML, and (under
certain settings) OpenID, on the other hand, have native support for this feature, although the mechanisms
are quite different. For OpenID and SAML the provider simply only reveals those attributes that were
explicitly requested, while for anonymous credentials it is the cryptography that ensures that no information
is leaked about non-disclosed attributes.

Proving conditions on attributes Anonymous credentials even allow one to prove conditions over at-
tributes without revealing their actual values. (While in theory any condition can be proved, this mechanism
is only truly practical for certain classes of conditions. We refer to [2] for details.)

For all other technologies the only way to prove that an attribute satisfies a condition is by revealing
its value. Perhaps future versions of technologies with online verification such as OpenID or SAML will
enable the identity provider to confirm that conditions over attributes hold, rather than having to reveal
their values.

Attribute disclosure to third parties Usually attributes will be revealed to the relying party enforcing
the policy, but the policy could also require certain attributes to be revealed to an external third party. For
example, the server may require that the user reveals her full name to a trusted escrow agent, so that she
can be de-anonymized in case of fraud, thereby adding accountability to otherwise anonymous transactions.
As another example, an online shop could require the user to reveal her address to the shipping company
directly, rather than disclosing it to the shop.

Of course, the relying party needs some sort of evidence that the user actually did reveal the necessary
information to the third party. Identity Mixer elegantly supports this feature using verifiable encryption [13,
4, 16]. Here, the user hands to the relying party a ciphertext containing the relevant attribute(s), encrypted
under the third party’s public key, and adds a zero-knowledge proof that the correct attribute was encrypted.
Moreover, a data handling policy can be bound to the ciphertext, e.g., to describe under what conditions
it can be decrypted. The relying party is unable to change the data handling policy when forwarding the
ciphertext to the third party.

This feature could be added to other technologies as well by letting either the user or the issuer send the
necessary attributes to the third party directly, and letting the third party sign a receipt that can be shown
to the relying party.

Signing of statements Our policy language also enables the server to require the user’s explicit consent
to some statement, e.g., the terms of service or the privacy policy of the site. The signature acts as evidence
that this statement was agreed to by a user fulfilling the policy in question.

There are various ways in which users can express consent; our language does not impose a particular
implementation. Using X.509 certificates the most straightforward way is to digitally sign the document.
Anonymous credentials allow to sign statements while maintaining maximal privacy: anyone can verify that
the signature was placed by a user satisfying the access control policy, but only a trusted opening authority
can tell who exactly the user was. Using other technologies, the relying party could simply record the fact
that the user confirmed the statement by clicking an OK-button.

Note that these signatures, together with attribute disclosure to third parties, are the key to make
anonymity revocable and actions accountable. Consider, e.g., a policy requiring a user to reveal her real
name n and an order confirmation number o to a trusted third party. In addition, the user has to sign a
statement involving o. In case of a dispute, the server forwards the signature to the trusted party who can
now resolve the issue with the person named n. The server itself, however, cannot find out this name. With
conventional non-privacy-friendly technologies, the signature will also reveal the real name of the user to the
server though.
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Consumption control The server may want to impose limitations on the number of times that the same
card can be used (or “consumed”) to access a resource, e.g., to specify that each national ID card can only
be used once to vote in an online opinion poll.

Bowers et al. [10] previously proposed a logic-based policy language for consumable cards (or credentials
in their work). To each card, they associate a single global consumption limit and a ratifier, a central entity
who keeps track of each usage of the card. This works well for settings such as electronic cash where the
issuer of the card determines how often the card is to be consumed globally, but falls short of covering use
cases like the opinion poll example where the relying party wants to impose a limit how often the same card
can be used locally.

We therefore extend their consumption functionality in our language such that the relying party itself
can specify (1) the consumption amount, i.e., the number of units that is to be consumed from the card per
access; (2) the consumption limit, i.e., the maximum number of units that can be consumed from the card
before access is refused; and (3) the ratification scope being a URI defining the “scope” of the consumption,
i.e., the limit becomes relative to this scope.

