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1 Roadmap

This tutorial gives an introduction to modeling security protocols and the methods for automated
verification that is hopefully easier accessible than research papers. For concreteness it uses OFMC,
an automated protocol verification tool written by the author, and thus this document also serves
as a user manual for OFMC. Several other methods and tools are briefly discussed in order to give
a broader perspective.

In the first part, we will entirely focus on precisely describing security protocols, their security
goals and a model of the intruder, so that “the protocol is secure” is a mathematical statement
that is either true or false, and there is a chance to prove or disprove this statement. Disprove
also entails finding a counter-example to security: an attack.

The second part is concerned with methods to automatically find the correct answer, i.e., to find
a proof of security or an attack. This is difficult since in general there will be an infinite number
of things that can happen in a protocol, so that exhaustive search is impossible. Even under
reasonable restrictions that make the search space finite, this is often still practically infeasible.
We will focus on two techniques that can in practice often deal well with protocol security problems.
One is based on symbolic representation with constraints and it can often find attacks quickly;
the other is based on abstract interpretation and it can often find proofs of security. We will also
discuss why the problem is in general undecidable, i.e., there is no hope for finding any verification
method that will always answer correctly for all protocols.

In the third part, two more advanced topics, namely channels and compositionality. The idea
is that on the Internet we use a lot of protocols in parallel and in a stacked fashion, e.g., using TLS
to establish a secure channel and run a banking application over that channel. While one could
theoretically verify such a composed system, this becomes easily too complex to handle. Also, we
would like protocol designers to design a protocol like TLS independent of the actually payload
protocols that it will be used for later. The key of compositional reasoning is to just allow this
component-wise development, i.e., that the composed system is secure if the components are.
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Part I

Modeling Protocols
A danger in designing formal models in computer science lies in mixing the model with algorithmic
aspects, i.e. the question what we want to check with the question how to perform the check.
This can lead to models that are somewhat un-intuitive and hard to use, because they are a
poor compromise between what one wants to express and what one can handle with a particular
analysis method. Therefore we try to clearly separate the modeling in this part and the formal
verification methods in the next part, and obtain here a model regardless of whether this can be
automatically analyzed or not.

A clear, simple and declarative modeling language is actually the aim of the main input lan-
guage of the OFMC tool: AnB [21]. AnB is based on the popular Alice-and-Bob notation that
is informally used in many textbooks. However AnB is a formal language – like a programming
language or a logic – because it has:

• a syntax (what is a valid protocol in the language AnB?)

• and a formal semantics (what does an AnB specification mean?)

That is, it has a programming language flavor, since there is a translator that generates executable
protocol implementations in JavaScript; since this is however for an extension of AnB called SPS
that is currently still in a prototypical stage, we refer here only to the literature [1].

OFMC also uses a lower-level input language, called IF (Intermediate Format) [2]. This is
based on set-rewriting and considerably more tailored to the needs of the automation, in fact it
is OFMC’s “native language”. Internally, AnB is translated into IF. IF is more expressive than
AnB, but hard to use directly (i.e., without translation from a language like AnB). We do not
discuss IF in this tutorial since its technical details may be too distracting, but will rather use a
much simpler and nicer formalism to describe the behavior of honest agents in a protocol: strands.
In fact, we define the semantics of AnB by translation into strands and how strands – together
with the intruder – give rise to a state transition system.

Notation: A few central points are summarized in such a box.

2 Example: Building a Key-Establishment Protocol

Before we go into formal details, we want to first introduce AnB informally at hand of some
examples. We follow here an example of protocol development found at the beginning of the book
Protocols for Authentication and Key-Establishment by Colin Boyd and Anish Mathuria [6]. The
point in that book is to show the stepwise development of a protocol and motivate each step as an
answer to a security problem. Here, we use it to illustrate AnB and the output of OFMC instead.

2.1 First Attempt

We want to write a simple key-exchange protocol that establishes a shared symmetric key between
two parties Alice and Bob that do not have a security relationship so far. This newly established
key shall then allow them to communicate securely by encrypting messages with that key. Since we
cannot establish such a secure connection out of thin air, we need some form of existing relationship
to begin with, and here it will be a trusted third party s (for “server”). If we entirely omit all the
cryptography for now, a very simple (and trivially insecure) protocol is the following:

Protocol: KeyEx # First Attempt

Types: Agent A,B,s;

Symmetric_key KAB
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Knowledge:

A: A,B,s;

B: A,B,s;

s: A,B,s

Actions:

A->s: A,B

# s creates key KAB

s->A: KAB

A->B: A,KAB

Goals:

A authenticates s on KAB ,B

B authenticates s on KAB ,A

KAB secret between A,B,s

Actions and the Communication Medium Let us begin with the Actions section. Here we
see the exchange of three messages: first, A tells the server s that she1 would like to talk to B.
The server creates a fresh symmetric key KAB and sends it back to her in the second step. In
the third step she forwards the key to B and they can start communicating.

In fact, the communication here is asynchronous. The notation A->B: M indicates two things:

• that A sends a message M on an insecure communication medium;

• that B waits for receiving a message of the given form and then (and only then) continues
with his next step.

The medium could be the Internet or a wireless connection: it is possible that an unauthorized third
party listens to (and records) the transmitted messages and inserts messages under a fake sender
ID. Moreover there is no guarantee that a sent message will arrive at the intended destination.

AnB also requires that in a sequence of messages, the receiver of one message is the sender of
the next message.2

Variables and Constants A, B and KAB—and all identifiers that begin with upper-case
letters—are variables. That means that they are placeholders for a concrete value (the real name
of an agent or a concrete symmetric key in this case) that will be filled in when the protocol is
actually executed. Identifiers that start with a lower-case like s are constants.

Roles Variables and constants that are declared to be of type Agent are called roles. The
use of variables and constants is crucial here: we will allow that variables of type Agent can
be instantiated arbitrarily with agent names. This includes the special agent i — the intruder.
We will discuss below in more detail what the intruder can and cannot do, but for now it is
worth pointing out that by default all protocol roles should be specified as variables of type
Agent, allowing everybody to participate in the respective role under their real name, including a
dishonest person. This basically models that not all protocol participants are necessarily honest.
It turns out that many protocols have surprising attacks when allowing dishonest participants. A

1Throughout this tutorial, we assume that A (Alice) is female, B (Bob) and i (the intruder) are male, and all
others (servers etc.) are neutrum.

2This is not a limitation, since for instance to model A->B: M1 followed by C->D: M2 one could insert another
message B->C: dummy where dummy is part of the initial knowledge of B. See, however, the more efficient solution of
“piggy-backing” in the next variants of the protocol.
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specification of a constant like s here is only to be used to model a trusted third party : a party
that we require to be honest for the protocol to work. 3 In a key-exchange protocol, a dishonest
server can often trivially break the security goals. Therefore, when we want to model such an
honest participant, we specify a constant like s that cannot be instantiated by the intruder.

Knowledge For each role of the protocol, one needs to specify an initial knowledge. This
knowledge is essential to the meaning of the AnB specification as we will discuss at several points
throughout this tutorial. In particular, we will check for every role and every message that they
have to send, whether this message can be constructed by that role from the initial knowledge
plus all messages it has received before. If this is not the case, then the specification has an error:
it is unexecutable and will be rejected by the translator to IF.

Variables in Knowledge MUST be of Type Agent The initial knowledge will usually
include the knowledge of all roles of the protocol.

It is crucial that all terms in the initial knowledge contain only variables of type agent.
For instance, in our specification it would be an error to declare the variable KAB as
part of the knowledge.

We show in the next version of the protocol, how to model long-term keys (using functions).

Fresh Values All variables that are not part of the initial knowledge are freshly generated by
the agent who first uses them, in our example, KAB is freshly generated, and the generator is
s since it sends the first message that KAB occurs in. Fresh means in reality: an unpredictable
random number; in the abstract formal world it means: when executing this step, the variable is
instantiated with a new constant (and the intruder initially does not know this constant).

Secrecy Goals The most simple goal is secrecy: we denote a term and say between whom it
shall be secret. In this case, the secret is KAB and it is shared between all participants of the
protocol. The specification of a group of people that share the secret is necessary: we allow the
intruder to play role A or role B and in this case, he is of course allowed to know the shared key
of that particular protocol run. It is however an attack, if the intruder finds out a shared key of a
protocol run between two honest agents playing in roles A and B. (And due to lack of encryption,
this secrecy goal is trivially violated in the given protocol.)

We postpone the discussion of the more involved authentication goals to a later example.

Interpreting Attacks We run OFMC with the command line ofmc KeyEx1.AnB (the file is
found in the tutorial folder of OFMC). This will start a search with a bounded number of sessions,
i.e., it limits how many runs of each role of the protocol we have (although with arbitrary agents
playing the roles). OFMC starts with 1 session (i.e., one “copy” of each role), then 2 sessions, and
so on, until it finds an attack or the user interrupts. So for a correct protocol, OFMC does not
terminate (in this setting).4

For our first protocol we get the following output in the AVISPA Output Format :

SUMMARY

ATTACK_FOUND

GOAL

secrets

...

3The word “trust” has often lead to confusions, since the statement “A trusts B” has nothing to do with the
question whether B is actually trustworthy. We actually do not work with trust-statements, but rather only with
honest/dishonest. Terms like “trusted third party” are so common however, that we use them here as well in the
sense of “honest party”.

4To enforce termination, one may also specify a fixed number of sessions, say 3, with option --numSess 3 .
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ATTACK TRACE

i -> (s,1): x29,x28

(s,1) -> i: KAB(1)

i -> (i,17): KAB(1)

i -> (i,17): KAB(1)

This indicates, unsurprisingly, that we have an attack against the secrecy goals. In the first step of
the attack, the intruder sends a message to the server s. Here (s, 1) indicates that it is the server
in session 1. The point of this identifier is to tell us, when several sessions of the protocol run in
parallel, which messages belong to the same run of an agent. The message that the intruder sends
is x29, x28. This is a pair of variables. The variables x29 and x28 indicate that it is completely
irrelevant for the attack what the intruder chooses here. In this case, the server expects to receive
two agent names, but just any will do for this attack.5

Note that the intruder started the protocol with the server without the agent x29 having done
anything. This is because the network is asynchronous, i.e., there is no guarantee that the intended
recipient will actually receive the message. In fact it is often the goal of a protocol to get to a state
where all parties “are on the same page”. The server now responds to the request by creating a
new key and sending it. Fresh values in an attack will always be the name in AnB followed by a
unique number (which is in fact a session number).

Usually attacks will consist of pairs of steps where the intruder sends a message to an honest
agent and receives an answer from that agent, like the first two messages in the attack here. This
reflects an efficient view of the protocol analysis problem: the intruder is the communication
medium in the sense that all messages received by an honest agent come from the intruder and all
messages sent by an honest agent are received by the intruder. Thus the intruder uses the honest
agents like oracles.

With this answer from the server (the second message of the attack), the attack is already
completed: the intruder now knows the shared key of two agents x29 and x28 that he can freely
choose—violating secrecy. The last two lines of the attack are just a technicality of OFMC: all
steps of the form (i, 17) are just result of an internal check that the intruder could produce a
secrets that he was not supposed to see.

Message Sequence Charts A popular graphical notation for protocols, closely related to Alice
and Bob notation, is the message sequence chart, or MSC for short, where we have one column for
each role of the protocol and denote with arrows the messages exchanged between the roles. For
instance the message exchange of the above protocol as a message sequence chart looks as follows:

A s B

•
A,B // •

• •KABoo

•
A,KAB // •

Similarly, an attack trace can be represented by a message sequence chart, for instance using
the OFMC option --attacktrace, an SVG file is created containing the attack as an MSC.

5To be entirely precise, there are two choices of agent names that would not work: x29 = i or x28 = i; in these
cases the trace would not be a violation of secrecy. The exclusion of particular values is currently not shown by
OFMC.
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2.2 Second Attempt

We clearly need to protect the transmission of the secret shared key KAB and for that, we would
like to assume that every agent (including the intruder) initially has a shared key with the server.
We may for instance imagine that s provides wireless access, but everyone who wants to use it
has to first register. Let us say this registration happens offline (possibly checking a photo ID)
and involves installing a unique username and password. The username would be in our abstract
model the variable of type agent, and the password is a shared key with s.6

Modeling Long-Term Keys The important thing about the shared key is that it is not freshly
generated in a session but it is perpetual information. Recall that we are not allowed to have any
variable like KAB that is not of type Agent in the initial knowledge of a role. However, we can
declare new function symbols and use them to model long-term keys as a function of the agents
who share them, e.g., use sk(A, s) to represent the shared key of A and s. As such a term contains
only variables of type Agent, it is allowed to include it in the initial knowledge of a role.

The second attempt to our protocol is now as follows, where AnB uses the notation {|M|}K

for the symmetric encryption of message M with key K:

Protocol: KeyEx # second attempt

Types: Agent A,B,s;

Symmetric_key KAB;

Function sk

Knowledge:

A: A,B,s,sk(A,s);

B: A,B,s,sk(B,s);

s: A,B,s,sk(A,s),sk(B,s)

Actions:

A->s: A,B

s->A: {| KAB |}sk(A,s), {| KAB |}sk(B,s)

A->B: A,{| KAB |}sk(B,s)

and the goals are the same as before.

Use of Functions Note that we have declared sk as a “constant” of type Function. Here,
OFMC currently does not do any type checking, e.g., we did not specify that sk should be a
function of two arguments, and if we use it with a different number of arguments, OFMC will not
complain (this may be a source of errors).

Obviously every agent initially knows his or her shared key with the server. For the server we
specify only the knowledge of the shared keys with the other two roles.

Executability In this new version of the protocol, the server does not transmit the key KAB
unprotected as in the first version. Instead, it creates two encryptions, one using the shared key
with A and another one using the shared key with B. These two encrypted messages are sent to
A. According to her knowledge, A can only decrypt the first of the two messages it receives, while
the second one cannot be analyzed by A. A is supposed to forward this second package to B who
has the necessary shared key to decrypt that message. So at least in a run where the intruder does
not interfere, all agents have enough knowledge to produce all messages they have to and end up
with a copy of the shared key KAB.

6In reality, one would not directly use a textual password, but use a cryptographic hash function to generate a
key from the password for instance.
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A central observation here is that A cannot check the second part of the message from the
server. Especially, if we think of an intruder producing such a message (possibly recycling older
messages he has seen on the communication medium), only the first part needs to have correct
format, while the second part can be any message X. A will then pass X on to B. If we look at
A in isolation, we may describe it as a program of the form

send(A,B); receive({|KAB|}sk(A,s),X); send(X);

In fact, this sequence of send and receive events is called a strand [14] and can be used to describe
the behavior of an honest agent. We sometimes also like to use the following graphical notation for
strands where outgoing arrows represent sending messages and incoming arrows represent receiving
messages:

•
A,B //

•
{|KAB|}sk(A,s) , Xoo

• X //

The Model of Symmetric Encryption Many cryptographers may associate with the term
“symmetric encryption” only the pure encryption, without any means of protecting integrity such
as a message authentication code (MAC). Such a pure encryption would be vulnerable to the
intruder manipulating bits of the ciphertext and thereby changing the encrypted text so that
the recipient cannot detect the manipulation. We believe that there are only very few cases in
protocol verification when we actually need the pure symmetric encryption, but almost always we
also need the integrity. We therefore model in AnB with {|M|}K a primitive that includes the
integrity. For our concrete example that means, when A receives the two encrypted messages from
the server, she will decrypt the first one to which she has the key; the integrity mechanism of the
primitive allows her to check (with overwhelming probability) that the received message is indeed
correctly encrypted with the right symmetric key sk(A, s) and not some message manipulated by
the intruder. Put another way, if the intruder sends any other message that is not of the form
{|M|}sk(A,s), then A will detect that and refuse it. We actually do not even model that the
intruder tries sending ill-formed messages to honest agents that they will refuse.

An Attack Against Weak Authentication Goals Running this second example with OFMC,
we get the following attack:

SUMMARY

ATTACK_FOUND

GOAL

weak_auth

...

ATTACK TRACE

i -> (s,1): x29,x401

(s,1) -> i: {|KAB(1)|}_(sk(x29,s)),{|KAB(1)|}_(sk(x401,s))

i -> (x401,1): x27,{|KAB(1)|}_(sk(x401,s))

% Reached State:

%

% request(x401,s,pBsKABA,KAB(1),x27,1)

% witness(s,x29,pAsKABB,KAB(1),x401)

% witness(s,x401,pBsKABA,KAB(1),x29)

% ...
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The attack is a violation against weak authentication (which corresponds to Lowe’s non-injective
agreement [18]). The weak authentication is part of the standard (strong) authentication goal
(which corresponds to Lowe’s injective agreement [18]) that we have specified. We have displayed
in the attack trace three facts from the comments that OFMC gives out as part of the Reached
State comment. These facts are sometimes helpful in understanding an authentication attack as
they reflect what the honest agents “think” has happened from their point of view and that we
review in detail now. But let us first understand it just from the message trace.

What the intruder has done here is that he chose two arbitrary agent names x29,x401 and
sent them to the server, who then created a new shared key KAB(1) for these two agents. The
intruder sends this message now to x401, but claiming to be x27, i.e., a different person than who
the server generated the key for. To x401 this message looks like a perfectly correct step 3 of the
protocol, so it will believe that KAB(1) is a shared key with x27. So the intruder has not found
out any secret, but he managed to break the authentication: server s and recipient x401 disagree
on who is playing role A of the protocol in this session, i.e., who the key is shared with, thus it is
a violation of the goal B authenticates s on A,KAB.

We will define the authentication goals formally later of course, but it can sometimes help
understanding the point of view of an agent by looking at the witness/request facts (in com-
ments of the attack output): the fact witness(s,x29,pAsKABB,KAB(1),x401) means that the
server s intends to run the protocol with agent x29 in role B, using KAB(1) as a key (for
variable KAB of the protocol) and x401 for role A of the protocol. (The identifier pAsKABB

is just a technicality to distinguish several similar authentication goals.) In contrast, the fact
request(x401,s,pBsKABA,KAB(1),x27,1) shows what x401 is thinking: he thinks x27 is playing
role B. (The number 1 is for strong authentication, as explained later.)

More generally, the violation of weak authentication is given if there is a request fact
without a matching witness fact. For a goal of the form B authenticates A on M, the
witness fact reflects the point of view of A while the request fact reflects the point of view
of B. This goal should thus be used if the protocol is supposed to ensure the authentic
communication of a message M from A to B. It then counts as an attack, if B finishes
the protocol believing that A has sent message M for him; this includes the case that A
has meant the message for somebody else (as in the example attack) or it is somebody
else than A sending this message, even somebody honest. Additionally, in contrast to
weak authentication, the standard strong authentication includes also a freshness aspect
that we discuss later.

The problem of the second-attempt protocol could be described as follows. Whenever the
server produces an encryption {|KAB|}sk(A,s) then this indicates to A that the key has been
produced by the server s for use between A and some other agent that is not mentioned in that
message. Similarly, the message {|KAB|}sk(B,s) only indicates to B that KAB is a shared key
for B and somebody else. Since everything outside the encryption can freely be manipulated by
the intruder, he can easily confuse the agents and break authentication goals. One may wonder
why such a confusion is such a big deal since the intruder apparently does not benefit much from
it. For that, consider that the established key may later be used for the transmission of sensitive
information like banking transactions or medical data; it is very undesirable that such information
are directed to a wrong party because of an authentication problem in the key-exchange.

Actually, this authentication problem can be used to break secrecy – to that end the user
may just comment out the two authentication goals and observe that OFMC finds then a secrecy
violation.

2.3 Third Attempt

From the previous example we have learned that the encrypted messages by the server should
explicitly mention the other agent that the key is meant for, i.e. in the encryption for A the name
of B should be mentioned and vice-versa. The exchange then looks as follows:

10



A->s: A,B

s->A: {| KAB ,B |}sk(A,s), {| KAB ,A |}sk(B,s)

A->B: {| KAB ,A |}sk(B,s)

This time we get an attack that is not described in the book by Colin Boyd and Anish Math-
uria [6] whose development we were following so far:

GOAL:

weak_auth

...

ATTACK TRACE:

i -> (s,1): x401,x27

(s,1) -> i: {|KAB(1),x27|}_(sk(x401,s)),{|KAB(1),x401|}_(sk(x27,s))

i -> (x401,1): {|KAB(1),x27|}_(sk(x401,s))

% Reached State:

%

% request(x401,s,pBsKABA,KAB(1),x27,1)

...

% witness(s,x401,pAsKABB,KAB(1),x27)

This is indeed a very subtle attack, and one may even argue that this should not be considered
an attack. In fact, OFMC has—in the present version—a more sensitive notion of authentication.
In contrast to other definitions of authentication, we do not only require that the parties agree on
some data, e.g., here the agent x401 and the server s on the key KAB(1); rather, we also require
that they agree on the which roles they play. In fact, the agent x401 believes to play role B here,
while the server thinks that x401 plays role A. This may be considered less important, mainly
because the intruder did not learn the key, and nobody got confused about the names of the
partners they are talking with; however, it can in general lead to problems when there is confusion
in which role the different participants are acting. (In fact, this is the first version to satisfy the
secrecy goal.)

