
1

Verifying SeVeCom Using Set-based Abstraction
Sebastian Mödersheim, DTU Informatics, samo@imm.dtu.dk

Paolo Modesti, Università Ca’ Foscari Venezia, modesti@dsi.unive.it

Abstract—We formally analyze the Secure Vehicle
Communication system developed by the EU-project
SeVeCom, using the AIF framework which is based on a
novel set-abstraction technique. The model involves the
hardware security modules (HSMs) of a number of cars,
a certification authority, and the protocols executed
between them. Each participant stores a database of
keys that can be added or deleted depending on the
different operations. The AIF-framework allows us to
model and automatically analyze such databases with-
out bounding the number of steps that the system
can make and, in contrast to previous approaches in
protocol abstraction, can handle databases that do not
monotonically grow (and thus allow for revocation of
keys). We report on two new attacks found and verify
that under some reasonable assumptions, the system is
secure in a black-box cryptography model.

I. Introduction

The EU-project SeVeCom [1] proposes a modern system
for secure vehicle communication that shall satisfy two
seemingly conflicting goals, namely on the one hand au-
thentication and accountability for vehicle communication
and protecting the privacy on the other hand. To that
end, each car contains a tamper-proof hardware security
module (HSM) that holds all private keys of the car and
that performs all encryption, decryption, and verification
operations. For ordinary communication, this includes a
number of short-term key-pairs that are registered with,
and certified by, a trusted certification authority (CA).
While the CA is thus able to link all communication back
to a particular car (e.g. in case of police investigation), the
other participants cannot see this relation, but only link
actions that are performed using the same pseudonym (i.e.
short-term key).

Many tools for automated protocol verification such as
Scyther [2] are restricted to “simple” protocols that consist
only of a message exchange and therefore cannot analyze
a system like SeVeCom that requires the participants to
maintain databases of keys. Other tools like AVISPA [3]
allow for modelling databases but require restricting the
number of steps that honest agents can execute, and do not
scale well with this number. There are several abstraction-
based approaches [4], [5], [6], [7], most notably the tool
ProVerif [8], which completely avoid this problem and
allow for verification with an unbounded number of steps.
These techniques however have a kind of monotonicity
built-in: what is true at some point cannot become false
later, forbidding to model many interesting aspects like re-
vocation and are thus not suitable for analyzing SeVeCom.

The AIF framework [9] is an extension of the abstraction
approach that allows for modeling databases (or sets) of

messages that do not necessarily monotonically grow (al-
lowing for revocation) and that inherits the benefits from
the classical abstraction approaches, namely verification
without bounding the number of steps that honest and
dishonest participants can make.

We show that AIF is indeed well-suited for modelling
and verifying the SeVeCom system. We consider several
models of the system for different intruder models: one
model considers the revocation-update protocols of the
CA’s root keys in the presence of an intruder with direct
access to the HSMs. The second, comprehensive model of
all the protocols needs to consider an intruder who is either
outside a particular car or at least does not have access
to the signing function of the HSM (which would lead to
trivial attacks).

We present two novel attacks that were found by our
analysis in the root key update protocol, and discuss some
reasonable assumptions to prevent them. We verify the se-
curity properties of the system under these assumptions.1

Beyond the verification of the concrete system SeVeCom,
this work demonstrates how the relevant aspects of time
can be modeled in verification approaches that actually
abstract from time.

II. AIF

The AIF framework consists of the AIF specification
language and a translator from AIF to first-order Horn
clauses that incorporates the set-abstraction technique; it
is connected to the SPASS theorem prover [10] and the
protocol verifier ProVerif [8] to check the generated Horn
clauses. These automated tools do not always terminate,
but when they do, this gives us either an attack or a
proof of security. We give a brief introduction to the AIF
language; a formal definition is found in [9].

a) State Transition Systems: An AIF specification
describes a state-transition system. A state is a set of
facts that are true in that state, for instance the state
{ik(crypt(k,m)), ik(inv(k)), sign(inv(k′),m)} may intu-
itively say that in this state, the intruder knows a public-
key encrypted message crypt(k,m), the corresponding pri-
vate key inv(k) and a signature sign(inv(k′),m′). None of
the symbols here has a predefined meaning. Their meaning
is rather defined through the transition rules that we
define on states. For instance we may define rules that
reflect the ability of the intruder to encrypt and decrypt

1As usual in automated protocol verification, we cannot verify any
privacy properties though, because they cannot be directly expressed
in transition-system approaches.