Part of the scope URI could be used to identify the central entity who keeps track of the number of
consumptions, but it can additionally encode the scope within which consumption is to be tracked. For
example, the access restrictions of the opinion poll service would be such that a different URI is used for
each poll, specifying that each ID can be used once for each poll, rather than that the user can only take
part in a single poll. The scope mechanism allows also to express more complex limitations. For example,
to prevent two resources A and B from being accessed more than n times total per month, the scope URI
in both policies is set to append(‘examplescope:AorB:’,currMonth(), ‘/’, currYear()).

Some anonymous credential systems support consumption control (usually referred to as limited spending)
natively in the underlying cryptography [12, 14]. They do so in a highly privacy-preserving way: the user’s
anonymity and unlinkability remain guaranteed until overspending occurs.

None of the other technologies have native support for consumable cards, but for all of them support
could be added by letting the issuer play the role of ratifier, or by adding a unique serial number that is
revealed whenever the card is consumed. (The latter approach makes all transactions of the same card
linkable, though.)

3.4 System Model

Our system model involves three kinds of entities: users, servers (also called service providers), and issuers.
Users hold certified cards C1, . . . , Ck that they have obtained from issuers and want to access protected
resources R1, . . . , Rm (e.g., web pages, databases, web services) hosted by the servers. Servers restrict access
to their resources by means of access control policies A1, . . . , A`. Rather than simply specifying which user
is allowed to access which resources by means of a classical access matrix, the policies contain requirements
in terms of the cards that a user needs to own in order to be granted access.

Figure 1 depicts how authorization decisions are rendered in our model. Initially, a user contacts a server
to request access to a resource she is interested in (1).

Having received the request, the server responds with the access control policy applicable for the re-
source (2). The applicable policy may be a composition (1a) of multiple policies the server holds, e.g., it may
contain a number of alternative policies of which one must be satisfied to obtain access. It contains the card
requirements expressing which conditions on which card attributes have to hold, which attributes have to
be revealed to whom, and who the server trusts as issuers for these cards. For each attribute to be revealed,
the server may also specify in a data handling policy what he aims to do with the obtained information, e.g.,
how long he will retain the data, or for which purposes he will use it.

Upon receiving the policy, the user’s system evaluates which claims she can derive from her available
cards that fulfill the given policy (2a). For example, a policy requiring a valid travel document may be
fulfilled by means of the user’s national identity card or her passport, while the validity may be shown by
proving its expiration date to be in the future or by disclosing the exact date. The favored claim is then
chosen interactively by the user, or automatically by a data-minimizing heuristic (2b). In addition, the user
decides whether she agrees with the server’s data handling policy, and whether she wants to proceed. In this
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Figure 1: Decision rendering in our system model

case, evidence for the chosen claim is generated (2c) and sent, together with the claim and the attributes to
reveal, to the server (3). As claims are expressed independent from a concrete technology, the user’s systems
must have respective means available (e.g., in the form of a plug-in for technology ta) to generate evidence
specific to the technology of the used cards.

Finally, the server verifies whether the policy is implied by the claim (3a) and if the evidence supports
the validity of the claim (3b). If so, access to the resource is granted (4). Clearly, to verify the evidence the
server must support the same technology that was used to generate the claim.

Finding possible claims in step (2a) could, e.g., be done by finding logical proofs with the policy formula
as proof goal using the available cards as premises. A user could then select one proof and according to the
proof-carrying paradigm [1] this proof would be sent to the server as sample solution for the claim verification
in step (3a).

To implement the scenario sketched above, a number of languages need to be available. In particular,
languages to express the access control policy on the server (which includes the card requirements and the
data handling policies), to communicate the policy to the user, to express the claims as sent by the user,
and to describe the cards that the user owns. In case the user’s evaluation of the data handling policy shall
be automated, also a language to express a user’s privacy preferences is needed.