We therefore slightly divert from the development in [6] and change the message format to
take this into account. In order to keep consistency with the book, we call this version “3b”.
Basically we need to prevent that the messages that the server sends to role A and role B could
be confused. There are in fact many ways to do this, e.g., introducing new constants. Instead, we
simply mention both the agent A and the agent B in the messages. This is good practice since
now both encrypted messages from the server have exactly the same meaning: the first field is the
key, the second field is the agent playing role A, and the third field is the agent playing role B:

A->s: A,B

# s creates key KAB

s->A: {| KAB ,A,B |}sk(A,s), {| KAB ,A,B |}sk(B,s)

A->B: {| KAB ,A,B |}sk(B,s)

Strong Authentication/Replay In this case, we get a violation of the strong authentication
aspect of the goal:

Verified for 1 sessions

SUMMARY

ATTACK_FOUND

GOAL

strong_auth

...
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ATTACK TRACE

i -> (s,1): x34,x501

(s,1) -> i: {|KAB(1),x34,x501|}_(sk(x34,s)),{|KAB(1),x34,x501|}_(sk(x501,s))

i -> (x501,1): {|KAB(1),x34,x501|}_(sk(x501,s))

i -> (x501,2): {|KAB(1),x34,x501|}_(sk(x501,s))

% Reached State:

%

% request(x501,s,pBsKABA,KAB(1),x34,2)

% request(x501,s,pBsKABA,KAB(1),x34,1)

...

The attack trace starts like the previous ones with the intruder sending a message to the server
choosing two agent names, now called x34 and x501. The server answers with the corresponding
message mentioning everywhere the agent names. (This produces again the corresponding witness
facts.) Now the intruder sends this message to agent x501 which is actually as the protocol intends
it. x501 generates a request term and this request term actually matches the second of the two
witness terms; so authentication is fine here (for every request there is a matching witness). Now
in the final step the intruder just sends the same message a second time—a replay. Note that the
receiver is now (x501, 2) while in the previous it was (x501, 1). This means that in both cases it
is the same agent x501, but it is playing in two different sessions of the protocol. Imagine that
the last step of the attack happens much later, say a week, than the first three. That would
mean x501 accepts a quite old key for communication again. This can be bad for several reasons.
First, think of a banking transaction: if one can make the bank perform a transaction several
times that was actually issued only once this is clearly a problem. Also it is in many contexts
important that a message is recent and not a replay of an old message, e.g., think of electronic
stock-market applications. Finally, in many scenarios such as wireless communication, shared keys
may be of very limited length, allowing an intruder to find them in a brute-force attack that takes
a few hours or days. Establishing a new key frequently can still provide security against such
an intruder—but only if the key exchange protocol is protected against replay of course, so the
intruder cannot re-introduce an old key that he has broken.

A replay attack (and thus a violation of strong authentication without violating weak
authentication) is characterized by two identical request terms with different session
numbers, i.e., an agent is made to accept the exact same message more than once.

In fact Lowe’s definition of injective agreement [18] is more complicated: it requires basically
(in our terminology) that there is an injective mapping from request facts to corresponding witness
facts. If we assume, however, that the message being authenticated upon contains at least one
part that is supposedly fresh (like the key KAB in this case), then we will never have two times
exactly the same witness fact and two times exactly the same request fact occurs iff there is a
replay attack.

Timestamps A very simple and natural way to ensure freshness is the use of timestamps in
messages. Assuming we manage to have computers’ clocks synchronized up to a few seconds, we
can safely require that agents never accept messages bearing a timestamp that is more than a few
minutes old. This already ensures that only recent messages are accepted. Additionally, we can
prevent any replay even within the validity of the timestamp, if all messages are stored as long as
their timestamp is valid and newly incoming messages are checked against this store.

AnB (and OFMC) have no precise model of timestamps; the reason is that talking about
concrete timing would require assigning also concrete times to all the normal operations and we
would need to formalize also the speed at which the intruder can send messages and similar things.

However, the above sketched methods with timestamps effectively prevent old messages or
replays. So if the protocol has these mechanisms in place, one may simply drop the check for
replay in our model. In our example that would mean to write the authentication goals as:

12



A weakly authenticates s on KAB ,B

B weakly authenticates s on KAB ,A

With this, the protocol can actually be verified. In fact, looking closely at the attack trace against
strong_auth, we see that the first line says (with slight grammatical problems):

Verified for 1 sessions

This means that looking at only one single session, OFMC found no attack. This is not surprising
as a replay attack requires at least two sessions of some agent. Using now the weak authentication
we see after some time also that it is verified for 2 sessions and so on.

2.4 Fourth Attempt

The described buffering of messages for a limited amount of time can still be an impractical
solution in many scenarios, especially when dealing with large amounts of data or a distributed
system. (Nonetheless the use of timestamps in electronic transaction is generally a good idea.)

Nonces An alternative way to ensure recentness is the use of challenge-response protocols. The
challenge is a random number chosen by one party; this number is often called a nonce. It
abbreviates number once, indicating it should be used only one time. The point is that if another
party has to include the nonce in a response, then the creator of the nonce can be sure that that
response is no older than the nonce it contains. The value of these guarantees of course depends
on the cryptographic operations in which the nonce is used.

Since in our case, we want to protect B against a replay of the key, we add two steps to the
protocol, namely one where B generates a nonce NB and sends it encrypted with the new shared
key KAB to A, and then A has to respond with NB− 1 encrypted with KAB. (The subtraction
of 1 is so that the response is actually a different message than the challenge.) The protocol the
looks as follows:

...

Number NB;

Function sk,pre

Knowledge:

A: A,B,s,sk(A,s),pre;

B: A,B,s,sk(B,s),pre;

s: A,B,s,sk(A,s),sk(B,s),pre

Actions:

A->s: A,B

s->A: {| KAB ,A,B |}sk(A,s), {| KAB ,A,B |}sk(B,s)

A->B: {| KAB ,A,B |}sk(B,s)

B->A: {| NB |}KAB

A->B: {| pre(NB) |}KAB

Public Functions To model the function ‘−1’ in our abstract model as simple as possible, we
have declared a new function symbol pre and given it to the knowledge of every agent. As a
consequence, every agent is able to produce pre(M) for a message M that it knows. We do not
model more aspects of arithmetic, because that is not really necessary for this model.

This version has a similar attack as the following famous variant:

Needham-Schroeder Shared Key We have now arrived at a protocol very similar to a classic
protocol, the Needham-Schroeder Shared Key (NSSK) protocol [25]. That protocol also had a
nonce NA from A that is included in the server’s message for A and here the two encryptions are
nested, i.e. the server sends the message for B as part of the encrypted message for A:
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A->s: A,B,NA

s->A: {| KAB ,B,NA , {| KAB ,A |}sk(B,s) |}sk(A,s)

A->B: {| KAB ,A |}sk(B,s)

B->A: {| NB |}KAB

A->B: {| pre(NB) |}KAB

Denning-Sacco attack on NSSK Both our fourth protocol and the NSSK are vulnerable for
very similar attacks, first reported by Denning and Sacco [9]. For NSSK we obtain:

SUMMARY

ATTACK_FOUND

GOAL

strong_auth

...

ATTACK TRACE

i -> (s,1): i.x701.x206

(s,1) -> i: {|KAB(1).x701.x206.{|KAB(1).i|}_(sk(x701.s))|}_(sk(i.s))

i -> (x701,1): {|KAB(1).i|}_(sk(x701.s))

(x701,1) -> i: {|NB(2)|}_KAB(1)

i -> (x701,1): {|pre(NB(2))|}_KAB(1)

i -> (x701,2): {|KAB(1).i|}_(sk(x701.s))

(x701,2) -> i: {|NB(4)|}_KAB(1)

i -> (x701,2): {|pre(NB(4))|}_KAB(1)

The Intruder Acting Under His Real Name This is again a replay attack. As in the
previous attacks, we begin with the intruder sending a message to the server s. Here for the first
time, we see that the intruder chose a concrete name as a sender: his own name. The reason is
that this particular attack only works if the intruder can decrypt the outermost encryption of the
reply by the server, which is with the key sk(A, s). The intruder does not know any shared key
of an honest agent with the server, but he knows his own shared key with the server: sk(i, s). So
for the concrete choice A = i, he is actually able to decrypt the answer from the server.

The reader may wonder where it is specified that the intruder knows sk(i, s). It is actually
specified both by the knowledge of role A and role B, since both roles can be played by the
intruder:

In general, for the initial knowledge specification A : m1, . . . ,mn (where A is a variable),
then the intruder obtains for his initial knowledge all messages m1, . . . ,mn where all
occurrences of A are substituted by i.

The first 5 steps of the attack trace are in fact a perfectly normal protocol run: the intruder
acts just like an honest agent would behave in role A. The variables x701 and x206 are again
choices of the intruder, namely of the agent playing role B and the value of the nonce NA, that
do not matter for the attack. The actual attack now happens in the last three steps. Here the
intruder talks to a second session of the agent x701 (in role B) using the old message from the
server and then responding to the challenge from x701. Note that x701 actually generates a fresh
nonce NB(4) for this second session.

Meaning of the Attack With this attack, the intruder makes an honest B accept an old
session key a second time, violating the strong authentication goal between B and the server. In
this form, the attack is actually not that interesting because the intruder needs to play under his
real name to achieve it, so it is a session key for secure communication between i and B which is
not very attractive to attack. The attack becomes more interesting if we think of KAB as a short
session key (that can be broken with brute force within some hours) and sk(A, s) and sk(B, s)
as long-term keys that have more length and cannot be broken by brute force. In this case, the

14



attack would also work for an honest A because the intruder just needs to replay an old message
of step 3 of the protocol for which he has cracked the contained session key.

AnB currently does not have a method to specify the loss of short-term secrets, although this
can be done on the IF level. However, the fact that we get a very similar attack by the normal
specification (although it is less interesting) is often indicative that there may be other, related,
problems.

2.5 Fifth Attempt

Denning and Sacco suggest to rearrange the protocol a bit and to let B start with sending a nonce
NB to A, so that the server can include the nonces of both agents in its messages, and thus
provide freshness guarantees to both agents. This protocol now looks as follows:

B->A: A,B,NB

A->s: A,B,NA,NB

s->A: {| KAB ,B,NA |}sk(A,s), {| KAB ,A,NB |}sk(B,s)

A->B: {| KAB ,A,NB |}sk(B,s)

This protocol is considered secure by many (including [6]). However, OFMC still finds an
attack! First, we get again the role confusion problem of the 3rd attempt. So the stricter goals
of authentication that OFMC is using are still not satisfied. Let us fix that the same way we did
before changing the protocol into:

B->A: A,B,NB

A->s: A,B,NA,NB

s->A: {| KAB ,A,B,NA |}sk(A,s), {| KAB ,A,B,NB |}sk(B,s)

A->B: {| KAB ,A,B,NB |}sk(B,s)

Anyway we still get an attack! This time it is a replay attack:

GOAL

strong_auth

...

ATTACK TRACE:

(x701,1) -> i: x701,x701,NB(1)

(x701,2) -> i: x701,x701,NB(2)

i -> (s,2): x701,x701,NB(2),NB(1)

(s,2) -> i: {|KAB(3),x701,x701,NB(2)|}_(sk(x701,s)),{|KAB(3),x701,x701,NB(1)|}_(sk(x701,s))

i -> (x701,1): {|KAB(3),x701,x701,NB(1)|}_(sk(x701,s))

i -> (x701,2): {|KAB(3),x701,x701,NB(2)|}_(sk(x701,s))

In fact, the attack is more easy to understand if we reorder the messages in there (the slightly
confusing ordering is due to partial-order reduction techniques used in OFMC [24]):

ATTACK TRACE

(x701,1) -> i: x701,x701,NB(1)

i -> (s,2): x701,x701,NB(2),NB(1)

(s,2) -> i: {|KAB(3),x701,x701,NB(2)|}_(sk(x701,s)),{|KAB(3),x701,x701,NB(1)|}_(sk(x701,s))

i -> (x701,1): {|KAB(3),x701,x701,NB(1)|}_(sk(x701,s))

(x701,2) -> i: x701,x701,NB(2)

i -> (x701,2): {|KAB(3),x701,x701,NB(2)|}_(sk(x701,s))

Talking to Oneself In the attack trace, we see a strange thing: the agent x701 who starts
(playing role B) intends to talk to — x701. We see here that if the roles A and B can be
instantiated by two agents, this does not exclude A = B. Some people have argued that such
scenarios should be considered since a user may work on different physical machines and on all
machines, the user may have the same long-term keys. Then, when a user (like x701 in this
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example) tries to establish a secure connection between the two machines (using Denning-Sacco
in this case) he would instantiate both roles A and B and thus both shared keys with the server
are the same, namely sk(x701, s). If such a scenario is possible, i.e. if the protocol does not
explicitly require that the logical name of the two endpoints are different, then the above attack
is possible. Note here with logical name we mean the identity to which the keys are bound. This
is usually not the concrete IP-address of the machine and could thus be completely independent
from addressing mechanisms. We therefore recommend to make protocols even safe for agents
“talking to themselves” and interpret attacks as being related to different machines the agent is
working on.

2.6 Final Version

A simple way to fix this last attack is to simply add a constraint to the knowledge section:

where A!=B

This prevents all instantiations of the roles where A and B are played by the same agent. This
should of course be noted when implementing the protocol: the implementation should always
check whether the identity of the other partner claims to be the same agent identifier (that would
have the same key).

3 Example: TLS

We now look at a more interesting example both since it is more complex and since it is one of
the most widely used protocols in the Internet. Our model is inspired by the one of Paulson [26].

1 Protocol: TLS

2 Types: Agent A,B,s;

3 Number NA ,NB ,Sid ,PA ,PB ,PMS;

4 Function pk,hash ,clientK ,serverK ,prf

5 Knowledge: A: A,pk(A),pk(s),inv(pk(A)),{A,pk(A)}inv(pk(s)),B,

6 hash ,clientK ,serverK ,prf;

7 B: B,pk(B),pk(s),inv(pk(B)),{B,pk(B)}inv(pk(s)),

8 hash ,clientK ,serverK ,prf

9 Actions:

10 A->B: A,NA,Sid ,PA

11 B->A: NB,Sid ,PB ,

12 {B,pk(B)}inv(pk(s))

13 A->B: {A,pk(A)}inv(pk(s)),

14 {PMS}pk(B),

15 {hash(NB ,B,PMS)}inv(pk(A)),

16 {|hash(prf(PMS ,NA ,NB),A,B,NA ,NB ,Sid ,PA ,PB ,PMS )|}

17 clientK(NA ,NB ,prf(PMS ,NA ,NB))

18 B->A: {|hash(prf(PMS ,NA ,NB),A,B,NA ,NB ,Sid ,PA ,PB ,PMS )|}

19 serverK(NA ,NB ,prf(PMS ,NA ,NB))

20 Goals:

21 B authenticates A on prf(PMS ,NA,NB)

22 A authenticates B on prf(PMS ,NA,NB)

23 prf(PMS ,NA ,NB) secret between A,B

Walkthrough We discuss the messages step by step:

Client hello (line 10) A client A first contacts the server B that she wants to connect to. This
includes a fresh nonce NA and session identifier Sid, as well as the security preferences PA.

16



The security preferences cannot really be modeled here, and we replace them with a nonce
(to not change the message format).

Server hello (line 11) The server replies with his own nonce NB and his own preferences PB
(again represented as a nonce).

Server certificate (line 12) The server sends a certificate of his public key. This is essentially
a digital signature by some trusted certificate authority s, signing for B’s public key. Of
course, the real certificates may contain more fields, in particular expiry dates, but we do
not model that.

In our model, every agent A has a long-term public key pk(A) and a corresponding private
key inv(pk(A)). Note that pk is a function symbol that we declare similar to sk in previous
examples to represent a given (static) key infrastructure. In contrast, inv is a built-in symbol
that maps public keys to corresponding private keys. The general rule is that public-key
encrypted messages can only be decrypted with the corresponding private key and vice-versa.
Encryption with a private key thus means signing a message (because only the owner of the
private key can have done that). We distinguish asymmetric (public/private-key) encryption
from symmetric encryption by using the notation {M}K for encryption of message M with
key K.

The initial knowledge of role A contains her public and private key as well as a certificate for
her public key by the server and the server’s public key. The knowledge of B is analogous.
They both do not in advance know each other’s public keys, modeling that they only learn
them through the exchange of the certificates. In order to verify the certificates, they need
the public key of the server. As a consequence, in the translation from AnB to IF, the first
exchange looks like this on the side of A:

send(A,NA,Sid,PA).receive(NB,Sid,PB,{B,PKB}inv(pk(s)))

Here, the public key of B is learned by A as PKB from the certificate. A has no means to
check PKB = pk(B) as it is supposed to be, although this will always be the case since in
this model nobody has the key inv(pk(s)), so nobody can forge certificates.

Client certificate (line 13) Similar to the server’s certificate. Note this is optional in TLS: if
omitted (which is usually the case if the client is a normal web-browser) then the client is
not authenticated. The authentication and secrecy goals we state do not hold then. We
discuss this interesting case of a unilaterally authenticated TLS channel below.

Client key exchange (line 14) The client generates the pre-master secret PMS, which is just
another fresh random number. This number is encrypted with the public key of the server.

Certificate verify (line 15) This signature is present iff the client certificate (line 13) is present.
It then authenticates the PMS and links it with the nonce NB and the name of B.

What is signed is actually a cryptographic hash of NB,B, PMS. Recall that a cryptographic
hash provides a cryptographic check function in the sense that for two random messages M
and M ′, it is very unlikely that h(M) = h(M ′) (low chance of collisions); it is difficult to
obtain M from knowing only h(M) (hard to invert); and for given M (or h(M)) it is hard to
find M ′ such that h(M) = h(M ′) (collision-resistant). We simply model this in AnB again
as a new function symbol hash and give this function to initial knowledge of all roles, so
everybody can compute h(M) for given M ; the hardness of finding collisions and inverses is
modeled by the absence of intruder rules in the algebraic theory of OFMC.

Client finished (line 16-17) The next message for the first time contains the basis of the shared
keys that A and B will obtain. This basis is K = prf(PMS,NA,NB) where prf stands for
perfect random function and is just another cryptographic hash (like in line 15). This basis
K is used to create a message authentication code, i.e. a hash-function with a symmetric
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key. The original TLS specification tells us to MAC all messages that have been exchanged
so far with K. To simplify this a bit, we use just the variables that occur so far. This hash
is called the “Finished”-Message. It is transmitted encrypted with the client’s shared key
clientK(NA,NB,K) where clientK is yet another hash-function.

Server finished (line 18-19) The server B answers with the same finished message encrypted
with his shared key serverK(NA,NB,K) where serverK is the last of the hash-functions
we introduce. Note that both A and B can compute both client and server keys. The
distinction is made so that messages from A to B can not be mistaken as messages from B
to A.

3.1 Unilateral TLS

The most commonly used form of TLS is without the optional client authentication (i.e. lines
13 and 15 in the above AnB specification), because the user does not have a certificate. These
connections have strictly weaker security guarantees: the server cannot be sure about the identity
of the client he is talking with (while the client can, thanks to the server’s certificate). Still,
this client and server have a secure connection in the sense that confidentiality and integrity
are preserved. We may think of a client acting under a pseudonym and being authenticated with
respect to that pseudonym as proposed in [23]. We will come back to this when discussing channels
in Section 15.

3.2 Diffie-Hellman

Diffie-Hellman [10] is a cryptographic primitive that can be regarded as the beginning of public
key cryptography (as it pre-dates RSA); it has also an interactive/protocol aspect and we shall
give an short introduction, since it is usually a good idea to create fresh keys using Diffie-Hellman.

To go slightly into cryptography, the idea is to pick first a large prime number p (which is also
publicly known) and make computations in Z?p, that is the group of numbers {1, . . . , p − 1} with
multiplication modulo p. For instance let p = 7 (to have a small prime number of the example)
and write ≡p for equivalence modulo p, then 33 ≡7 3 · 3 · 3 ≡7 9 · 3 ≡7 2 · 3 ≡7 6. Thus in
all multiplications (and thus exponentations) we “stay” within zp. Note also that any of the
intermediate results can be taken modulo p (so also intermediate results do not get larger than
p − 1). Next, we fix also a generator g ∈ zp: a generator is an element so that every for every
z ∈ Z?p, there is an x ∈ Z?p such that gx ≡p z. Both g and p are fixed and publicly known. An
important property is that given x, it is easy to compute gx(modp), but the opposite direction it
is believed to be a hard problem, i.e., the best known algorithm that given z as input finds an x
such that gx ≡p z is exponential (in the size of p).

Now Diffie-Hellman between two agents A and B is essentially the following: both A and B
generate random numbers X and Y , respectively, and make the following exchange:

A->B: exp(g,X)

B->A: exp(g,Y)

where for simplicity we omit the fixed prime modulus p and write exp for modular exponentiation.
After this exchange, the numbers X and Y are still secret to the participant who created them.
Now A can exponentiate the value exp(g, Y ) from B with her secret X, i.e., exp(exp(g, Y ), X).
Similarly B can exponentiate the value exp(g,X) from A with his secret Y , i.e., exp(exp(g,X), Y ).
By the laws of exponentiation (that also hold modulo p) that is the same: exp(exp(g, Y ), X) =
exp(exp(g,X), Y ). Thus they have a secret shared key that can only be constructed by the creators
of X and Y .

