
A Typing Result for Stateful Protocols
(Preprint)

Andreas Viktor Hess Sebastian Mödersheim

DTU Compute, Lyngby, Denmark

Version of April 11, 2018

Abstract

There are several typing results that, for certain classes of protocols,
show it is without loss of attacks to restrict the intruder to sending only
well-typed messages. So far, all these typing results hold only for relatively
simple protocols that do not keep a state beyond single sessions, exclud-
ing stateful protocols that, e.g., maintain long-term databases. Recently,
several verification tools for stateful protocols have been proposed, e.g.,
Set-π, AIF-ω, and SAPIC/Tamarin, but for none of these a typing result
has been established. The main contribution of this paper is a typing
result, for a large class of stateful protocols, based on a symbolic protocol
model. We illustrate how to connect several formalisms for stateful pro-
tocols to this symbolic model. Finally, we discuss how the conditions of
our typing result apply to existing protocols, or can be achieved by minor
modifications.

1 Introduction
Many automated protocol verification methods [7, 8, 11, 27, 28] rely on a typed
model in which the attacker can only send well-typed messages. Such a restric-
tion to a typed model can also significantly reduce verification time and in some
approaches [9, 5] protocol verification even becomes decidable in a typed model.
There are in fact several results [1, 19, 18, 13, 24, 2] that show the relative
soundness of a typed model if the protocol satisfies reasonable and sufficient
conditions of a syntactic nature (i.e., can be checked without an exploration of
the state space of the protocol). These typing results are of the form: if a proto-
col, that satisfies the sufficient conditions, has an attack then it has a well-typed
attack, in which the attacker only sends well-typed messages. In other words,
if the protocol is secure in a typed model then it is secure in an untyped model.

In a nutshell, when proving a typing result, one shows (for a given class of
protocols) that from an ill-typed attack we can construct a similar well-typed
attack, i.e., every ill-typed message that the intruder sends can be replaced

1

with a well-typed one so that all the remaining steps of the attack can still
be performed in a similar way. To avoid messy and round-about arguments,
all existing typing results argue via a constraint-based representation of the
intruder. In these constraints, all messages sent and received by the intruder
may contain variables where the corresponding honest agent would accept any
value. Every attack is then a solution of such a constraint. There is a sound,
complete, and terminating reduction procedure for such intruder constraints. It
thus suffices to show that for the considered class of protocols, this reduction
procedure will never instantiate any variable with a term of a different type than
the variable has. If the procedure leaves any variables uninstantiated (i.e., its
concrete value does not matter for the attack to work) then the intruder may
as well choose a well-typed value here. This therefore allows to conclude that
if there is a solution (i.e., attack), then there is a well-typed one. This can also
be extended with equality and inequality constraints on messages, see e.g. [1].

All mentioned typing results, however, only apply to simple protocols in
which agents do not maintain a global state, but have state only local to a sin-
gle session, like a session key.1 A more interesting and general class of protocols
is one in which agents can additionally manipulate a global mutable state, e.g.,
maintain sets of public keys. In such protocols updating the global state dur-
ing one session might influence other running sessions. We call such protocols
stateful. Currently there exists several tools and approaches for verifying state-
ful protocols [17, 23, 25, 3, 20, 4, 21]. If we consider as a global state a database
to which entries can be added (without bound) and deleted, and where nega-
tive checks are allowed (i.e., that no entry of a particular form is present), then
this is not possible with a straightforward extension of existing typing results.
While one could encode the positive operations and checks as special messages,
the negative ones essentially amount to checking that a particular operation or
message did not occur, and this negation is at odds with the intruder constraints
needed to perform the main proof argument of the typing result.

The main contribution of this paper is a typing result for a large class of
protocols with a global state that consists of a countable collection of sets, even
when admitting deletion and negative checks. This is done in a precise and
declarative way that uses existing typing results for stateless protocols as a
basis. To have a simple and yet powerful formalism to work with, we introduce
a notion of strands with set operations to model both honest agents and intruder
constraints. In the intruder constraints, this represents at which point particular
set operations occurred during an attack. We then show that we can reduce
the satisfiability of these intruder constraints to the satisfiability of constraint
systems without set operations. We can then make use of existing typing results.

A second contribution of this work is thus the formalisms with set oper-
ations for honest agents and for intruder constraints which are useful beyond
the typing result to represent and work with stateful protocols. While this for-
malism is deliberately reduced to the essentials, we also show how to connect

1An exception is [24], but this paper contains some mistakes and their result does not hold
in this generality as we explain in the appendix.

2

other more complex formalisms for stateful protocols, namely using rewriting
and process calculi, so that our typing result can be also applied accordingly in
these languages.

The paper is organized as follows. After preliminaries in section II we intro-
duce in section III a new strand-based protocol model for stateful protocols. In
section IV we extend intruder constraints with set operations and define a re-
duction mechanism on constraints that we prove sound and complete. We prove
our main theorem, the typing result, in section V. Finally, we have case studies
and connections to other formalisms in section VI and VII. All the proofs of our
technical results are in the appendices.

2 Preliminaries

2.1 Term Algebra
We formally define a term algebra over a signature Σ containing symbols with
associated arities and over a countable set of variables V. The set of terms over
Σ with variables from V is denoted by TΣ(V) and we normally use the lower-case
letters t, s, m, and e to denote arbitrary terms. A term t ∈ TΣ(V) is then either
a variable t ∈ V or a composed term of the form f(t1, . . . , tn) for some f ∈ Σ
of arity n and ti ∈ TΣ(V). When we later define our protocol model we will
allow agents to send messages, modify sets, and emit events. We use terms to
represent all of these different concepts and so we do not at this level distinguish
between them.

The set Σ is partitioned into the public symbols Σpub (which the intruder has
access to) and the private symbols Σpriv (which the intruder cannot access). By
Σn we denote the set of symbols of arity n. Similarly, Σnpub (respectively Σnpriv)
denotes the public (respectively private) symbols of arity n. The set of constants
C is defined as Σ0. The set of free variables fv(t) of a term t is defined as usual
and we say that t is ground iff fv(t) = ∅. As usual we extend fv to sets of terms.
Constants will usually be denoted by the lower-case letters a, b, c, i, and k. We
write f , g, and h as meta-variables ranging over non-constant symbols of Σ and
we use sans serif to denote the actual elements of Σ, e.g., ring and crypt. We
define substitutions as (finite or countably infinite) mappings from variables to
terms, and we write δ(x) for the application of substitution δ to variable x. We
usually use the letters δ and σ to denote substitutions. Substitutions are further
extended to terms and sets of terms homomorphically as expected. The domain
of a substitution δ is the set of variables which are not mapped to themselves:
dom(δ) = {x ∈ V | δ(x) 6= x}. The image of a substitution δ is then defined as
usual: img(δ) = δ(dom(δ)) = {δ(x) | x ∈ dom(δ)} and we say that δ is ground
when fv(img(δ)) = ∅. For substitutions with finite domain we often write them
as [x1 7→ t1, . . . , xn 7→ tn]. Note that we divert slightly from the conventional
definition by also allowing for substitutions with infinite domain. Finally, a
substitution δ is called a unifier of two terms t and t′ iff δ(t) = δ(t′).

3

2.2 Intruder Model
We now define a Dolev-Yao style intruder deduction relation where M ` t
means that the intruder can derive the term t from the set of terms M called
the intruder knowledge. Our model is similar to standard Dolev-Yao models
but we parameterize ours over arbitrary signatures Σ instead of fixing a par-
ticular set of cryptographic primitives. Note also that we work in the free
algebra; two terms are equal iff they are syntactically equal. For these rea-
sons we additionally parameterize over an analysis theory Ana that serves as
an analysis interface. For instance, to decrypt the message crypt(k,m) and ob-
tain m we can require that the inverse key inv(k) must be provided, and we
write Ana(crypt(k,m)) = ({inv(k)}, {m}) to formally express this. Note that
this would be similar to introducing a destructor dcrypt and an algebraic equa-
tion dcrypt(inv(k), crypt(k,m)) ≈ m if we were not using the free algebra. More
generally, if Ana(t) = (K,T) then the analysis of the term t results in the terms
in T provided that all “keys” in K can be derived. Given such an Ana we define
the deduction relation ` as the least relation closed under the following rules:

M ` t
(Axiom),
t ∈M

M ` t1 · · · M ` tn
M ` f (t1, . . . , tn)

(Compose),
f ∈ Σnpub

M ` t M ` k1 · · · M ` kn
M ` ti

(Decompose), ti ∈ T,
K = {k1, . . . , kn},
Ana(t) = (K,T)

Here, the (Axiom) rule expresses that the intruder can derive any message in
his knowledge. The rule (Compose) allows the intruder to compose messages
with any public symbol. For instance, if the intruder can derive a key k and a
message m from a given intruder knowledge M (that is, M ` k and M ` m)
then he can asymmetrically encrypt m with k, i.e., M ` crypt(k,m). This rule
also subsumes derivation of public constants, e.g., agent names. The final rule,
(Decompose), defines decomposition or analysis of terms, and it expresses that
the intruder can decompose a derivable message t if he can derive the required
keys K.

While the intruder deduction relation is defined for ground terms only, the
analysis interface is defined on terms that might contain variables. The analysis
interfaces we consider will be subject to some restrictions:

Ana1: Ana(x) = (∅, ∅) for variables x ∈ V,

Ana2: Ana(f(t1, . . . , tn)) = (K,T) implies K is finite, T ⊆ {t1, . . . , tn}, and
fv(K) ⊆ fv(f(t1, . . . , tn)), and

Ana3: Ana(f(t1, . . . , tn)) = (K,T) implies
Ana(δ(f(t1, . . . , tn))) = (δ(K), δ(T)).

The first requirement, Ana1, ensures that variables cannot be decomposed. Ana2

consists of two parts. First, all terms in T must be immediate subterms of the
term being decomposed, and so the intruder cannot obtain any new terms by

4

decomposing something that he composed himself, and it is a technical require-
ment that is crucial in proofs of typing results. In fact, the typing result of [24]
has a counter-example (Appendix B) because they lack this requirement. The
second part restricts the set of keys K to be finite and to not introduce any new
variables, but the keys are otherwise independent of the term being decomposed.
This is useful when modeling asymmetric decryption as we can then require the
intruder to derive the inverse key inv(k) of the key k used for the encryption.
Ana3 expresses that decomposition is invariant under substitution.

In concrete examples of this paper we use the following Ana theory on
the usual set of cryptographic primitives: Ana(crypt(k,m)) = ({inv(k)}, {m}),
Ana(scrypt(k,m)) = ({k}, {m}), Ana(sign(k,m)) = (∅, {m}), Ana(〈t, t′〉) = (∅, {t, t′})
where 〈·, ·〉 ∈ Σ2 is a pairing operator, and Ana(t) = (∅, ∅) for all other terms t.

3 Stateful Protocols
In this section we will define our protocol model. There are several protocol
models based on strands where protocol execution is defined in terms of a state
transition system, e.g., [15, 1, 19]. In these works a state is a set (or multi-
set) of strands that represents the honest agents, and a representation of the
intruder knowledge. We extend this model with strands that work with sets
to model long-term mutable state information. Thus a distinguishing feature of
our strands is that honest agents can query and update sets. A protocol state in
our model will thus contain not only short-term session information but also the
long-term contents of sets, and we call protocols based on these strands stateful.

3.1 Strands with Sets
We now define the syntax of strands with sets as an extension of [1] (the part
of the syntax marked with ? corresponds to the strands of [1]):

` : := φ.` |
?︷ ︸︸ ︷

ψ.` | 0
with ψ : := send(t) | receive(t) | t .= t′ | ∀x̄. t 6 .= t′

and φ : := insert(t, s) | delete(t, s) | t ∈̇ s | ∀x̄. t 6 ∈̇ s |
assert(e) | event(e) | ∀x̄. ¬event(e)

where t, t′, s, e ∈ TΣ(V), and x̄ ranges over finite sequences x1, . . . , xn of variables
from V. Strands built according to the above grammar but using only the
cases marked with ? are referred to as ordinary strands. A strand consists of a
sequence of steps and we use here a process calculus notation where we delimit
steps by periods and mark the end of a strand with a 0. We normally omit
writing the end-marker 0 when it is obvious from the context. We will also omit
writing the quantifier ∀x̄ whenever x̄ is the empty sequence.

The steps can be categorized into four parts: the message transmission steps
(send and receive), the equality checks (.= and 6 .=), the set operations (insert,
delete, ∈̇, and 6 ∈̇), and the event steps (assert, event, and ¬event). The most

5

basic ones are the message transmission steps which denote transmission over
an insecure network. A send(t) step then means that an agent transmits t
and receive(t) means that an agent waits for a message pattern (since it might
contain variables) of the form t. Like [1], we extend strands with equalities
and inequalities—they represent checks that must hold true to proceed—and a
construct for emitting events; assert(e). We further extend strands with steps
for checking whether an event has happened or not; event(e) and ¬event(e).
Finally, the main novel addition to the concept of strands are the set operations.
They allow for updates (insert and delete) and queries (∈̇ and 6 ∈̇) of sets. Here,
the delete operation allows for removal of elements that have previously been
inserted into a set, and so the contents of sets do not grow monotonically during
transitions. This is in contrast to the messages that the intruder has seen, i.e.,
the messages sent by honest agents; we cannot force the intruder to forget a
message he has learned. Similarly, we cannot retract an asserted event. Thus
the set of events and the messages sent over the network grow monotonically
during transitions.

The set of terms occurring in a strand ` is denoted by trms(`). The events of
a strand ` is the set of terms ev(`) defined as ev(`) = {e | assert(e) occurs in `}.
The free variables, denoted by fv(`), are the variables occurring in ` which
are not bound by a universal quantifier, and when fv(`) = ∅ then ` is said to
be closed. In many formalisms like process calculi, variables in a receive step
would also be considered as bound variables. Since we, however, also express
pattern matching here (since we allow arbitrary terms in receive steps, and, in
particular, the same variable can occur in several receive steps and more than
once), we like to refer to all such variables as free variables, anyway. We will
later introduce a notion of well-formed constraints that requires all free variables
to first occur in a receive step or a positive check, and thus corresponds to a
notion of closedness in other formalisms. Moreover, given a substitution δ we can
apply it to a constraint ` as expected, written δ(`), by applying δ to every free
occurrence of a variable in `. Note that the variables of a substitution δ might
clash with the bound variables occurring in a strand `, e.g., for δ = [y 7→ f(x)]
and ` = ∀x. x 6 .= y we have that δ(`) = ∀x. x 6 .= f(x). However, we can always
avoid these issues by variable-renaming. For simplicity we therefore assume that
the bound and free variables of strands are disjoint. Note also that we restrict
ourselves here to a “bare metal” formalism by discarding all notions that are
not relevant to our typing result. For instance, we have no notion of repetition,
since one can simply consider an infinite set of such strands. We then also do
not need a construct for creating fresh constants since we can simply consider
a set of strands with uniquely chosen constants.