In this paper, we focus on the card requirements language, which is used as part of the access control
policy on the server, as well as of the communicated policy to the user. The language contains placeholders
for the data handling policies associated to revealed attributes, but we do not make this language explicit.
We do not make any of the other languages explicit either.

4 Language

The language we propose is intended for expressing requirements on cards that have to be fulfilled in order
to gain access to some resource. These requirements involve (1) the ownership of cards of the right type and
issued by the right authority, (2) the disclosure of attributes certified in these cards to the verifier or to third
parties, and (3) conditions on attributes expressed in a mathematical formula. In addition, (4) the signing
of statements as well as (5) the consumption of cards can be required. To fulfill a policy, all requirements
stated in it must be fulfilled.

A CARL policy can only be fulfilled ‘as a whole’ (cf. Section 5.2). To combine multiple policies, e.g.,
offering a choice among a set of alternative claims to satisfy, they need to be embedded into other languages.
In the extended version [26, Section 6.2] we describe how this can be done for XACML.

Our language is typed, therefore we begin with depicting the basic properties of the typing. Then we
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illustrate how the particular requirements are expressed in our language.

4.1 Typing and Ontology

To help policy designers avoid specification and interpretation mistakes, we make use of a type system in
a similar way as many programming languages do. We distinguish between card types and data types. We
first motivate the use of card types and then describe the type system’s properties.

For a server to make access control decisions, he needs to distinguish the different kinds of cards and
attributes he processes, as their meanings may differ depending on their type. For example, consider a
university issuing digital student IDs and diploma certificates having the same basic format (e.g., both
contain the student’s name and field of study). These cards do clearly have different purposes and must be
distinguishable from one another. Relying only on the fact of who issued a card would be insufficient for
determining its purpose and trustworthiness. Also, standard attributes such as ‘name’ have meaning only in
conjunction with additional information such as a card type. To this end, we make use of card types (e.g.,
drivers license, residence permit) that specify the attributes contained in cards of this type.

We therefore assume as given an ontology T that defines a set of data types, a set of card types, a partial
order on those card types, as well as a set of functions and relations on the data types.

First, we assume that the ontology defines the data types β1, . . . , βn. Examples of data types include
Int , String , Date, Boolean and URI . Data types need not necessarily be disjoint, e.g., URIs are typically
also strings. We denote by [[β]] the extension of a data type β (the set of constants of type β). A constant c
can have several types, i.e., every type β such that c ∈ [[β]].

Further, we assume that the ontology specifies a set of card types τ1, . . . , τm. These types are similar to
record types in programming languages: every card type τ is defined by a set of attributes with their types
Aτ = {a1 :: β1, . . . , al :: βl}, where we denote with a :: β an attribute a that has type β. Like a record
in a programming language, a card can be represented as a function from the attributes to values of the
respective attribute type. For instance a card with attributes {a1 :: β1, a2 :: β2} is a function f with domain
{a1, a2} such that f(a1) ∈ [[β1]] and f(a2) ∈ [[β2]]. Thus, the extension of a card type τ (the set of all cards
of type τ) is defined as the set of all such functions:

[[τ ]] ={f :: (Aτ→ [[β1]] ∪ . . . ∪ [[βn]]) | ∀(a ::β) ∈ Aτ . f(a) ∈ [[β]]}

Additionally, like classes in object-oriented programming languages, a card type τ1 may be extended by
another card type τ2, i.e., τ2 inherits all attributes of τ1 and includes further attributes. This induces a
partial order ≤T on card types such that if τ2 ≤T τ1 then Aτ1 ⊆ Aτ2 . Thus every card of type τ2 may be
used in place of τ1. For example, Passport ≤T PhotoID models that Passport is lower in the type hierarchy
than (i.e., a subtype of ) PhotoID and can be used in place of it.