2

messages with known keys:

ik(K).ik(M)⇒ ik(crypt(K,M));

ik(crypt(K,M)).ik(inv(K))⇒ ik(M);

ik(inv(K)).ik(M)⇒ ik(sign(inv(K),M));

ik(sign(inv(K),M)).ik(K)⇒ ik(M);

Observe that in specifying such rules, we use variables,
denoted by identifiers that start with an uppercase letter,
in contrast to constants which start with a lowercase letter.
Such a rule can be applied to any state that contains facts
that match the left-hand side; this yields a new state that
is obtained from the old one by adding the facts of the
right-hand side under the given match.

We can specify transitions in which new values are
freshly created, e.g., we can specify that at any time the
intruder can generate himself a new key pair as follows:

=[K]⇒ ik(K).ik(inv(K)); (1)

Taking this transition, the variable K is bound to a new
value (that did not occur so far), representing in this case
a public key. Since the left-hand side is empty, the rule can
be taken without any precondition.

b) Sets: The rules as presented up to here repre-
sent what is standard in abstraction approaches, and
in particular observe the states can only monotonically
grow during such transitions. This does not allow for
example the modeling of a transition where a key is
revoked, because the fact that the key is valid would need
to be somehow “retracted”. Exactly for such cases, the
AIF has a way to express transitions in which the state
does not monotonically grow, namely using sets. An AIF
specification can contain an arbitrary but fixed number
of sets. For instance, our SeVeCom model will include
several sets of public-keys that the HSMs of the cars
maintain, e.g. db(hsm1 , ltsig , uptodate) denotes the set of
all up-to-date long-term signing keys stored in machine
hsm1 . We can conveniently describe an enumeration of
such sets using variables that range over enumeration
types, for instance in this case we have a family of 28 sets
db(HSM ,KeyType,Updating) where

HSM : {hsm1 , hsm2};
KeyType : {root1 , root2 , ltsig , ltdec, stsig , stdec, ppsig};
Updating : {updating , uptodate};

c) Transitions Using Sets: A set-membership fact is
a fact of the form m ∈ S where m is an element and S
is a set. As an example, there are two public keys of the
certification authority, called root keys, stored into every
HSM at manufacturing time (more on their role in the
system later). We can model this initialization of an HSM
by a transition rule that simply creates new root keys:

λHSM . =[K1,K2]⇒ ik(K1).ik(K2).
K1 ∈ db(HSM , root1, uptodate).
K2 ∈ db(HSM , root2, uptodate);

(2)

Here, λHSM . says that this rule holds for any value in the
domain of variable HSM ({hsm1 , hsm2} here) to avoid

long enumerations. This rule is an over-approximation of
reality, because it can be applied at any time and any
number of times, while in the real system, there can only
be one pair of root keys and it can be installed only at man-
ufacturing time. Formulating it in this way is a necessity
in the abstraction approaches as we explain below in more
detail. In fact, the only potential problem with such an
over-approximation is when it leads to additional attacks
that do not occur in the real system, but this problem did
not occur here.

We can now model the revocation of a root key for the
HSMs by the following transition rule:

λHSM ,Root .ik(sign(inv(K ), [K ,T ])).
K ∈ db(HSM ,Root , uptodate)
⇒ K ∈ db(HSM ,Root , updating);

(3)

where Root ranges over {root1 , root2}. Here,
sign(inv(K), [K,T ]) is the format of a revocation
command for a root key: it needs to be signed by the
private key inv(K) that belongs to the root key K. For
simplicity, we will often simply say private root key for the
private key that belongs to a public root key. The message
also includes a timestamp T that we discuss later. We
model here an HSM that is directly under the control of
an intruder who can send arbitrary commands to it. This
is expressed by the ik -fact on the left-hand side of the rule:
the HSM accepts any command of the revoke-key format
that the intruder can craft (as long as the respective key
K is indeed in db(HSM ,Root , uptodate)). Similarly, for
other operations where there is an answer by the HSM,
we will have this answer contained in an ik fact on the
right-hand side of the rule to model that the intruder
directly obtains this answer, can analyze it, and use it for
further actions like crafting another command.

Also observe that the set-membership facts on the left-
hand and right-hand side differ by their update-status.
While for all other facts, the state monotonically grows
over transitions, set-membership facts behave differently:
left-hand side facts that do not appear on the right-hand
side get removed by the transition. Thus, the matched
key K in this example is moved from the uptodate to the
updating set (of the respective machine and key kind). In
fact, the other transitions ensure that only signatures with
up-to-date keys are considered as valid.