3.2 A Keyserver Example
Before we proceed with the formal definition of our protocol model we introduce
a small keyserver protocol example adapted from [25]. In this protocol each par-
ticipant u has an associated keyring ring(u) of currently used public keys. Any
agent (or user) can register public keys with a trusted keyserver and these public

6

keys can later be revoked. The lifetime of a key may span multiple sessions, but
whenever it is revoked the corresponding private key will be publicly known,
and it should therefore not be used in a later session. Thus the keyserver needs
to maintain the current status of keys and to model this feature we consider sets
valid(u) and revoked(u) containing the valid respectively revoked keys for each
user u. As an initial rule of the protocol we model an out-of-band registration
of fresh keys (e.g., the user physically visits the server). Suppose we have a
(countably infinite) set of constants that represents the users. For every user u
and for every j ∈ N we then declare the strand:

insert(pku,j , ring(u)).insert(pku,j , valid(u)).send(pku,j) (T1)

where each pku,j is a public key. Here, j is a “session number” and pku,j rep-
resents a fresh public key the user u “has created in session j”. This strand
thus represents that a user u can create a fresh key pku,j and insert it into its
keyring, and the server then additionally inserts the key into its own set of valid
keys. Lastly, the key is made public by sending it out.

We will later define the semantics of protocols by a state transition system,
where in the initial state all sets are empty and no messages have been sent.
Then for user u = a and session j = 1, the above strand would get us to a new
state where pka,1 is contained in ring(a) and valid(a) and the message pka,1 has
been sent. Note that we do not have any built-in notion of set ownership, so we
can model here strands that represent a mutual action of a user and the server.

As a second rule we model a key-revocation mechanism consisting of two
separate strands: one for the users and one for the server. In the first strand the
condition PK u,j ∈̇ ring(u) expresses that PK u,j can be any value in the keyring.
Not having any other condition, this models that the user can arbitrarily select
a key from its keyring. Then it generates a fresh key npku,j , inserts it into its
keyring, and sends the new key to the server, signed with the old key PK u,j :

PK u,j ∈̇ ring(u).insert(npku,j , ring(u)).

send(sign(inv(PK u,j), 〈u,npku,j〉)) (T2)

for each user u and for each session j ∈ N. (Note that we also parameterize the
variables; later on, we will require that different strands have different variables.)
Rule T2 is, for instance, applicable to our concrete state where key pka,1 has
been registered: it gets us to a new state where npka,1 has been added to ring(a)
and the message sign(inv(pka,1), 〈a,npka,1〉) has now been sent.

Afterwards, in the second strand, it is the keyserver’s turn to act and its ac-
tions are initiated by an incoming message of the form sign(inv(PK i), 〈Ui,NPK i〉):

receive(sign(inv(PK i), 〈Ui,NPK i〉)).
(∀Ai. NPK i 6 ∈̇ valid(Ai)).(∀Ai. NPK i 6 ∈̇ revoked(Ai)).
PK i ∈̇ valid(Ui).insert(NPK i, valid(Ui)).
insert(PK i, revoked(Ui)).delete(PK i, valid(Ui)).
send(inv(PK i)) (T3)

7

for each i ∈ N. Again, this rule is applicable to the concrete state reached
above, moves the value pka,1 from valid(a) to revoked(a), and inserts npka,1 into
valid(a). Finally, the server discloses the private key inv(pka,1); while this is of
course not done in an actual implementation, it expresses that this protocol is
secure even if the intruder learns the private key to an old revoked key.

3.3 Transaction Strands
One may wonder about the execution model for the strands from the previous
example, in particular if that could cause race conditions on the checks and
modifications of the sets if parallel execution of several strands leads to some
interleaving of the respective set operations. Suppose for instance, in our key-
server example, that we register the key pka,1 using strand T1, and then send
out the messages sign(inv(pka,1), 〈a,npka,i〉) for i ∈ {1, 2} using T2. Then pka,1
is in valid(a) and ring(a) contains the keys pka,1, npka,1, and npka,2. If we now
run two instances of the strand T3, one for each of the signatures, and we as-
sume that they are executed step-by-step instead of one atomic block, then we
could end up in a state where both npka,1 and npka,2 have been registered at the
keyserver (i.e., inserted into valid(a)) but only one public key, pka,1, has been
revoked, because both instances of T3 can perform all their checks before up-
dating their databases. In fact, as we will define formally in the next subsection,
we adopt a transaction semantics: a transaction strand (or just transaction) is
defined to be a strand of the form receive(T).L.send(T ′) where T and T ′ are
finite sets of terms, L is a strand that does not contain any send or receive steps,
and where we write receive({t1, . . . , tn}) as an abbreviation for receive(t1). · · · .
receive(tn) (similarly for send steps). The idea is that such a transaction is
always performed atomically, i.e., as a single transition. This reflects, in our
opinion, very well the normal work-flow of a web server with a database: the
server receives an incoming request, performs some lookups and checks on its
database (possibly aborting the transaction), then performs some modifications
on its database, and sends a reply (which may be also a request to another
server). The key is that the server serializes the handling of such transactions
(to avoid said race conditions). A transaction semantics allows us to abstract
from the implementation of such serialization mechanisms and thus focus on
the verification of a larger system. Another example are crypto APIs, where a
token receives an API command, performs some lookups and checks in its mem-
ory (possibly aborting the transaction), performs some updates to its memory
and then gives out a result. Also here, we typically do not want to reason about
race conditions from several API calls in parallel.

This is indeed slightly different from the “philosophy” of many process cal-
culus approaches (e.g., StatVerif [3] and Set-π [12]) where one would have to
introduce explicit locking mechanisms. Also, the original notion of strand spaces
by Guttman [31] is actually based on a notion of only a partial (instead of a
total) order on send and receive steps in an execution; if we regard however
set operations as interactions with a database with locking, then we obtain the
partial order that our transaction semantics defines.

8

3.4 Transition Systems
Now that we have introduced the elements of our protocols we define a protocol
S to be a countable set of transaction strands where no variable occurs in
two different strands. The set of terms trms(S) occurring in S is defined as
expected.

Before giving the formal definition of the transition system we will first define
the notion of a database mapping D to be a finite set of pairs (t, s) of terms,
and for closed strands ` we define the ground database mapping db(`) as

db(`) = {(t, s) | insert(t, s).`′ is a suffix of `
and delete(t, s) does not occur in `′}

Let D = {(t1, s1), . . . , (tn, sn)} be a database mapping and ` a closed strand,
then we may write db(insert(D).`) as a shorthand for db(insert(t1, s1). · · · .insert(tn, sn).`).

States in the (ground) transition system are of the form (S;M,D,E) where
S is a protocol, M is the set of messages that has been sent over the network
and that we also refer to as the intruder knowledge, D is a database mapping
representing the state of all databases, and E is the set of events that have
occurred. The initial state is (S0; ∅, ∅, ∅) for a protocol S0.

Definition 1. A transition relation on states is defined as:

(S;M,D,E)
σ,`

=⇒ (S \ {`};M ∪ σ(T ′), D′, E′)
where D′ = db(insert(D).σ(L)) and E′ = E ∪ ev(σ(L)))

if the following conditions are met:

C1: ` = receive(T).L.send(T ′) ∈ S is a transaction strand,

C2: σ is a ground substitution with domain fv(`),

C3: M ` σ(t) for all terms t ∈ T ,

C4: σ(t) = σ(t′) for all steps t .= t′ occurring in L,

C5: σ(δ(t)) 6= σ(δ(t′)) for all steps ∀x̄. t 6 .= t′ occurring in L and all ground
substitutions δ with domain x̄,

C6: σ((t, s)) ∈ db(insert(D).σ(L′)) for all prefixes L′.(t ∈̇ s) of L,

C7: σ(δ((t, s))) /∈ db(insert(D).σ(L′)) for all prefixes L′.(∀x̄. t 6 ∈̇ s) of L and all
ground substitutions δ with domain x̄,

C8: σ(t) ∈ E ∪ ev(σ(L′)) for all prefixes L′.event(t) of L,

C9: σ(δ(t)) /∈ E ∪ ev(σ(L′)) for all prefixes L′.(∀x̄. ¬event(t)) of L and all
ground substitutions δ with domain x̄.

9

Here the first side-condition C1 simply ensures that ` is actually a transaction
strand of the protocol, and the second condition C2 ensures that σ is actually
an assignment of the free variables in ` to concrete values. Condition C3 states
that the intruder must be able to derive the messages that ` expects to receive.
The conditions C4 to C9 state that all checks and set updates performed by
` are satisfied under σ. As the effect of a transition the strand ` is removed
from S, the intruder learns σ(T ′), the asserted events of σ(L) are added to the
successor state, and the databases are updated according to the set operations
of σ(L).

Note that the whole transaction strand ` is “consumed” in each transition be-
cause we want the strands of protocols to be atomic transactions. This is differ-
ent from other strand-based approaches in which a transition only eliminates one
step of a strand and in which strands might contain multiple transactions (e.g.,
from a state containing the protocol {PK .

= pka,1.receive(npka,1).send(PK)} we
can reach a state containing {receive(npka,1).send(PK)} and where PK must
be mapped to pka,1). Defining our protocol semantics on a transactional level,
however, is without loss of generality: it is always possible to refine a strand
into smaller transaction strands while preserving the causal relationship of the
original strand (i.e., transaction i + 1 of a strand with n transactions can only
be performed after transaction i, for any i ∈ {1, . . . , n − 1}). For instance,
one can insert additional message-transmissions between steps, e.g., the strand
PK

.
= pka,1.receive(npka,1).send(PK) can be split into two transactions, namely

PK
.
= pka,1.send(f(PK)) and receive(f(PK)).receive(npka,1).send(PK) where f

is a fresh private symbol of arity one that we here use to preserve the causal re-
lationship and to carry state information. In general, to split a strand `1. · · · .`n
containing transaction strands `i we can add additional steps that carry state
information from `i to `i+1 and which ensure that `i can only be performed af-
ter `i+1: `i.send(state`i(x1, . . . , xm)) and receive(state`i(x1, . . . , xm)).`i+1, where
state`i ∈ Σmpriv is private and unique to `i and where fv(`i) = {x1, . . . , xm}. Such
a transformation can also be used to link transactions `1, . . . , `n together, or to
split a transaction strand into smaller transactions if one wishes to have greater
granularity in state transitions. For tools based on transaction strands such an
encoding would be useful; it would be convenient for users if they are allowed
to specify strands containing multiple transactions. In this paper, however, we
will not provide such an input language for a tool—rather, we have decided
to keep the protocol model simple by only allowing single-transaction strands.
This decision is legitimate, in our opinion, since the above encoding for linking
transactions can easily be automated and be transparent to end-users.

Finally, we note that protocol goals such as secrecy can also be encoded
as strands. For instance, we can extend our running keyserver example with
strands

receive(inv(PK ′i)).PK
′
i ∈̇ valid(h).assert(attack)

for each honest user h and i ∈ N, and an event attack that denotes when an
attack has happened. Hence, if the private key of a valid public key for an
honest agent is leaked then there is a violation of secrecy, and in those cases

10

we emit the event attack using the construct assert. In other words, if there
is a reachable state (S;M,D,E) in which attack ∈ E then the protocol has a
vulnerability.

4 Symbolic Constraints
At the core of all typing results is a sound and complete constraint reduction
system. It was originally used as an efficient procedure for model-checking
of security protocols [22, 29, 6], but is also used as a proof technique when
proving relative soundness results such as [14, 24, 2, 1, 19]. The constraints
themselves arise from the symbolic exploration of the protocol state space where
each symbolic state contains a constraint that represents the steps taken in the
protocol so far. Any solution to a reachable constraint then represents (one or
several) concrete runs of the protocol. In this section we consider constraints
for stateful protocols.

4.1 Syntax and Semantics
The most basic parts of a symbolic constraint are requirements on the intruder
to produce messages that honest agents expect to receive. For instance, if the
messages m1, . . . ,mn (where each mi might contain variables) have been sent
out and some agent expects to receive a message pattern t it is standard to
represent as a constraint the requirement on the intruder to produce t given
the mi. Any solution I to such a constraint is an assignment of the vari-
ables fv({m1, . . . ,mn, t}) to ground terms such that I({m1, . . . ,mn}) ` I(t)
holds. In [19] there was the idea to represent a (finite) set of such constraints
by a strand, with send steps for messages the intruder has to generate, and
receive steps for messages that the intruder learns (all in the order this hap-
pens), e.g., the constraint we just explained can be represented as the strand
receive(m1). · · · .receive(mn).send(t). We additionally want to handle strands
with sets, and so we also just insert all the set operations (and similarly the
checks and event assertions) into the intruder strands in the order they happen
in a concrete execution. With this, our constraints are just like the strands for
honest agents but with the direction of send and receive steps inverted, i.e., a
send step from an honest agent becomes a receive step in our constraints and
vice versa. For these reasons we define the syntax of our constraints to range
over strands. Similarly to the ordinary strands we call constraints that only
contains receive, send, equalities, and inequalities for ordinary constraints. We
will often reuse the operations defined on strands for symbolic constraints, since
they share the same syntax, and we also make the assumption that the bound
variables occurring in a constraint are disjoint from its free variables. Moreover,
we define the intruder knowledge ik(A) of a constraint A as the set of received
messages: ik(A) = {t | receive(t) occurs in A}.

An interpretation I for a constraint A (or just an interpretation if dom(I) =
V) is now defined to be a substitution such that fv(A) ⊆ dom(I) and img(I) is

11

ground. We then inductively define a model relation |=M,D,E between interpre-
tations and constraints where M , D, and E are respectively the initial intruder
knowledge, state of databases, and events:

Definition 2 (Constraint semantics).

I |=M,D,E 0 iff true
I |=M,D,E send(t).A iff M ` I(t) and I |=M,D,E A
I |=M,D,E receive(t).A iff I |=M∪{I(t)},D,E A
I |=M,D,E t

.
= t′.A iff I(t) = I(t′) and I |=M,D,E A

I |=M,D,E (∀x̄. t 6 .= t′).A iff I |=M,D,E A and
I(δ(t)) 6= I(δ(t′)) for all ground δ with domain x̄

I |=M,D,E insert(t, s).A iff I |=M,D∪{I((t,s))},E A
I |=M,D,E delete(t, s).A iff I |=M,D\{I((t,s))},E A
I |=M,D,E t ∈̇ s.A iff I((t, s)) ∈ D and I |=M,D,E A
I |=M,D,E (∀x̄. t 6 ∈̇ s).A iff I |=M,D,E A and

I(δ((t, s))) /∈ D for all ground δ with domain x̄
I |=M,D,E assert(e).A iff I |=M,D,E∪{I(e)} A
I |=M,D,E event(e).A iff I(e) ∈ E and I |=M,D,E A
I |=M,D,E (∀x̄. ¬event(e)).A iff I |=M,D,E A and

I(δ(e)) /∈ E for all ground δ with domain x̄

Finally, we say that an interpretation I is a model of (or solution to) a
constraint A, written I |= A, iff I |=∅,∅,∅ A.