Finally, the ontology should define a set of functions and relations on the data types. We assume to have
at least the equivalence relation =β on every data type β. We also assume the addition and a total order
on both types, Int and Date. Functions may depend on the state of the access control system on which it
is evaluated, e.g., the function today() can be defined to return the current date. For a function symbol f
of the ontology, we denote by fT the function defined for this symbol by the ontology, similarly the relation
symbol R is interpreted as the ontology-defined relation RT.

In the following we only consider specifications that are type correct w.r.t. the type inference system
given in the extended version [26, Appendix B].

4.2 Expressing requirements

We now describe how the different kinds of card requirements are expressed in our policy language. We first
give a basic intuition for our language by means of an example policy, and then use it as a running example
to discuss the different elements of our language in detail. The full grammar of our language can be found
in the extended version [26, Appendix A].
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01: own p::Passport issued-by USAgov
02: own r ::ResidencePermit issued-byPittsbghTownhall
03: own c::CreditCard issued-by Visa,Amex
04: reveal c.number , c.expDate under ‘purpose=payment’
05: reveal r .address to ShipCo under ‘purpose=shipping’
06: sign ‘I agree with the general terms and conditions.’
07: where p.dateOfBirth ≤ dateMinusYears(today(), 21) ∧
08: c.expDate > today()

The policy states that access is granted to users who (1) are at least twenty-one years old, (2) reveal their
valid credit card information for payment purposes, (3) reveal their address to the shipping company ShipCo
for shipping purposes and (4) agree to the general terms and conditions. Here, an American passport must
certify the age, the payment data must be certified by a valid Visa or American Express card, and a residence
permit from the city of Pittsburgh must certify the address. We assume the ontology defines the functions
dateMinusYears(ref, k), subtracting k years from date ref , and today(), returning the current date.

4.2.1 Proof of ownership

The most basic requirement expressible is the ownership of a card of a specific type by a specific issuer. For
each required card the policy contains a line of the form (cf. lines 01–03 in the example policy):

own c :: Type issued-by I1 , . . . , In

Here, c is a card variable used to refer to this card within the policy. We already discussed card type
ontologies in Section 4.1; we assume that each type Type is unambiguously defined by a uniform resource
identifier (URI). In the same way, we assume that the allowed card issuers I1, . . . , In are referred to by
means of URIs. Depending on the underlying technology, these URIs may be mapped to public keys (for
X.509 and anonymous credentials), server URLs (for LDAP and OpenID), or any other way of pointing
to a card issuer. Specifying multiple issuers indicates that any of these issuers is accepted. Omitting the
issued-by clause indicates that no restrictions are imposed on the issuer, meaning that even self-issued cards
are allowed.

4.2.2 Attribute disclosure

To require disclosure of a card attribute’s value, a line of the form (cf. lines 04–05 in the example policy) is
stated:

reveal c.att to Recipient under dhp

The attribute to reveal is specified by the card variable c as defined in a previous own line, and the attribute
name att as defined by the card type, separated by a dot.

By using the keyword to, the policy can optionally specify the recipient (identified by a URI) to whom
the attribute is to be revealed. If no recipient is specified, then the intended recipient is assumed to be
the server enforcing the access control. For proving the policy, the server has to be provided with evidence
showing that the attribute values were indeed transmitted to the recipient. In the example policy, the credit
card data has to be revealed to the server itself (line 04) and the address to the shipping company (line 05).

Optionally, the server may attach a data handling policy dhp describing how the server intends to treat
the information after receiving it, e.g., the intended purpose of the data, retention periods, further recipients,
etc. The policy could be specified in natural language or in a machine-interpretable language like P3P [36];
we do not impose any particular format though.