On the left-hand side of rules, we may also specify that
a rule is only applicable to states in which a certain set-
membership fact does not hold. For instance if we declare
a family of sets used(HSM ), we can model a simple replay-
prevention:

λHSM ,Root .ik(sign(inv(K ), [K ,T ])).
T /∈ used(HSM ).K ∈ db(HSM ,Root , uptodate)
⇒ T ∈ used(HSM ).K ∈ db(HSM ,Root , updating);

(4)

This transition can only be taken for a timestamp T that
the HSM has never seen before and that is afterwards
stored as used. Here we do not model any properties of
time (like freshness); we come back to timestamps later.



3

d) Goals and Reachability: AIF has only one built-in
fact symbol: attack. We use rules that have this fact on
their right-hand side to specify attack states. For instance
we can specify that it is an attack if the intruder finds out
the private key of a valid root key:

λHSM , Root, Updating.K ∈ db(HSM , Root, Updating).
ik(inv(K))⇒ attack;

The initial state is simply the empty set of facts. We say
that an AIF specification is secure, if we can reach no
attack state from the initial state by using the transition
rules.

e) Abstraction: Ideally, when writing a model, one
does not need to think about the techniques that are used
to analyze it, but unfortunately the complexity of the
problems, and the side conditions that several techniques
have, require usually a certain level of technical knowledge.
The AIF framework is based on abstraction techniques
and the AIF language is designed so that all requirements
for the soundness of the abstraction are satisfied by con-
struction. Soundness here means: if the abstraction of an
AIF specification is secure, then so is the concrete AIF
specification. The other direction does not hold in general,
because the abstraction over-approximates the behavior
of the concrete system and can thereby introduce attacks
that have no counter-part in the concrete model. We call
such attacks false positives.

The main point of set-based abstraction is that we
consider the equivalence classes induced by the set-
membership of values; in our example, the abstract model
identifies all public-keys that belong to the same subset
of all the databases. For this to be sound, it is crucial
that the specification cannot distinguish several values
that have the same membership status, so we cannot write
conditions like X 6= Y , not even indirectly. That implies
that we cannot control the cardinality of sets (that they
contain a particular number of elements). More generally,
we can say that what is true for one value is also true for
any number of values in some reachable state.

There are two main consequences for our model of
SeV eCom. First, we need to allow that all sets of keys can
hold any number of keys; this is of course sound in the
sense that it over-approximates the real behavior where
number is fixed. It turns out that this over-approximation
does not introduce any false attacks. Second, we cannot
directly talk about time (and timestamps) because the
abstract model eliminates every notion of transitions and
the timely order of events. We must therefore use sets to
model crucial properties of time when they are needed. For
instance in the example rule (4), we have only modeled the
aspect of replay checking, but not recentness; we do the
latter not before § IV where it becomes unavoidable.

III. Root Key Update

We first consider now a model that focuses on the root
keys and their update (and ignores all other kinds of
keys and protocols). We use from the previous section the
initialization rule (2) and the revocation rule (3) (without

replay check). The next corresponding operation that we
model is the update operation which is triggered by a
command of the form sign(inv(K), [K ′, T ]) where K is a
root key in uptodate status, and a new root key K ′ that is
to replace the other root key (which must be in updating
status). The rationale behind the format of the update
and revoke command is that, if one of the root private
keys is compromised, it can only be used to revoke itself,
but cannot be used to update either key (which requires
the knowledge of both root private keys). The intention is
that the system should be secure as long as at most one
of the two keys is compromised. The update for key root1
is formalized as follows (root2 analogously):

λHSM .ik(sign(inv(K2 ), [K ,T ])).
K2 ∈ db(HSM , root2 , uptodate).
K1 ∈ db(HSM , root1 , updating)
⇒ K2 ∈ db(HSM , root2 , uptodate).
K ∈ db(HSM , root1 , uptodate).
K1 ∈ revoked(HSM );

Here, we again ignore the timestamp T at first. We also use
a new family of sets here: revoked(HSM ). They contain all
the public root keys that have ever been discarded from
an HSM and are used later to formulate the goals.

A. Modeling the Authority

The revocation and update messages should be (at least
in normal protocol runs) be generated by the certificate
authority (CA), the (supposed) owner of the root keys.
This will happen whenever a root key is suspected to
be compromised, or maybe even on a regular basis. In
a first model, we consider a CA that can at any point
revoke either root key. Let us first consider a model where
the authority can generate a pair of revoke and update
commands at any time non-deterministically. Because we
cannot be sure a priori that the update is correctly com-
municated, we must model the CAs database of root keys
independent of the HSMs databases. To that end we use
the two sets dbr(Root) (recall Root : {root1 , root2}). The
revoke and update request is produced in one transition;
we give the one for revoking and updating root1 :