So in a way, we have created here a secret “out of thin air”, i.e., without A or B having to
have any prior relationship with each other and without the help of a trusted third party. Of
course, that is not entirely true, we need to be precise here: we do not have a secret between A
and B necessarily, but between whoever created X and Y . Any attacker could have generated
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his own secret X and send exp(g,X), claiming to be A (or similar impersonating B). There is no
relationship here between A and exp(g,X) or between B and exp(g, Y ). However we can make such
a relationship using any approach to authenticate the exchange. Here is a simple Diffie-Hellman
based protocol that uses digital signatures to authenticate the exchange:

Protocol: DH

# A simple protocol based on Diffie -Hellman

Types: Agent A,B;

Number X,Y,g,MsgA ,MsgB;

Function pk;

Knowledge: A: A,B,pk(A),pk(B),inv(pk(A)),g;

B: A,B,pk(A),pk(B),inv(pk(B)),g

where A!=B

Actions:

A -> B: {A,B, exp(g,X)}inv(pk(A))

B -> A: {A,B, exp(g,Y)}inv(pk(B))

A -> B: {|A,B,MsgA|}exp(exp(g,X),Y)

B -> A: {|B,A,MsgB|}exp(exp(g,X),Y)

Goals:

A authenticates B on exp(exp(g,X),Y),MsgB

B authenticates A on exp(exp(g,X),Y),MsgA

exp(exp(g,X),Y) secret between A,B

MsgA secret between A,B

MsgB secret between A,B

Here we use the Diffie-Hellman key to exchange some “payload” messages MsgA and MsgB.
It is actually left implicit how A and B create the key, i.e., that A rather has to construct
exp(exp(g, Y )X) to be able to encrypt here payload message to B and decrypt B’s payload
message to her. OFMC does this automatically, since the property that exp(exp(g,X), Y ) =
exp(exp(g, Y ), X) is understood by the compiler (and the protocol analysis). How this is actually
computed is discussed in Section 10.

What was actually revolutionary when Diffie-Hellman was introduced becomes clear if we
compare it to the key exchange protocols that can be built with symmetric cryptography only
(like the first example of this section). Suppose two parties who already have a shared secret want
to update it to a new secret. We could have a simple update protocol like this:

A->B: \scrypt{K}{update ,K’}

where K is the current shared secret key of A and B and K ′ is a fresh key that A just created.
One may make a more complicated protocol to also make key confirmation etc., but let us focus
on this. Basically the only choice to exchange a new secret like K ′ is to already have a shared
secret K. Diffie-Hellman requires a bit less: we do not have to have a secret, it suffices to be
able to authenticate each other, while confidentiality is not important: the intruder may well see
the exchanged exponents. This is why we consider this actually like the beginning of public key
cryptography: one can regard X and Y as private keys and exp(g,X) and exp(g, Y ) as public
keys. It suffices to authentically distribute the public keys, then we can build any secure channels
out of it.

Another advantage is built in: both parties contributed to the Diffie-Hellman key, so both
have an implicit guarantee of freshness. (However, this can also be achieved with symmetric
cryptography.) Finally Diffie-Hellman has perfect forward secrecy: consider the following Diffie-
Hellman-based key update protocol where A and B currently shared a symmetric key K (may be
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constructed earlier using Diffie-Hellman) and they update as follows:

A -> B: {|update ,A,exp(g,X)|}K

B -> A: {|update ,B,exp(g,Y)|}K

and suppose the agents from now on use the resulting K ′ = exp(exp(g,X), Y ) as new shared key.
Suppose now, the key K becomes known to the intruder (e.g., by a brute force attack or some
mistake) after this exchange. Then still, he cannot construct K ′ (except by a separate brute force
attack). In contrast, in the conventional key update before, if the intruder has logged all the trafic
and finds out just one key, all the following keys fall like domino stones.

In a very similar way, consider our key exchange protocol with the trusted third party from
the beginning of this section. If the intruder manages to hack the trusted third party at any time
and obtain the long-term keys of some agents, then he can decrypt every conversation where he
has logged the key-exchange messages. That is not the case if we exchange the protocol to use
Diffie-Hellman for creating the shared keys.

For all these reasons, it is usually a good idea to use Diffie-Hellman to construct shared keys
– and why exp has “the full support” of AnB/OFMC.

4 The Syntax of AnB

After the examples we have seen so far, we want to first define precisely the syntax of Alice and
Bob notation, and then define formally, what it actually means – the semantics. To that end, let
us consider a full specification, the Needham-Schroeder Shared-Key protocol, which is one of the
protocols we have “walked into” in our development in Section 2.4.

Protocol: NSSK # Needham Schroeder Shared Key

Types: Agent A,B,s;

Number NA ,NB;

Symmetric_key KAB;

Function sk,pre

Knowledge: A: A,B,s,sk(A,s),pre;

B: A,B,s,sk(B,s),pre;

s: A,B,s,sk(A,s),sk(B,s),pre

Actions:

A->s: A,B,NA

s->A: {| KAB ,B,NA, {| KAB ,A |}sk(B,s) |}sk(A,s)

A->B: {| KAB ,A |}sk(B,s)

B->A: {| NB |}KAB

A->B: {| pre(NB) |}KAB

Goals:

A authenticates s on KAB ,B

B authenticates s on KAB ,A

KAB secret between A,B,s

Obviously the first item is to give the protocol a name and comments can be made using the
# sign. The we have to declare the types of all identifiers that we use in the protocol (actually
OFMC allows omitting type declarations, but this may lead to unexpected results). As possible
types we have:

• Agent: the type of all agents (participants) in the protocol, i.e., who can send or receive
messages.

• Number: random nonces and the like.

• Symmetric key: similar to nonces (in fact either can be used as keys in encryptions).
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• Public key: for declaring a public key, i.e. asymmetric encryption); if P is a public key
then inv(P ) is the corresponding private key, so there is no type for specifying private keys.

• Function: modeling a function (of arbitrary arguments). These functions will by default
not be available to the intruder, so one can, like in the example, use it to define a key-
infrastructure.

Note that the types Symmetric key and Public key are only used for freshly created
keys, i.e., that are newly created during the protocol run. For long-term keys (that exist
before a particular protocol run), one must use functions like sk in the example.

Variables are identifiers that start with an uppercase character, while constants and
functions start with a lower-case character.

We can now build terms, or messages, using the functions and constants symbols that have
been declared including the following built-in functions:

• For any term p (that represents a public key) the corresponding private key is inv(p).

• Public key encryption is denoted {m}p where p is the public key and m is the message
encrypted. (In order to decrypt one needs the corresponding private key inv(p).) The same
symbol is also used for signatures: {m}inv(p) is a signature on the message m with private
key inv(p). (To verify the signature, one needs the corresponding public key p.)

• Symmetric encryption is denoted {|m|}k where k can be an arbitrary term representing the
encryption key, and m is the encrypted message. In the text, where we are not limited by
ASCII, we may rather write more nicely {|m|}k.

• A concatenation of messages is simply written with commas between the messages, e.g.,
KAB,B. Note that “,” is thus an infix operator, and it binds less than any other, e.g. {c}a, b
is equivalent to ({c}a), b.7 Also, the operator is right-associative, i.e., A,B,C is understood
like A,(B,C).

• The function exp(b, e) represents modular exponentiation (where the modulus is not explic-
itly written) of basis b with exponent e. This is for use in Diffie-Hellman based protocols,
and we cover it more precisely below in Section 3.2.

• There is also a partial support for bitwise exclusive or (XOR), but it is actually not recom-
mended to use XOR: such a function should only occur in the implementation of crypto-
graphic primitives, but not in the protocols itself, and often it is indicative of poor protocol
design.8

Note that there are no hash or MAC functions built in; one simply declares them as user-defined
functions and makes them public (i.e., add to the knowledge of every protocol role).

Further, there are no decryption functions; this is because they are not used to construct
any messages (but only to extract information from messages) and thus, they are not
part of any term in AnB.

In fact, we later see that even in modeling the actions of honest agents and intruder, we do
not need function symbols for decryption.

7To express a key that is a concatenation, one uses parentheses, e.g., {c}(a, b). However, usually one would not
have such a raw concatenation, but some key derivation function like in the TLS example.

8There are some exceptions. First, distance-bounding protocols, but here so many other assumptions are needed
that standard protocol models and verification tools cannot help. Second, protocols for devices with very low power
consumption; but these cannot protect against any intruder with at least modest computational power. Third,
one-time pads; however these are best modeled by a confidential channel.
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The next part of the AnB specification is the initial knowledge. The knowledge should be
specified for any role of the protocol, i.e., for every variable and constant of type agent (except
for ones that never send or receive any messages like the server s in the TLS example).

The knowledge is a list of messages that the role initially knows. All variables in the
knowledge must be of type Agent. All variables that do not occur in the knowledge
section represent messages freshly created during the protocol run by the agent who first
uses them. The knowledge of a role must be sufficient to execute the protocol (as defined
below).

Intuitively, the requirement of “executable” means that at any step of the protocol agents must
have sufficient knowledge (from initial knowledge and received messages) to construct the next
message they are supposed to send. In fact, this is at the very core of understanding the meaning
of AnB.

The core of an AnB specification is the action section, where we have steps of the form A→ B :
m for two roles A and B and a message m. The roles can be constants or variables of type agent.
Later in Section 15 we will also introduce here a channel notation to allow for communication
channels with some built-in security properties. The channel A→ B in contrast means that there
are no guarantees on the security of the communication medium, e.g. the Internet or a wireless
transmission where potentially an attacker could listen, send, or even intercept messages.

Finally in the goals section we can specify three kinds of goals (and their formal meaning will
be defined in Section 9):

• m secret between A,B,C where m is a message and A,B,C is a list of protocol roles that are
allowed to know the message.

• B weakly authenticates A on m where m is a message and A and B are roles of the protocol.
The intuitive meaning is that when B finishes the protocol, then A has at least started the
protocol and agrees with B on each others name and the message m.

• B authenticates A on m. Like the weakly variant, but additionally we require that there
is no replay, i.e., that B did not complete more sessions than A started.

The “direction” (from A to B) that is implicit in the authentication goals may be confusing at
first. Suppose m is a message generated by A in the protocol and then somehow transmitted
(even indirectly) to B. Then it is clear that authentication is a goal from B’s point of view, i.e.,
B wants to be sure that this message indeed comes from A. In contrast, A does not have have
any guarantees from this goal: it does guarantee neither that the message will only reach B (that
would have to be a secrecy goal) nor that the message will at all reach B (since the intruder can
disrupt communication). Consider again the example of the authentication goals for key KAB in
the NSSK example: here we declare the goal that both agents A and B authenticate the server s
on the key, who is actually the one generating the key. We could however also formulate a goal
that A and B should authenticate each other on the key. It is instructive to experiment with such
goals and try to understand the attacks that result in some cases.

5 From Alice and Bob to Strands – Intuition

Even though Alice and Bob notation seems fairly simple and intuitive, it is surprisingly difficult
to define it precisely. Essentially it describes how honest agents would behave, i.e., those that
faithfully execute the protocol without trying to cheat. The intruder in contrast can do anything
he likes, limited only by his knowledge and his cryptographic abilities. It turns out that, in order
to define the behavior of the honest agents and the notion of executability, we also need a kind
of intruder model: no agent can for instance perform encryptions or decryptions to which they do
not posses the necessary keys. In other words, in order to execute a protocol, one should not need
to break the cryptography.
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We will now define the meaning of Alice and Bob notation by first a translation to strands –
one for each role – that describes the behavior of each honest agent playing in this role. Together
with a model of the intruder, this will then give rise to a state transition system, where each state
is a simple model of the protocol world, and both the intruder and the honest agents can perform
actions that lead to new states. The security goals will then be checks on states whether any goal
has been violated (e.g., has the intruder found out a secret that he was not supposed to see); we
call a state where a goal is violated, an attack state. The security of a protocol means then: no
reachable state is an attack state. In fact there will be, in general, infinitely many states so that
an exhaustive search directly will not work, but we will see some methods that can often “cope”
with the infinity.

A first step in the translation is to write the action section of a protocol as a message sequence
chart. For the NSSK example, we obtain the following MSC:

s A B

◦ ◦
A,B,NAoo

◦
{|KAB,B,NA,{|KAB,A|}sk(B,s)|}sk(A,s)// ◦

◦
{|KAB,A|}sk(B,s) // ◦

◦ ◦
{|NB|}KABoo

◦
{|pre(NB)|}KAB // ◦

The main idea is now to split this into several strands, one for each role. For the NSSK
example, for the role A this would be simply the messages that A is involved in (with some red
highlighting explained below):

A

◦
A,B,NAoo

{|KAB,B,NA,{|KAB,A|}sk(B,s)|}sk(A,s)// ◦

◦
{|KAB,A|}sk(B,s) //

◦
{|NB|}KABoo

◦
{|pre(NB)|}KAB //

Suppose we choose concrete values for the variables A and B – some agent names – and for the
variable NA – a fresh nonce, then this can be regarded as a fully specified program how this agent
should behave:

1. It first sends out the message A,B,NA
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2. It then waits for receiving any message that matches the pattern of the first incoming arrow.
That is, it would have to be encrypted with the key sk(A,s) (the shared key of A and s),
so A can decrypt this. The result of the decryption is a list of messages:

• The first field is an arbitrary key KAB. That means, this variable is bound by whatever
is received here – any value is accepted.

• The second field must be the name of B sent in step 1.

• The third field must be the random number NA sent in step 1.

• The fourth one, highlighted in red is actually a bit strange, let us get back to that a
little later.

If any of the checks on the fields (or the decryption) fails, then this message is not accepted.
It could then either be that the agent terminates the session, or keeps on waiting for another
message that meets the expectations.

3. If everything went fine in step 2, the agent proceeds to step 3, sending out the “red” message.

4. The agent waits now to receive any message that is encrypted with the novel key KAB (that
was learned in step 2). Again, the value NB is bound here – the agent accepts any value
and remembers it as NB.

5. In the final step the agent applies the pre function to NB (representing NB − 1), encrypts
it with KAB and sends it.

More generally, we are thus first instantiating with concrete terms all variables of type agent and
the values that the agent in question freshly generates (note that A generates only NA, while
KAB and NB are generated by others). For incoming messages, we only accept concrete terms
that match the pattern we have, and this instantiates the remaining variables of that message.
We will define this precisely below as a transition system.

But there is a strange thing about the highlighted red part in the example: this is a message
encrypted with the shared key of B and s that agent A does not know. Therefore, there is no
way for A to decrypt this message and check that it is really encrypted with that key, that it
contains the same value KAB that was received in the first part of the message, and that it also
contains the name A. The red part represents a couple of checks that A actually cannot perform!
In fact, A should be willing to accept any message in this position. Of course, A sends out as step
3 whatever she received here. Thus, we get an accurate representation by replacing the red part
with another variable X in both the step 2 and step 3:

A

◦
A,B,NAoo

{|KAB,B,NA,X|}sk(A,s) // ◦

◦ X //

◦
{|NB|}KABoo

◦
{|pre(NB)|}KAB //

Thus, the translation of AnB to strands must take care of

• what agents can actually check on incoming messages and

• how they can generate outgoing messages.
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It may seem fairly simple: we just have to figure out subterms (like the red one in the above
example) that an agent cannot decrypt and check, and that has therefore to be replaced by a
variable. The following example shows that it is not so easy:

A->B: {| M |}K

# some time passes

A->B: K

where K is a freshly generated key and M is some message that A wants to send to B but so that
B cannot open it yet. At a later point she can now send K and open the message. How would
the strand for B look like? The simple solution

B

{|M |}K // ◦
K // ◦

is not correct, since B does not know K yet, and thus cannot check that he really received an
encrypted message. Replacing it simply with X:

B

X // ◦
K // ◦

is also not correct, because we now lost any the crucial relation between the two received messages:
in particular B would now accept any message X and then any message K (even if it does not
decrypt the first one). For this one we would have to add a check in form of an equation:

B

X // ◦

K // check X = {|M |}K

In fact, this check would bind the variable M to whatever had been encrypted in the message
X. Note that a protocol may well now contain steps that involve M , since B has learned it by
decryption.

To precisely define the translation from Alice and Bob to strands, there is a sequence of
increasingly more complicated papers, see for instance [15]. Few of these papers deal with another
complication: that operators may have algebraic properties like

exp(exp(A,X), Y ) = exp(exp(A, Y ), X)

which is required for the translation of any Diffie-Hellman based protocols (without this property,
these protocols would not be executable).

An interesting question was therefore: how can we define the meaning of Alice and Bob notation
for an arbitrary given algebraic theory? This generalization of the question to arbitrary properties
had a surprising effect: it lead to a much simpler definition than any of the previous specialized
efforts [21, 7, 1].

This concludes for now our first overview of the Alice and Bob notation and its meaning. We
now need to first look a bit at terms, algebraic properties, and intruder deduction, and then get
back to Alice and Bob and strands.
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6 Term Algebra and All That

We introduce now the basic notions of terms and algebras that are needed in the rest of this
tutorial. For a more thorough account we suggest [3, 16].

6.1 Signatures

The basic logical term signature (not to be confused with for instance digital signatures) means
the symbols from which we can build terms, and it is thus sometimes also called an alphabet:

Definition 1 (Signature). A signature Σ is a set of function symbols where every function symbol
has an arity (number of arguments). We write f/n for a function symbol f of arity n. Constants
are a special case of function symbols with arity 0.

Example 1. ΣZ = {add/2,mult/2,minus/1, zero/0, one/0}. While the names of these function
symbols somehow suggest a meaning, there is none attached to them.

Table 1 shows the function symbols we usually need in protocol verification, together with their
intuitive meaning and whether or not they are public, i.e., whether the intruder can apply them.
For instance, the function inv(·) is not public because it shall later be used to assign a private key
to a given public key; if inv(·) were public, then the intruder would know all private keys that he
knows the public key of. Let us denote with Σp in the following the subset of symbols from Σ that
are declared public.

We also use the “mixfix” notation for encryption from AnB, i.e., we write {m}k instead of
introducing a prefix function symbol like crypt(k,m). We allow the user to declare their own
constants and function symbols, so we cannot really give one fixed signature Σ – it all depends on
what the user specifies in an AnB file. Similarly, we will in other parts of the document need to
introduce new function symbols. That is why all the following definitions are given for an arbitrary
Σ, i.e., the definitions are parameterized over Σ.

Symbol Arity Meaning (informal) Public

i 0 name of the intruder yes
inv(·) 1 private key of a given public key no
{·}· 2 asymmetric encryption yes
{| · |}· 2 symmetric encryption yes
〈·, ·〉 2 pairing/concatenation yes
exp(·, ·) 2 exponentiation modulo fixed prime p yes
a, b, c, . . . 0 User-defined constants User-def.
f(·) ? User-defined function symbol f User-def.

Table 1: Standard function symbols for protocol verification.

Definition 2 (Terms). Let Σ be a signature and V = {X,Y, Z, . . .} be a set of variable symbols
disjoint from Σ. Define TΣ(V ) to be the set of terms (over Σ and V ) as follows:

• All variables of V are terms.

• If t1, . . . , tn are terms and f/n ∈ Σ, then also f(t1, . . . , tn) is a term.

Terms without variables are called ground terms. We write TΣ for the set of all ground terms.

Example 2. TΣZ({X,Y }) = {X,Y, zero, one,minus(X),minus(Y ),minus(zero),minus(one), add(X,X), . . .}.
Again, these terms have no meaning attached to them yet.

A central concept is that of a substitution: it expresses that some variables should be substi-
tuted (replaced) by some terms:
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Definition 3 (Substitution). Let X1, . . . , Xn be variables and let s1, . . . , sn be terms. A substi-
tution σ is written as σ = [X1 7→ s1, . . . , Xn 7→ sn] and means the following function from terms
to terms:

σ(t) =


si if t = Xi for any i ∈ {1, . . . , n}
f(σ(t1), . . . , σ(tn)) if t = f(t1, . . . , tn)

t otherwise

Thus, a substitution replaces every Xi with si, leaves all other variables untouched, and for a
composed term f(t1, . . . , tn), the substitution is recursively applied to the subterms ti.

Example 3. For σ = [X 7→ f(Z), Y 7→ Z] we have σ(g(Z, Y, f(X))) = g(Z,Z, f(f(Z))).

6.2 Algebra

While signatures and terms are pure syntax, an algebra gives symbols and terms a meaning. The
idea is that we have to have a “universe” (or “domain”) in which we want to interpret terms, and
then interpret every function symbol as a function in that universe:

Definition 4 (Σ-Algebra). Given a signature Σ, a Σ-Algebra A consists of

• a non-empty set U , called the Universe, and

• for every f/n ∈ Σ a function fA : Un → U .

For a ground term t ∈ TΣ and a Σ-Algebra A, we denote with tA the meaning of t in A which is:

f(t1, . . . , tn)A = fA(tA1 , . . . , t
A
n )

Example 4. One possible algebra Z for our example signature ΣZ = {add/2,mult/2,minus/1, zero/0, one/0}
is to interpret all terms as integer numbers:

• Universe: Z = {0, 1,−1, 2,−2, . . .}

• addZ(a, b) = a+ b

• multZ(a, b) = a · b

• minusZ(a) = −a

• zeroZ = 0

• oneZ = 1

We can evaluate any ground term in Z, for instance:

add(mult(one,minus(one)), one)Z = 0 .

Another choice is the algebra B that interprets terms as Booleans:

• Universe: B = {true, false}

• addB(a, b) = a ∨ b (logical or)

• multB(a, b) = a ∧ b (logical and)

• minusB(a) = ¬a (logical not)

• zeroB = false

• oneB = true
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It holds that
add(mult(one,minus(one)), one)B = true .

Compare the result with the one for Z; it is normal that in two different algebras we get different
results for terms.

A possible algebra C for the signature of Table 1:

• Universe: B∗ (all bit-strings)

• {|m|}Ck is AES 128 bit with MAC (returning an error message if k is not 128 bit long).

• . . .