4.2.3 Conditions on Attributes

Using the keyword where, a policy may state a formula φ expressing conditions on the cards’ attributes. For
example, lines 07–08 require the date of birth to be at least 21 years in the past and the credit card to be
valid.
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In general, a formula allows for applying the standard operators for comparison (numeric and non-
numeric), arithmetics and logics (cf. the grammar [26, Appendix A]). Functions and relations may be applied
to expressions whereby we assume a built-in standard set of these (such as date and time arithmetics, string
manipulation, etc.) defined in the ontology T together with their meaning. Expressions may further be
qualified attributes, constants or basic variables. Basic variables are different from card variables as they
are of a data type, rather than a card type. Basic variables that appear in φ may act as substitute for (1)
a card’s issuer, (2) an attribute that has to be revealed, (3) the purpose and (4) recipient of attributes to
reveal as well as (5) the statement to sign. Our running example could, e.g., as well have been written as
own c::CreditCard issued-by i while extending φ with i = Visa ∨ i = Amex. In case a basic variable x
appears in the list of attributes to reveal, the concrete value for x , under which φ is satisfied, must be
revealed (cf. Section 5.3).

4.2.4 Signing of statements

By including a line of the form
sign statement

a policy requires to sign the statement in the following sense: it is ensured that the signature was produced
by someone who fulfills (the rest of) the policy. For example, line 06 of the policy example requires signing
of the statement ‘I agree with the general terms and conditions’.

4.2.5 Consumption control

Limitations on the number of times the same card can be used to obtain access can be imposed by lines of
the form

consume amount maximally limit of c scope scope

where amount is the consumption amount, limit is the consumption limit, c is the card to be consumed,
and scope is the ratification scope (cf. Section 3.3).

For example, the Pittsburgh Theater hands out discount cards entitling its holder to buy theater tickets
at a reduced price. The below policy protects the theater’s discounted ticketing service and states that
students of the University of Pittsburgh are eligible for six discounts per year:

own sid ::StudentID issued-by PittsbghUniversity
own dc::DiscountCred issued-by PittsbghTheater
consume 1 maximally 6 of dc scope s
where s =append(‘urn:scope:pbgTheater:year:’,currYear())

To access the service, proofs of ownership for a student card and a discount card need to be provided to
the server. For granting access, the server verifies that the sum of the amounts of all consumptions of the
discount card (including the current one) in the given scope does not exceed the limit. Each time a student
successfully purchases a discounted ticket, one unit is consumed. (More units could, e.g., be charged for
extra-long shows.)

5 Semantics

We now provide a formal semantics for our language. The semantics abstractly defines the intended behavior
of an access control system for a given policy and thereby defines the obligations that an actual realization
must meet. The context of this definition is a state transition system with transitions for issuing cards,
proving a policy, and other transactions such as revocation of cards or application-specific actions. As our
CARL is concerned only with the conditions for fulfilling a policy and the effects of proving a policy, so is
our semantics.

We define the formal semantics of CARL in three steps. First, we define the meaning of a policy formula
based on the ontology and an interpretation of the variables. Second, for a given policy and a set of cards

12



that a user owns, we define if the user fulfills the policy. Third, a user who fulfills the policy can prove this
fact to the server and we call this simply proving the policy ; we define the effect that proving the policy has
on the knowledge of the server and the trusted third parties.

Note that, in the last step, we define only the effect of proving a policy, rather than describing how such a
proof could be performed. This is because such actions depend on the concrete technology that is employed,
from which our language abstracts. Indeed, when mapping CARL onto a concrete technology by translating
the policy specification into a sequence of actions within the respective card system, our semantics sets out
two obligations for this translation: 1) actions can only be performed by a user who owns the necessary cards
and 2) other parties learn from the action exactly the information specified by the semantics. As not all
technologies offer the same level of privacy protection, we also provide a variant of our semantics that allows
for more information to be disclosed than what is required by the policy. An example for such a mapping is
provided by Mödersheim and Sommer for the Identity Mixer anonymous credential system [30].