We can now prove some useful lemmas about the constraint semantics. First,
we have a lemma that we frequently apply in proofs (without explicitly refer-
encing it) that allows us to split and merge constraints:

Lemma 1. Given a ground set of terms M , a ground database mapping D, a
ground set E of asserted events, an interpretation I, and symbolic constraints
A and A′, the following holds:

I |=M,D,E A.A′ iff I |=M,D,E A and I |=M ′,D′,E′ A′
where M ′ = M ∪ ik(I(A)), D′ = db(insert(D).I(A)),
and E′ = E ∪ ev(I(A))

Secondly, we can prove a useful relationship between the side-conditions
C1 to C9 of the ground transition system and the constraint semantics. First
we define the notion of the dual of a strand S by “swapping” the direction of
receive and send steps. Formally, dual(s) denotes the dual of the strand step
s defined such that dual(receive(t)) = send(t), dual(send(t)) = receive(t), and
dual(s) = s for any other step s. It is then extended homomorphically to strands
as expected. We will interpret dual strands as symbolic constraints and under
this interpretation we can prove the following relationship:

Lemma 2. Given a ground state (S;M,D,E), a transaction strand ` ∈ S
(condition C1), and a ground substitution σ with domain fv(`) (condition C2),
then the conditions C3 to C9 hold if and only if σ |=M,D,E dual(`).

12

4.2 Symbolic Transition System
Now that we have defined the syntax and semantics of constraints we can con-
struct a protocol transition system in which we build up constraints during
transitions. In this symbolic transition system a symbolic state (S;A) consists
of a protocol S and a constraint A, and the initial state (S0; 0) then consists of
the initial protocol S0 and the empty constraint 0. During transitions we then
build up a constraint by interpreting dual honest-agent strands as constraints:

Definition 3. A transition relation on symbolic states is defined as:

(S;A)
`

=⇒• (S \ {`};A.dual(`)) if ` ∈ S

We will now impose a well-formedness requirement on protocols; variables
in honest-agent strands must either originate from a received message or in a
positive check (e.g., a set query). In ordinary protocols there is nothing non-
deterministic in the behavior of honest agents, so all free variables in their
strands shall first occur in messages they receive. Now that we add set op-
erations, we extend well-formedness naturally to set comprehensions: a set-
membership check like x ∈̇ s allows the agent to non-deterministically choose
any element from s for x—unless x is already constrained before, thus limiting
the choice accordingly.

We also require that reachable constraints in the symbolic transition system
are of a well-formed kind that is dual to the well-formedness of protocols; every
free variable of a constraint represents either a message that depends on choices
the intruder can make (e.g., variables originating from send steps), or originates
from a positive check. To that end we formally define constraint well-formedness
first and then use this definition to define protocol well-formedness:

Definition 4. A constraint A is well-formed w.r.t. variables X (or simply
well-formed when X = ∅) iff wf X(A) where

wf X(0) iff true
wf X(send(t).A) iff wf X∪fv(t)(A)

wf X(receive(t).A) iff fv(t) ⊆ X and wf X(A)
wf X(t

.
= t′.A) iff fv(t′) ⊆ X and wf X∪fv(t)(A)

wf X(insert(t, s).A) iff fv(t) ∪ fv(s) ⊆ X and wf X(A)
wf X(delete(t, s).A) iff fv(t) ∪ fv(s) ⊆ X and wf X(A)
wf X(t ∈̇ s.A) iff wf X∪fv(t)∪fv(s)(A)

wf X(assert(t).A) iff fv(t) ⊆ X and wf X(A)
wf X(event(t).A) iff wf X∪fv(t)(A)

wf X(a.A) iff wf X(A) otherwise

Here the set X collects the variables that have occurred in send steps or
positive checks. In other words, every free variable of a well-formed constraint
originates from either a send step, a ∈̇ step, an event step, or at the left-hand
side of a .

= step (or a negative check such as an inequality, but in those cases
the new variables cannot be used elsewhere). We can then reuse the definition

13

of well-formedness of constraints to formally define a notion of well-formedness
of protocols:

Definition 5. A protocol S is well-formed iff for all strands ` ∈ S the symbolic
constraint dual(`) is well-formed.

Well-formedness of reachable constraints is now easy to prove. We write
w

=⇒∗ here to denote the reflexive-transitive closure of ·
=⇒ where the label w =

(σ1, `1), . . . , (σn, `n) denotes a sequence of transition labels, and similarly w′

=⇒•∗
denotes the reflexive-transitive closure of ·

=⇒• where w′ = `1, . . . , `n.

Lemma 3 (Well-formedness of reachable symbolic constraints). If S0 is a well-
formed protocol and (S0; 0)

w
=⇒•∗ (S;A) then A is a well-formed symbolic con-

straint and S is a well-formed protocol.

We now prove that the symbolic and ground transition systems are equiva-
lent. Essentially, if we consider for every reachable symbolic state (S;A) and ev-
ery model I ofA the corresponding ground state (S; ik(I(A)), db(I(A)), ev(I(A))),
then we obtain exactly the reachable states of the ground transition system:

Theorem 1 (Equivalence of transition systems). For any protocol S0,

{(S;M,D,E) | ∃w. (S0; ∅, ∅, ∅) w
=⇒∗ (S;M,D,E)} =

{(S; ik(I(A)), db(I(A)), ev(I(A))) |
∃w. (S0; 0)

w
=⇒•∗ (S;A) and I |= A}

4.3 Reduction to Ordinary Constraints
Definition 6 (Translation of symbolic constraints). Given a constraint A its
translation into ordinary constraints is denoted by tr(A) = tr∅,∅(A) where:

trD,E(0) = {0}
trD,E(insert(t, s).A) = trD∪{(t,s)},E(A)
trD,E(delete(t, s).A) = {

(t, s)
.
= d1. · · · .(t, s)

.
= di.

(t, s) 6 .= di+1. · · · .(t, s) 6
.
= dn.A′ |

D = {d1, . . . , di, . . . , dn}, 0 ≤ i ≤ n,
A′ ∈ trD\{d1,...,di},E(A)}

trD,E(t ∈̇ s.A) = {(t, s) .
= d.A′ | d ∈ D,A′ ∈ trD,E(A)}

trD,E((∀x̄. t 6 ∈̇ s).A) = {
(∀x̄. (t, s) 6 .= d1). · · · .(∀x̄. (t, s) 6 .= dn).A′ |
D = {d1, . . . , dn}, 0 ≤ n,A′ ∈ trD,E(A)}

trD,E(assert(e).A) = trD,E∪{e}(A)
trD,E(event(e).A) = {e .

= e′.A′ | e′ ∈ E,A′ ∈ trD,E(A)}
trD,E((∀x̄. ¬event(e)).A) = {

(∀x̄. e 6 .= e1). · · · .(∀x̄. e 6 .= en).A′ |
E = {e1, . . . , en}, 0 ≤ n,A′ ∈ trD,E(A)}

trD,E(a.A) = {a.A′ | A′ ∈ trD,E(A)} otherwise

14

The key to our typing result—that allows us to benefit from existing typing
results—is to first reduce the problem of solving general intruder constraints
(with set operations) to solving ordinary intruder constraints (without set oper-
ations). To that end we introduce a sound and complete translation mechanism
that removes the stateful parts of constraints, for instance those reachable in
·

=⇒•∗. The translation tr(·) is then defined in Definition 6 whereD is a database
mapping and E is a set of events that records what has occurred in the con-
straint so far. Intuitively, the set trD,E(·) of reduced constraints represents a
disjunction of ordinary constraints, and since we cannot represent disjunctions
in our constraints we use sets instead. Note also that D and E will always
be finite and that this does not mean that we are restricting ourselves to only
finitely many sessions. Rather, in each protocol execution only finitely many
things have happened and D and E then represents the state of the sets and
events respectively. Hence the translation always produces a finite set and for
this reason we can interpret the set as a finite disjunction of constraints.

We will now explain how each set operation is translated (the event steps
are translated similarly). The purpose of the translation tr(A) is to capture
precisely the models of A using only a finite number of ordinary constraints, so
we will proceed with the explanation with this in mind. The simplest case is the
insert(t, s) case, and here we record the insertion for the remaining translation.
Now consider the t ∈̇ s case. For any model I of t ∈̇ s with a given database
mapping D = {(t1, s1), . . . , (tn, sn)} (where each entry of D might contain vari-
ables) we know that I((t, s)) ∈ I(D). In other words, some check (t, s)

.
= d for

some d in D has I as a model if and only if t ∈̇ s has I as a model, and by
then constructing one constraint for each di ∈ D where we require (t, s)

.
= di

we get the desired result. For the ∀x̄. t 6 ∈̇ s case we know that I(δ(t)) 6= I(δ(t′))
or I(δ(s)) 6= I(δ(s′)) for any (t′, s′) ∈ D and ground substitution δ with do-
main x̄. In other words, I(δ((t, s))) 6= I(δ((t′, s′))) for all (t′, s′) ∈ D and
this is exactly what the translation expresses. We also have to make sure that
the newly introduced quantified constraints do not capture any variables of D.
This is, in fact, the case for all constraints reachable in our symbolic transi-
tion system, since we have previously assumed all strands of protocols to have
disjoint variables from each other and also that the bound and free variables
of strands are disjoint. Thus this property also holds for the reachable con-
straints. The most interesting case is the translation of delete(t, s) steps. Since
terms may contain variables we do not know a priori which insertions to remove
from D, but we still need to ensure that t has actually been removed from the
set s in the remaining constraint translation—otherwise the translation would
be unsound. We accomplish this by partitioning the insertions D into those
{d1, . . . , di} that must be equal to (t, s) in the remaining translation and the
remaining D \ {d1, . . . , di} that are unequal to (t, s), and we thus add equality
and inequality constraints to express this partitioning. Consequently, we then
remove {d1, . . . , di} from D for the remaining translation. Note that there will
in general be cases where the choice of partitioning results in an unsatisfiable
constraint, but since we construct constraints for all possibilities the translation
still captures exactly the models of the original constraint. Note also that this

15

partitioning of D implies that an exponential number of constraints are con-
structed in this case, namely one for each subset of D. The translation is meant
to be used purely as a problem reduction—in a verification procedure one could
ensure that trivially unsatisfiable translations are ignored to reduce the number
of produced constraints.

Finally, we show that tr is indeed a reduction, i.e., that tr(A) captures
exactly the models of A, and that tr preserves well-formedness:

Theorem 2 (Semantic equivalence of constraints and their translation). I |= A
if and only if there exists A′ ∈ tr(A) such that I |= A′. Also, if A is well-formed
and A′ ∈ tr(A) then A′ is well-formed.

5 Lifting Typing Results to Stateful Protocols
So far everything has been untyped. We will now consider a simple type system
in which we annotate terms with types. In particular, each message pattern
that an honest agent in a protocol expects to receive will have an intended
type, and in a typed model we restrict all substitutions to well-typed ones. In
a typed model the intruder is therefore effectively restricted to only sending
messages which conform to the types. For protocols that satisfy a syntactic
requirement—type-flaw resistance—we then prove that this restriction is sound,
and this result we call a typing result. For proving our result we use the reduction
tr from constraints with sets to ordinary constraints, enabling us to use existing
typing results for protocols without sets and “lift” them to stateful protocols.

5.1 Typed Model
The type system we introduce now uses a structure for types which is similar to
the structure of terms (and so we will be able to reuse all notions of terms for
types as expected). Recall that our notion of terms are parameterized over a
set Σ of symbols. The idea is to use almost the same notion for our types, only
not allowing constants C ⊆ Σ and variables in types and instead use a finite set
of atomic types Ta that could include, for instance, agent. In addition to atomic
types we also have composed types. For instance, in our running example we use
private keys of the form inv(PK). This term has the composed type inv(value),
where PK has type value. We can also assign the type inv(value) to variables
and we are therefore not limited to only using atomic keys.

We define the intended types of a protocol specification by a typing function
Γ that assigns a type to every term; it can be any function that satisfies the
following properties:

1. Γ(c) ∈ Ta for every c ∈ C.

2. Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for every f ∈ Σn \ C and terms ti.

The first of these axioms assigns atomic types to constants whereas the second
axiom assigns composed types to composed terms. We also assign types to

16

variables and we only require here that symbols occurring in a type have been
applied with the correct number of parameters, and that constants from C do
not appear in the types of variables. Additionally, we assume the existence of
an atomic type value; we will later require that all terms inserted into sets all
have the same atomic type, and we use value for this purpose. The function Γ
is moreover extended to sets of terms as expected.

For instance, in our running example we might define Ta = {value, agent,
attacktype} where Γ(a) = agent for all users and servers a, Γ(pk) = value for
any element pk of a set, and Γ(attack) = attacktype. Similarly, the variables Ui
have type agent and the variables PK u,j , PK i, and NPK i have type value. All
short-term public keys have type value and all short-term private keys have type
inv(value). Since we use terms to model families of sets we have as a consequence
that, e.g., keyrings of the form ring(u), for users u, have type ring(agent).

For the typing result to hold we need to ensure that the intruder always has
access to arbitrarily many terms of any type (otherwise he would not necessarily
be able to always make a well-typed choice). More formally, we partition the
set of public constants Cpub into the countably infinite sets Cα1

pub , . . . , C
αn

pub where
Ta = {α1, . . . , αn} and Γ(Cαi

pub) = {αi} for all i ∈ {1, . . . , n}. This models
that the intruder has access to an unbounded supply of fresh constants of any
atomic type. To ensure the same for composed types, there is a small technical
problem, namely that we want functions like inv(·) to be private, but this would
lead to a quite complicated model to ensure that the intruder can do this. So for
the sake of this section we make the following technical restriction: we assume
that all non-constant function symbols Σ \ C are public. To model a private
function f of arity n > 0, we can encode as a public function symbol f ′ of arity
n+1 where the additional argument is filled in all protocol strands with a secret
constant secf that the intruder does not know. Note that this simple encoding
of private functions is merely used here in the typing result section to make the
development smooth. With this construction the intruder can always generate
well-typed instances of any type.

Finally, in the typed model we restrict ourselves to only consider well-typed
solutions to intruder constraints. To capture this idea we define a predicate on
substitutions stating that every variable is mapped to a term of the same type
for substitutions satisfying this property:

Definition 7. A substitution δ is well-typed iff Γ(x) = Γ(δ(x)) for all x ∈ V.

Conversely, substitutions that are not well-typed are ill-typed.

5.2 Type-Flaw Resistance
In this subsection we will define a sufficient syntactical condition for protocols
(i.e., verifying the condition does not require an exploration of the state space
of a protocol) that allows us to prove our typing result for protocols that have
this property. This condition will be named type-flaw resistance and it is similar
to the typing result conditions of [1, 19].

17

First, we will define a set of sub-message patterns SMP(M) for sets of mes-
sage patterns M :

Definition 8 (Sub-message patterns). The set of sub-message patterns, SMP(M),
of a set of terms M is the least set closed under the following rules:

1. If t ∈M then t ∈ SMP(M)

2. If t ∈ SMP(M) and t′ is a subterm of t
then t′ ∈ SMP(M)

3. If t ∈ SMP(M) and δ is a well-typed substitution
then δ(t) ∈ SMP(M)

4. If t ∈ SMP(M) and Ana(t) = (K,T)
then K ⊆ SMP(M)

The intention is that we can apply SMP to the message patterns trms(S) of
a protocol S, and SMP(trms(S)) is then an over-approximation of the messages
that the intruder might ever learn from the honest agents of S (or send out to the
honest agents) in any well-typed protocol run. The definition is generalized over
an arbitrary set of terms, so that we can also apply SMP to messages occurring
in a strand or a constraint. Consider, for instance, the set of sub-message
patterns SMP(trms(A)) built from the terms that occur in some well-formed
constraint A. The set then covers all message patterns of every message that
might be sent over the network, and any pattern in a check made by an honest
agent, for well-typed choices of the variables in the patterns.