Observe that the algebras Z and B of this example share some properties, for instance both
add and mult are associative and commutative and mult is distributive over add . More formally,
let us write s ≈A t if two (ground) terms s and t are equal in algebra A, i.e., if sA = tA. Then we
have for every ground terms s, t, u that

mult(s, add(t , u)) ≈Z add(mult(s, t),mult(s, u))

and the same holds for ≈B.
An important idea of mathematical logic is that, instead of studying a concrete algebra like

Z and B and see what properties they have, we could rather take the opposite direction and
start with a set of equations like distributivity above and ask: what is the class of algebras in
which this property holds? This allows to abstract from the concrete algebra and prove statements
that hold in every algebra that satisfies a number of equations. In that spirit, in cryptographers
have studied cryptographic operators on an abstract level, i.e., considering only what (algebraic)
properties the cryptographic building-blocks need to satisfy, allowing for the study of entire classes
of cryptographic implementations [19].

6.3 The Free Algebra

In logic programming and theoretical computer science, one extreme form of algebra plays a central
role: if we do not assume any algebraic properties. This is in some sense the most abstract and
also somehow the most easy algebra to work with. (Hence the popularity in computer science...)
It is often called the initial or free algebra because it is “freely generated” by its terms. Even
though we have already used the notation TΣ for the set of all ground terms, we will “overload”
it and also use it to denote the free algebra:

Definition 5 (Free Algebra). Given a signature Σ, the free algebra TΣ is defined as follows:

• The universe is the set of all ground terms TΣ.

• For every f/n ∈ Σ, define fTΣ(t1, . . . , tn) = f(t1, . . . , tn).

Lemma 1. For all ground terms s and t, we have tTΣ = t and s ≈TΣ
t iff s = t. 9

Thus, in the free algebra, the meaning of a term t in TΣ is just the term t itself and two terms
are equal in the free algebra, if they are syntactically equal (there are no syntactic equations). In
other words, terms do not have a deeper meaning, they just are what they syntactically are. (No
wonder this resonates so well with computer science...)

In Example 4, we have sketched how a algebra C for the symbols of Table 1 could look like.
This algebra would be a concrete cryptographic interpretation where every message is a bit string
and most function symbols are actual cryptographic algorithms. We will now go for the other
extreme and interpret messages in the most abstract way – in the free algebra.

This has some interesting consequences. In C, we may for instance interpret a function h(·) by
a cryptographic hash function and there will be collisions, i.e., different messages n and m such

9“iff ” abbreviates “if and only if”
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that h(n) ≈C h(m). In contrast, in the free algebra it holds that h(n) ≈TΣ
h(m) iff h(n) = h(m)

iff n = m. So the free algebra models hash functions as collision free – which is actually absurd
in reality, since no function h : A→ B with infinite A and finite B can be injective.

To see that it makes sense to interpret terms in the free algebra anyway, consider that the
example of the collision is a (necessary) imperfection of the concrete hash function used in C, and
a different concrete hash function may have collisions for different pairs of inputs. The free algebra
is thus abstracting from the (undesirable) properties of the concrete implementation, and we will
thus arrive at an intruder who can only perform attacks that work in any implementation of the
cryptographic functions.

One could thus say that we model an intruder who is oblivious to the actual cryptography,
and will not attempt any attacks on the crypto-level. Thus, the security results that we formally
prove in such a model by default tell us only about the security against an intruder who does
not perform crypto-analytic attacks. We come back to this issue when we define the intruder
deduction relation below, i.e., the intruder’s ability to analyze terms.

6.4 ? Quotient Algebra

A section title in blue and marked with a ? signals an advanced topic for the readers
who would like to know more. We always give a short executive summary paragraph that
suffices for following the rest of the tutorial.

Summary 1. For some advanced protocols and primitives we simply need a few algebraic prop-
erties in the model. We then define a set of equations E (like s+ t = t+ s) and define an algebra
where the equations of E hold but that is “as close as possible” to the free algebra, i.e., two terms
are equal iff that is a consequence of E.

Protocols that use Diffie-Hellman are only executable if the model supports at least the fol-
lowing property:

exp(exp(g,X), Y ) ≈ exp(exp(g, Y ), X)

This is because A knows X and exp(g, Y ) and can thus construct the term on the right, while B
knows Y and exp(g,X) and can thus construct the term of the left. That they arrive at the same
shared secret thus requires the equality to hold.

Definition 6. Let E be a set of equations s ≈ t where s and t are terms with variables. Let ≈E
be the smallest congruence relation that includes all ground instances of E:

• (Equations of E.) If s ≈ t is an equation of E, and σ is a substitution that maps every
variable of s and t to a ground term, then σ(s) ≈E σ(t) holds.

• (Reflexivity.) s ≈E s for every term s.

• (Transitivity.) If s ≈E t and t ≈E u then also s ≈E u.

• (Symmetry.) If s ≈E t then also t ≈E t.

• (Structure.) If s1 ≈E t1, . . . sn ≈E tn and f has arity n, then f(s1, . . . , sn) ≈E f(t1, . . . , tn).

The equivalence class [t]E of a term t is the set of equivalent terms in ≈E:

[t]E = {s | s ≈E t} .

In general, a relation that is reflexive, transitive, and symmetric is called an equivalence relation,
and if it satisfies also the (Structure.) condition, it is called a congruence relation. We have defined
≈E to be the smallest relation that satisfies the above properties, i.e., s 6≈E t unless it follows
from the properties that s ≈E t. Therefore ≈E is “the closest we can get to the free algebra”
while still respecting the equations of E.
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Example 5. Let E be just the equation exp(exp(B,X), Y ) ≈ exp(exp(B, Y ), X). Then

[exp(exp(exp(a, b), c), d)]E = { exp(exp(exp(a, b), c), d))),
exp(exp(exp(a, b), d), c))),
exp(exp(exp(a, c), b), d))),
exp(exp(exp(a, c), d), b))),
exp(exp(exp(a, d), b), c))),
exp(exp(exp(a, d), c), b)))}

The remaining question is how to define an algebra A such that ≈A is the relation ≈E : the
free algebra is too abstract (no equations hold), several other algebras are too concrete (too many
equations hold). Recall that the free algebra is constructed by using the set of all terms as the
universe, and every term is interpreted by itself. The idea is now to interpret every term t by
its equivalence class [t]E – automatically if s ≈E t we then have [s]E = [t]E , thus two terms are
interpreted as equal iff they are equal according to ≈E . This means that the universe is now a
set of sets of terms, namely for every term, the equivalence class of that term is an element of the
universe:

Definition 7 (Quotient Algebra). Given a signature Σ, and a set of equations E, the quotient
algebra TΣ/≈E

is defined as follows:

• The universe is the set {[t]E | t ∈ TΣ} of equivalence classes of ground terms.

• For every f/n ∈ Σ, define fTΣ/≈E ([t1]E , . . . , [tn]E) = [f(t1, . . . , tn)]E.

The second item of this definition requires some more explanation: it defines how a function
symbol f can be applied to n elements of the universe. Since these elements are equivalence classes,
we can write them in the form [ti]E where the ti are some element of the equivalence class. The
definition does not tell how this ti should be picked from the equivalence class, e.g., what happens
if we choose some other terms s1, . . . , sn with the property that si ≈E ti? The answer is that
this does not matter for the result since f(t1, . . . , tn) ≈E f(s1, . . . , sn) since ≈E is a congruence
relation. (Thus, also [f(t1, . . . , tn)]E = [f(s1, . . . , sn)]E .) This definition tells us to arbitrarily pick
any “representatives” ti from the given equivalence classes, and this is not ill-defined, since result
is independent of that choice.

As a closing remark, most algorithms that work in ≈E are more complicated than their counter-
parts for the free algebra. In general ≈E is not even a decidable relation, i.e., for some E there
is no algorithm that can – for every pair of terms s and t as input – correctly answer whether or
not s ≈E t.

7 The Dolev-Yao Intruder Model

One of the most cited papers of protocol verification is one by Danny Dolev and Andrew Yao [11]
because they suggested a simple but comprehensive intruder model that has become the de-facto
standard for modeling an intruder if one does not consider the cryptographic level. The original
paper considers only public-key encryption as a cryptographic primitive, but it is common to treat
other primitives in the same spirit. Here are the key points:

• Every user has a public/private key pair.

• Every user knows the public key of every other user.

• The intruder is also a user with his own key pair.

• The intruder can decrypt only messages that are “meant” for him, i.e., that are encrypted
with his public key.

• The intruder controls the network: he can read messages, block them, divert them to a
different recipient, and insert new messages.
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It may seem excessive to assume the intruder controls the entire network (e.g., the entire
Internet and also the Intranet of a company). However, this expresses simply that we do not rely
the network to offer any protection, and we should not if a message may travel over any point that
could be insecure. We will later see how to integrate a notion of channels on which the intruder
has no, or limited, control.

The insecure network is the classical view of secure communication: Alice wants to send to
Bob some messages, they are honest people, but between them is a hostile world that tries to read,
manipulate, or even forge messages between them. One may think of a spy novel where Alice is a
secret agent operating in a foreign country and Bob is the home base of the secret service. Dolev
and Yao make an important change to this classical view: that the participants of a protocol are
not necessarily honest people (who stick to the rules, in particular the protocol). One may think
for instance of an e-Banking protocol where Alice is a customer and Bob is a bank: it should not
be a requirement of this protocol that all customers are honest, some clients may be trying to
cheat. Maybe even a bank may be dishonest, e.g., due to dishonest employees trying to manipulate
transactions. In fact, several of the most surprising attacks involve a dishonest participant (while
the protocol is secure when considering only honest agents and the intruder can only control the
network) e.g. [17]. Thus, we recommend to consider by default that every role of the protocol may
be played by a dishonest agent. In some cases like the keyserver example from before, we see that
the protocol is (trivially) broken if the keyserver is dishonest. We have thus explicitly made the
keyserver a trusted party by using a constant s that cannot be instantiated by the intruder, while
all other roles of the protocol (where we have variables) can be instantiated by the intruder i. 10

7.1 Intruder Deduction

At the core of the Dolev-Yao intruder model is the question of the cryptographic abilities. While
Dolev and Yao only consider public-key cryptography, the general idea is that the intruder “knows”
all cryptographic algorithms – these algorithms should not be considered a secret themselves, but
only the secret keys. This is sometimes called Kerckhoff’s principle. It is particularly important
if you have dishonest participants, because they obviously need to know the algorithms. Note
that only functions like inv(·) are exempt from this, because they do not represent a cryptographic
operation, but a function in our model that assigns to every public key its corresponding private
key.

Another key idea of Dolev-Yao is now: the intruder can use all (public) cryptographic opera-
tions – but that is it, there is no other possibility to analyze messages, like cryptanalysis. Thus
we model an intruder who has access to a Crypto API, i.e., a library of encryption and decryption
algorithms, but all he ever does cryptographically are function calls to that library. All the secu-
rity results we prove in this model thus are against an intruder who is oblivious to cryptography
and may no longer hold against an attacker with crypto-analytic abilities.

One could of course instead perform “cryptographic security proofs”, i.e., prove that a protocol
is secure in an algebra like C in Example 4. This gets extremely complex as one has to then define
bounds on the intruder’s resources, consider probabilities (since the intruder may make guesses)
and use assumptions of the hardness of certain mathematical problems like prime factorization.
If we think of a developer in industry whose goal is to design complex distributed systems then
security against such a full-fledged cryptographic model may be infeasible: we should not require
that all developers of systems that use cryptography are also cryptographers themselves.

Our suggestion is to clearly distribute “responsibility” and a reasonable distribution can be:
the goal of a crypto API should be, roughly speaking, that the intruder cannot derive any message
that he cannot obtain from an API call. This is not trivial to formalize and prove, but there
are several results that show the soundness of a Dolev-Yao model with respect to a concrete
cryptographic implementation, e.g. [5].

10One may wonder what happens if there is more than one intruder: in the worst case, they all collaborate,
therefore we see that as a special case of one intruder and the dishonest agents are bots under the intruder’s
control. It is a bit of a simplification that there is only one dishonest agent called i, but as long as no inequalities
on agent names are required, this is sound.
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We formalize now the cryptographic abilities of the intruder according in the style of Dolev
and Yao for our set of operators from Table 1. This is a relation of the form M ` m where M is
a finite set of messages, called the intruder knowledge, and m is a message that is derivable from
that knowledge:

Definition 8. We define ` as the least relation that satisfies the following rules:

M ` m if m ∈M (Axiom)
M ` m1 . . . M ` mn

M ` f(m1, . . . ,mn)
if f/n ∈ Σp (Compose)

M ` 〈m1,m2〉
M ` mi

(Proji)
M ` {|m|}k M ` k

M ` m (DecSym)

M ` {m}k M ` inv(k)

M ` m (DecAsym)
M ` {m}inv(k)

M ` m (OpenSig)

M ` s
M ` t if s ≈E t (Algebra)

(Axiom) This rule just says that the intruder can derive any term m that is already in his
knowledge M .

(Compose) This rule says that for any public function symbol f of n arguments he can apply f
to any terms m1, . . . ,mn that he can already derive.

(Proji) If the intruder knows the pair 〈m1,m2〉, then he also knows its components m1 and m2.

(DecSym) If the intruder knows a symmetrically encrypted message {|m|}k and also knows the
key k, then he can derive m.

(DecAsym) Similarly for asymmetric encryption, only here he has to know the private key inv(k).

(OpenSig) If the intruder knows a signature {m}inv(k), then he also knows the signed message
m.11

(Algebra) For the case that one wants to analyze a protocol under some algebraic properties E
(e.g. for exponentiation), this rule closes the deduction under ≈E .

The fact that the intruder cannot do anything else than these rules is captured by saying that `
is the least relation satisfying the rules: if M ` t does not follow from these rules (by any number
of steps), then M 0 t.

Example 6. Let M = { k1, {|m1|}k1
,m2, {|m3|}k2

}. Then for instance we have:

• M ` m1

• M 0 m3

• M ` {|〈m1,m2〉|}k1

• . . .

We can actually write derivations as a proof tree where the leaves of the tree are (Axiom) steps
and the root of the tree is the result we want to prove:

M ` k1
(Axiom)

M ` {|m1|}k1

(Axiom)
M ` k1

(Axiom)

M ` m1
(DecSym)

M ` m2
(Axiom)

M ` 〈m1,m2〉
(Compose)

M ` {|〈m1,m2〉|}k1

(Compose)

11We assume here a signature scheme where the message m being signed is actually included in clear-text and
the actual signature is applied only to a hash of that message. To obtain m, the intruder does not need to know
the public key, but only for verifying signatures. Verifying signatures however is not a message deduction problem
(he does not learn a new message from that).
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Example 7. As an example for reasoning with algebraic properties consider again the property
exp(exp(B,X), Y ) ≈ exp(exp(B, Y ), X).

Let the intruder knowledge be M = { x, {|b, exp(g, y)|}k, k,m }. Observe that x, y are con-
stants (lower-case letters) i.e., concrete exponents that the intruder and another participant have
randomly chosen.

We show that the intruder can derive from M for instance the message {|m|}exp(exp(g,x),y):

M ` {|b, exp(g, y)|}k
(Axiom)

M ` k (Axiom)

M ` 〈b, exp(g, y)〉
(DecSym)

M ` exp(g, y)
(Proj2)

M ` x (Axiom)

M ` exp(exp(g, y), x)
(Compose)

M ` exp(exp(g, x), y)
(Algebra)

M ` m (Axiom)

M ` {|m|}exp(exp(g,x),y)

(Compose)

7.2 Automating Dolev-Yao

Let us quickly think about implementing an algorithm that, given M and m as input should tell
us whether M ` m, and consider the free algebra (i.e., E = ∅, i.e., we can omit the (xAlgebra)
rule). A problem is that there are infinitely many things the intruder can do, and thus there are
infinitely many proofs. How can we limit the search for a proof of M ` m, so that the algorithm
does not run into an infinite loop?

The idea is to solve first an easier problem: let M `c m denote derivations that only use
(Axiom) and (Composition), i.e., an intruder who does not analyze any terms. This can be
solved by a simple backwards search: if the goal is to derive t = f(t1, . . . , tn), then check if t is
contained in M , and if not, and if f ∈ Σp, try to recursively derive every ti. Otherwise the answer
is no. This algorithm terminates since in every recursive call, the terms get smaller.

Next we solve the problem to analyze the intruder knowledge: if the intruder knows a message
of the form {|m|}k, use the above algorithm for checking M `c k, i.e., whether the key can be
obtained by composition steps only. If so, add m to the intruder knowledge M . This modification
of M does not change the set of terms that the intruder can derive from M via `, the intruder is
just explicitly remembering what he can derive (in this case using (DecSym)). Repeat this for all
of the decomposition rules (DecSym), (DecAsym), (Proji), and (OpenSig) until no new terms can
be obtained. This algorithm terminates because it can only add sub-terms of the original intruder
knowledge M (and since M is finite, there are only finitely many subterms).

Example 8. The complete analysis of the intruder knowledge M in Example 7, would add the
message b and exp(g, y).

Now that the intruder knowledge is completely analyzed, for any term m to derive it suffices
to use only composition steps:

Theorem 1 ([1]). For an analyzed knowledge M , M ` m iff M `c m.

This algorithm can also be extended to handle many equational theories E (e.g. the exponen-
tiation example), but in general ≈E is undecidable, and thus, so is `.

8 Transition Systems

We can now put it all together and define a world of honest agents, an intruder, and an intruder-
controlled network. We proceed as follows:

• We start with an AnB description of a protocol. As explained in Section 5, we can first see
such a description as a message sequence chart, and then split it into several strands, one
for each role of the protocol.
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• We have pointed out also in Section 5 there are some cases where this does not yet give an
accurate description of the protocol execution, but let us postpone this problem at first and
come back to it in section 10.

• We define how to instantiate the protocol for concrete sessions of the protocol, yielding an
infinite set of “closed” strands.

• We then define a state transition system where both the honest agents (represented by the
strands) and the intruder can make transitions.

Let us start by giving a formal definition of strands:

Definition 9. A strand is a sequence of steps where each step is either

• Snd(t) for sending a message t.

• Rcv(t) for receiving a message t.

• s
.
= t for checking whether two terms s and t are equal. (We write

.
= to indicate that this is

an operation performed during protocol execution.)

• Evt(t) generates a special event t (that the intruder cannot see and that we use only for
formulating the goals).

For a strand of zero steps we write 0. The graphical notation of strands is straightforward, e.g.
the strand Rcv(X).Snd(f(X)).Rcv(Y ).X

.
= h(Y ) would be represented as

• Xoo

•
f(X) //

• Yoo

X
.
= h(Y )

Let S = S1.Rcv(t).S2 be a strand, and let X be a variable that occurs in t but not in S1. Then we
say X is bound in S by the receive step Rcv(t). We say that all variables that are not bound by
such a receive step are free variables of S. We say that a strand is closed if it does not have free
variables.

Example 9. Consider the following AnB specification, called Needham-Schroeder Public-Key pro-
tocol:

Protocol: NSPK

Types: Agent A,B;

Number NA ,NB;

Function pk

Knowledge: A: A,pk ,inv(pk(A)),B;

B: B,pk,inv(pk(B))

Actions:

A->B: {NA,A}(pk(B))

B->A: {NA,NB,B}(pk(A))

A->B: {NB}(pk(B))

Goals :...
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Extracting the strand for role A yields (when there is no danger of confusion, we sometimes
write a pair 〈s, t〉 of messages simply as “s, t” without the angle brackets):

A

•
{NA,A}pk(B) //

•
{NA,NB}pk(A)oo

•
{NB}pk(B) //

The variable NB is bound by a receive step, while the blue variables are free.

8.1 ? Instantiation

Summary 2. The roles that come out of AnB have free variables that represent either agent
names (and can be instantiated with any concrete agent name, including the intruder i), and
freshly generated constants (that are instantiated with constants that are not used anywhere else).
This gives an (in general infinite) set S0 of closed strands. Also this induces an initial intruder
knowledge M0 (derived from the knowledge specification in AnB).

We consider the free variables of a role as its parameters, i.e., when we see a role as a program,
the parameters could be inputs to the program. In fact, recall that in the syntax of AnB we had
required that

• only variables of type Agent can occur in the initial knowledge of any agent – and they can
be instantiated with any concrete agent name; and

• all other variables (that do not occur in the initial knowledge) are freshly created by the
agent who first uses them.

Example 10. Continuing Example 9, the variables A and B are agent names and shall be in-
stantiated with agent names, e.g. σ(A) = a, σ(B) = i. The variable NA is freshly created by A
since it is not in the initial knowledge and first occurs in a message sent by A. Thus we can
instantiate it with a constant that is unique to this strand – to model a random number generator,
e.g., σ(NA) = n17. Under substitution σ we obtain the following closed strand:

A

•
{n17,a}pk(i) //

•
{n17,NB}pk(a)oo

•
{NB}pk(i) //

The precise semantics of AnB includes an executability check that can only succeed if all free
variables are either agent names of the initial knowledge of that role or freshly created by that
role. For instance in the example, if we remove NB from the receive step, but leave it in the
following send step, then this protocol is unexecutable (since NB is created by B and thus a priori
not known to A.

Thus, the instantiation of agent names and fresh constants will always yield closed strands.
We can thus create an arbitrary large supply of protocol sessions:
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Definition 10. Let R1, . . . , Rk be the roles of a protocol (as strands). For each role Ri let IRi
be a

set of substitutions that instantiate the free variables of Ri with agent names and freshly generated
constants. Further let Ki be the knowledge of role Ri and Ai be the agent name of role Ri. We
define the initial set of closed strands as:

S0 =

k⋃
i=1

{σ(Ri) | σ ∈ IRi ∧ σ(Ai) 6= i}

and the initial intruder knowledge as

M0 =

k⋃
i=1

{σ(Ki) | σ ∈ IRi
∧ σ(Ai) = i} .

Thus, for every instantiation σ that does not instantiate the role name with the intruder, we
create a closed strand as part of S0, and otherwise, we give the instantiated knowledge to the
intruder.