5.1 Formula Semantics

We define the meaning of policy formula with respect to a given ontology T and an interpretation I that
maps all basic and card variables to values of the respective type. Recall that the ontology provides the
interpretation fT for every function symbol f and RT for every relation symbol R, respectively. For a card
C, an attribute a, and terms t1, . . . , tn, we define (C.a)I = (CI)(a) and f(t1, . . . , tn)I = fT(tI1 , . . . , t

I
n).

Our typing system ensures that all these values are well-defined for a given I. The satisfaction relation
is defined as:

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2 , I |= ¬φ iff I 6|= φ ,
I |= R(t1, . . . , tn) iff RT(tI1 , . . . , t

I
n)

Other constructs of the CARL formulae are the usual abbreviations, e.g., φ1∨φ2 is short for ¬(¬φ1∧¬φ2).
Further, we define φ1 |= φ2 iff for all I holds I |= φ1 implies I |= φ2. Finally, we define φ1 ≡ φ2 iff φ1 |= φ2
and φ2 |= φ1. These definitions are similar to other definitions in formal logic; following these standards
improves the understanding of the concepts described by our language.

5.2 Fulfilling a Policy

The second step is concerned with the question whether a user owns cards sufficient to satisfy a given policy.
We denote with PU the set of cards that the user U owns. We now consider the local state of the parties,
the conditions on a party’s state to fulfill a policy, and the transition of parties’ states when proving policies.
For now, we assume that a U ’s state contains at least the set of cards PU the party U owns.

We first look at a policy without consume lines, which we consider in Section 5.4. Let U be a user and
S be a server and U be known to S under the identifier I. This identifier may for instance be a one-time
pseudonym in privacy-friendly technologies or (linkable) username otherwise.

Let P be the policy of S that U needs to satisfy in the following form:

own C1 :: τ1, . . . , Cn :: τn
reveal t(1,S), . . . , t(nS ,S)

reveal t(1,S1), . . . , t(nS1
,S1) to S1

. . .
reveal t(1,Sm), . . . , t(nSm ,Sm) to Sm
where φ
sign s

We require that the variables of P and of the current state are disjoint (which can be achieved by a
suitable renaming of the policy variables). Note that we here omitted the issued-by part of the own line
because we treat the issuer of a card simply as an attribute (of type URI ) and the issuer can thus be
specified as part of the formula φ itself. Indeed, issued-by I1, . . . , In for a card C is just an abbreviation for
C.issuer = I1 ∨ . . . ∨ C.issuer = In (as an additional conjunct of φ).

We say that U can fulfill the policy P under card assignment p and interpretation I iff
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1. p is a total mapping from {C1, . . . , Cn} to PU ,

2. for every 1 ≤ i ≤ n it holds that p(Ci) :: σi for a type σi ≤T τi and CI
i = (Aτi C p(Ci)) where AC f is

the domain restriction of function f to set A, and

3. I |= φ.

We say that U can fulfill the policy P iff there exists such an interpretation I and mapping p.

5.3 Proving a Policy

When a user can fulfill a policy and chooses to prove the policy to another participant, the effect of this
transition is an increase of knowledge of all participants to which information is revealed. We denote with
KS(I) and K′

S(I) formulae characterizing the knowledge of a party S about a user I before and after the
transition, respectively. As before, I is an identifier under which the user is known to S.

For each part O ∈ {S, SI
1 , . . . , S

I
m} to whom information is revealed, we require

K′
O(I)=KO(I) ∧ φ ∧ (t(1,O) = tI(1,O)) ∧ . . . ∧ (t(nO,O) = tI(nO,O)) .