Note that we also close the set of sub-message patterns under terms occurring
during decomposition. (For proving a typing result for ordinary constraints one
should prove that the constraints arising through constraint reductions never
“fall out” of the set of sub-message patterns. Here one needs to make sure that
the terms arising from decomposition are also captured by the sub-message pat-
terns, since the keys usually end up in a reachable constraint in the constraint
reduction system.) Since we assume that the terms obtained from a decompo-
sition must be subterms of the original term, however, we already cover those
terms in the second rule of Definition 8 and so we only include the keys used
during decomposition in the fourth rule.

We will now require that all pairs t, t′ of sub-message patterns that are not
variables (i.e., are non-variable) can only be unified if their types match, and this
will be our main condition of type-flaw resistance. This is a sufficient require-
ment to distinguish terms of different types and it therefore enables us to argue
that ill-typed choices are unnecessary. In a nutshell, the typing result works as
follows: with the condition of type-flaw resistance we ensure that the intruder
cannot take a message generated by an honest agent (or a non-variable subterm
of it) and use it in a different “context” of the protocol, i.e., a non-variable sub-
term of a different type. The constraint-based representation then allows one
to argue that no attack relies on an ill-typed choice by the intruder: one can
show that there is a sound, complete, and terminating reduction procedure for

18

(ordinary) intruder constraints that will instantiate variables only upon unifica-
tion of two elements of SMP—and such a unifier is guaranteed to be well-typed
for a type-flaw resistant protocol. All remaining uninstantiated variables can be
instantiated arbitrarily by the intruder, in particular in a well-typed way. Thus
one can conclude that there is a well-typed solution if there is one at all.

Definition 9 (Type-flaw resistance). First, let the set operation tuples of a
constraint (or strand) A be defined as:

setops(A) = {(t, s) | insert(t, s) or delete(t, s) or t ∈̇ s
or (∀x̄. t 6 ∈̇ s) for some x̄ occurs in A}

and extend this definition to protocols S as follows:

setops(S) =
⋃
`∈S

setops(`)

Then we define type-flaw resistance as follows:

1. A set of terms M is type-flaw resistant iff for all t, t′ ∈ SMP(M) \ V it
holds that Γ(t) = Γ(t′) if t and t′ are unifiable.

2. A strand (or constraint) A is type-flaw resistant iff trms(A) ∪ setops(A)
is type-flaw resistant, all bound variables of A have atomic type, and for
any terms t, t′ and variable sequences x̄:

(a) If t .= t′ occurs in A then Γ(t) = Γ(t′) if t and t′ are unifiable.

(b) If ∀x̄. t 6 .= t′, insert(t, t′), delete(t, t′), t ∈̇ t′, or ∀x̄. t 6 ∈̇ t′ occurs in A
then Γ(fv(t) ∪ fv(t′)) ⊆ Ta.

(c) If assert(t) occurs in A then t /∈ V and Γ(fv(t)) ⊆ Ta.

(d) If event(t) occurs in A then t /∈ V.
(e) If ∀x̄. ¬event(t) occurs in A then Γ(fv(t)) ⊆ Ta.

3. A protocol S is type-flaw resistant iff the set trms(S)∪ setops(S) is type-
flaw resistant and for all ` ∈ S the strand ` is type-flaw resistant.

The main type-flaw resistance condition is defined in Definition 9(1) and it
states that matching pairs of messages that might occur in a protocol run must
have the same type. For equality steps t .= t′ any solution I must be a unifier
of t and t′, and so they should have the same type. If t .

= t′ is unsatisfiable
(i.e., t and t′ are not unifiable) then their types do not matter. Hence we
can later prove that our reduction tr preserves type-flaw resistance, even if tr
produces some unsatisfiable equality steps. For inequality steps ∀x̄. t 6 .= t′ we
only need to require that the variables occurring in x̄, t, and t′ are atomic. For
the remaining constraint steps note that when we translate a set operation such
as delete(t, s) we construct steps of the form (t, s)

.
= (t′, s′) and (t, s) 6 .= (t′, s′).

Thus we must require all variables of t, t′, s, and s′ to be atomic, and if (t, s) and
(t′, s′) are unifiable then they should have the same type. By requiring that the

19

set trms(A) ∪ setops(A) is type-flaw resistant we have that the translated set
operations must have the same type if they are unifiable. Similar conditions are
needed for the event steps, but we can here relax the requirements slightly since
their translations are simpler. Finally, a protocol is type-flaw resistant whenever
its strands are, and we must additionally require here that trms(S)∪ setops(S)
is type-flaw resistant because terms from different strands might be unifiable.

Note that if we allow for composed types for variables in inequalities then
we can easily construct constraints which only have ill-typed solutions. For
instance, consider the inequality ∀x. y 6 .= f(x) where Γ(y) = f(Γ(x)). For any
instance f(c) of y where Γ(f(c)) = Γ(y) there is an instance of x (namely c) that
does not satisfy the inequality. Hence the constraint has no well-typed solution.
However, there does exist ill-typed solutions; since we are working in the free
algebra terms are equal if and only if they are syntactically equal, and hence
any instance of y that is not of the form f(c) for some c would be a solution to
the inequality. [24] has no such restrictions on the type of universally quantified
variables, and their typing result breaks because of this and other issues. We
explain the other issues of [24] in Appendix B. Thus it seems that a typing result
for stateful protocols necessarily requires a carefully restricted setting like our
set-based approach.

As an example of type-flaw resistance we show that the keyserver protocol is
type-flaw resistant. One approach to proving type-flaw resistance of a protocol S
is to first find a set of strand stepsM that subsumes the steps of S as well-typed
instances. By proving type-flaw resistance of all steps in M , and of the set of
terms occurring in M , we can conclude that S must be type-flaw resistant. For
our example we can consider the following set, where Γ({A,S, U}) = {agent}
and Γ(PK) = value:

M = {assert(attack), delete(PK , valid(U)),
∀A. PK 6 ∈̇ revoked(A),∀A. PK 6 ∈̇ valid(A),
insert(PK , valid(U)), insert(PK , ring(U)),
insert(PK , revoked(U)),PK ∈̇ valid(U),PK ∈̇ ring(U),
receive(inv(PK)), receive(sign(inv(PK), 〈U,PK 〉)),
send(inv(PK)), send(PK), send(sign(inv(PK), 〈U,PK 〉))}

Hence all variables have atomic type and so the non-constant, non-variable sub-
message patterns ofM consist of the composed terms and subterms closed under
well-typed variable renaming and well-typed instantiation of the variables with
constants. It is easy to see that each pair of non-variable terms among these
composed sub-message patterns have the same type if they are unifiable. Thus
the total set of terms of the protocol—and in each strand—is type-flaw resistant.

What remains to be shown is that each strand step in M satisfy require-
ment 2(b) and 2(c) of Definition 9 (the remaining requirements are vacuously
satisfied). The only event step occurring in M is assert(attack), and so 2(c) is
satisfied. For the set operations occurring in M it is easy to see that the set
terms are composed and only contains variables of atomic type, and that all
elements PK of sets are of type value. Thus the final requirement, 2(b), is also
satisfied.

20

In general, type-flaw resistance is in our opinion a reasonable property to
require from protocols and their implementations: most importantly one should
not have messages that encrypt raw data, like a nonce or a key, without any
bit of information what the data means, because this opens the door for the
intruder to reuse messages from honest agents that he cannot produce himself
(and whose precise content he may not even know) in a different context. In fact,
most concrete implementations satisfy this. Our result extends previous typing
results in the scope of protocols that can be considered to stateful protocols;
the type-flaw resistance requirement is thus also extended accordingly, however
this is in some sense also conservative: all protocols that are type-flaw resistant
according to the notion of [19] are also type-flaw resistant according to our
Definition 9. In a nutshell, the additional requirements for set operations and
events are simply to exclude that sets and events can be used as an “unchecked
side-channel” where type-flaws attacks can creep in. The requirements on set
operations are, in fact, only as strict as the requirements on inequalities and the
tuples (·, ·) that arise in the translation tr . In particular, we support arbitrary
types for set elements—the only restrictions being that the variables in set
elements have atomic types and that unifiable set elements in the same set
have the same type. Thus we support set elements of atomic types, composed
types, and even non-homogeneous sets (i.e., sets containing elements of different
types). In Appendix D we give further examples to illustrate that our notion
works on real-world examples.

Finally, we prove that reachable constraints A, and their translations tr(A),
are type-flaw resistant whenever the initial protocol is:

Lemma 4 (Type-flaw resistance preservation). If S0 is a type-flaw resistant
protocol and (S0; 0)

w
=⇒•∗ (S;A) then both S and A are type-flaw resistant.

Moreover, if A′ ∈ tr(A) then A′ is also type-flaw resistant.

5.3 The Typing Result
All that remains is to prove the actual typing result for stateful protocols. By
using our reduction tr together with existing typing results on ordinary con-
straints we can prove the following:

Theorem 3 (Typing result on symbolic constraints). If A is well-formed, I |=
A, and A is type-flaw resistant, then there exists a well-typed interpretation Iτ
such that Iτ |= A.

With this intermediate result we can prove our main theorem:

Theorem 4 (Typing result for stateful protocols). If S0 is a type-flaw resistant
protocol, and (S0; ∅, ∅, ∅) w

=⇒∗ (S;M,D,E) where w = (σ1, `1), . . . , (σk, `k) then

there exists a state (S;M ′, D′, E′) such that (S0; ∅, ∅, ∅) w′

=⇒∗ (S;M ′, D′, E′)
where w′ = (σ′1, `1), . . . , (σ′k, `k) for some well-typed ground substitutions σ′1, . . . , σ′k.

21

6 Case Studies
In this section we discuss how our typing result is applicable in practice on
several protocols, in particular that many protocols already satisfy the require-
ments of type-flaw resistance or require only minor changes to do so.

Due to lack of space we will only consider an extension of the keyserver
example here. In Appendix D we also consider the examples from the AIF and
AIF-ω tools (some of those examples have similarly been considered in SAPIC,
in particular PKCS#11 and ASW, but in a way that violates the corresponding
type flaw-resistance requirements).

6.1 Automatically Checking Type-Flaw Resistance
One crucial point of the typing result is that it is relatively easy to check, namely
by statically looking at the format of messages rather than traversing the entire
state space, and that this can also be done automatically as a static analysis of
a user’s specification before verification in a typed model.

Note that SMP(M) is in general infinite, but it is sufficient to check the
following finite representation SMP0 for type-flaw resistance: starting with
SMP0 = M , we first ensure that for every message t ∈ SMP0 that con-
tains a variable x of a composed type f(τ1, . . . , τn), we ensure that also [x 7→
f(x1, . . . , xn)](t) ∈ SMP0 for some variables x1 : τ1, . . . , xn : τn that do not
occur in t. (Even if some τi are themselves composed types, this can be done
by adding finitely many messages, since all type expressions are finite terms.)
Next, we close SMP0 under subterms and key terms of Ana. Finally, let us
ensure by well-typed α-renaming that all terms in SMP0 have pairwise disjoint
variables. Note that SMP0 is a representation of SMP(M) in the sense that ev-
ery SMP(M) term is a well-typed instance of an SMP0 term. Now the condition
that every pair s, t ∈ SMP0 \ V with Γ(s) 6= Γ(t) has no unifier, is equivalent
to the type-flaw resistance of M . Proof sketch: Note that SMP0 ⊆ SMP(M),
giving us one direction of the equivalence. For the other direction, suppose
there are any s, t ∈ SMP(M) such that Γ(s) 6= Γ(t). Since SMP0 represents
SMP(M), there exists terms s0, t0 ∈ SMP0 and well-typed substitutions θ1 and
θ2 such that s = θ1(s0) and t = θ2(t0). Hence also Γ(s0) 6= Γ(t0), and so s0

and t0 are not unifiable by assumption. Thus s and t cannot be unified as well
because s0 and t0 do not share variables.

6.2 Extension of the Keyserver Example
We will now illustrate by a small example how type-flaw problems can arise
in practice, how type-flaw resistance is violated in such a case, and how the
situation can be fixed. Suppose for the key server example, we augment the
protocol with an exchange where a user can prove to be alive, formalized by
having for each user u and each session j ∈ N the following transaction strand:

receive(Nj).PK u,j ∈̇ ring(u).send(sign(inv(PK u,j), Nj))

22

where all Nj and PK u,j have atomic types. The idea is that anybody can send
the user a challenge Nj , and u answers with a signature on it. In this blunt form
it is obviously a bad idea, since an intruder can send an arbitrary term instead of
Nj . Indeed the protocol now violates type-flaw resistance: sign(inv(PK u,j), Nj)
has a unifier with the normal update message sign(inv(PK i), 〈Ui,NPK i〉), while
they have different types. The general recommendation is thus to use some
form of tag to indicate what the messages should mean. In fact, many protocol
standards already describe a concrete message format, e.g., in this case that
nonces and public keys have certain byte lengths, or even fields that indicate the
length, if it is not fixed; in contrast many protocol models model only abstractly
the exchanged information as a tuples. It is thus recommended to model the
concrete message formats by transparent functions, i.e., functions like pair that
the intruder can compose and decompose, and check that the concrete formats
of the protocol standard are disjoint so that a confusion is impossible. In this
case we may have functions update(U,PK) that is used in the update message
and functions challenge(N) and response(N) to model the challenge response
protocol to have rather the following form:

receive(challenge(Nj)).
PK u,j ∈̇ ring(u).send(sign(inv(PK u,j), response(Nj)))

One may argue that the formatting of challenge message is irrelevant since it
is in cleartext. We suggest, however, to use formatting information also here,
since it is in fact good practice for implementations anyway and does not really
hurt.

With the change we now have again type-flaw resistance and our typing
result is applicable.

7 Connections to Other Formalisms
We have introduced the formalism of transaction strands to have a simple and
mathematically pure formalism as a protocol model for our result without the
disturbance of the many technical details of various protocol models. We want
to illustrate now that our result can nonetheless be used in various protocol
models, but we only sketch the main ideas.

We only consider AIF-ω here, but in Appendix E we also discuss Maude-
NPA, Set-π, and process calculi in general.

Note that the core of our result is proved on symbolic constraints (intruder
strands) of a symbolic transition system. Connecting another formalism with
our typing result requires only two aspects. First, one needs to define the seman-
tics for the formalism in terms of a symbolic transition system with constraints
(including set operations, equalities, and inequalities). Second, one needs to
transfer the notion of type-flaw resistance, so that a type-flaw resistant speci-
fication in the formalism will only produce type-flaw resistant constraints. We
have done this for transaction strands with detailed proofs. Due to the vari-

23

ety of other formalisms and their technical details, we only sketch here and in
Appendix E the ideas for the most common constructions.