Example 11. In the previous example, we have the instance σ = [A 7→ a,B 7→ i, NA 7→ na17]
for role A, producing the already depicted closed strand. Let us have a matching instance for role
B: σ′ = [A 7→ a,B 7→ i, NB 7→ nb18]. Since this role B is now played by i, this instance does not
produce a strand but gives the intruder knowledge {b, pk, inv(pk(i))}, i.e., the knowledge that was
specified for role B under substitution σ′. Thus the intruder is supplied with all messages he needs
to know in order to faithfully execute the protocol.

Note that in general there is no bound on the agent names or on the number of sessions that
can execute a protocol. Also between the same set of agents, we can have an unbounded number
of sessions.

8.2 States and Transitions

We define now our abstract protocol world by first describing what a state of this world is:

Definition 11 (State). A state consists of three things:

• a set of closed strands representing the honest agents,

• a set of ground messages M that the intruder currently knows,

• and a set E of events that have occurred so far (for later analyzing the security goals).

The initial state of this world consists of the initial set S0 of closed strands and the initial
intruder knowledge M0 that were produced by the instantiation. The set E of events is initially
empty.

We now define how this world can evolve by giving possible transitions from one state to
another caused by actions of honest agents and the intruder. In every state there can be several
possible transitions, yielding different possible successor states of the world. We are then interested
in all states that our world can reach, the reachable states. Later we define the security goals by
declaring which reachable states we consider an attack state and then security is defined by: no
attack state is reachable.

We now define the possible transitions, based on the current state and a possible next state:

8.2.1 Transition: Sending

If the current state contains an honest agent whose next step is to send a message m1, then
a possible next state is obtained by removing the message m1 and adding it to the intruder
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knowledge:

A B C . . .

• m1 // . . . . . .

• m2oo

• mn //

=⇒ A B C . . .

. . . . . .

• m2oo

• mn //

Intruder knowledge M Intruder knowledge M ∪ {m1}
Events E Events E

Since the intruder controls the entire network, in this model all messages are simply “received” by
the intruder – observe that the strand notation does not even write who the intended recipient is
(it does not matter anyway in the presence of this intruder).

8.2.2 Transition: Receiving

The next kind of transition is for a state that contains an honest agent whose next step is to
receive a message m1. The situation is more complicated, because m1 may contain variables that
are bound by this receive step. The question is whether the intruder can generate any instance of
m1 from his current knowledge M , i.e., whether M ` σ(m1) for some substitution σ. Then the
following transition is possible:

A B C . . .

• m1oo . . . . . .

• m2 //

• mn //

=⇒
if
M ` σ(m1)

A B C . . .

. . . . . .

•
σ(m2) //

•
σ(mn) //

Intruder knowledge M Intruder knowledge M
Events E Events E

The substitution σ is applied to the rest of the strand since all variables that have been bound
by the receive step are bound to that value for the rest of the strand. Again this reflects the fact
that the intruder controls the network: all messages that an honest agent receives come from the
intruder. Observe that the strands do not carry any information about who the claimed sender
is, since the intruder could anyway insert any name he knows.

Observe that with this strong intruder all communications are subsumed, e.g., that a message
from honest a to be received by honest b: by the send event of a, the intruder learns (and intercepts)
the message. If he pleases, he sends it to b in the next step, so the possibility is in the model, but
he could choose to send a different (modified) message to b (that matches what b is waiting for)
and so on.
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Example 12. Consider the state

A B C . . .

•
{na17,NB}pk(a)oo . . . . . .

with intruder knowledge M = {a, b, i, pk(a), na5, na17, {na17, nb3}pk(a)}.
Then there are infinitely many substitutions σ under which the receive step can work, i.e., so

that M ` σ({na17, NB}pk(a)):
σ(NB) =

• nb3 (using the encrypted message)

• na5 or nb17 (construct himself)

• a, b, i, pk(a), {na17, nb3}pk(a), . . ., i.e. “ill-typed” messages: the intruder can actually use
any message he can construct.

This demonstrates that a single honest strand can induce an infinite set of reachable states,
since the intruder has an infinite choice of terms to construct.

8.2.3 Transition: Checking

The next kind of transition is pretty easy: when the next step of an agent is an equality s
.
= t

then it can proceed only if s ≈E t (i.e., s = t in the free algebra); otherwise this strand is simply
stuck:

A B C . . .

s
.
= t . . . . . .

• m1 //

• mn //

=⇒
if
s ≈E t

A B C . . .

. . . . . .

• m1 //

• mn //

Intruder knowledge M Intruder knowledge M
Events E Events E
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8.2.4 Transition: Events

Finally, if an agent creates an event, this is simply added to the set of events:

A B C . . .

event(t) . . . . . .

• m1 //

• mn //

=⇒ A B C . . .

. . . . . .

• m1 //

• mn //

Intruder knowledge M Intruder knowledge M
Events E Events E ∪ {t}

Example 13. Consider again the NSPK protocol from example 9 (where we have marked the free
variables blue and the bound variables red):

A

•
{NA,A}pk(B) //

•
{NA,NB}pk(A)oo

•
{NB}pk(B) //

B

{NA,A}pk(B) // •

•
{NA,NB}pk(A)oo

{NB}pk(B) // •

Let us consider for each role only one instance with an honest player: σA = [A 7→ a,B 7→ i,NA 7→ n17],
so agent a would like to talk to (the dishonest) agent i. Remember this is because our model
does not rely on all parties to be necessarily honest. For role B we consider instance σB =
[B 7→ b, A 7→ a,NB 7→ n18]:

A

•
{n17,a}pk(i) //

•
{n17,NB}pk(a)oo

•
{NB}pk(i) //

B

{NA,a}pk(b) // •

•
{NA,n18}pk(a)oo

{n18}pk(b) // •

For the initial intruder knowledge we have M0 = {a, b, i, pk(a), pk(b), pk(i), inv(pk(i))}, i.e., he
knows the agents, all public keys and his own private key.

Let us look at just one trace, i.e., sequence of transitions, that this world can take:

• First a sends out her first message {n17, a}pk(i) that is added to the intruder knowledge M .
Note that M ` n17 since the message is encrypted with the public key of the intruder.

• The intruder has now many choices, he could reply to a, basically making a normal run with
her, or he could try to talk to b and impersonate a. Also for that there are many choices,
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since he can take any term he knows to be NA and compose a message that b is waiting for.
He could use the value n17 that he just learned, giving this state:

A

•
{n17,NB}pk(a)oo

•
{NB}pk(i) //

B

•
{n17,n18}pk(a)oo

{n18}pk(b) // •

• Now b can send out his reply {n17, n18}pk(a) which is again added to the intruder knowledge.
Note that the intruder cannot decrypt this message, and thus he cannot learn the secret n18
yet. But this message matches what a is waiting for:

• Let the intruder simply forward the message he learned from b to a we have the state:

A

•
{n18}pk(i) //

B

{n18}pk(b) // •

• When a sends out her next message, {n18}pk(i), the intruder learns the secret n18.

• The intruder is now also able to complete the run with b, because he can produce {n18}pk(b).

In fact, with the standard definition of secrecy and authentication goals – that we more formally
discuss next – it is not a secrecy problem that the intruder learned n17, because that was a secret
meant for i, but it is a violation of secrecy that he learned n18 since it was meant for a. So at
the next to last step we had already reached an attack state. That a finished her protocol run does
not violate any authentication goals, since a did indeed talk with i like she intended, but that b
finished his run is a violation of authentication since b believed to be talking with a while a has
never intended to talk to b.

This protocol is the “canonical” example why one should consider dishonest agents: it
is secure when all participants are honest. This is maybe a reason that after NSPK was
published in 1978 it took 18 years until this attack was discovered by Lowe [17].

9 Security Goals

We now define formally secrecy and authentication goals for protocols. There are of course many
other interesting goals, such as sender invariance, anonymity, privacy, non-repudiation, and avail-
ability. Some of these we will actually discuss later, but they require additional measures and
infrastructure, so for now we only focus on the basic goals.

9.1 Secrecy

For a protocol like the NSPK example above, one could formulate the following secrecy goals in
AnB:

NA secret between A,B

NB secret between A,B

It is thus important to specify what should be a secret, and who is cleared to know it. The “who”
is important at least if we have dishonest participants, because it is not a violation of secrecy if a
dishonest participant learns a secret that is meant for him (like n17 in the NSPK attack).
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A convenient way to define goals is to insert special events into the protocol execution that
indicate what an agent “thinks”. For secrecy we use an event secret(m, s) where m is the secret
message and s is a set of agents that may know it. This event is inserted at the end of every role
that is a participant of the secret. It is inserted at the end because some protocols may have a
“candidate secret” that only becomes a secret when the party completed some steps. It is inserted
in every role that participates to the secret, because secrecy should also be violated if only one of
the parties completed the protocol run.

Example 14. For NSPK with the given secrecy goals we have:

A

•
{NA,A}pk(B) //

•
{NA,NB}pk(A)oo

•
{NB}pk(B) //

secret(NA, {A,B})
secret(NB, {A,B})

B

{NA,A}pk(B) // •

•
{NA,NB}pk(A)oo

{NB}pk(B) // •

secret(NA, {A,B})
secret(NB, {A,B})

Now we define an attack on secrecy as any state where the intruder finds out a secret he is not
supposed to:

Definition 12 (Secrecy). A state with intruder knowledge M violates secrecy, if it contains an
event secret(m, s) and M ` s and i /∈ s.

9.2 Authentication

Authentication, also called agreement, mainly means that communication partners agree on who
they are talking to. It however also entails a property sometimes called integrity : that the intruder
did not manipulate the exchanged information. This is part of authentication by simply requiring
that the agents also agree on the information. Finally, authentication can also entail freshness:
that the intruder cannot make one agent agree to something that truly happened, but a long time
ago.

For the NSPK protocol we could have the following two goals:

B weakly authenticates A on NA

A weakly authenticates B on NB

Here “weakly” denotes the weaker variant of authentication – we come to the strong variant below.
Authentication goals have a direction as already explained in Section 4: one could see the protocol
as authentically (and secretly, but that is another goal) transmit NA from A to B and NB from
B to A. We thus need to talk about the intention of one party to send information, and talk about
a party apparently receiving information. Like for secrecy goals we define special events for this.

For assign to every authentication goal a unique identifier, so that events of different authen-
tication goals are not confused. Then for any authentication goal B(weakly)authenticatesAonM
with identifier p:

• we insert the event witness(A,B, p,M) into role A at the earliest point where A can compose
M .
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• we insert the event request(B,A, p,M, ID) at the end of role B. Here ID is a new free vari-
able, representing another fresh identifier to be created; this is for the strong authentication
later.

Intuitively witness(A,B, p,M) means that A intends to run the protocol with B and agree on
message M ; and request(B,A, p,M, ID) is the counter-part meaning that B now believes to have
been talking to A and has received message M in this session.

Example 15. For NSPK with the given authentication goals we have:

A

witness(A,B, p1, NA)

•
{NA,A}pk(B) //

•
{NA,NB}pk(A)oo

•
{NB}pk(B) //

request(A,B, p2, NB)

B

witness(B,A, p2, NB)

{NA,A}pk(B) // •

•
{NA,NB}pk(A)oo

{NB}pk(B) // •

request(B,A, p1, NA)

Now we define authentication as a state where a request without corresponding witness has
occurred, i.e., one party accepts a communication that did not happen that way:

Definition 13 (Weak Authentication). An attack on weak authentication (aka non-injective agree-
ment [18]) is any state where

• the event request(B,A, p,M, ID) has occurred for some A 6= i and

• the event witness(A,B, p,M) has not occurred.

We have the side condition A 6= i because in a session with a dishonest participant the agree-
ment is pointless. We could also require B 6= i, but that does not change anything since the
intruder cannot issue any events, so an event request(i, . . .) cannot occur by construction.

We can see how different aspects are subsumed by this goal: if B believes that A has sent M
it is an attack

• (Wrong Sender) if M comes from somebody else than A;

• (Wrong Receiver) if M comes from A, but was meant for C; or

• (Wrong Content) if A actually meant to talk to B, but said something different than M .

Finally, we add the aspect of freshness to achieve the (strong) authentication goal. For this
we assume however that the message M that we authenticate upon contains something fresh (like
NA and NB in the NSPK example are created freshly):

Definition 14 (Authentication). A state violates strong authentication (aka injective agree-
ment [18]) if it violates weak authentication or:

• two distinct events request(B,A, p,M, ID) and request(B,A, p,M, ID′) with ID 6= ID′ and
A 6= i.

Thus, we use the freshly created identifier (ID and ID′) to distinguish two events that are
otherwise equal in every argument. Thus B has accepted two times exactly the same message M
to come from A. Since we required that M contains something fresh, no honest A would have sent
this M twice, and it is thus a replay by the intruder.
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10 ? The Algebraic AnB Semantics

Summary 3. In Section 5, we had remarked that in general we cannot simply split the message
sequence chart into roles, because this often will not reflect how the protocol is really executed, i.e.,
what incoming messages an agent can accept and how outgoing messages are constructed. Here
we give the precise definition for this. A key idea is that a normal protocol execution is based
on using only the standard cryptographic operations just like the Dolev-Yao intruder. From this
follows almost immediately what an agent can check about a received message and how an agent
can compose an outgoing message. However, one must distinguish between the knowledge that an
honest agent has about an actual message and how a message supposedly looks like according to
the AnB specification. Finally, we can define the semantics of AnB by a translation from AnB to
a set of strands, one for each role. We can also generate actual protocol implementations from
this.

This section contains several excerpts from [1] where more details and examples can be found.

10.1 Message model

We now define the AnB semantics precisely for any given set Σ of operators, whereof a subset
Σp ⊆ Σ is public, and where ≈ is an arbitrary congruence relation on terms.

In the previous definition of the Dolev-Yao reduction relation `, we have used some analysis
rules like (DecSym) that allow the intruder to analyze a term {|m|}k if he knows k and obtain m.
An alternative way to model this is to use an explicit decryption operator {| · |}−1

· /2 ∈ Σp with the
algebraic property:

{|{|m|}k|}−1
k ≈ m

With this property the (DecSym) rule is redundant since for every terms k and m we have:

M ` k M ` {|m|}k
M ` {|{|m|}k|}−1

k

(Compose)

M ` m (Algebra)

In a similar way, we can replace all analysis rules with explicit decryption functions. One can
show that (under some reasonable restrictions) this model with explicit decryption functions is
equivalent to our free algebra model with analysis rules. The advantage of the free algebra model
is that it is algorithmically much easier (no algebraic reasoning) while the algebraic model has the
advantage that we can handle decryption in a uniform way and more easily talk about steps that
honest agents have performed.

We now distinguish two kinds of messages:

• (1) the protocol messages that appear in an AnB specification and

• (2) recipes that are the messages in the strands the semantics translates to.

It is necessary to make this distinction as the AnB specification reflects the ideal protocol run,
while the semantics reflects the actual actions and checks that an honest agent performs in the
run of the protocol. For the same reason, we will also distinguish between two kinds of variables:

• protocol variables that appear in the AnB specification like A,B,NA and the like and

• label variables that we introduce now: X1,X2,X3 . . ..

Intuitively, the label variables represent “memory locations” of an honest agent: given the
knowledge KR of role R in an AnB specification, we give every message in KR one unique label:

Definition 15. A labeled knowledge M is a substitution of the form M = [X1 7→ t1, . . . ,Xn 7→ tn]
where the Xi are label variables and the ti are protocol messages. We then say |M | = n is the size
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of M . The set TΣp
({X1, . . . ,Xn}) of terms built from the label variables of M and public operators

is called the set of recipes over M . (This is intuitively the set of all terms that an agent with
knowledge M could build.) For a recipe t over M , we say the corresponding protocol message
is M(t), i.e., applying the substitution M to the recipe, replacing its label variables with protocol
terms.

Example 16. During the execution of a Diffie-Hellman based protocol (see sec 3.2), an agent
may reach the following knowledge (where X,Y,K,N are variables from the protocol description
in AnB):

M = [X1 7→ X,X2 7→ {| exp(g, Y )|}K ,X3 7→ K,X4 7→ N ] .

The agent is supposed to generate as a next step the message

{|N |}exp(exp(g,X),Y ) .

A recipe for that term is t = {|X4|}exp({|X2|}−1
X3
,X1) since:

M(t) = {|N |}exp({|{| exp(g,Y )|}K |}−1
K ,X) ≈ {|N |}exp(exp(g,Y ),X) ≈ {|N |}exp(exp(g,X),Y ) .

This already takes care of the question how agents can generate messages. It remains to define
what they can check about messages they receive. The idea is simply: does the reached knowledge
M allow for any pair of recipes s, t such that M(s) ≈ M(t). That means there are two ways to
derive a term that should give the same result if the messages are correct, i.e., follow the AnB
specification:

Definition 16. For a knowledge M , we say a formula φ is a complete set of checks (for M) if it
implies every equation s

.
= t where s and t are recipes over M such that M(s) ≈M(t).

Note that there are trivially always infinitely many equations, since if s
.
= t is one and f/1 ∈ Σp,

then also f(s)
.
= f(t) is one. We are therefore happy with any finite collection φ that implies all

the others.

Example 17. Suppose according to the protocol an agent shall first receive h(N), but does not
know N , so cannot check the received message at first. In a later step N is revealed. The knowledge
is then: M = [X1 7→ h(N),X2 7→ N ]. Then φ ≡ X1

.
= h(X2) is a complete set of checks.

The entire translation/semantics from AnB to roles is now as follows:

• First split the message sequence chart from AnB into a set of strands, one for each role. We
call it the plain strands.

• Label for each strand the initial knowledge M0 of that role, which is the messages from the
knowledge section labeled with X1, . . . ,Xn.

• Go step by step through the roles:

– For sending a protocol message m, find a recipe t over the current knowledge M such
that M(t) ≈ m. If no such recipe exists the protocol is refuted as unexecutable. If there
is more than one such label, one can choose any: they are all equivalent due to the
checks we perform on received messages. The step Snd(m) is replaced by Snd(t) for the
chosen label.

– For receiving a protocol message m, extend the current knowledge M by Xk 7→ m for
a new label variable Xk (that does not occur in M). Find a complete set φ of checks
for the augmented M . Replace the receive step Rcv(m) by Rcv(Xk) followed by the
equations φ.

Note that this now contains explicit decryption functions that our standard model from the
previous sections does not support. It is however easy to get rid of them: For instance consider
the strand Rcv(X1).{|s|}−1

( ,X1)
.
= t.S for some terms s, t and a rest strand S. Here we can extract

the substitution σ = [X1 7→ {|s|}(, t)] (otherwise the decryption would not work), and apply σ to
the strand, yielding Rcv({|s|}(, t)).σ(S). In this way all decryption functions can be turned into
pattern matching.
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Part II

Automated Verification

11 Introduction

It would be great to have a general verification procedure for computer programs. Such a pro-
cedure would receive as input a program P (choose your favorite programming language12) and
a specification what the program should compute. A specification should in some way describe
a function from inputs to desired outputs of the program. For instance a program for sorting
integers should as input receive a list of integers and as output return a permutation of the input
list that is in ascending order. In general, a specification give the programmer even more freedom
and specify a set S of functions and it is fine if the program computes one of the functions of S.
We do not discuss here how a language or logic for describing S could look like, because it will be
irrelevant for our point. The question that we want to solve is the following:

Definition 17. Given a set S of computable functions, then an S-verifier is an algorithm that
gets a program P as input and returns yes if P computes a function in S, and no otherwise.

The following theorem tells us that we cannot even conceive such an algorithm for any S –
with two trivial exceptions.

Theorem 2 (Rice). Let S be any set of computable functions, except for the emptyset and the set
of all computable functions. Then there is no S-verifier.

It is important to keep this principle limitation in mind, because it appears in similar shape
again and again, and one can save a lot of time if one recognizes earlier that the problem one tries
to solve is actually undecidable. Many questions of logic and mathemtics fall into this: it would
be nice to have procedures to tell us whether a claimed statement is actually true (i.e., prove that
it is a theorem) or not (and give a counter-example).

The principle limitation does not mean, however, that one cannot solve practically relevant
parts of the problem, in particular

• identifying restrictions under which the problem becomes decidable, i.e., deciding a fragment
of the problem;

• procedures that on some inputs give the answer Inconclusive (instead of yes or no) or do not
terminate. In particular

– Procedures may be focused on finding counter-examples (attacks, in our case) and be
inconclusive or non-terminating on correct inputs.

– Procedures may be focused on proving correctness and use some over-approximation.
They may then fail to find a correctness proof or even present a counter-example that
could be a false positive, i.e., a counter-example that arises from the over-approximation.

11.1 The Sources of Infinity

The reasons for undecidability in verification is that some aspect of the described system is infinite.
Infinity does not necessarily lead to undecidability, for instance the set of even integers in infinite
but obviously decidable. We therefore would like to first distinguish several aspects of infinity
that arise from the security protocol model we have introduced in the first part and see how it
relates to decidability. In fact that restriction of some aspects yields decision procedures that are
the most successful ones in practice.

We will in general see our security protocol models as tree of states:

12We just have to require that the language is Turing complete, which holds for all standard programming
languages like C/C++, Java, Haskell, ...
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• we have an initial state that is the root node, and

• we can make state transitions from one state to another that gives a child relation between
nodes, i.e., if one can reach from state S in one transition a set S′, then S′ is a child of S.

• The security goals are described as a check on states, i.e., we should later check if any node
of the tree violates this check.