K1 ∈ dbr(root1 ).K2 ∈ dbr(root2 ).
=[K]⇒ K ∈ dbr(root1 ).K2 ∈ dbr(root2 ).
ik(sign(inv(K1 ), [K1 ,T ])).ik(sign(inv(K2 ), [K ,T ]));

B. Goals

We consider three goals:

Secrecy: The intruder never knows the private key of
a valid (or under update) public root key:

λHSM , Root, Updating.
K ∈ db(HSM , Root, Updating).ik(inv(K));
⇒ attack;



4

Authentication: The intruder shall not be able to
produce a confusion among the parties about who gen-
erated which keys and for which purpose. For the root key
update, the only potential confusion is that the intruder
manages to make the HSM accept an intruder-generated
key as a root key. This would mean a violation of the
secrecy goal already (because the intruder knows the
private key of a self-generated public key pair). For the
comprehensive model in § IV, however, there are more
interesting authentication properties.

Freshness: The intruder shall not be able to introduce
old keys into the HSM, even if they were once created
by the correct party and the intruder does not know the
private key. We want this property to prevent that older
messages using these keys could be accepted again by
anybody. To that end, we use the set revoked(HSM ) that
we introduced before to hold all revoked keys:

λHSM , Root, Updating.K ∈ revoked(HSM ).
K ∈ db(HSM , Root, Updating)⇒ attack;

Observe that these goals have similarity with classic goals
of secure communication, but adapted to the specific
problem at hand.

C. An Attack

We first get a violation of the freshness goal and one that
even works if the timestamps are checked for recentness.
The attack uses the fact that the CA can generate revoke-
update commands arbitrarily for the existing keys and the
intruder does not even need to know any private root
keys for the attack to work. Suppose we initially have
two root keys installed on the HSM, called k0 and k1.
Suppose further, the authority revoke-updates the key
k1 to k2 and then from k2 to k3 and so on. This will
produce update messages of the form sign(inv(k0), [kn, T ])
(for some timestamp T ). At any such update, the intruder
can block the current update message and replay an old
message in order to install an older key ki.

This attack is limited (but not prevented) by the use
of timestamps: this works only if several updates are
performed within a too short time, i.e. with overlapping
validity periods of the timestamps. Since it is reasonable
to assume that root-key updates are performed rather
infrequently, this attack is not of such a practical rele-
vance, but it suggests actually several additional security
measures that are at least not explicitly mentioned in [1].
First, revoke-updates should be performed only with non-
overlapping validity periods of the timestamps. Second,
the HSMs should store all timestamped messages for the
time they are valid and compare every further incoming
message with them to prevent replay. Third, it may be
a good idea to include into the update message also the
public key that is supposed to be revoked and updated.
Each of these suggestions can prevent the attack and each
seems reasonable and good practice.

An easy way to model the replay-prevention in the HSM
is shown by rule (4), requiring a novel timestamp in every
message. We can do the same for the update command of

the HSM, but need to ensure that the revoke and update
command are generated with different timestamps. This
rule does not really model recentness of timestamps (so the
intruder may arbitrarily delay the delivery of a message to
the HSM in this model); we consider another time model
in § IV.

D. Revoking the wrong key

We now check what happens if the intruder is given one
of the two root keys. The following rule gives the intruder
all the private root keys stored as root1 on the HSM.

λHSM .K ∈ db(HSM , root1 , uptodate).
⇒ K ∈ db(HSM , root1 , uptodate).ik(inv(K ));

Consequently, we restrict the secrecy goal to private keys
of root2 . But also this has an attack namely if the CA
happens to revoke the wrong key, i.e., if the CA wrongly
thinks that root2 is compromised, and issues a revoke-
command for a root2 key, i.e. sign(inv(k2), [k2, T ]) (for
some root2 -key k2 and timestamp T ). Since we have given
the intruder a root1 -key k1, he can now issue the update
command for k2, namely sign(inv(k1), [k3, T ]) for some
intruder-generated key k3.

It is indeed unclear, even assuming that the intruder can
only know one of the root keys, how the CA can be sure
which one it is. While the protocol suggests a complete
symmetry between the keys, one may think of using the
keys in distinct ways. Suppose the root1 is used for the
daily business, while the private root2 is kept reserved for
emergencies, maybe under additional physical protection.
Then it makes sense to assume that the intruder can only
find out root1 and if there is any suspicion of compromise
(or also at regular time intervals), we use root2 to update
it, and we never update root2 itself. Restricting our model
to only updates of root1 keys, we have verified the secrecy
goal.2

IV. Comprehensive Model

We now extend our previous model considering also the
long-term and the short-term keys and the related update
protocols. We first show how to integrate the notion of
time into our model and discuss the modelling of the
intruder.