Our transaction strands are in some sense a purified version of AIF-ω. In
a nutshell, it describes protocols by a set of rewrite rules for a state transition
system, where each state is a set of facts like ik(m) to denote that the intruder
knows message m. It is thus also similar to other rewriting based languages like
Maude-NPA or the AVANTSSAR ASLan.

One can translate each AIF-ω rule into transaction strands as follows. Every
intruder knowledge fact ik(m) on the left hand side of a rule corresponds to
receiving a message m, and on the right hand side to sending a message m. If
the expression t in s occurs on the left-hand side, then the transaction strand
must contain t ∈̇ s; if the same expression does not occur on the right-hand side,
then the transaction must include delete(t, s). If the expression t notin s occurs
on the left-hand side, then the transaction must contain ∀x̄. t 6 ∈̇ s where x̄ are the
variables that on the left-hand side only occur in notin expressions. Finally, if
t in s occurs on the right-hand side but not on the left, then the transaction must
include insert(t, s). All other facts of AIF-ω are persistent (i.e., once true, they
remain true in all successor states), therefore we can model them as events in
transaction strands, using event(f) for the left-hand side facts and assert(f) for
right-hand side facts. Note that the order of all these actions in the transaction
matters: first we should have all receiving messages, checking for events and set
memberships, then modifying sets and sending the outgoing messages. Still one
may wonder what happens in the following AIF-ω rule: x in s.y in s⇒ x in s. If
x = y then this rule is contradictory, and the semantics of AIF-ω excludes such
substitutions. For that reason, we also have to include the inequality x 6= y to
the transaction to exactly follow the AIF-ω semantics. In all remaining cases the
inner order of the actions is actually irrelevant, but these subtle points where one
of the motivations to introduce transaction strands. Finally, note that the rules
from AIF-ω may have variables that represent any value from a countable set of
constants, as well as the creation of fresh values. Since transaction strands do
not have a mechanism for creating fresh values and free variables are not allowed,
one must instantiate these variables appropriately, producing a countable set of
transaction strands from finitely many rules.

With this translation from AIF-ω rules to transaction strands, we also di-
rectly obtain a semantics using symbolic constraints and actually immediately
transfer the notion of type-flaw resistance from transaction strands with the
obvious adaptations. However, type-flaw resistance will not be directly satisfied
for typical AIF-ω specifications immediately, because they would contain rules
for the intruder that contain untyped variables. While for honest agents, it is
not a restriction to declare the intended type for each variable, the intruder
deduction rules should be applicable to messages of any type. Thus, we have
to make the reservation that the intruder deduction of an AIF-ω specification
must be within the bounds of the intruder model we have used here, namely
composition with public functions and decomposition according to an Ana the-
ory. This is indeed possible for all the standard operators like symmetric and
asymmetric encryption, signatures, hashes, and transparent functions like pair;

24

operators that require algebraic equations like xor are however not supported.

8 Conclusion
Over the past years, several typing results have emerged for security protocols,
gradually extending the class of protocols that can be supported, in particu-
lar [18, 2, 1, 19]. A common idea for proving such typing results is to use a
notion of symbolic constraints to represent executions (in particular attacks)
and show that whenever there is a solution then there is a well-typed one. The
requirement that the protocols have to fulfill for such a result is only that all
messages of different intended type have sufficiently different structure to never
be confused. This is fulfilled by many common protocols like a standard setup
of TLS [19].

One relevant trend in protocol security is the support for stateful protocols,
i.e., protocols in which participants can manipulate a global state that is shared
among an unbounded number of sessions. This is for instance relevant to model
security devices like key tokens or servers that maintain a database. There
is only one typing result so far that supports stateful protocols, namely [24].
We point out several mistakes of this paper in Appendix B, showing that their
results do not hold in this generality. A particular problem are variables of
composed types in negative conditions, which illustrates that typing results
for stateful systems are far more subtle than intuition suggests. Our main
contribution of this paper is to establish the first precise typing result for a
class of stateful protocols. Despite a meticulous formalization it is conceptually
still quite simple, as it is based on a reduction to the existing typing results, in
particular the formalization of [19].

Our typing result conservatively extends existing ones, i.e., for stateless pro-
tocols we do not require any further restrictions. The restrictions on set op-
erations are similar to those on messages, but additionally, we have to limit
here the use of variables of composed types (unless negative operations are not
needed for a set). In fact, the condition of our typing result is satisfied by most
examples distributed with the AIF-ω tool [25], and in the remaining cases a
simple disambiguation of messages is sufficient.

Besides the trend towards the verification of more complex stateful protocols
that this typing result focuses on, there are other crucial trends like the verifi-
cation of privacy-type goals using equivalence properties, and typing results in
this direction have been established [13]. A question for future research is thus
if statefulness and equivalence proofs can be combined. Another closely related
area are compositionality results that can often benefit from typing results, for
instance in [1]. Establishing compositionality for stateful protocols is another
interesting direction for future research.

25

References
[1] O. Almousa, S. Mödersheim, P. Modesti, and L. Viganò. Typing and com-

positionality for security protocols: A generalization to the geometric frag-
ment. In ESORICS 2015, pages 209–229, 2015.

[2] M. Arapinis and M. Duflot. Bounding messages for free in security protocols
- extension to various security properties. Inf. Comput., 239:182–215, 2014.

[3] M. Arapinis, E. Ritter, and M. Ryan. Statverif: Verification of stateful
processes. In CSF 2011, pages 33–47. IEEE, 2011.

[4] A. Armando, W. Arsac, T. Avanesov, M. Barletta, A. Calvi, A. Cappai,
R. Carbone, Y. Chevalier, L. Compagna, J. Cuéllar, G. Erzse, S. Frau,
M. Minea, S. Mödersheim, D. von Oheimb, G. Pellegrino, S. E. Ponta,
M. Rocchetto, M. Rusinowitch, M. T. Dashti, M. Turuani, and L. Viganò.
The AVANTSSAR platform for the automated validation of trust and se-
curity of service-oriented architectures. In TACAS 2012, pages 267–282,
2012.

[5] A. Armando and L. Compagna. Sat-based model-checking for security
protocols analysis. Int. J. Inf. Sec., 7(1):3–32, 2008.

[6] D. A. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic model
checker for security protocols. Int. J. Inf. Sec., 4(3):181–208, 2005.

[7] G. Bella. Formal Correctness of Security Protocols - With 62 Figures and
4 Tables. Information Security and Cryptography. Springer, 2007.

[8] G. Bella, F. Massacci, and L. C. Paulson. Verifying the SET purchase
protocols. J. Autom. Reasoning, 36(1-2):5–37, 2006.

[9] B. Blanchet and A. Podelski. Verification of cryptographic protocols: tag-
ging enforces termination. Theor. Comput. Sci., 333(1-2):67–90, 2005.

[10] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and
fixing pkcs#11 security tokens. In CCS 2010, pages 260–269, 2010.

[11] A. D. Brucker and S. Mödersheim. Integrating automated and interactive
protocol verification. In FAST 2009, 2009.

[12] A. Bruni, S. Mödersheim, F. Nielson, and H. R. Nielson. Set-pi: Set mem-
bership p-calculus. In CSF 2015, pages 185–198, 2015.

[13] R. Chrétien, V. Cortier, and S. Delaune. Typing messages for free in se-
curity protocols: The case of equivalence properties. In P. Baldan and
D. Gorla, editors, CONCUR 2014 - Concurrency Theory - 25th Interna-
tional Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Pro-
ceedings, volume 8704 of Lecture Notes in Computer Science, pages 372–
386. Springer, 2014.

26

[14] V. Cortier and S. Delaune. Safely composing security protocols. Formal
Methods in System Design, 34(1):1–36, 2009.

[15] C. Cremers and S. Mauw. Operational Semantics and Verification of Secu-
rity Protocols. Information Security and Cryptography. Springer, 2012.

[16] S. B. Fröschle and G. Steel. Analysing pkcs#11 key management apis with
unbounded fresh data. In ARSPA-WITS 2009, pages 92–106, 2009.

[17] J. D. Guttman. State and progress in strand spaces: Proving fair exchange.
J. Autom. Reasoning, 48(2):159–195, 2012.

[18] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks
on security protocols. Journal of Computer Security, 11(2):217–244, 2003.

[19] A. V. Hess and S. Mödersheim. Formalizing and Proving a Typing Result
for Security Protocols in Isabelle/HOL. In CSF 2017, 2017.

[20] S. Kremer and R. Künnemann. Automated analysis of security protocols
with global state. Journal of Computer Security, 24(5):583–616, 2016.

[21] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin. The TAMARIN prover
for the symbolic analysis of security protocols. In CAV 2013, 2013.

[22] J. K. Millen and V. Shmatikov. Constraint solving for bounded-process
cryptographic protocol analysis. In CCS 2001, 2001.

[23] S. Mödersheim. Abstraction by set-membership: verifying security proto-
cols and web services with databases. In CCS 2010, 2010.

[24] S. Mödersheim. Deciding Security for a Fragment of ASLan. In ESORICS,
pages 127–144. Springer, 2012.

[25] S. Mödersheim and A. Bruni. Aif-ω: Set-based protocol abstraction with
countable families. In POST 2016, 2016.

[26] S. Mödersheim and P. Modesti. Verifying sevecom using set-based abstrac-
tion. In IWCMC 2011, pages 1164–1169, 2011.

[27] L. C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1-2):85–128, 1998.

[28] L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM Trans.
Inf. Syst. Secur., 2(3):332–351, 1999.

[29] M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number
of sessions and composed keys is NP-complete. Theor. Comput. Sci., 299,
2003.

[30] SEVECOM project. Deliverable 2.1-App. A Baseline Security Specification,
2009. https://www.sevecom.eu/Deliverables/Sevecom_Deliverable_
D2.1-App.A_v1.2.pdf.

27

[31] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving
security protocols correct. Journal of Computer Security, 7(1):191–230,
1999.

28

A Proofs
This section contains the proofs of our technical results. Note that many of the
theorems and lemmas are more general versions of the ones found in the paper.
For the proofs we make use the following definition of substitution composition:
Given substitutions δ and σ the composition δ · σ is defined as the substitution
λx. σ(δ(x)).

A.1 Constraint Semantics

Lemma 1. Given a ground set of terms M , a ground database mapping D, a
ground set E of asserted events, an interpretation I, and symbolic constraints
A and A′, the following holds:

I |=M,D,E A.A′ if and only if (I |=M,D,E A and
I |=M∪ik(I(A)),db(insert(D).I(A)),E∪ev(I(A)) A′)

Proof. Each direction of the biconditional follows easily by an induction on the
leftmost constraint A.

Lemma 2 Given a ground state (S;M,D,E), a transaction strand ` ∈ S (con-
dition C1), and a ground substitution σ with domain fv(`) (condition C2), then
the conditions C3 to C9 hold if and only if σ |=M,D,E dual(`).

Proof. Let ` = receive(T).S.send(T ′) where S does not contain send and receive
steps and observe that dual(`) = send(T).dual(S).receive(T ′). Condition C3
then corresponds to σ |=M,D,E send(T), condition C4 to C9 to σ |=M,D,E

dual(S), and the remaining part receive(T ′) is irrelevant as it is satisfied for any
M , D, E, and σ. Thus C3 to C9 hold if and only if σ |=M,D,E dual(`).

A.2 Transition Systems

Lemma 3 (Well-formedness of reachable symbolic constraints). If S0 is
a well-formed protocol and (S0; 0)

w
=⇒•∗ (S;A) then A is a well-formed symbolic

constraint and S is a well-formed protocol.

Proof. By induction on reachability. The base case (i.e., the symmetric case)

is trivial. For the inductive case assume that (S0; 0)
w′

=⇒•∗ (S;A)
`

=⇒• (S \
{`};A.A′) where A and S are well-formed by the induction hypothesis. Let
` = receive(T).S.send(T ′), where S does not contain further receive and send
steps, then A′ = dual(`) = send(T).S.receive(T ′) by definition. Since S\{`} ⊆ S
and S is well-formed we have that S must also be well-formed. Since all strands
in S0 are variable-disjoint we also have that fv(A) ∩ fv(A′) = ∅. Hence A.A′

29

is well-formed if A is well-formed and A′ is well-formed. The prefix A is well-
formed by the induction hypothesis, and since ` ∈ S we know that dual(`) = A′
is well-formed as well. Thus we can conclude the case.

Theorem 1 (Equivalence of transition systems). Let S0 be a protocol and
let {`1, . . . , `k} ⊆ S0. Then:

1. If (S0; ∅, ∅, ∅) w
=⇒∗ (S;M,D,E) where w = (σ1, `1), . . . , (σk, `k) then

(a) (S0; 0)
w′

=⇒•∗ (S; dual(`1). · · · .dual(`k)) where w′ = `1, . . . , `k,

(b) σ1 · . . . · σk |= dual(`1). · · · .dual(`k),

(c) M = ik((σ1 · . . . · σk)(dual(`1). · · · .dual(`k))),

(d) D = db((σ1 · . . . · σk)(dual(`1). · · · .dual(`k))), and

(e) E = ev((σ1 · . . . · σk)(dual(`1). · · · .dual(`k))).

2. If (S0; 0)
w

=⇒•∗ (S;A) and I |= A where w = `1, . . . , `k, dom(I) = fv(A),
and I is ground, then there exists substitutions σ1, . . . , σk such that

(a) (S0; ∅, ∅, ∅) w′

=⇒∗ (S; ik(I(A)), db(I(A)), ev(I(A)))
where w′ = (σ1, `1), . . . , (σk, `k),

(b) A = dual(`1). · · · .dual(`k),

(c) dom(σi) = fv(`i) for all i ∈ {1, . . . , k}, and
(d) I = σ1 · . . . · σk

Proof. 1. We prove the first implication by an induction on reachability.

The base case (i.e. the symmetric case) follows easily from the assump-
tions.

So, in the inductive case, assume that

(S0; ∅, ∅, ∅) w
=⇒∗ (S;M,D,E)
wk+1
=⇒ (S \ {`k+1};M ∪ σk+1(T ′),

db(insert(D).σk+1(S)),
E ∪ ev(σk+1(S)))

where `k+1 = receive(T).S.send(T ′) ∈ S and w = (σ1, `1), . . . , (σk, `k) and
wk+1 = (σk+1, `k+1). We furthermore assume the induction hypothesis:

(H1) (S0; 0)
w′

=⇒•∗ (S; dual(`1). · · · .dual(`k)) where w′ = `1, . . . , `k,

(H2) σ1 · . . . · σk |= dual(`1). · · · .dual(`k),

(H3) M = ik((σ1 · . . . · σk)(dual(`1). · · · .dual(`k))),

(H4) D = db((σ1 · . . . · σk)(dual(`1). · · · .dual(`k))), and

(H5) E = ev((σ1 · . . . · σk)(dual(`1). · · · .dual(`k))).