In general this tree has several aspects of infinity:

Unbounded Messages Recall the transitions for an honest agent receiving a message m (where
m may contain variables). If the current intruder knowledge is M , then for every substitution
σ such that M ` σ(m), we can have a transition. In general this is infinite, i.e., we have a
tree that can be infinitely branching.

Unbounded Sessions By default, the set of strands for honest agents that we start with is
infinite. That is because there we do not want to limit how many people can use the protocol
in parallel, and how many sessions between the same people can be open at the same time.
An infinite set of sessions (no matter how represented) means both infinite branching of the
tree and infinite depth (i.e., infinitely long paths).

Unbounded Nonces Agents can in any session generate fresh nonces, so in an unbounded num-
ber of sessions, also the number of nonces may be unbounded. It may seem that this
automatically follows from infinite sessions, but we later want to ask what happens if we
have unbounded sessions but without fresh nonces.

Algebraic Properties Algebraic properties alone can lead to undecidable problems, we want
to limit this here, and just mention that the algorithms we present here can be at least be
extended to work with some standard algebraic properties like Diffie-Hellman.

Leaving out algebraic properties and having unbounded nonces only with unbounded sessions,
we get a lattice of six possible variants how we could restrict the “infinities” of the problem, from
restricting everything to restricting nothing:

Messages Unbounded
Sessions Unbounded
Nonces Unbounded

Messages Bounded
Sessions Unbounded
Nonces Unbounded

Messages Unbounded
Sessions Unbounded
Nonces Bounded

Messages Bounded
Sessions Unbounded
Nonces Bounded

Messages Unbounded
Sessions Bounded
Nonces Bounded

Messages Bounded
Sessions Bounded
Nonces Bounded

Here we have noted the most restricted model already in green, because restricting everything
gives a finite tree and then a decision procedure obviously exists.

11.2 ? An Undecidability Result

We show that if protocol security were decidable, then we could construct a decision
procedure for a classic problem: Post’s Correspondence Problem (PCP). Since PCP is
already known to be undecidable, so must be protocol security. See also: the updated
decidability lattice at the end of this section.
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To show the undecidability of a problem, i.e., that it is impossible to construct an algorithm
that decides that problem, it is often helpful to relate it to other undecidable problems for which
undecidability has already been proved. Some people like to use the classical Halting problem of
Turing machines, but that can often lead to cumbersome encodings. A much “cleaner” undecid-
ability problem to work with is the correspondence problem proposed by Emil Post:

Definition 18 (Post’s Correspondence Problem (PCP)). Consider the following function:

Input A finite sequence of pairs of strings (s1, t1), . . . , (sn, tn).

Output Yes if there is a finite sequence of indices i1, . . . , ik ∈ {1, . . . , n} such that si1 . . . sik =
ti1 . . . tik ;
and No otherwise.

Example 18. The correspondence problem

s1 = 1 s2 = 10 s3 = 011
t1 = 101 t2 = 00 t3 = 11

has a solution: s1s3s2s3 = 101110011 = t1t3t2t3.

The infinite aspect that makes this problem undecidable is that there is no bound on the length
of the sequence of indices: if we have checked that there is no correspondence for any sequence up
to length, say, 100, there is no guarantee that there is no sequence at all that has a correspondence.

We now give a reduction: we “encode” PCP into protocols by giving a computable translation
f from PCP to protocols, so that the a PCP problem p has a correspondence (i.e. the answer
should be Yes) iff the protocol f(p) has an attack. It follows, if there were any decision procedure
for protocol security, then we could build one for PCP using this translation f . Since PCP is
undecidable, it follows that protocol security is undecidable.

Definition 19 (Reduction from PCP to Security Protocols inspired by [13]). For the given PCP
problem ((s1, t1), . . . , (sn, tn)) define the following strands:

• An initialization strand: Rcv(〈〈X,Xs〉, 〈$, $〉〉).Snd({|〈〈X,Xs〉, 〈$, $〉〉|}k). Here $ is a public
constant. This takes (from the intruder) a sequence of indices that cannot be empty (there is
at least one element X, but any number), and encrypts it with a secret key k. Assume also
all characters of the strings si and ti and the indices 1, . . . , n are public constants.

• For each of the (sj , tj) (where j ∈ {1, . . . , n}), we have an infinite number of strands of the
form:13

Rcv({|〈〈j,Xs〉, 〈Yl, Yr〉〉|}k).Snd({|〈Xs, 〈sj · Yl, tj · Yr〉〉|}k)

The notation s ·X is not a new operator but a notation for the following: let s = c1c2 . . . cn,
then s ·Y shall denote the term 〈c1, 〈c2, 〈. . . , 〈cn, Y 〉〉〉〉. Intuitively these strands step by step
construct the strings that are induces by the indices that the intruder had chosen originally.

• Finally the strand: Rcv({|〈$, 〈X,X〉〉|}k).Snd(secret). This means that all indices by the
intruder have been transfered into a string (i.e., we have reached the end marker $) and the
obtained strings are identical (both X) then the intruder has indeed found a solution to the
PCP. In this case he gets the secret constant secret.

The goal is that the intruder never obtains secret.

Theorem 3. The intruder finds out secret iff the given PCP has a correspondence. Thus protocol
security is undecidable.

Observe that this reduction relies on two infinities:

13We want infinitely many copies of each strands, so that this input-output behavior can be performed any
number of times. Since we have a set of strands, we achieve this by a renaming of the strands bound variables.
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• The intruder must be allowed to compose arbitrary large messages (i.e., sequences of indices).

• There must be an unbounded number of sessions so that the honest agents can check the
solution that the intruder has submitted, no matter how large it is.

• There are however no fresh nonces used in the protocol. So even without fresh nonces we
have undecidability.

We update the decidability lattice by two marking the proved undecidable settings in :

Messages Unbounded
Sessions Unbounded
Nonces Unbounded

Messages Bounded
Sessions Unbounded
Nonces Unbounded

Messages Unbounded
Sessions Unbounded
Nonces Bounded

Messages Bounded
Sessions Unbounded
Nonces Bounded

Messages Unbounded
Sessions Bounded
Nonces Bounded

Messages Bounded
Sessions Bounded
Nonces Bounded

In the upcoming sections, we will further fill this lattice.

12 Symbolic Transition Systems

Let us now first bound the number of sessions (and thus of the nonces). Recall that even for a
finite number of sessions we can get an infinite-state transition system if we do not bound the
messages:

Example 19. In Example 13, there is an infinite choice of messages that the intruder can send
to b: b expects a message of the form {NA, a}pk(b) and the intruder knows both pk(b) and a. So
he can choose an arbitrary term t from his knowledge and construct {t, a}pk(b).

This gives at this state infinitely many successor (so, as a tree, an infinite branching degree).
Actually, even under some reasonable bounds on the intruder messages this is the point where
search for an attack becomes really infeasible. The key idea is now that it is not really productive
to list all kinds of terms t that the intruder could use as NA. Let us be lazy and procrastinate
this choice of NA for now.

This means that we get a symbolic state that has a free variable NA and we must remember
that, whatever NA is, it is something that the intruder can generate from his current knowledge.
To store this information what the intruder has generated and at what state of this knowledge,
we introduce the concept of an intruder strand – the messages the intruder has sent and received
so far. We also will call this an (intruder) constraint, because we are interested for which values
of the variables it can be fulfilled. Let us first look at the NSPK example how that looks like:
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Example 20.

A

•
{n17,a}pk(i) //

•
{n17,NB}pk(a)oo

•
{NB}pk(i) //

B

{NA,a}pk(b) // •

•
{NA,n18}pk(a)oo

{n18}pk(b) // •

i

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)) // •

{n17,a}pk(i) // •

•
{NA,a}pk(b)oo

We here have an intruder strand with the following (intuitive) meaning:

• Incoming messages are messages that the intruder has learned. (In the first line we have the
initial intruder knowledge, in the second line we have the message that a has sent to i first.)

• Outgoing messages are messages that the intruder has produced. (In the third line we have
the message that the intruder has sent to b.)

• This should represent all solutions σ of the free variables such that the intruder can generate
every outgoing message (under σ) when knowing all previous incoming messages (under σ).
We are just lazily procrastinating that choice of σ!

The next step could be that b answers the message; note that b’s answer depends on the free
variable NA – we have not instantiated in the previous step as of our laziness, so now also honest
agents are sending around messages with variables:

A

•
{n17,a}pk(i) //

•
{n17,NB}pk(a)oo

•
{NB}pk(i) //

B

{NA,a}pk(b) // •

•
{NA,n18}pk(a)oo

{n18}pk(b) // •

i

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)) // •

{n17,a}pk(i) // •

•
{NA,a}pk(b)oo

{NA,n18}pk(a) // •
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Let us say that the intruder next talks to a and gets an answer:

A

•
{n17,a}pk(i) //

•
{n17,NB}pk(a)oo

•
{NB}pk(i) //

B

{NA,a}pk(b) // •

•
{NA,n18}pk(a)oo

{n18}pk(b) // •

i

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)) // •

{n17,a}pk(i) // •

•
{NA,a}pk(b)oo

{NA,n18}pk(a) // •

•
{n17,NB}pk(a)oo

{NB}pk(i) // •

Let us finally consider the secrecy goal and check whether the intruder can produce the secret
n18 right now. To that end, we can just add put it as a message he has to derive on the intruder
strand. Then secrecy is violated, if we can find a solution for this constraint:

i

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)) // •

{n17,a}pk(i) // •

•
{NA,a}pk(b)oo

{NA,n18}pk(a) // •

•
{n17,NB}pk(a)oo

{NB}pk(i) // •

•n18oo

In section 13 we give a decision procedure for such constraints. In fact there is a solution for
this example (and only one): σ(NA) = n17 and σ(NB) = n18; that’s the secrecy attack from
Example 13.

Before we have a closer look at the constraints, let us define a symbolic transition and how
that induces constraints:

Definition 20 (Symbolic Transition System). A symbolic state consists of
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• a set of honest strands

• an intruder strand

• a set of events that have occured.

The initial state has a set of closed strands for the honest agents, a receive step for the intruder
strand containing the initial intruder knowledge, and an empty set of events.

We have transition rules for honest agents sending and receiving messages, checking equations
and emitting events; these are similar to the ones in the original (concrete) transition system, and
we define them in the following subsections.

12.1 Transition: Receiving

Messages that honest agents are receiving are simply moved (with inverse direction) to the intruder
knowledge:

A B C . . .

• m1oo . . . . . .

• m2 //

• mn //

Intruder:
. . .

• too

Events: E

=⇒

A B C . . .

• m2 // . . . . . .

• mn //

Intruder:
. . .

• too

• m1 //

Events: E

Note that this rule is actually much simpler than the corresponding ground rule, because it does
not care for expressing the solutions of the intruder constraint.

12.2 Transition: Sending

Messages that honest agents are sending are also simply moved (with inverse direction) to the
intruder knowledge:

A B C . . .

• m1 // . . . . . .

• m2 //

• mn //

Intruder:
. . .

• too

Events: E

=⇒

A B C . . .

• m2 // . . . . . .

• mn //

Intruder:
. . .

• too

• m1oo

Events: E
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12.3 Events and Equations

Events can just be carried over as before. Equations we leave to the reader as an exercise.

13 The Lazy Intruder

We first define the meaning of lazy intruder constraints and then show how to solve them.

Definition 21. An intruder constraint is a strand where all variables are free, i.e., all variables
first occur in an outgoing message.

At any point • in the constraint, the intruder knowledge at that point is the set of all messages
received so far.

Given an intruder constraint C, and σ a substitution of all its free variables with ground terms.
Then σ is called a solution of C iff:

• for every outgoing message m of C, it holds that σ(M) ` σ(m) where M is the intruder
knowledge at that point.

Example 21. Consider again the constraint in from the NSPK example. Let us label the intruder
knowledge at different points M0, . . . ,M2:

i

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)) // •

{n17,a}pk(i) // • M0

•
{NA,a}pk(b)oo

{NA,n18}pk(a) // • M1

•
{n17,NB}pk(a)oo

{NB}pk(i) // • M2

•n18oo

The meaning of this constraint is any substitution σ such that the following Dolev-Yao deduc-
tions hold:

M0 := {a, b, i, pk(a), pk(b), pk(i),
inv(pk(i)), {n17, a}pk(i)}

σ(M0) ` σ({NA, a}pk(b))
M1 := M0 ∪ {{NA,n18}pk(a)}

σ(M1) ` σ({n17, NB}pk(a))
M2 := M1 ∪ {{NB}pk(i)}

σ(M2) ` σ(n18)
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13.1 Solving Constraints

We now give a procedure for solving constraints. This will be done with rules of the form:

S  S’

The meaning of such a rule is that to solve S, one way is to try to solve S′. Put another way, if
we can solve S′, then also we can also solve S.

For any given constraint S0, the relation induces a search tree for solutions of the constraints
as follows:

• The root node is the constraint S0

• Every node S has as children the strands that are reachable in one step with  :

– i.e., if S  S′ then S′ is a child of S.

Important feature we prove about this constraint tree are:

• Termination: the tree has finitely many nodes (we do not run into an infinite search of
solutions)

• Soundness: we only find correct solutions.

• Completeness: we do not miss solutions.

This means in particular that every leaf of the tree is either simple or unsolvable (Explained below,
easy to check). The root has a solution iff any leaf has a solution.

13.2 Composition

Idea: to construct an outgoing message of the form f(t1, . . . , tn) it is sufficient that f is a public
symbol and the intruder can construct the submessages ti:

Example 22.

. . .

•
{n17,NB}pk(a)oo

. . .

 . . .

•
pk(a)oo

•
〈n17,NB〉oo

. . .

 . . .

•
pk(a)oo

•n17oo

•NBoo

. . .

More general we define the intruder composition rule as follows:

Definition 22 (Lazy Intruder Composition Rule).

S1.Snd(f(t1, . . . , tn)).S2  S1.Snd(t1). . . . .Snd(tn).S2

if f/n ∈ Σp, i.e., f is a public function symbol.

The lazy intruder composition rule corresponds to the (Compose) rule of the Dolev-Yao
model: the intruder can compose terms he knows by applying a public function symbol.

One

may consider the lazy intruder as a backward search: rather than blindly composing terms (that
may be useless) in a forward exploration of terms we can generate, we rather start at the terms
we want to obtain, and if the toplevel symbol is public, we backwards-apply composition, i.e., try
if we can compose the subterms.
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13.3 Unification

Idea: another way to construct an outgoing message is to use a previously received message that
has the right “shape”:

Example 23.
. . .

{NA,n18}pk(a) // •

•
{n17,NB}pk(a)oo

. . .

These messages can be unified under unifier σ = [NA 7→ n17, NB 7→ n18]. This unifier has
to be applied to the entire intruder constraint.

13.3.1 Computing the Most General Unifier – mgu

At this point we need a classic algorithm: computing the most general unifier, or mgu for short.

Definition 23 (Unification). A unification problem is a set {(s1
.
= t1), . . . , (sn

.
= tn)} of equations

of terms. (We use the symbol
.
= again to distinguish from the normal equality symbol.)

A unifier σ for this unification problem is a substitution such that

σ(s1) = σ(t1) and . . . and σ(sn) = σ(tn) .

In general, there are infinitely many unifiers, for instance the problem {x .
= f(y)} has infinitely

many unifiers like τ = [x 7→ f(c), y 7→ c] (if you replace c by any other term, then you get another
unifier). However, there is in some sense a most general unifier for this problem: σ = [x 7→ f(y)]
since all other unifiers are a special case of σ. This notion of generality can be defined as follows:

Definition 24. We say that a substitution σ is at least as general as substitution τ , and write
σ � τ , 14 if there is a substitution θ such that θ ◦ σ = τ .

Intuitively, this means that we can obtain the more special substitution τ from the more general
σ by composing σ with another substitution θ. In the above example {x .

= f(y)}, we have with
θ = [y 7→ c] that θσ = τ , and thus σ � τ . In the free algebra we have the nice property that
a unification problem has either no unifier or there is a most general unifier (that is at least as
general as any other unifier). There is a fairly simple recursive algorithm that either computes
the most general unifier if it exists, or returns failure otherwise:

Definition 25 (Algorithm mgu(U, σ)).
Input: a unification problem U , a substitution σ (initially the identity [ ]).
Output: A substitution or answer failure.
If U = ∅ then return σ. Otherwise pick any equation (s

.
= t) in U and

• if s = t, continue to mgu(U \ {s .
= t}, σ).

• if s is a variable:

– if s ∈ vars(t): return failure

14The direction � may seem counter-intuitive since it calls the more general substitution “smaller”: this conven-
tion becomes intuitive if you see the sizes of terms as the size of the substitution, and then the smallest (and thus
most general) element in this partial order is the identity [ ] that does not substitute anything.
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– otherwise: update σ with [s 7→ t]
and continue to mgu(σ(U \ {s .

= t}), σ)

• if t is a variable: symmetric to previous case

• otherwise, i.e., s = f(s1, . . . , sn) and t = g(t1, . . . , tm):

– if f 6= g: return failure.

– if f = g (and thus n = m): continue with mgu((U \{s .
= t})∪{s1

.
= t1, . . . , sn

.
= tn}, σ).

We sometimes just write mgu(s
.
= t) for mgu({s .

= t}, [])

Example 24.

mgu({ {NA,n18}pk(a)
.
= {n17, NB}pk(a) }, [])

= mgu({ pk(a)
.
= pk(a) , 〈NA,n18〉 .= 〈n17, NB〉 }, [])

= mgu({ 〈NA,n18〉 .= 〈n17, NB〉 }, [])
= mgu({ NA .

= n17 , n18
.
= NB }, [])

= mgu({ n18
.
= NB }, [NA 7→ n17])

= mgu(∅, [NA 7→ n17, NB 7→ n18])

= [NA 7→ n17, NB 7→ n18]

Theorem 4. Consider any unification problem U . If mgu(U) = failure, then U has no unifier,
otherwise, if mgu(U) = σ then σ is the most general unifier of U , i.e., for every unifier τ of U ,
we have σ � τ .

13.3.2 The Lazy Intruder Unification Rule

Using the mgu function, we can now finally define the lazy intruder unification rule. If the intruder
received a term s and needs to send a term t, and s and t are unifiable, and σ is the most general
unifier of s and t, then we can apply σ to the entire constraint and consider the sending of t as
“done”:

Definition 26 (Lazy Intruder Unification Rule).

S1.Rcv(s).S2.Snd(t).S3  σ(S1.Rcv(s).S2.S3)

if s and t are not variables, and σ = mgu(s
.
= t).

The lazy intruder unification rule corresponds to the (Axiom) rule of the Dolev-Yao
intruder. A crucial condition of the unification rule is that neither s nor t can be a
variable. This is exactly what makes the intruder lazy: when the term to generate is a
variable, we do not bother to select a value for it (at this point).

One may wonder why we do not allow at least the received term s to be a variable. This is
because this variable then must have originated in an earlier Send-step (since all variables in an
intruder constraint must first occur in a Send-step); if that Send-step is a composed term, we
should solve that first; otherwise, i.e., if we have a constraint of the form

. . . Snd(x) . . . Rcv(x) . . . Snd(t) .

Thus the intruder has sent a message x that he then received back. Thus unifying t with x would
not be wrong, but redundant, and go against the philosophy of laziness here. For this reason we
also forbid unification steps where the received message is a variable.
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13.4 Simple Analysis

Idea: if the intruder received an encrypted message and has the decryption key in his knowledge,
then we can also add the decrypted message. (Similar for pairs, he can obtain the components
immediately.)

Example 25.

. . .

...,inv(pk(i)),...// •

{n17,a}pk(i) // •

. . .

 . . .

...,inv(pk(i)),...// •

{n17,a}pk(i) // •

〈n17,a〉 // •

. . .

 . . .

...,inv(pk(i)),...// •

{n17,a}pk(i) // •

〈n17,a〉 // •

n17 // •

a // •

. . .

Definition 27 (Lazy Intruder Simple Analysis Rules).

S1.Rcv(inv(k)).S2.Rcv({m}k).S3  S1.Rcv(inv(k)).S2.Rcv({m}k).Rcv(m).S3

S1.Rcv(k).S2.Rcv({|m|}k).S3  S1.Rcv(k).S2.Rcv({|m|}k).Rcv(m).S3

S1.Rcv(〈m1,m2〉).S2  S1.Rcv(〈m1,m2〉).Rcv(m1).Rcv(m2).S2

S1.Rcv({m}inv(k)).S2  S1.Rcv({m}invk).Rcv(m).S2

Note: this now can lead to non-termination, if one repeatedly applies a rule to the same term.
But since this is redundant (not adding new knowledge), we can exclude repeated application to
the same term.

13.5 ? Full Analysis

Analysis in the symbolic model is tricky and we can avoid it, if we “out-source” anal-
ysis into special strands, representing honest agents that perform analysis steps for the
intruder.

The analysis rules given so far are for the simple case that the intruder receives a composed
message and already has the decryption key for it in his knowledge. In general, analysis is more
difficult for the following reasons:

• The key-term may contain variables, like {m}pk(A). Suppose the only private key that the
intruder knows is inv(pk(a)). Then we actually get a case split: if A = i then he can decrypt
it, otherwise he cannot.

• The key-term may be composed, like {|m|}h(n1,n2). If the intruder knows n1 and n2 and h
is a public function, he can compose the decryption key, but the simple analysis rule would
miss this.
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• The intruder may receive a decrypted message that he cannot decrypt at first, but learn the
decryption key in a later step.