This models that each party O learns that the user acting under the identifier I owns cards with property
φ together with the concrete values tI(i,O) of the terms t(i,O) that have been revealed to O. Additionally, the

server S obtains a signature on the statement sI with respect to the formula proved to S, i.e., φ ∧ (t(1,S) =
tI(1,S)) ∧ . . . ∧ (t(nS ,S) = tI(nS ,S)

).
To model unlinkable values, we use variables in a particular way here. For this, first recall that we

require a renaming of the policy variables so that no variable occurs in the considered state. Therefore,
when a user uses the same card several times in proving policies to the same or to different servers, this card
is referred to by a fresh variable each time. This reflects that the servers, even when they cooperate, are
unable to decide whether particular authentications have been performed with the same or with different
cards. However, for what concerns all the information revealed by a single transaction for fulfilling a policy
P to several different parties, the additional knowledge uses the same variable names for all parties. For two
servers S and S′ who cooperate, we define their shared knowledge about a user identified as I simply as:
KS,S′(I) = KS(I) ∧ KS′(I). This reflects that they can relate only information about a transaction that was
done under the same pseudonym I.

For proving a policy in a typical system realization, the user’s system creates a claim that implies the
policy to be fulfilled and sends it with accompanying evidence to the server (cf. Section 3.4).

Our definition of the knowledge of servers characterizes the ideal case of privacy-friendly technologies:
one does not reveal more information than required by the policy. Conventional card systems cannot achieve
this as cards are transmitted as a whole. Thus, for conventional technologies we relax the constraints of our
semantics, allowing for the release of more information than necessary, formally, any formula ψ that implies
the above K′

O(I) formula.

5.4 Consumption Control

We now extend the semantics to specify the behavior of consumable cards. In our model, consumption of
cards is tied to a ratification scope that controls the consumption (cf. Section 3.3). In a nutshell, one can
spend a card if the value of all its consumptions (including the current one) in the ratification scope does
not exceed the consumption limit.

To model the consumption, we introduce global log files, one log file for each consumption scope (these
log files are only part of the ideal world that is modeled by our transition system; they usually will not have
a counterpart in an real implementation). Each log file is a list of pairs 〈C, k〉 of a card C and a positive
integer k, representing that k units of card C are spent in the domain represented by the log file. The balance
of card C in a log file is the sum of all consumptions of C in the log file.

Consider a policy P as before with the following additional consumption line (where C is a card of some
own line of P ):
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consume k maximally n of C scope scope

We define that P can be fulfilled for I and p if 1) the policy resulting from P by removing the consumption
line according to the definition in Section 5.3 can be fulfilled and 2) the balance of card p(C) in the log file
of scopeI plus kI is less than or equal to nI .

Similarly, we extend the definition of proving P , i.e., it will have the same effects as before, plus the effect
that the log file of scopeI is augmented with the pair 〈p(C), kI〉.

We covered here only a policy with one consumption line, the extension to several consumption lines is
as expected, where we assume that the interpretation of the consumption scope scopeI (which usually is a
constant chosen by the server) is never the same for different consumption lines.

6 Language Integration

The language we present addresses the specification of credential requirements in credential-based access
control. In this section we sketch how our language can be integrated with other languages to utilize the
strengths of those.

6.1 Abstract Authorization Languages

For expressing authorization, delegation, and trust, e.g., within a large organization, a complete enumeration
of business units, employees, and their relations and access rights is usually not feasible and too inflexible.
Therefore, authorization languages such as SecPal [6] and DKAL [24] have been developed. They are based
on a simple but powerful mechanism: they specify Horn clauses on abstract facts, i.e., rules of the form “if
facts f1, . . . , fn hold, then also fact f holds.” The facts represent either direct statements, e.g., “X says Y”,
initially given relationships such as trust relationships, or derived facts that are consequences of other facts
by the Horn-clauses.

All these facts thus represent a high-level view that is not related to concrete credentials, signatures and
the like. Our CARL language can provide this relationship, i.e. specifying precisely what credentials and
properties correspond to a particular abstract fact like “X says Y” or “Z is-an-adult”. A connection between
CARL and Horn-clause based authorization language can thus be made by specifications of the form f ⇐ P
for an abstract fact f and a CARL policy P . This means that one way to derive the fact f is to fulfill the
policy P .