30

In the remaining proof for this case we will use the abbreviations I =
σ1 · . . . · σk+1 and A = dual(`1). · · · .dual(`k+1). We will now prove each
of the five parts of the thesis for this case:

• From (H1) and `k+1 ∈ S we can apply
`k+1
=⇒• and immediately con-

clude part (a) of the thesis, namely (S0; 0)
w′,`k+1

=⇒•∗ (S\{`k+1};A).
• From the assumption and Lemma 2 we know that σk+1 |=M,D,E

dual(`k+1) and since all strands of a protocol must be pairwise variable-
disjoint we furthermore know that (σ1·. . .·σk)(dual(`k+1)) = dual(`k+1).
Hence I |=M,D,E dual(`k+1) because dom(σi) ∩ dom(σj) = ∅ for
all i, j ∈ {1, . . . , k + 1}, i 6= j since dom(σi) = fv(`i) for all i ∈
{1, . . . , k+1}. Likewise, we get I |= dual(`1). · · · .dual(`k) from (H2).
All together we can then conclude part (b), namely I |= A.

• Note that dual(receive(T).S.send(T ′)) = send(T).dual(S).receive(T ′)
and so ik(dual(`k+1)) = T ′. Together with the variable disjointedness
of the strands and (H3) we have:

M ∪ σk+1(T ′)
= ik((σ1 · . . . · σk)(dual(`1). · · · .dual(`k))) ∪ σk+1(T ′)
= ik(I(dual(`1). · · · .dual(`k))) ∪ I(T ′)
= ik(I(dual(`1). · · · .dual(`k))) ∪ ik(I(dual(`k+1)))
= ik(I(dual(`1). · · · .dual(`k).dual(`k+1)))

which proves the third part of the case.
• Note that dual(S) = S and therefore db(σk+1(S)) = db(σk+1(dual(`k+1))).

Together with the variable disjointedness and (H4) we then have:

db(insert(D).σk+1(S))
= db(insert(D).I(dual(`k+1)))
= db(insert(db(I(dual(`1). · · · .

dual(`k)))).I(dual(`k+1)))
= db(I(dual(`1). · · · .dual(`k).dual(`k+1)))

which proves the fourth part of the case.
• The fifth and final part of the case is proven similarly to the third

part and using (H5):

E ∪ σk+1(ev(S))
= ev((σ1 · . . . · σk)(dual(`1). · · · .dual(`k)))
∪ σk+1(ev(S))

= ev(I(dual(`1). · · · .dual(`k))) ∪ I(ev(S))
= ev(I(dual(`1). · · · .dual(`k)))
∪ ev(I(dual(`k+1)))

= ev(I(dual(`1). · · · .dual(`k).dual(`k+1)))

Thus we have proven all parts of the thesis for the inductive case.

31

2. We also prove the second implication by an induction on reachability.
Again, the base case is trivial.

For the inductive case we assume that

(S0; 0)
w

=⇒•∗ (S;A)
`k+1
=⇒• (S \ {`k+1};A.dual(`k+1))

and I |= A.dual(`k+1) where w = `1, . . . , `k, dom(I) = fv(A.dual(`k+1)),
and I is ground. Now obtain the unique σk+1 and I ′ such that dom(σk+1) =
fv(dual(`k+1)), dom(I ′) = fv(A), and I = I ′ · σk+1. This is always possi-
ble since the domain of I is exactly the free variables of A.dual(`k+1) and
I is ground and since all strands of S0 are pairwise-variable disjoint. Hence
we have that I ′ |= A and σk+1 |=ik(I′(A)),db(I′(A)),ev(I′(A)) dual(`k+1), the
former of which is the premise to the induction hypotheses for this case,
and we can therefore apply the induction hypotheses to get

(H1) (S0; ∅, ∅) w′

=⇒∗ (S; ik(I ′(A)), db(I ′(A)), ev(I ′(A)))
where w′ = (σ1, `1), . . . , (σk, `k),

(H2) A = dual(`1). · · · .dual(`k),

(H3) dom(σi) = fv(`i) for all i ∈ {1, . . . , k}, and
(H4) I ′ = σ1 · . . . · σk

This basically lets us immediately prove the second, third, and fourth part
of the thesis for this case, namely

• A.dual(`k+1) = dual(`1). · · · .dual(`k).dual(`k+1),

• dom(σk+1) = fv(`i) for all i ∈ {1, . . . , k + 1}, and
• I = σ1 · . . . · σk · σk+1

All that remains to be proven is

(S0; ∅, ∅) w′′

=⇒∗ (S \ {`k+1}; ik(I(A.dual(`k+1))),
db(I(A.dual(`k+1))),
ev(I(A.dual(`k+1))))

where w′′ = w′, (σk+1, `k+1).

From the first induction hypothesis (H1), Lemma 2, and σk+1 |=ik(I′(A)),db(I′(A)),ev(I′(A))

dual(`k+1) we can apply
(σk+1,`k+1)

=⇒ to get

(S0; ∅, ∅) w′′

=⇒∗ (S \ {`k+1}; ik(I ′(A)) ∪ σk+1(T ′),
db(insert(db(I ′(A))).σk+1(S)),

ev(I ′(A)) ∪ ev(σk+1(S)))

where `k+1 = receive(T).S.send(T ′). Hence we only need to prove that

32

• ik(I ′(A)) ∪ σk+1(T ′) = ik(I(A.dual(`k+1))),

• db(insert(db(I ′(A))).σk+1(S)) = db(I(A.dual(`k+1))), and

• ev(I ′(A)) ∪ σk+1(S) = ev(I(A.dual(`k+1))) and

and this is proven similarly to how we proved the third to fifth part of the
previous case. Thus we have proven all four conjuncts—(a), (b), (c), and
(d)—of the conclusion for this inductive case.

A.3 Constraint Reduction

We prove Theorem 2 in two steps. First, we prove the second part of the
theorem, namely that the translation preserves well-formedness. Secondly, we
prove the equivalence, i.e., the first part of the theorem.

Theorem 2(2) (Well-formedness of translation). Let X be a set of vari-
ables, D be a database mapping, and E be a finite set of events such that
fv(D) ∪ fv(E) ⊆ X. If A is well-formed w.r.t. the variables X and A′ ∈
trD,E(A) then A′ is well-formed w.r.t. X.

Proof. We prove the statement by an induction on trD,E(A):

• Case trD,E(0): Trivially true by definition of well-formedness.

• Cases trD,E(send(t).A), trD,E(receive(t).A), trD,E(t
.
= t′.A), and trD,E((∀x̄. t 6 .=

t′).A): Follows easily from the induction hypotheses.

• Case trD,E(insert(t, s).A): From the premises we have that fv(t)∪ fv(s) ⊆
X because insert(t, s).A is well-formed w.r.t. X. Hence A is well-formed
w.r.t. X and fv(D ∪ {(t, s)}) = fv(D) ⊆ X as well. Thus we can apply
the induction hypothesis to A′ ∈ trD∪{(t,s)},E(A) and conclude the case.

• Case trD,E(delete(t, s).A): Note that fv(D \ {d1, . . . , di}])) ⊆ fv(D) ⊆ X.
The remaining part of this case now follows from a similar argument to
the one given in the previous case.

• Case trD,E(t ∈̇ s.A): By the premises we have that A is well-formed
w.r.t. X ∪ fv(t) ∪ fv(s). From the induction hypothesis we then have
that A′ ∈ trD,E(A) is also well-formed w.r.t. X ∪ fv(t) ∪ fv(s). Thus
(t, s)

.
= d.A′ is well-formed w.r.t. X.

• Case trD,E((∀ȳ. t 6 ∈̇ s).A): The constraints ∀ȳ. t 6 ∈̇ s and (∀ȳ. (t, s) 6 .=
d1). · · · .(∀ȳ. (t, s) 6 .= dn) have the same well-formedness requirement. Thus
the case follows straightforwardly from the induction hypothesis.

• Case trD,E(event(t).A): This case is similar to the trD,E(t ∈̇ s.A) case.

33

• Case trD,E((∀ȳ. ¬event(t)).A): This case is similar to the trD,E((∀ȳ. t 6 ∈̇
s).A) case.

Theorem 2(1) (Semantic equivalence of constraints and their trans-
lation). Assume fv(D) ∪ fv(E) to be disjoint from the bound variables of A.
Then I |=M,I(D),I(E) A iff there exists A′ ∈ trD,E(A) such that I |=M,∅,∅ A′.

Proof. Consider the following two statements which together are equivalent to
the original biconditional:

1. If I |=M,I(D),I(E) A then there exists A′ ∈ trD,E(A) such that I |=M,∅,∅
A′.

2. If A′ ∈ trD,E(A) and I |=M,∅,∅ A′ then I |=M,I(D),I(E) A.

We prove the first of these implications by an induction on A:

• Case 0: Trivially true.

• Cases send(t).A, receive(t).A, t .
= t′.A, and (∀x̄. t 6 .= t′).A: Follows

straightforwardly from the induction hypotheses.

• Case insert(t, s).A: So I |=M,I(D)∪{I((t,s))},I(E) A. Since I(D)∪{I((t, s))} =
I(D ∪ {(t, s)}) we can apply the induction hypothesis to obtain A′ where
A′ ∈ trD∪{(t,s)},E(A) and I |=M,∅,∅ A′. Thus A′ ∈ trD,E(insert(t, s).A)
and I |=M,∅,∅ A′.

• Case delete(t, s).A: Hence I |=M,I(D)\{I((t,s))},I(E) A. Now partition D
into the sets {d1, . . . , di} and {di+1, . . . , dn} for some 0 ≤ i ≤ n such that
I({(t, s)}) = I({d1, . . . , di}) and I((t, s)) /∈ I({di+1, . . . , dn}). Then

I(D) \ I({(t, s)})
= I(D) \ I({d1, . . . , di})
= I({di+1, . . . , dn})
= I(D \ {d1, . . . , di})

We can then apply the induction hypothesis to obtainA′ ∈ trD\{d1,...,di},E(A)
such that I |=M,∅,∅ A′. Now let B = (t, s)

.
= d1. · · · .(t, s)

.
= di.(t, s) 6

.
=

di+1. · · · .(t, s) 6
.
= dn. Then we have that B.A′ ∈ trD,E(A) and I |=M,∅,∅

B.A′ which concludes the case.

• Case t ∈̇ s.A: Hence, by the premises of this case, I |=M,I(D),I(E) A where
I((t, s)) ∈ I(D). So by the induction hypothesis we can obtain A′ such
that A′ ∈ trD,E(A) and I |=M,∅,∅ A′. Because I((t, s)) ∈ I(D) it must
be the case that there exists some d ∈ D such that I((t, s)) = I(d). Thus
we can conclude (t, s)

.
= d.A′ ∈ trD,E(t ∈̇ s.A) for such a d ∈ D and

I |=M,∅,∅ (t, s)
.
= d.A′.

34

• Case (∀x̄. t 6 ∈̇ s).A: Hence I(δ((t, s))) /∈ I(D) for all ground substitutions
δ with domain x̄. Hence I(δ((t, s))) 6= I(d) for all d ∈ D and all δ
with domain x̄. Since x̄ ∩ fv(D) = ∅ we have that δ(D) = D. Hence
I(δ((t, s))) 6= I(δ(d)) for all d ∈ D and all δ with domain x̄. Therefore
I |=M,∅,∅ (∀x̄. (t, s) 6 .= d1). · · · .(∀x̄. (t, s) 6 .= dn), where D = {d1, . . . , dn},
by definition of the constraint semantics. Thus the case follows by the
induction hypothesis.

• The cases assert(t).A, event(t).A, and (∀x̄. ¬event(t)).A are proven simi-
larly to the cases insert(t, s).A, t ∈̇ s.A, and (∀x̄. t 6 ∈̇ s).A respectively.

The other implication is also proven by an induction on A:

• Case 0: Trivially true.

• Cases send(t).A, receive(t).A, t .
= t′.A, and (∀x̄. t 6 .= t′).A: Follows

straightforwardly from the induction hypotheses.

• Case insert(t, s).A: Hence A′ ∈ trD∪{(t,s)},E(A). Since we already have
that I |=M,∅,∅ A′ from the premises we can now apply the induction hy-
pothesis to get that I |=M,I(D∪{(t,s)}),I(E) A. Since also I(D∪{(t, s)}) =
I(D) ∪ {I((t, s))} it follows that I |=M,I(D),I(E) insert(t, s).A.

• Case delete(t, s).A: Hence A′ = B.A′′ for some d1, . . . , dn, i, n, B, and A′′
where

– 0 ≤ i ≤ n,
– D = {d1, . . . , di . . . , dn},
– B = (t, s)

.
= d1. · · · .(t, s)

.
= di.(t, s) 6

.
= di+1. · · · .(t, s) 6

.
= dn, and

– A′′ ∈ trD\{d1,...,di},E(A).

We also have that I |=M,∅,∅ A′′ and I |=M,∅,∅ B because I |=M,∅,∅ A′.
Note that I(D \ {d1, . . . , di}) = I(D) \ {I((t, s))} because I((s, t)) /∈
I({di+1, . . . , dn}) and {I((t, s))} = I({d1, . . . , di}). Thus, we can apply
the induction hypothesis and conclude that I |=M,I(D),I(E) delete(t, s).A.

• Case t∈̇s.A: HenceA′ = (t, s)
.
= d.A′′ for some d ∈ D andA′′ ∈ trD,E(A),

and together with the premises we then have that I((t, s)) = I(d) and
I |=M,I(D),I(E) A′′. We can now apply the induction hypothesis to get
I |=M,I(D),I(E) A. Since d ∈ D and I((t, s)) = I(d) we also have that
I((t, s)) is in I(D). Thus we can conclude I |=M,I(D),I(E) t ∈̇ s.A.

• Case (∀x̄. t 6 ∈̇ s).A: Hence A′ = (∀x̄. (t, s) 6 .= d1). · · · .(∀x̄. (t, s) 6 .= dn).A′′
for some A′′ ∈ trD,E(A) andD = {d1, . . . , dn}. Hence, using the premises,
we know that I(δ((t, s))) 6= I(δ(di)) for all i ∈ {1, . . . , n} and all ground
δ with domain x̄. Hence I(δ((t, s))) /∈ I(D) for all ground δ with domain
x̄ because x̄ and the free variables of D are disjoint. Since we also have
I |=M,∅,∅ A′′ from the premises we can apply the induction hypothesis to
get I |=M,I(D),I(E) A, and thus we can conclude I |=M,I(D),I(E) (∀x̄. t 6 ∈̇
s)A.

35

• The cases assert(t).A, event(t).A, and (∀x̄. ¬event(t)).A are proven simi-
larly to the cases insert(t, s).A, t ∈̇ s.A, and (∀x̄. t 6 ∈̇ s).A respectively.

A.4 The Typing Result

For our typing result we use the results of [19]. The authors have already
extended their typing result to support equalities t .= t′ and inequalities t 6 .= t′

in strands and constraints, and to support the Ana theories that we use in this
paper. Their formalization is available at:

http://www2.compute.dtu.dk/~samo/typing-soundness/ (*)

Thus we get from Theorem 4 of (*) the following result (note that their the-
orem is on the level of protocol transition systems, i.e., on constraints reachable
in a symbolic protocol transition system =⇒•, but that this can easily be used
to prove a result on constraints A since ({dual(A)}; 0) =⇒•∗ (∅;A)):

Theorem 5 (Typing result on ordinary symbolic constraints). If A is well-
formed and ordinary, I |= A, and A is type-flaw resistant, then there exists a
well-typed interpretation Iτ such that Iτ |= A.