An idea is to “out-source” analysis in the following sense: suppose we add special strands to
the protocol like this one:

{M}K // •

inv(K) // •

•Moo

This means an agent “offering as a service” the same functionality that the analysis rule for
asymmetric encryption provides: give me a public-key encrypted message and the private key,
then you get the result. Since all agents but the intruder are honest, we do not have to worry
that the intruder transmits his private key to this service – nobody in our model will attack the
intruder. Also this would not insert any new attacks since the intruder only obtains something
that the normal Dolev-Yao model gives him anyway. If we do this for all decryption rules, we can
consider an intruder who does not decrypt himself. In fact, we would then obtain a transition
system where the intruder for any decomposition would ask one of the special agents.

This corresponds to the intruder to be able to insert an analysis step at any point into the
constraints. For instance, we would then have for NSPK:

Example 26.

. . .

...,inv(pk(i),...) // •

{n17,a}pk(i) // •

. . .

 . . .

...,inv(pk(i),...) // •

{n17,a}pk(i) // •

•
{M}K //

•
inv(K) //

• Moo

. . .

 ∗ . . .

...,inv(pk(i),...) // •

{n17,a}pk(i) // •

•
〈n17,a〉oo

. . .

Without care, this can easily lead to non-termination. However, if we are focusing on the
problem of a bounded number of sessions (i.e., infinitely many strands without the special analysis
strands) then we can also limit the number of analysis strands: for every constructor in the honest
strands that permits analysis, we shall have one corresponding analysis strand.
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13.6 Constraint Solving Complete Example

We now give the complete example of solving the intruder constraint from Example 21. The initial
constraint to solve is the following:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i))// •

{n17,a}pk(i) // •

•
{NA,a}pk(b)oo

{NA,n18}pk(a)// •

•
{n17,NB}pk(a)oo

{NB}pk(i) // •

•n18oo

Here we can decrypt {n17, a}pk(i) since we know the private key inv(pk(i)). We can also can
also decompose the resulting pair 〈n17, a〉. Since a is already known, we only really learn n17
from this. With this we obtain the constraint:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i))// •

{n17,a}pk(i) // •

〈n17,a〉 // •

n17 // •

•
{NA,a}pk(b)oo

{NA,n18}pk(a)// •

•
{n17,NB}pk(a)oo

{NB}pk(i) // •

•n18oo

Let us simplify notation to put these messages into the initial intruder knowledge. Also note
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that it is not a restriction to remove now the pair 〈n17, a〉 since we have the components and the
intruder can always compose the pair again. (In fact this later reduces a few redundant cases.)

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•
{NA,a}pk(b)oo

{NA,n18}pk(a)// •

•
{n17,NB}pk(a)oo

{NB}pk(i) // •

•n18oo

Consider the first outgroing message {NA, a}pk(b). For each outgoing message, there are always
basically two possibilities: composition or unification. Unification does not work here since the
intruder has nothing fitting in his knowledge. So let us go for composition:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•
pk(b)oo

•
〈NA,a〉oo

{NA,n18}pk(a)// •

•
{n17,NB}pk(a)oo

{NB}pk(i) // •

•n18oo

The intruder is now required to produce the key pk(b) which is directly in the knowledge, so
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we can remove it using unification:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•
〈NA,a〉oo

{NA,n18}pk(a)// •

•
{n17,NB}pk(a)oo

{NB}pk(i) // •

•n18oo

For 〈NA, a〉 we can only use composition (in fact, had we not removed the incoming pair
before, we would have to deal with it here as an extra case):

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•NAoo

•aoo

{NA,n18}pk(a)// •

•
{n17,NB}pk(a)oo

{NB}pk(i) // •

•n18oo

Now an important point is that we have to generate NA which is a variable. The
composition rule cannot be applied to it, because it is not of the form f(. . .) for a public
function f . The unification rule can only be applied between two terms s and t that are
not variables. Thus, no rule can be applied – we leave NA for now. This is why the
intruder is lazy – any value for NA will do, so why bother!
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The next item to generate is a: it is already known and can be removed with unification:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•NAoo

{NA,n18}pk(a)// •

•
{n17,NB}pk(a)oo

{NB}pk(i) // •

•n18oo

Consider now the first outgoing message that is not a variable: {n17, NB}pk(a). Again two
general possibilities: unification or composition. Both cases are possible here, and to build the
 tree, we have to follow both. Let us follow composition first (both for the encryption and the
pair):

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•NAoo

{NA,n18}pk(a)// •

•
pk(a)oo

•n17oo

•NBoo

{NB}pk(i) // •

•n18oo

pk(a) and n17 are known and can be done with unification. NB is a variable and we are lazy
again here, just leave it for now:
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a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•NAoo

{NA,n18}pk(a)// •

•NBoo

{NB}pk(i) // •

•n18oo

Looking at the next (incoming message), we can apply decryption here, giving us NB:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•NAoo

{NA,n18}pk(a)// •

•NBoo

{NB}pk(i) // •

NB // •

•n18oo

This is pretty useless: whatever NB is, we have constructed that ourselves earlier! Actually –
this is the normal protocol execution where the intruder has generated some value NB and now
received it back from Alice.

It remains to construct n18. That’s impossible, because we cannot apply composition (since
n18 is not a public function), and unification is impossible: we do not have n18 in our knowledge.
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So this branch of the  tree fails and we have to backtrack to the branching point from before:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•NAoo

{NA,n18}pk(a)// •

•
{n17,NB}pk(a)oo

{NB}pk(i) // •

•n18oo

We can apply unification between the incoming message {n17, NB}pk(a) and the outgoing
message {NA,n18}pk(a). The unifier (according to the mgu algorithm) is σ = [NA 7→ n17, NB 7→
n18]. We apply it to entire constraint and remove the outgoing message we have just “done” by
unification:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•n17oo

{n17,n18}pk(a)// •

{n18}pk(i) // •

•n18oo

This unification is actually the central point in finding the solution. We have “retro-actively”
decided that the intruder used n17 as nonce NA. This of course requires that the intruder knows
n17. He does – so one unification step:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

{n17,n18}pk(a)// •

{n18}pk(i) // •

•n18oo
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The message {n18}pk(i) can be decrypted, so we get n18:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

{n17,n18}pk(a)// •

{n18}pk(i) // •

n18 // •

•n18oo

The remaining outgoing message n18 is one simple unification step:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

{n17,n18}pk(a)// •

{n18}pk(i) // •

n18 // •

Solved!

13.7 Summary

The procedure for solving constraints (with simple analysis) can be summarized as follows:

• Always start with the first step that has not been considered yet.

• If incoming: can simple decryption be applied?

• If outgoing:

– If it is a variable, leave it for now and continue with the next step.

– If it is not a variable, consider independently (with backtracking!) the follow-
ing cases:

∗ Composition (if it is a public operator)

∗ Unification – with any incoming message that is not a variable.

• Whenever a unification is done where variables are substituted, apply to the entire
constraint and go back to the first message that was affected!

• When all remaining outgoing messages are variables, the constraint is solved. We
call that a simple constraint.
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13.8 Simple Constraints

Definition 28. An intruder constraint is called simple if all outgoing messages are variables.

For instance, the constraint we obtained at the end of the NSPK example is simple since it has
no more outgoing messages. Moreover, in the intermediate steps, the strands have a simple prefix
like this one:

a,b,i,pk(a),pk(b),pk(i),inv(pk(i)),{n17,a}pk(i),n17
// •

•NAoo

This is simple since the only outgoing message NA is a variable. Note that we cannot apply
composition or unification steps to such a message – and it would be pointless, because it requires
the intruder to only send some message. Since the intruder can always construct some message
we have:

Lemma 2. Every simple constraint has a solution.

Thus, when we arrive at a simple constraint, we have found a solution. If we arrive at a
constraint that is not simple and no further intruder rules can be applied, then the constraint is
not satisfiable – as the following lazy intruder correctness theorems show.

13.9 ? Correctness of the Lazy Intruder

Important properties of the lazy intruder:

• Termination: every unification and composition step makes the constraint simpler,
this cannot go on forever. The analysis steps can only produce subterms of terms
we already have.

• Soundness: the lazy intruder procedure finds only correct solutions (covered by
the Dolev-Yao model)

• Completeness: if a constraint has a solution, the lazy intruder will find it:

– Consider any solution of a constraint.

– Then the constraint is either already simple or one of the lazy intruder steps
gets us to a new constraint that still supports that solution.

– By termination, we eventually arrive at a simple constraint that supports the
considered solution.

Finally, one can show that the problem of protocol security with bounded sessions (and
nonces) but unbounded messages is co-NP-complete.

Theorem 5 (Termination). The lazy intruder terminates, i.e., for a given constraint S, there are
only finitely many S′ such that S  ∗ S′.

Proof. For a constraint S let us say its weight is a triple (l1, l2, l3) of positive integers where

• l1 is the number of variables in S.

• l2 is the number of terms in S that have not been analyzed (i.e., where the intruder does
not have the subterms).

• l3 is the size of all terms to be sent (number of characters) together.
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We order the components lexicographically, i.e., the weight l1 is the most signaficant, l2 second,
and l3 least. For instance (3, 2, 10) < (3, 3, 3). Then every rule of the lazy intruder reduces the
weight, and it is positive in all three components, so there cannot be an infinite chain of lazy
intruder steps. Also, for every constraint S there are only finitely many constraints S′ reachable
in one step.

Theorem 6 (Soundness). The lazy intruder is sound: if S  ∗ S′ and S′ has a solution, then also
S has a solution.

Proof. Every reduction rule can be justified as sound by the Dolev-Yao rules.

Theorem 7 (Completeness). The lazy intruder is complete: if S has a solution, then there is a
simple S′ with S  ∗ S′.

Proof. It is sufficient to show that for every non-simple S that has a solution, we have S → S′ for
some S′ that has a solution. From this plus termination then follows completeness.

Let S be a non-simple constraint so that σ is a solution of S, i.e., every outgoing message
Snd(t) in S with M being the set of messages received before Snd(t), it holds that σ(M) ` σ(t)
(where ` is the Dolev-Yao intruder deduction). Consider the first such step where t is not a
variable (if there is none, the constraint is already simple). We have the following cases:

• If the last step in the deduction σ(M) ` σ(t) is (Axiom): then there is a term s ∈ M such
that σ(s) = σ(t). If s is not a variable, then this covered by the unify rule. Otherwise, if s
is a variable, we have a constraint of the form

. . . Snd(s) . . .Rcv(s) . . .

and thus there must be solution that does not rely on Rcv(s), because the intruder sent that
earlier himself. We can thus proceed with that “simpler” solution.

• If the last step in the deduction σ(M) ` σ(t) is (Compose): then we can similarly apply
compose.

• If the last step in the deduction σ(M) ` σ(t) is an analysis step. Let s0 be the term being
analyzed here. We distinguish two cases.

– Let us first suppose that s0 is obtained by an axiom rule. If there is a non-variable
term s ∈M such that s0 = σ(s), then an out-sourced analysis steps is applicable right
before Snd(t) and lead to the desired analysis result. Otherwise, if there is a variable
x ∈M such that s0 = σ(x) then the constraint has the form:

. . . Snd(x) . . .Rcv(x) . . .

then again there must be a simpler solution that does not rely on Rcv(x) and that we
can proceed with.

– If s0 is obtained from an analysis step, then proceed with that analysis step first.

– If s0 is obtained from a composition step, then the intruder has first composed a message
that he then analyzed. We can simplify this solution to eliminate this composition-
analysis-pair, and proceed with that solution.

Thus in all cases, we get closer to a solved constraint.

Theorem 8.

Theorem 9 (NP-Completeness). The problem of protocol security with bounded sessions (and
nonces) but unbounded messages is co-NP-complete.
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Proof. First, one can show that for every Boolean formula, we can generate a protocol of a size
that is polynomial in the size of the formula (and this generation takes polyniomal time) and so
that the formula is satisfiable iff the protocol has an attack. Thus insecurity is NP-hard.

Second, we can show that there is a non-deterministic algorithm in polyniomial time (in the
size of the initial state of the protocol) to decide protocol insecurity (without bounding messages).
To that end, consider that in the symbolic transition system a trace cannot be longer thant the
total number of steps in all strands; for each constraint the number of lazy intruder reductions is
also polynonially bounded by the weight of the constraint.15

This gives us one more entry in the decidability lattice: we can handle unbounded messages if
sessions (and thus nonces) are bounded:

Messages Unbounded
Sessions Unbounded
Nonces Unbounded

Messages Bounded
Sessions Unbounded
Nonces Unbounded

Messages Unbounded
Sessions Unbounded
Nonces Bounded

Messages Bounded
Sessions Unbounded
Nonces Bounded

Messages Unbounded
Sessions Bounded
Nonces Bounded

Messages Bounded
Sessions Bounded
Nonces Bounded

The remaining two items will be covered in the next chapter.

14 Abstract Interpretation

While the technique of the lazy intruder is actually very good for quickly finding attacks, it can
only verify for a bounded number of sessions: when we have verified a protocol for 3 sessions, it
does not tell us if there is maybe an attack for 4 sessions. Since of protocols like TLS millions
of sessions exist worldwide at the same time, and the verification is growing exponentially with
the number of sessions, this is not really feasible. One often refers to this as the state-explosion
problem of model-checking. Moreover this way we never ontain a statement about any number of
sessions.

There is however another approach that can side-step the state-explosion problem and verify
for infinitely many sessions: abstract interpretation. This approach is used in static program
analysis. A simple example is a compiler that shall check that every variable of a program is
initialized before it is used. In general we cannot tell that for sure because of the halting problem:
if an uninitialized variable is used first after a while loop, then the answer depends on whether
this while loop will ever terminate (which is undecidable in general). The simple solution is:
let us assume the while loop could terminate, then the compiler should flag this as a use of an
uninitialized variable. We are thus considering an over-approximation (of what can happen),
potentially ruling out a few good programs, but we get an analysis that is much simpler, that will
never accept a bad program, and that always terminates.

In protocol verification this idea has been also very successful using logical formulas to give
an over-approximation of what can ever happen in a protocol, in particular what the intruder can
ever know. Since this is literally all a bit abstract, let us consider a concrete example step by step.

15A näıve implementation of substitutions can actually lead to an exponential runtime here, but there is an
implementation that avoids this blow-up.
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14.1 An Example

The basic formalism we use here are logical implications like p.q => r.t meaning “when p and
q hold, then also r and t hold”. This is often called (definite) Horn clauses.16 We use here a
notion from AIFω [22], a novel add-on for OFMC for denoting the implications, while AIFω rules
actually mean state transitions. For the formulas we are using in this section, however, it does
not make a difference. The full language of AIFω will be explained in a special chapter later.

Let us begin with the intruder, and let iknows(m) stand for “the intruder knows m”. We
could specify first his initial knowledge like this:

=> iknows(a); => iknows(pk(a));

=> iknows(b); => iknows(pk(b));

=> iknows(i); => iknows(pk(i)); => iknows(inv(pk(i)));

to mean that the intruder knows the agents a, b, i their public keys and his own private key. Here
we use implications without a left-hand side, i.e., the right-hand side facts holds unconditionally.

If we want to consider more agents, then we would have to make long enumerations. Therefore
AIFω allows to first define some data types:

Honest = {a,b};

Dishonest = {i};

User = Honest ++ Dishonest;

We can then use these types in rules and later change the number of agents without changing any
rules and without making long enumerations. To that end, every rule has a rule head of the form

rulename(V ariable : Type, V ariable : Type, ...)

The type can be any of the user-defined types (like Honest here) or Untyped. Untyped variables,
however, have an important restriction: every untyped variable must occur in the left-hand side
(and may occur in the right-hand side also). In other words, it is not allow to have untyped
variables that only occur in the right-hand side.

The listing above is then written simply as follows:

users(A: User) => iknows(A);

publickeys(A: User) => iknows(pk(A));

privatkeys(D: Dishonest) => iknows(inv(pk(D)));

The first rule has the name “users” and says that for any A of type User, the intruder knows A.
The other rules are similar.

Let now

• crypt(k,m) stand for {m}k, i.e., the asymetric encryption with key k of message m,

• and pair(m1,m2) stand for the pair of m1 and m2.

Then the Dolev-Yao model for asymmetric encryption and pair is described by the following
formulas:

asymenc(M1: untyped , M2: untyped)

iknows(crypt(M1 ,M2)). iknows(inv(M1)) => iknows(M2);

asymdec(M1: untyped , M2: untyped)

iknows(M1). iknows(M2) => iknows(crypt(M1 ,M2));

16Actually, by definition, Horn clauses can only have one fact on the right of the arrow, but p.q => r.t can
be regarded as an abbreviation of the two Horn clauses p.q => r and p.q => t.

68



pair(M1: untyped , M2: untyped)

iknows(M1). iknows(M2) => iknows(pair(M1 ,M2));

proj(M1: untyped , M2: untyped) iknows(pair(M1 ,M2))

=> iknows(M1). iknows(M2);

The first formula says: if the intruder knows any messages M1 and M2, then he also knows
crypt(M1,M2), and similar the second, that he can decrypt crypt(M1,M2) if he knows (the
private key) inv(M1). The rules for pair follow the same principle. The dot (.) is in this syntax
logical “and” and the arrow (=>) is implication. In the initial intruder knowledge before, the
(=>) was simply used without anything on the left-hand side, i.e., the right-hand side holds
unconditionally.

From all the formulas so far we can now for instance derive the fact iknows(crypt(pk(a), pair(a, b))),
but not for instance iknows(inv(pk(a))). Note that there are already infinitely many facts, e.g.
iknows(pair(a, pair(a, pair(a, . . .)))) is derivable. Most of the time this is however not an issue
for the technques we consider.

Let us now model the honest agents of the NSPK protocol. The first step is that A sends
out the message crypt(pk(B), pair(NA,A)), but here is a problem: NA is supposed to be freshly
created. The logical formulas we have been writing so far, however, do not have a notion of time,
as we are building an over-approximation of what can ever happen. Thus we cannot directly work
with fresh nonces here.

Suppose now that A would actually not create a fresh random number in every session and
instead use always the same random number. Then the intruder would learn this number in
any session where he is B, and thus destroying secrecy. So this would be a too coarse over-
approximation where all nonces are the same, so the intruder learns them. Let us refine a bit:
suppose every has one single nonce for every other agent B; thus A is using in every session with
the same B also the same nonces. We can thus write na(A,B) for the nonce that A uses as na
to B, and thereby make all nonces a function of the agent names. This gives us the following
formula:

nspk1(A: User , B: User)

=> iknows(crypt(pk(B),pair(na(A,B),A)));

Thus the intruder knows the message that every agent in role A can produce as a first step for
any agent in role B. He can decrypt this message, however, only if he is B, i.e., he learns na(A, i)
for every agent A. These are exactly the nonces where he is the intended recipient.

Note that the abstract na(A,B) for the fresh nonce NA is still very coarse; we will not be able
to check that the protocol is safe against replay attacks for instance, since all freshness is lost.
However for secrecy this is fine enough. In fact we can now specify a violation of secrecy by the
following rule:

secrecy1(A: Honest , B: Honest)

iknows(na(A,B)) => attack;

This means that it is an attack, if the intruder ever finds out the nonce na(A,B) of two honest
agents A and B. This indeed holds so far.

Now we can model howB can receive a message of the first step, i.e., of the form {p}(k(A), pair(NA,A))
and send the second step, i.e., crypt(pk(A), pair(NA,NB)) as an answer. Here, B does not have
any “control” over the value NA, he will accept any term here, so let us model NA as an untyped
variable. NB however, is again freshly created. We use the exact trick as before and make this a
function nb(B,A), so we get:

nspk2(A: User , B: User , NA: untyped)

iknows(crypt(pk(B),pair(NA ,A))) =>

iknows(crypt(pk(A),pair(NA ,pair(nb(B,A),B))));

The intruder can decrypt the answer message if A = i, thus the intruder learns nb(B, i) for every
agent B – as before this is alright, since these are the nonce created by B for i. If A = i, he also
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can analyze NA, however, no honest agent will claim the name of the intruder in the incoming
message, so the intruder must have constructed that himself, and thus, he already had NA before.

Again we can make a secrecy goal for the nonce of B:

secrecy2(A: Honest , B: Honest)

iknows(nb(B,A)) => attack;

Next, A is waiting for a message of the form {NA,NB}pk(A) where NB can be anything and
NA is the nonce that A created earlier for B. Then she will respond with the third step of the
protocol {NB}pk(B). To model that NA must be the nonce that A has sent earlier, we can use
again the abstraction: it must be of the form na(A,B). Thus we have the following rule:

nspk3(A: User , B: User , NB: untyped)

iknows(crypt(pk(A),pair(na(A,B),NB))) =>

iknows(crypt(pk(B),NB));

Now the fact attack is derivable:

• From nspk1 the intruder can derive crypt(pk(i), pair(na(a, i), a)) and obtain na(a, i).

• He can then construct crypt(pk(b), pair(na(a, i), a)).

• Using this message with nspk2, the intruder can then derive crypt(pk(a), pair(na(a, i), nb(b, a))).
Note that nothing in here says not explicitly who b is, but you can see it in the abstractions:
a constructed na(a, i) for i, and b constructed nb(b, a) for a.

• Using this message with nspk3, the intruder gets crypt(pk(i), nb(b, a)).

• From that he gets nb(b, a) which is the nonce of two honest agents, thus it is an attack
(secrecy2).

This is the classical attack of Lowe we have discussed previously. Let us now change the protocol
according to Lowe’s suggestion, i.e., the second message additionally contains the name of B, i.e.
crypt(pk(B), pair(NA, pair(NB,B))).