For example, one may specify with Horn clauses that X can access resource R if owner O of R has given
permission to X. Permission can be given directly by O, or O could have delegated that to a deputy D
and D granted access. CARL policies specify the concrete credentials and properties that correspond to the
access permission from O or from D as well as a credential for the delegation from O to D. The combination
tells us that one may either access R when (1) one has the credential that corresponds to the permission from
O or (2) when there are credentials that show that O delegated this right to D (this may already be known
by the respective policy enforcement point) and the credential that D issued the permission for access.

Combining the CARL with the abstract facts of a Horn-based language gives a powerful and high-
level method to specify complex authorization, trust, and delegation rules on credentials. Observe that
a delegation chain as in the example cannot be specified in CARL (because the length of the chain is
unbounded). In fact, the focus of CARL is on the specification of the credentials, their conditions, and the
revealing of information to different parties, exactly what the abstract Horn-based languages abstract from.
The languages are thus complementary and it makes sense to distinguish between a high-level deduction
engine and the connection to concrete credentials.

6.2 XACML

The access control language XACML [33] is the de facto standard for attribute-based access control policies.
In order to reuse existing XACML infrastructure for privacy-friendly credential-based access control, we
briefly describe how CARL can be integrated into XACML.
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First, we define a number of new XML elements that can occur inside an XACML <Rule> to make
XACML credential-aware. Each own, reveal, sign, and consume line in CARL is translated into a corre-
sponding <Own>, <Reveal>, <Sign>, and <Spend> element in the XACML <Rule>. The schema of these
new elements is such that they encode in a structured way all arguments on the corresponding lines in
a CARL policy. Each <Own> element has an attribute CredentialId containing a URI by which this
credential can be referred to within this <Rule>. Finally, the formula φ is encoded within the standard
XACML <Condition> element using built-in data types and functions [33, Appendix A], but we extend the
<AttributeDesignator> element with an extra attribute CredentialId to indicate from which credential
the attribute should be taken.

Second, we make a number of architectural changes to make XACML privacy-friendly. Namely, standard
XACML does not provide a mechanism for conveying an access control policy to the user since it does not
assume that the policy is known by the user. This is against the idea of privacy-aware access control where
a user provides only the credentials/attributes necessary for fulfilling a particular policy. A possible way of
conveying a policy to the user would be to embed the policy in XACML’s <StatusMessage> element that is
optionally contained in an XACML access response.

In order to solve the architectural issue, a server could run a modified XACML policy decision point (PDP)
that in case an access request is denied and the applicable XACML policy contains a CSL specification in its
<Condition> element, it returns these CSL requirements embedded in the <StatusMessage> of the negative
access response. In order for a user to learn the policy for a specific resource, she makes a request without
providing any attributes whereupon the PDP will respond with the negative response that contains the CSL
policy. Knowing that policy, the user can provide only the attributes necessary for this particular policy.

7 Conclusions & Future Work

We presented a language for specifying requirements on a user’s cards to be used for obtaining access
in any kind of open access control setting. We not only provide a formal language specification, but also
formally define the semantics as to help future systems designers and implementers to avoid mistakes through
ambiguous interpretation of the text. Our language aims to serve as a central piece in an open access control
setting. It enables the use of a plurality of underlying card technologies that are available today or are
becoming available, such as OpenID or anonymous credentials. Each card technology can be used for access
control by providing a mapping from the verification process of the respective technology to a policy in
CARL. Our language enables properties of privacy and anonymity through data minimization while retaining
accountability. When being deployed together with technologies such as anonymous credential systems, a
privacy-preserving user-centric model of access control can be realized as the user is put into full control over
her data.

Our next step towards an open and privacy-enhancing system for access control is to link the feature
set and formalism of CARL with concrete card systems. Mödersheim and Sommer [30] describe such a
connection for the Identity Mixer anonymous credential system. A proof that this connection agrees with
the CARL semantics, as well as providing similar connections for other technologies are part of our ongoing
work.
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