The remaining section contains the proof of our typing results and related
lemmas.
Lemma 4 (Type-flaw resistance preservation).

1. If A is type-flaw resistant, well-formed, and A′ ∈ tr(A), then A′ is type-
flaw resistant.

2. If S0 is a type-flaw resistant protocol and (S0; 0)
w

=⇒•∗ (S;A) then both S
and A are type-flaw resistant.

Proof. 1. We first prove that trms(A′) ∪ setops(A′) is type-flaw resistant.
Note that trms(A′) \ trms(A) ⊆ setops(A), and that setops(A′) = ∅.
Hence trms(A′) ∪ setops(A′) ⊆ trms(A) ∪ setops(A). Since trms(A) ∪
setops(A) is by assumption type-flaw resistant it follows that any subset is
also type-flaw resistant. Thus trms(A′)∪setops(A′) is type-flaw resistant.

The reduced constraint A′ does not contain set operations, and the re-
maining constraint steps of A′ either originates from A or is constructed
during the translation tr(A). Thus it is sufficient in the remaining proof to
only consider those steps which are created during the translation tr(A),
and we do so by a case analysis:

• During translation of a set operation delete(t, s), t ∈̇s, or ∀x̄. t 6 ∈̇ s the
translation adds new steps of the form (t, s)

.
= (t′, s′) and ∀x̄. (t, s) 6 .=

(t′, s′) where insert(t′, s′) occurred somewhere in A. We know by

36

type-flaw resistance of A that x̄∪ fv(t)∪ fv(t′)∪ fv(s)∪ fv(s′) all have
atomic type. As we argued earlier, if (t, s) and (t′, s′) are unifiable
then they have the same type. Hence all the new equality steps
(t, s)

.
= (t′, s′) are type-flaw resistant. Since all variables occurring

in the inequality steps ∀x̄. (t, s) 6 .= (t′, s′) are of atomic type we also
have that these steps are type-flaw resistant.

• During translation of the event step event(e) the translation adds
new a step of the form e

.
= e′ where assert(e′) occurs in A. We know

by type-flaw resistance of A that e, e′ ∈ SMP(A) \ V and so they
must have the same type if they are unifiable. Thus the new equality
steps are type-flaw resistant.

• During translation of the event step ∀x̄. ¬event(e) the translation
adds a new step of the form ∀x̄. e 6 .= e′ where assert(e′) occurs in A.
We know by type-flaw resistance of A that all variables x̄ ∪ fv(e) ∪
fv(e′) are of atomic type and so the new inequality steps are type-flaw
resistant.

Thus A′ is type-flaw resistant.

2. This follows by the fact thatA = dual(`1). · · · .dual(`k) for some `1, . . . , `k ∈
S0, and since each `i are type-flaw resistant (so each dual(`i) is type-
flaw resistant), trms(S0)∪ setops(S0) is type-flaw resistant and trms(A)∪
setops(A) ⊆ trms(S0) ∪ setops(S0) (so trms(A) ∪ setops(A) is type-flaw
resistant), we can conclude that A is type-flaw resistant.

Theorem 3 (Typing result on symbolic constraints). If A is well-formed,
I |= A, and A is type-flaw resistant, then there exists a well-typed interpretation
Iτ such that Iτ |= A.

Proof. From Theorem 2, Lemma 4(1), and the assumptions we can obtain a
type-flaw resistant ordinary constraint A′ such that A′ ∈ tr(A) and I |= A.
Hence, we can obtain a well-typed interpretation Iτ such that Iτ |= A′ by
Theorem 5, and by then applying Theorem 2 again we can conclude the proof.

Theorem 4 (Typing result for stateful protocols). If S0 is a type-flaw re-
sistant protocol, and (S0; ∅, ∅, ∅) w

=⇒∗ (S;M,D,E) where w = (σ1, `1), . . . , (σk, `k)

then there exists a state (S;M ′, D′, E′) such that (S0; ∅, ∅, ∅) w′

=⇒∗ (S;M ′, D′, E′)
where w′ = (σ′1, `1), . . . , (σ′k, `k) for some well-typed ground substitutions σ′1, . . . , σ′k.

Proof. By first applying Theorem 1(1) and Lemma 4(2), then Theorem 3, and
finally Theorem 1(2) we obtain the desired result.

37

B A Mistake in a Related Work
Typing for stateful systems has also been considered in [24]. We show however
that their result is incorrect with a counter-example. [24] allows a quite general
specification of the intruder by a set of Horn clauses. There are restrictions
of the form of these Horn clauses [24, Sec. 2.1]: each clause expresses either
that the intruder can generate new terms by applying a function symbol to
known terms (this corresponds to public function symbols in our work) or how
the intruder can analyze terms, somewhat corresponding to our specification of
Ana. For that, the requirement on the term obtained by the analysis is only
that it must be a proper subterm of the term being analyzed. This allows for
instance for the following Horn clause (where the predicate ik represents that a
message is known by the intruder):

ik(f(g(x))→ ik(x)

Suppose now f is a public function and the intruder knows g(s) for a secret s.
Then he can with the above rule apply f to g(s) to obtain s. Such a step is
however not covered by the constraint reduction procedure in [24], since analysis
steps can only be applied to terms that the intruder directly knows, not ones
he has to first compose. Now this leads to a counter-example for the typing
result if we assume that f is not a public symbol, but there is an honest strand
receive(x).send(f(x)) with variable x an atomic type, say, nonce. If the intruder
knows g(s) and s is a secret, then there is an ill-typed attack with x = g(s), but
no well-typed attack. Thus, the result of [24] does not hold for this generality
of intruder models.

There is a second problem that there is no restriction on the type of uni-
versally quantified variables in [24]. Indeed composed-typed variables can also
break the typing result as we have shown before. For instance, consider the
inequality ∀x. y 6 .= f(x) where Γ(y) = f(Γ(x)). For any instance f(c) of y
there is an instance of x (namely c) that does not satisfy the inequality. Hence
the constraint has no well-typed solution. However, there does exist ill-typed
solutions; since we are working in the free algebra terms are equal iff they are
syntactically equal, and hence any instance of x that are not of the form f(c)
for some c would be a solution to the inequality. The following ASLan [24]

38

specification has exactly this issue:

Declarations:
ik : pred (untyped)
X,n : nonce
Y : f(nonce)
attack : pred ()

Initial state:
ik(n)

Transition rules:
ik(Y). ¬∃X : Y = f(X)⇒ attack()

Horn clauses:
∀X : ik(X)→ ik(f(X))

Here the attack predicate cannot be derived if Y is instantiated with a well-typed
instance in the transition rule. Thus it seems that a typing result for stateful
protocols necessarily requires a carefully restricted setting like our set-based
approach.

C Automatically Checking Type-Flaw Resistance
One crucial point of the typing result is that it is relatively easy to check, namely
by statically looking at the format of messages rather than traversing the entire
state space, and that this can also be done automatically as a static analysis of
a user’s specification before verification in a typed model.

Note SMP(M) is in general infinite, but it is sufficient to check the following
finite representation SMP0 for type-flaw resistance: starting with SMP0 = M ,
we first ensure that for every message t ∈ SMP0 that contains a variable x of a
composed type f(τ1, . . . , τn), we ensure that also t[x 7→ f(x1, . . . , xn)] ∈ SMP0

for some variables x1 : τ1, . . . , xn : τn that do not occur in t. (Even if some
τi are themselves composed types, this can be done by adding finitely many
messages, since all type expressions are finite terms.) Next, we close SMP0

under subterms. Finally, let us ensure by well-typed α-renaming that all terms
in SMP0 have pairwise disjoint variables. Note that SMP0 is a representation
of SMP(M) in the sense that every SMP(M) term is a well-typed instance of an
SMP0 term. Now the condition that every pair s, t ∈ SMP0\V with Γ(s) 6= Γ(t)
has no unifier, is equivalent to the type-flaw resistance ofM . Proof sketch: note
that SMP0 ⊆ SMP(M), giving us one direction of the equivalence. For the other
direction, suppose there are any s, t ∈ SMP(M) and σ such that Γ(s) 6= Γ(t) and
σ(s) = σ(t). Since SMP0 represents SMP(M), there exists terms s0, t0 ∈ SMP0

and well-typed substitutions θ1 and θ2 such that s = θ1(s0) and t = θ2(t0).
Hence also Γ(s0) 6= Γ(t0), and so s0 and t0 are not unifiable by assumption.
Thus s and t cannot be unified as well because s0 and t0 do not share variables.

39

D Type-Flaw Resistance Examples
We want to discuss how our typing result is applicable in practice on several
protocols, in particular that many protocols already satisfy the requirements of
type-flaw resistance or require only minor changes to do so.

As for examples on stateless verification, we consider the examples from the
AIF and AIF-ω tools, since this is the closest match to our formalization, as
discussed in Section E.1. Note that some of the examples have similarly been
considered in SAPIC, in particular PKCS#11, but in a way that violates the
corresponding type flaw-resistance requirements, namely that the types of keys
and values be atomic as discussed in Section E.2. To satisfy our requirements
would not require a change of the protocol itself, but of the way its storage is
modeled, e.g., repartitioning maps or use sets in the first place. Thus we discuss
these examples rather on their AIF-ω models where the requirements are met
or easily achieved.

D.1 Extension of the Keyserver Example
First, let us illustrate by a small example how type-flaw problems can arise
in practice, how type-flaw resistance is violated in such a case, and how the
situation can be fixed. Suppose for the key server example, we augment the
protocol with an exchange where a user can prove to be alive, formalized by
having for each user u and each session j ∈ N the following transaction strand:

receive(Nj).PK u,j ∈̇ ring(u).send(sign(inv(PK u,j), Nj))

where all Nj and PK u,j have atomic types. The idea is that anybody can send
the user a challenge Nj , and u answers with a signature on it. In this blunt form
it is obviously a bad idea, since an intruder can send an arbitrary term instead of
Nj . Indeed the protocol now violates type-flaw resistance: sign(inv(PK u,j), Nj)
has a unifier with the normal update message sign(inv(PK i), 〈Ui,NPK i〉), while
they have different types. The general recommendation is thus to use some
form of tag to indicate what the messages should mean. In fact, many protocol
standards already describe a concrete message format, e.g., in this case that
nonces and public keys have certain byte lengths, or even fields that indicate
the length, if it is not fixed; in contrast many protocol models only abstractly
the exchanged information as a tuples. It is thus recommended to model the
concrete message formats by transparent functions, i.e., functions like pair that
the intruder can compose and decompose, and check that the concrete formats
of the protocol standard are disjoint so that a confusion is impossible. In this
case we may have functions update(U,PK) that is used in the update message
and functions challenge(N) and response(N) to model the challenge response
protocol to have rather the following form:

receive(challenge(Nj)).
PK u,j ∈̇ ring(u).send(sign(inv(PK u,j), response(Nj)))

40

One may argue that the formatting of challenge message is irrelevant since it is
in cleartext, we suggest, however, to use formatting information also here, since
it is in fact good practice for implementations anyway and does not really hurt.

With the change we now have again type-flaw resistance and our typing
result is applicable.

D.2 Secure Vehicle Communication
A set of examples for AIF is a model of the secure vehicle communication of
the SEVECOM project [30, 26]. These define a setup for hardware security
modules in cars that store a number of keys that can only be used via a number
of API commands. A main concern is the so-called root key update. Here
we have the following message patterns of incoming and outgoing messages,
where the variables K, K1, and K2 are of type value: K, sign(inv(K),K), and
sign(inv(K2), pair(K1 ,K)), where we have omitted some message patterns that
can be obtained by well-typed substitutions. The corresponding set of sub-
message patterns

SMP({K, sign(inv(K),K), sign(inv(K2), pair(K1 ,K))})

is the closure of the message patterns under subterms, term decomposition, and
well-typed instantiation.

This is not directly type-flaw resistant: if we first consider a well-typed
renaming of the first signature, say, sign(inv(K3),K3) then there is a unifier
with the other signature sign(inv(K2), pair(K1 ,K)), namely identifying K3, K2,
and pair(K1 ,K). Indeed the two signature messages here have different type
and meaning (the first means key revocation, the second means key update),
while they have nothing signaling in the signed text which message it is. Indeed,
if we look at the standard [30], it requires that the revocation and the update
signature contain specific text namely “REVOKE ROOT PUBLIC KEY” and
“LOAD ROOT PUBLIC KEY”. This had not been modeled in [26]. Again, we
recommend to use here transparent functions revoke/1 and update/2, to model
the format of the revoke and update messages, respectively, and for which the
intruder can directly extract the arguments, i.e., Ana(revoke(K)) = (∅, {K}) and
Ana(update(K1 ,K2)) = (∅, {K1 ,K2}). Then we have as SMP the following set
closed under closure under subterms and well-typed substitutions (in this case
study closing under term decomposition is unnecessary as it is subsumed by
closing under subterms):

{K, sign(inv(K), revoke(K)), sign(inv(K2), update(K1 ,K))}

and indeed now type-flaw resistance is satisfied.

D.3 PKCS#11
The examples of AIF-ω contains a number of specifications of PKCS#11 based
APIs following [16, 10]. Again the model of a crypto-device is here by a number

41

of transactions that consist of a command and arguments to the device, which
performs some checks, possibly generates some encryptions and makes some
notes and sends an output as a result. The question is if an intruder can obtain
something by combining several API calls in a way that had not been antici-
pated. Again, the AIF-ω model of these calls is based on sets for describing the
different flags associated to a key (e.g., whether it is key that can be extracted).
The specification is again that all elements of the sets are declared to have type
value, thus it only remains to check that the messages input and output to the
device fulfill the type-flaw resistance. Since the commands themselves are not
encrypted, the AIF models do not model opcodes and the like and just present
the bare arguments (e.g. key-handles, encrypted messages etc.) to the device.
We then obtain the following kind of messages:

bind(N,K,K), h(N,K), K, senc(M,K)

Here K, N , and M are of type value, and we have omitted some terms that are
redundant under well-typed substitution again. Also this is type-flaw resistant,
however there is an interesting point. As long as only the intruder is interacting
with the token interface, the type-flaw resistance is guaranteeing that he has
no gain from using ill-typed messages. However, when we consider extensions
of these examples (e.g., a richer API or a network with other tokens or honest
parties), then also more complex messages M in the symmetric encryption may
be produced (or received by honest agents) and the type-flaw resistance breaks.
It therefore seems like a good idea to not have raw encryptions of a key (like in
senc(M,K)) but to insert some more information into the encrypted message,
like a format as in the SEVECOM example above. Indeed this solves some of
the attacks that arise in the use of the API already, when we use different such
formats (or tags) for keys of different intended use (e.g. wrap-unwrap attacks).