The full specification is now:

Problem: nspk;

Types:

Honest = {...};

Dishonest = {...};

User = Honest ++ Dishonest;

Sets:

dummy(User , User); % not using this here , just for syntax

Functions:

public crypt/2, pair/2, pk/1;

private inv/1, na/2, nb/2;

Facts:

iknows/1, attack/0, secret /3;

Rules:

users(A: User)

=> iknows(A);
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publickeys(A: User)

=> iknows(pk(A));

privatkeys(D: Dishonest)

=> iknows(inv(pk(D)));

asymenc(M1: untyped , M2: untyped)

iknows(crypt(M1,M2)). iknows(inv(M1)) => iknows(M2);

asymdec(M1: untyped , M2: untyped)

iknows(M1). iknows(M2) => iknows(crypt(M1 ,M2));

proj(M1: untyped , M2: untyped) iknows(pair(M1 ,M2))

=> iknows(M1). iknows(M2);

pair(M1: untyped , M2: untyped)

iknows(M1). iknows(M2) => iknows(pair(M1 ,M2));

nspk1(A: User , B: User)

=> iknows(crypt(pk(B),pair(na(A,B),A)));

nspk2(A: User , B: User , NA: untyped)

iknows(crypt(pk(B),pair(NA ,A))) =>

iknows(crypt(pk(A),pair(NA ,pair(nb(B,A),B))));

nspk3(A: User , B: User , NB: untyped)

iknows(crypt(pk(A),pair(na(A,B),pair(NB ,B)))) =>

iknows(crypt(pk(B),NB));

secrecy1(A: Honest , B: Honest)

iknows(na(A,B))

=> attack;

secrecy2(A: Honest , B: Honest)

iknows(nb(B,A))

=> attack;

In the declaration of Honest and Dishonest, we are using here a special feature of AIFω, the . . .
that allows us to define an infinite set of new constants, instead of a finite enumeration, so we
have now an infinite set of honest and dishonest participants.

We feed this specification into AIFω which translates it for the tool ProVerif (or other solvers
for this kind of Horn clauses) and within seconds, we get the result: “goal unreachable: attack:”,
meaning the fact attack is no longer derivable from our specification.

14.2 Two Abstractions

We can actually distinguish two “abstractions” we have made in the above example:

• We have abstracted the fresh nonces into functions like na(A,B) and nb(B,A). This gives
us essentially a finite number of nonces (whenever the number of honest agents is finite).

• We have completely disgarded the transition system: there is no notion of state anymore,
but we rather talk only about what messages the intruder may obtain in any number of runs.

Formally, these two abstractions can be seen as a so-called Galois-connection [4].
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Let us first look at the abstraction of the fresh data in isolation. We can see this actually
as a transformation of the original protocol. For the NSPK example this means replacing in the
original strands for role A and role B the freshly created variables with functions, obtaining the
following two strands:

•
{na(A,B),A}pk(B) //

•
{na(A,B),NB}pk(A)oo

•
{NB}pk(B) //

{NA,A}pk(B) // •

•
{NA,nb(B,A)}pk(A)oo

{nb(B,A)}pk(B) // •
It is relatively easy to see that whatever protocol execution was possible with the original

(“concrete”) protocol, is still possible with the new (“abstract”) protocol: take any execution of
the original one, and replace all fresh nonces with the abstract ones, you get an execution of the
new protocol. In this sense the abstraction is sound : we do not loose any execution of the original
protocol, so if we can prove the new one to be correct, so is the old one.

The inverse however is not true: the new protocol has executions that the original one does
not have:

a i b

•
{na(a,b),a}pk(b) // •

• •
{na(a,b),nb(b,a)}pk(a)oo

•
{nb(b,a)}pk(b) // •

•
{na(a,b),a}pk(b) // •

• •
{na(a,b),nb(b,a)}pk(a)oo

•
{nb(b,a)}pk(b) // •

Here the intruder, having observed one session between A and B, can play B in any future
session. The protocol in this abstract model is therefore trivially vulnerable to replay, while that
is not an issue in the original protocol.

This also means that not all goals can easily be applied to the new protocol. For instance
authentication uses negation: it is an attack if there is request-event and no corresponding witness-
event. Imagine, that in the original protocol a state is reachable where only the following witness
and request events have occured:

witness(a, b, n1).request(b, a, n2)

i.e., a violation of authentication, and suppose both nonces n1 and n2 are created by a for com-
munication with b, so they get abstracted into the same constant na(a, b). Then, the new protocol
would not have here a violation of authentication.

In fact, it is hard to deal with authentication (and freshness) in this abstract model, but it is
possible with some further refinements. Let us however only deal with secrecy in the following,
since a violation of secrecy is only described by the positive condition that the intruder can produce
a secret, and thus works fine with the over-approximation.
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It has been shown that for secrecy goals, it is sufficient to consider only a fixed number of
agents, e.g. {a, b, i} [8]. Sufficient here means that for every attack with more agents, there is an
attack with only these. Then we get also a fixed number of nonces, namely na(A,B) and nb(B,A)
for every A,B ∈ {a, b, i}, and have removed the infinity of the nonces, even though we can consider
infinitely many sessions.

Still, if the intruder is unbounded, this created an infinite set of reachable states, since agents
still have variables for the nonces from the other parties, and thus the intruder can create an
arbitrary message and use it as a nonce. Let us therefore briefly consider another restriction:

Definition 29 (Typed Model). In a typed model all variables have a type (e.g. nonce) and we
allow only instantiation of variables with terms of the correct type.

Then for instance, the variables NA and NB can only be instantiated with the nonces na(A,B)
or nb(B,A) for some A,B ∈ {a, b, i}. This forbids the intruder to send ill-typed messages. Together
with the finite number of nonces, there are now only finitely many terms that can be constructed,
sent, and received.

With these restrictions – bounded nonces and bounded messages – it is actually possible to
decide secrecy goals for protocols and we thus have:

Messages Unbounded
Sessions Unbounded
Nonces Unbounded

Messages Bounded
Sessions Unbounded
Nonces Unbounded

Messages Unbounded
Sessions Unbounded
Nonces Bounded

Messages Bounded
Sessions Unbounded
Nonces Bounded

Messages Unbounded
Sessions Bounded
Nonces Bounded

Messages Bounded
Sessions Bounded
Nonces Bounded

To complete our picture, we mention the following result that is similar to the first undecid-
ability proof from the previous section:

Theorem 10 ([12]). For an unbounded number of sessions and an unbounded number of nonces,
protocol security is undecidable, even when bounding messages.
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This gives finally:

Messages Unbounded
Sessions Unbounded
Nonces Unbounded

Messages Bounded
Sessions Unbounded
Nonces Unbounded

Messages Unbounded
Sessions Unbounded
Nonces Bounded

Messages Bounded
Sessions Unbounded
Nonces Bounded

Messages Unbounded
Sessions Bounded
Nonces Bounded

Messages Bounded
Sessions Bounded
Nonces Bounded

The conclusion is thus: for decidability, we may have either unbounded messages or unbounded
sessions (with bounded nonces), but not both.

Part III

Advanced Topics

15 Channels and Composition

We now introduce a notion of channels that allow us to describe complex systems as a composition
or layering of several simpler systems. A standard example can be the log-in at a bank. The
user (resp. the user’s browser) establishes a TLS connection with the bank. There could be
now a password based authentication, or a login via a single-sign on solution like NemID. The
latter is a protocol between the Bank, the User, and the Identity provider (e.g. NemID) that
is also running over TLS channels. Finally, after authentication the actual banking application
is communicating with the user via the inital TLS channel. It is considerably easier to consider
not the resulting composed protocol as a monolithical system, but rather consider the individual
components, where TLS provides a secure channel and the other protocol assume a secure channel.
We shall in particular clarify what it means to have a secure channel.

15.1 Bullet Notation

We start with a very notation for channels called the bullet-calculus [20] which was started as an
abstract way to model cryptography as the properties of a communication channel. While the
original application is a calculus about what channels can be achieved given a number of existing
channels, we will use it in AnB as a notation for channels over which messages are sent.

There are basically three kinds of channels; let us first give an intuition before we come to the
formal definition.

• A •→B: A sends a message on an authentic channel to B, so B gets the guarantee that the
message comes from A (but there is no guarantee that the message is confidential).
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• A→•B: A sends a message on a confidential channel to B, so only B can read it (but no
guarantee that it comes from A).17

• A •→•B: A sends a message on a secure channel that is both authentic and confidential: A
can be sure that only B can read it, and B can be sure it comes from A.

Note that for each channel there are lots of ways to achieve this in practice, e.g. asymmetric
encryption and signatures.

Example 27 (NSL). We can write the Needham Schroeder Public Key protocol with Lowe’s fix
(NSL) completely without cryptography, when we replace the public key encryption with confidential
channels:

A → B : {NA,A}pk(B)

B → A : {NA,NB,B}pk(A)

A → B : {NB}pk(B)

A →• B : NA,A
B →• A : NA,NB,B
A →• B : NB

One of the best illustrations of channels is actually Diffie-Hellman (compare Sec. 3.2). As we
have seen, what Diffie-Hellman requires is an authentic change of the “public keys” exp(g,X) and
exp(g, Y ). Thus:

A •→ B : exp(g,X)
B •→ A : exp(g, Y )

This expresses the essence of Diffie-Hellman: the authenticated exchange of Diffie-Hellman public
exponents, while we leave completely open how the authentication may happen:

• Cryptographic measures like digital signatures, symmetric encryption/MACs, asymmetric
encryption and there are correspondingly many different protocols using these measures like
the IPSEC protocols IKE, IKEv2, JFK, (Diffie-Hellman mode of) TLS, and many others.

• Relying on a trust third party.

• Relying on face to face meeting between friends, e.g. device-pairing is a protocol between
two mobile devices where an un-authenticated Diffie-Hellman exchange is performed between
the two devices and the owners of the devices are presented a fingerprint of the two public
exponents, so they can compare and approve the exchange.

Channels can also be thought of as a goal: the goal of Diffie-Hellman for instance is to establish
a secure channel between two parties:

A •→ B : exp(g ,X )

B •→ A : exp(g ,Y )

A → B : {|A,B ,MsgA|}exp(exp(g,X ),Y )

A → B : {|B ,A,MsgB |}exp(exp(g,X ),Y )

Goals :

A •→• B : MsgA

B •→• A : MsgB

We have added that A and B exchange two payload messages MsgA and MsgB. As a goal we
have specified that these payload messages are like transmissions on a secure channel, i.e., the goal
A •→•B : MsgA means that both

• the message is authentically transmitted: B weakly authenticates A on MsgA, and

• the message is confidentially transmitted: MsgA secret between A,B.

17We use the words confidential and secret as synonymous; the term confidential channel had already been
established in the literature and thus we did not change it here.
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Thus, we can summarize Diffie-Hellman very generally by saying: Diffie-Hellman cre-
ates secure channels from authentic channels. A very general definition of public key
cryptography is: any scheme that allows us create secure channels from authentic ones.
Observe that this definition completely avoids even talking about any technical aspect
like public and private keys.

15.2 A Cryptographic Implementation

A question is what authentication, confidential, and secure channel should precisely mean. In fact
there are several quite different answers. We define them here using asymmetric cryptography.
There are many other ways to define them, e.g. describing by their behavior.

Assume every agent A has two key pairs:

• 〈ck(A), inv(ck(A))〉 for asymmetric encryption,

• 〈ak(A), inv(ak(A))〉 for digital signatures,

and assume that every agent knows the public keys ck(A) and ak(A) of every other agent A. We
require that neither ck(·) nor ak(·) occur in the AnB specification.

Then we can implement authentic channels by signing, confidential channels by encryption,
and secure channels by both signing and encrypting:

Definition 30. Channel implementation using asymmetric cryptography:

A •→ B : M for A → B : {B,M}inv(ak(A))

A →• B : M for A → B : {M}ck(B)

A •→• B : M for A → B : {{B,M}inv(ak(A))}ck(B)

This ensures the basic properties of channels:

• Only A can produce messages on the channel A •→B, since nobody else knows inv(akA).

• Only B can read messages on the channel A→•B, since nobody else knows inv(ckB).

• Both restrictions hold on a secure channel.

Note that the intruder can still intercept and replay messages – the channels we have defined do
neither guarantee resilience against network disruption nor do they guarantee freshness.

A question is why we would need to include the name of the intended recipient in authentic
and secure channels implementations. For the secure channels consider the protocol

A → B : {{MsgA}inv(()ak(A))}ck(B)

Goals :

A •→• B : MsgA

Recall that the goal stands for B authenticates A on MsgA and MsgA secret between A,B.
As an exercise, the reader (manually or with OFMC) should try to find the attack against the
authentication goal of this protocol. In fact this is a “classical” mistake in protocol design that
appears again and again over the years.

Authentic channels must guarantee that authenticate the information who is the intended
recipient of the message. This is different from ensuring that only the intended recipient
can read the message.
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15.3 Channels as Assumptions – Channels as Goals

Many protocols we consider can be regarded as protocols for establishing a channel. For instance
TLS is essentially a key-exchange (handshake) that establishes symmetric keys for communication
between a client and a server, including a transmission protocol that uses these keys to encrypt
arbitrary Payload messages with them (e.g. from an email application). We can thus also allow
the definition of protocol goals using channels as we did it in previous examples, where authentic
channel means a weak authentication goal, confidential channel means a secrecy goal, and secure
channel means both goals.

Note that we have used only authentication here: the reason is that we want a correspondence
between channels as assumptions (when the protocol transmits messages of authentic, confidential,
or secure channels) and channels as goals. When we look at authentic channels again (and similar
secure channels) in our cryptographic implementation, there is no protection against replay built
into the channels: an intruder can record any message and replay it as is later. Thus, if replay
prevention is needed, it remains the responsibility of the protocol that uses the channel to prevent
replay. One may indeed make a variant of authentic channels (and similarly of secure channels) that
also include replay protection (e.g. using timestamps, sequence numbers, or challenge response).
In fact, one may define a variety of different channel properties.

15.4 Compositionality

The relation between channels as assumption and channels as goals gives rise to an interesting
question:

• Given a protocol P1 has as goal to establish a certain channel type C, e.g. TLS with the
goal to establish a secure channel.

• Given another protocol P2 assumes such a channel C, e.g. a web-application for an online
email box.

• Suppose also that both P1 and P2 have been verified individually.

• Suppose finally, that we “plug” P1 into P2 together, i.e., running the traffic of P2 over the
channel established by P1. Let us denote this composition as P2[P1], pronounced running
P2 over P1.

• Is the resulting protocol P2[P1] correct?

Example 28. Let P1 be the following protocol:

A→ s : A,B, Payload,mac(sk(A, s), A,B, Payload)
s→ B : A,B, Payload,mac(sk(B, s), A,B, Payload)

Goal : A •→B : Payload

This protocol establishes only an authentic channel. It assumes that A and a trusted server s
share a secret symmetric key sk(A, s), and similarly B has key sk(B, s) with s. Since only au-
thentication is the goal, the Payload is actually not even encrypted, we just build a mac (Message
Authentication Code) that we model like a hash-function that receives as one argument a secret
key. This mac can thus be checked by anybody who knows the respective key. In this way, A can
authentically send the Payload message via s to B, since s is honest.

Let P2 be the following protocol:

A •→B : exp(g,X)
B •→A : exp(g, Y )
A→ B : {|ApplicationPayload|}exp(exp(g,X),Y )

Goal : A •→•B : ApplicationPayload
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Here we have an application protocol uses Diffie-Hellman to first establish a secure shared key
between A and B to transmit a more high-level payload (called ApplicationPayload) securely. It
assumes authentic channels from A to B and vice-versa, but it is independent of how this appli-
cation is established.

The composition P2[P1] is the following protocol:

A→ s : A,B, exp(g,X),mac(sk(A, s), A,B, exp(g,X))
s→ B : A,B, exp(g,X),mac(sk(B, s), A,B, exp(g,X))
B → s : B,A, exp(g, Y ),mac(sk(B, s), B,A, exp(g, Y ))
s→ A : B,A, exp(g, Y ),mac(sk(A, s), B,A, exp(g, Y ))
A→ B : {|ApplicationPayload|}exp(exp(g,X),Y )

Goal : A •→•B : ApplicationPayload

Note that this protocol no longer assumes any channels, i.e., it is completely implemented now. It
is more complex that the original protocols, in the sense it is harder to read and understand, and
also harder to analyze automatically.

15.5 Pseudonymous Channels

Consider again the TLS handshake protocol from Section 3:

Protocol: TLS

Types: Agent A,B,s;

Number NA ,NB ,Sid ,PA ,PB ,PMS;

Function pk,hash ,clientK ,serverK ,prf

Knowledge: A: A,pk(A),pk(s),inv(pk(A)),{A,pk(A)}inv(pk(s)),B,

hash ,clientK ,serverK ,prf;

B: B,pk(B),pk(s),inv(pk(B)),{B,pk(B)}inv(pk(s)),

hash ,clientK ,serverK ,prf

Actions:

A->B: A,NA,Sid ,PA

B->A: NB,Sid ,PB ,

{B,pk(B)}inv(pk(s))

A->B: {A,pk(A)}inv(pk(s)),

{PMS}pk(B),

{hash(NB ,B,PMS)}inv(pk(A)),

{|hash(prf(PMS ,NA ,NB),A,B,NA ,NB ,Sid ,PA ,PB ,PMS )|}

clientK(NA ,NB ,prf(PMS ,NA ,NB))

B->A: {|hash(prf(PMS ,NA ,NB),A,B,NA ,NB ,Sid ,PA ,PB ,PMS )|}

serverK(NA ,NB ,prf(PMS ,NA ,NB))

Goals:

B authenticates A on prf(PMS ,NA,NB)

A authenticates B on prf(PMS ,NA,NB)

prf(PMS ,NA ,NB) secret between A,B

This is in fact not the most common way to use TLS, because it requires the client A to own a
certificate of its public key, what is simply modeled here as the message {A, pk(A)}inv(pk(s)), i.e., a
trusted server s (the certificate authority) has signed the statement that A has public key pk(A).
Normally, only the server B will have such a certificate, but not the ordinary Internet user who
runs TLS in role A. Essentially, the protocol is simply executed simply without A’s certificate
(while B’s certificate must always be present):

Protocol: TLS

Types: Agent A,B,s;

Number NA ,NB ,Sid ,PA ,PB ,PMS;

Function pk,hash ,clientK ,serverK ,prf
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Knowledge: A: A,pk(A),pk(s),B,

hash ,clientK ,serverK ,prf;

B: B,pk(B),pk(s),inv(pk(B)),{B,pk(B)}inv(pk(s)),

hash ,clientK ,serverK ,prf

Actions:

A->B: A,NA,Sid ,PA

B->A: NB,Sid ,PB ,

{B,pk(B)}inv(pk(s))

A->B: A,PK,

{PMS}pk(B),

{hash(NB ,B,PMS)}inv(PK),

{|hash(prf(PMS ,NA ,NB),A,B,NA ,NB ,Sid ,PA ,PB ,PMS )|}

clientK(NA ,NB ,prf(PMS ,NA ,NB))

B->A: {|hash(prf(PMS ,NA ,NB),A,B,NA ,NB ,Sid ,PA ,PB ,PMS )|}

serverK(NA ,NB ,prf(PMS ,NA ,NB))

Goals:

#B authenticates A on prf(PMS ,NA,NB)

A authenticates B on prf(PMS ,NA,NB)

#prf(PMS ,NA,NB) secret between A,B

We have here chosen to model that A has no key with a certifcate as A creating a fresh public key
PK and sending it to B.

Obviously, without the client certificate, this protocol does not allow B to authenticate A, and
thus both secrecy and part of authentication do no longer hold (thus commented in the listing).
In other words, the user who claims to be A (and the creator/owner of PK) could in fact be
anybody. So what does it even help to have this exchange without client authentication in the
first place?

The answer is, we get slightly more than the remaining authentication goal (that A can be
sure about the server). In fact, we still get something like a secure channel: the intruder cannot
read or impersonate any messages in a session between an honest client A and an honest server
B. This is since only the creator of PK (who knows inv(PK)) and B know the resulting keys of
this exchange. So the intruder can start any number of sessions with fresh public keys for PK and
under any agent name, but only read in these sessions (and in the sessions where he is B), but
he cannot interfere with sessions between an honest client who created PK and an honest server
(since he does not have inv(PK) then).

We can actually regard the key PK as a pseudonym that A has chosen, nobody else can claim
the ownership of that pseudonym, since that requires to know inv(PK), and TLS thus establishes
a secure channel between the owner of PK (whoever it is) and B.

We write for this kind of channel [A] •→•B (respectively, B •→• [A]) to indicate that A is not
authenticated with respect to her real name, but only with respect to a some pseudonym. We
could express this for TLS without client authentication as follows:

TLS handshake
. . .

A→ B : {|PayloadA|}clientK(NA,NB,prf(PMS,NA,NB))

B → A : {|PayloadB |}serverK(NA,NB,prf(PMS,NA,NB))

Goal : [A] •→•B : PayloadA
B •→• [A] : PayloadB

This is sometimes also called sender/receiver invariance: B cannot be sure about A’s real
identity, but that it is the same entity in several transmissions (namely the owner of a certain key
pair).

This kind of channel is good enough for many applications such as transmitting credit card
data: [A] •→•B : Order & Credit Card Data The intruder can also make orders, or, as a
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dishonest merchant B receive credit card data, but cannot see the credit card data from an honest
A sent to an honest B.

The secure pseudonymous channel is also good enough for a login protocol:

[A] •→•B : A, password(A,B)
B •→• [A] : Payload

Goal : B •→•A : Payload

where password(A,B) is A’s password at server B. We establish a “classical” secure channel in
two steps:

1. We establish a secure pseudonymous channel [A] •→•B using TLS without client authenti-
cation.

2. We use this channel to authenticate the client by a shared secret (which possibly has low
entropy).

Further replies (e.g. the data of client A stored on server B) are now bound to this authentication.
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