D.4 ASW
The fair contract signing protocol ASW is another example of a protocol that
necessarily requires a global state. With AIF shipped a formalization of ASW
that abbreviates some protocol messages drastically, for instance the function
msg1(A,B, contract(A,B), h(NA)) to abbreviate a message from A to B that
is actually signed with the private key of A, and intruder rules that allow the
intruder to compose such a msg1-message if A is dishonest (and always decom-
pose it). To use it with our typing result and the Ana functions, we need to use
a more standard model, explicitly denoting the signature function, i.e., formsg1
we rather have sign(inv(pk(A)),m1(A,B, contract(A,B), h(NA))) where m1 is
a transparent function to model the concrete format of the message content.

Note that when this message is received by B, it has the form

sign(inv(pk(A)),m1(A,B, contract(A,B),HNA))

with a variable HNA of the composed type h(nonce), since B cannot check at
this point that this is indeed a hash of a nonce as it should be. The entire point
of this fair exchange is in fact that the nonces are revealed only later.

42

The second message has the form sign(inv(pk(B)),m2(B, t, h(NB))) where
t = sign(inv(pk(A)),m1(A,B, contract(A,B),HNA), i.e., the t is a message of
the first form; note that here the variables A and B must all agree in these forms
since this is part of what the participants check. When A receives this message,
it has the form sign(inv(pk(B)),m2(B, t′,HNB)) with a composed-type variable
HNB since A similarly cannot check that this is really a hash of a nonce. In
contrast t′ has the form sign(inv(pk(A)),m1(A,B, contract(A,B), h(NA))) since
here the nonce NA has been created by A herself earlier.

Messages three and four of the protocol are simply the nonces NA and NB ;
even though we suggest not to have such raw data sent around (and rather
wrap it in another transparent format), this is not a problem with type-flaw
resistance.

Note that part of the verification we have now the equations HNA = h(NA)
and HNB = h(NB) since after receiving the nonce from each other, the agents
should check out with the respective HNA and HNB received earlier. Note also
that if there was a continuation for the case that such a check fails, it could
not be handled by our typing result, because that would imply composed-typed
variables in inequalities.

The most interesting part of ASW is the communication with a server in case
the above four-step contract signing goes wrong, i.e., if one of the agents does not
receive an answer anymore, in particular if B has received message three from A
and thus has a valid contract, and dishonestly refuses to reveal the final message
four to A, so A does not have a contract. The protocol assumes that both agents
have resilient channels to a trusted third party, i.e., they eventually get an an-
swer. If A did not receive an answer to her message one, she can send an abort
message to the server of the form sign(inv(pk(A)), abortReq(t)) where t is the
first message she had sent. If A or B at a later point in the protocol (i.e., after at
least sending/receiving message two) do not obtain an answer, they can ask for
a resolve, which is of the form sign(inv(pk(X)), resolveReg(t1, t2)) where t1 and
t2 are the first two messages of the protocol and X is the agent A or B asking for
the resolve. The server should now look in his database of contracts, and if the
contract does not occur in the database yet, grant the abort or resolve request,
by the messages sign(inv(pk(s)), abort(t)) or sign(inv(pk(s)), resolve(t1, t2)), re-
spectively, where inv(pk(s)) is the private key of the server. The result is of
course also stored in the database, and this entry will be the reply to any agent
who asks for an abort or resolve of that contract.

The AIF model has here several limitations: since resilient channels cannot
be modeled directly, it models the interaction between users and servers as
atomic transitions. The assumption of the real protocol is a bit weaker: an
intruder cannot entirely block a request or the response, but he may be able to
delay it, for instance observe a request and send a different request that arrives
earlier at the server. Also the messages exchanged are not modeled, but only
the effects on the users and servers database. We have thus here checked type-
flaw resistance both for the restricted model that comes with AIF and for an
extended model that includes all necessary steps and possible interleavings.

The database of the server is actually modeled as a family of sets scondb(A,B, Status)

43

for each agent A, B and Status is either valid or aborted. However, instead of
the contract, it stores only the nonce NA. This is due to AIF’s limitations to
sets of constants. It is sufficient to make a working model of ASW, since NA is
sufficient to identify the concrete exchange.

In fact, satisfaction of the type-flaw resistance is easy to see, since every
function symbol except sign is applied in all messages to terms of the same
types and the message being signed is never directly a variable. Similar, for
the sets, the contents have all type nonce, and the set terms have the form
family(A,B, Status) where A and B are agents and Status ranges over a set
of possible status messages.

E Connections to Other Formalisms
We have introduced the formalism of transaction strands to have a simple and
mathematically pure formalism as a protocol model for our result without the
disturbance of the many technical details of various protocol models. We want
to illustrate now that our result can nonetheless be used in various protocol
models, but we only sketch the main ideas and discuss also limitations of our
typing results.

Note that the core of our result is proved on symbolic constraints (intruder
strands) of a symbolic transition system. Connecting another formalism with
our typing result requires only two aspects. First, one needs to define the seman-
tics for the formalism in terms of a symbolic transition system with constraints
(including set operations, equalities, and inequalities). Second, one needs to
transfer the notion of type-flaw resistance, so that a type-flaw resistant speci-
fication in the formalism will only produce type-flaw resistant constraints. We
have done this for transaction strands with detailed proofs. Due to the variety
of other formalisms and their technical details, we only sketch in the following
the ideas for the most common constructions.

E.1 AIF-ω and Rewriting
Our transaction strands are in some sense a purified version of AIF-ω. In a
nutshell, it describes protocols by a set of rewrite rules for a state transition
system, where each state is a set of facts like ik(m) to denote that the intruder
knows message m. It is thus also similar to other rewriting based languages like
Maude-NPA or the AVANTSSAR ASLan.

One can translate each AIF-ω rule into transaction strands as follows. Every
intruder knowledge fact ik(m) on the left hand side of a rule corresponds to
receiving a message m, and on the right hand side to sending a message m. If
the expression t in s occurs on the left-hand side, then the transaction strand
must contain t ∈̇ s; if the same expression does not occur on the right-hand side,
then the transaction must include delete(t, s). If the expression t notin s occurs
on the left-hand side, then the transaction must contain ∀x̄. t 6 ∈̇ s where x are the
variables that on the left-hand side only occur in notin expressions. Finally, if

44

t in s occurs on the right-hand side but not on the left, then the transaction must
include insert(s, t). All other facts of AIF-ω are persistent (i.e., once true, they
remain true in all successor states), therefore we can model them as events in
transaction strands, using event(f) for the left-hand side facts and assert(f) for
right-hand side facts. Note that the order of all these actions in the transaction
matters: first we should have all receiving messages, checking for events and set
memberships, then modifying sets and sending the outgoing messages. Still one
may wonder what happens in the following AIF-ω rule: x in s.y in s⇒ x in s. If
x = y then this rule is contradictory, and the semantics of AIF-ω excludes such
substitutions. For that reason, we also have to include the inequality x 6= y to
the transaction to exactly follow the AIF-ω semantics. In all remaining cases,
then the inner order of the actions is actually irrelevant then, but these subtle
points where one of the motivations to introduce transaction strands. Finally,
note that the rules from AIF-ω may have variables that represent any value
from a countable set of constants, as well as the creation of fresh values. Since
transaction strands do not have a mechanism for creating fresh values and free
variables are not allowed, one must instantiate these variables appropriately,
producing a countable set of transaction strands from finitely many rules.

With this translation from AIF-ω rules to transaction strands, we also di-
rectly obtain a semantics using symbolic constraints and actually immediately
transfer the notion of type-flaw resistance from transaction strands with the
obvious adaptations. However, type-flaw resistance will not be directly satisfied
for typical AIF-ω specifications immediately, because they would contain rules
for the intruder that contain untyped variables. While for honest agents, it is
not a restriction to declare the intended type for each variable, the intruder
deduction rules should be applicable to messages of any type. Thus, we have
to make the reservation that the intruder deduction of an AIF-ω specification
must be within the bounds of the intruder model we have used here, namely
composition with public functions and decomposition according to an Ana the-
ory. This is indeed possible for all the standard operators like symmetric and
asymmetric encryption, signatures, hashes, and transparent functions like pair;
operators that require algebraic equations like xor are however not supported.
We come back to this when discussing process calculi and reduction rules below.

Finally, note that other rewriting based formalisms like Maude-NPA (or the
closely related linear logic rules) are not based on sets, but usually multi-sets
of facts, and they are not persistent, i.e., facts can be removed by transitions,
which cannot directly be modeled by our notion of events in transaction strands.
There is however a way to encode this using sets: for each fact where we want
to encode non-persistent behavior, we introduce a corresponding event with one
more argument. For this argument we use a fresh constant whenever a fact is
introduced by a transition and the argument becomes member of a special set
active. Whenever the fact shall be removed, we simply remove the corresponding
constant from the set active. This allows model both the multi-set aspect as well
as the non-persistent aspect.

45

E.2 Set-π and Process Calculi
Process calculi are a very popular way of specifying protocols. While they
can immediately describe stateful systems (due to Turing completeness), this
is usually not at a level that directly works with existing verification methods
so well. Therefore several extensions have been proposed, namely Set-π for
set operations similar to AIF-ω, and Sapic for adding a notion of maps. One
gap to the rewriting formalisms above is that process calculi do not have the
notion of an atomic transaction. Therefore both AIF-ω and Sapic rely on the
use of locks, i.e., in order to read and write on a set or (an element of) a map,
one has to first lock it, and no other process can get a lock on the same item
before it is unlocked. It is possible to give a translation to transaction strands,
modeling explicitly the locks by an additional set that stores which of the other
sets are locked. However, it is a bit more convenient to directly give a semantics
as a symbolic transition system, i.e., producing symbolic constraints in each
execution.

However, before we can do that, there is another obstacle to overcome: it
is convenient to model in process calculi decryption and checking of messages
explicitly by a let construct and reduction rules. For instance if the public
function crypt represents asymmetric encryption and inv the private function
that maps from public to private keys, for decryption one would introduce a
new operator dcrypt and have the reduction rule dcrypt(crypt(x, y), inv(x))→ y.
Then receiving and decrypting a message for instance would be in(u).let v =
dcrypt(u, inv(k)) in P else Q Thus process P is executed if the received message
u is indeed encrypted with k (and binding v to the content of that message),
otherwise Q is executed. Note that the destructor dcrypt does not occur as part
of “normal” messages.

Our typing result can only support such destructors, if we can express such
decryption operations using an Ana theory, in the example we would have
Ana(crypt(x, y)) = ({inv(x)}, {y}) and we would translate the above example
process into in(u). if (crypt(k, ?v)

.
= u) then P else Q. Note that here we have

actually made an extension of Set-π, namely adding the concept of equalities
from transaction strands to the if construct, including that newly introduced
variables on the left-hand side are binding, here v, and we mark this by a ques-
tion mark as is standard. This is formally defined by the symbolic semantics
below.

Besides destructors, process calculi also commonly use reduction rules for
checks on messages, e.g., verify(sign(inv(x), y), x) → true that can be used to
verify a signature, for instance: in(u). let true = verify(u, k) in P else Q. For
this, we do not need to have a corresponding line in Ana, rather we can model
this directly by an equality: in(u). if sign(inv(k), ?z)

.
= u then P else Q. With

this, all the standard operators can be supported, except those that require
algebraic equations like xor.

If we now assume Set-π without let but instead with equations in if, we can
define its semantics as a symbolic transition system as follows (using notation
and labels similar to the original ground semantics):

46

NIL : P] {(0, ∅)},A → P,A
COM1 : P] {(in(x).P1, L1)},A →

P] {(P1, L1)},A.send(x)
COM2 : P] {(out(N).P2, L2)},A →

P] {(P2, L2)},A.receive(N)
PAR : P] {(P1 |P2, ∅)},A → P] {(P1, ∅), (P2, ∅)},A
REPL : P] {(!P, ∅)},A → P] {(α(P) |!P, ∅)}
NEW : P] {(new x.P, L)},A → P] {(P [x 7→ c], L)},A}

for some fresh name c
IF1 : P] {(if b thenP1 else P2, L)},A →

P] {(P1, L)},A.tr(b)
IF2 : P] {(if b thenP1 else P2, L)},A →

P] {(P2, L)},A.tr(¬b)
SET+ : P] {(insert(t, s).P, L)},A →

P] {(P,L)},A.insert(t, s)
SET− : P] {(delete(t, s).P, L)},A →

P] {(P,L)},A.delete(t, s)
LCK : P] {(lock(l).P, L)},A →

P] {(P, {l} ∪ L)},A.l 6 .= l1. · · · .l 6
.
= ln

where {l1, . . . , ln} = L ∪
⋃

(P ′,L′)∈P L
′

ULCK : P] {(unlock(l).P, {l}] L)},A → P] {(P,L)},A

where α(P) is a fresh renaming of all variables in P that are bound by an in
statement, and where the translation tr(b) of a condition b is defined as follows.
Recall that we had used the notion of binding occurrences also in equations
(and logically this can also be done in set membership checks) and marked the
respective occurrence by a question mark, like ?x = Let in the following x̄
be the set of variables of a condition that are marked with the question mark:

tr(s
.
= t) = s

.
= t

tr(s 6 .= t) = ∀x̄.s 6 .= t
where x̄ are the variables in s marked with ?

tr(t ∈̇ s) = t ∈̇ s
tr(t 6 ∈̇ s) = ∀x̄.t 6 ∈̇ s

Note that the locking is not checked upon set operations, as this is done
statically in set-π. Since in general sets can have terms with variables , we have
formulate the check as inequalities in the LCK rule.

In order to check type-flaw resistance, one now needs to consider the trans-
lation from let-statements into equations (which can be done transparent to the
user) and then the type-flaw resistance property is almost as before, only we
need to consider each condition positive and its negation (unless the else case is
empty). Note that sometimes this may lead to violations of type-flaw resistance
when we have variables of composed types, since they are not allowed in inequal-
ities. This is only a problem if two issues arise at the same time though: (1)
the else branch is not empty and (2) the structure of the message is not entirely

47

discernible to that agent (e.g. if the result of a decryption is an encryption that
the agent does not have the key to). One of the two issues alone can be handled,
however.

E.3 SAPIC
Finally, let us consider the Sapic tool that is also a process calculus, but instead
of sets has a global map, i.e., one can insert key-value pairs into the map (where
inserting multiple times with the same key is overwriting), delete pairs, and
query what value is associated to a key.

For a restricted setting, we can indeed express this map with sets, namely if
we can split the map into finitely many partitions where each key and value are
of some atomic type. For instance, in the PKCS examples, the value type are
actually tuples, but the second part ranges over finitely many values and thus
one could represent this maps as a finite collection of maps with atomic value
type.

The idea is of course to model map m = [k1 7→ v1, . . . , kn 7→ vn] by a family
of sets m(·) such that v1 ∈ m(k1), . . . , vn ∈ m(kn). Initially, all maps should
contain one distinguished symbol ⊥ to represent that for that key no value is
in the map. Then to insert the tuple (k, v) translates to the set operations
x ∈̇ m(k).delete(x,m(k)).insert(v,m(k)). To delete key k from the map is then
like inserting (k,⊥). Querying for key k is checking x ∈̇ m(k) and x 6 .= ⊥.

48