A. A Timed Model

Time plays an important role in the SeVeCom protocols,
namely for the validity of key certificates and timestamps
to prevent replay. Each HSM (and the CA) has its own
clock. These clocks may differ by a certain margin δ; as
long as δ is much smaller than the validity period of long-
term keys, this may in the worst case disrupt communica-
tion for time δ at the end of a key’s validity period, but
not endanger any security properties. We therefore simply
assume synchronized clocks.

2Another way to prevent this attack is to require that revocation
and update messages must be signed by both root keys and the
relevant public keys being part of the signed message.



5

The abstractions of the AIF framework do not provide
any notion of time and so we cannot directly talk about
the order in which events occur. Despite this fact, we can
model some properties of time using the sets. The idea is
to divide the timeline into several epochs. For SeVeCom,
we find a split into three epochs suitable: old , expsoon
and new . We want that the abstraction of keys depends
(besides the databases that we already have) also on the
epoch that they belong to. We thus define a family of sets
timer(Time) where Time ranges over {old , expsoon,new}.
These epochs are used to model the life-cycle of the key
as follows. A key is first freshly created by an HSM and
is in epoch new ; the key cannot be used yet, the HSM
first needs to run a key registration protocol with the CA.
After registration, the key becomes valid and moves from
status new to status expsoon. This means that the HSM
can now use the key for encryption or signing and a process
to generate and register a new key can be started. After
some time, the key finally moves from expsoon to old and
can no longer be used; the HSM will delete the old key
(but an intruder can still try to use/re-introduce it).

Let us look at these steps of the key life cycle in more
detail. When the HSM has a key K that is currently in
use, i.e., in epoch expsoon, it can generate a new key NK
which is initially in epoch new . This rule has the form:

K ∈ timer(expsoon).K ∈ db(·) . . .
=[NK ]⇒ K ∈ timer(expsoon).NK ∈ timer(new).
K ∈ db(·).ik(·);

where ik(·) abbreviates an outgoing certificate request
message for the new key NK (to the CA).

The second step models the actual progress of time:

K ∈ timer(expsoon)⇒ K ∈ timer(old);

i.e. a key K can change its status from expsoon to old—
and this can happen “at any time” so to speak: the “world”
that we model here can just choose to do such a transition
for any expsoon key. Observe that this progress of time is
independent of what the parties are doing at this time.

The third step is now expressing that, if an HSM has
key K currently in use and a fresh key NK has successfully
been registered with the CA, then as soon as K has turned
old (with the previous rule), we can discard K and start
using NK as the current key:

K ∈ timer(old).NK ∈ timer(new).K ∈ db(·).NK ∈ db(·)
⇒ K ∈ timer(old).NK ∈ timer(expsoon).NK ∈ db(·).
K ∈ revoked(HSM ) . . . ;

Thus NK ’s transition from new to expsoon happens ex-
actly when the HSM starts using it.

B. Modelling the intruder and the API

The API of the HSM offers the interface through which
applications running on the car can invoke the function-
ality provided by the HSM. In particular, besides keys
and device management, decryption and digital signing are
the two main functions offered by the API. They can be
employed with the long-term and short-term keys. Recall

that the corresponding private keys are stored in the HSM
memory and never released outside.

As an example, for long-term decryption keys (that have
the attribute ltdec), we model the decrypt function as
follows in AIF:

λHSM ,Updating .ik(crypt(K ,M )).
K ∈ db(HSM , ltdec,Updating)
⇒ ik(M ).K ∈ db(HSM , ltdec,Updating);

Similarly we have a rule for signing:

λHSM ,Updating .ik(M ).K ∈ db(HSM , ltsig ,Updating)
⇒ ik(sign(inv(K ),M )).K ∈ db(HSM , ltsig ,Updating);

Observe that this allows the intruder to get a signature
with any valid signing key in the HSM on any message he
can construct (and similarly he can decrypt any message
that is encrypted with an HSM-stored decryption key).
To put it another way: if the intruder has direct access
to an HSM, then there is not much difference from the
intruder knowing the respective private keys himself—only
he cannot get self-generated keys into the HSM. With this,
of course, the intruder can trivially break several goals of
the key update protocols; the only exception is the root-
key update which is secure (under the given assumptions)
even for an intruder with direct access to HSMs.

It is of course quite unrealistic that the intruder has
access to the HSMs of all cars. Actually, the intruder
should only be able to access the HSM in his own car(s) but
for other cars, he can only observe their communication
with the outside (other cars, roadsigns, and the CA). We
thus in the following consider an attack model where the
intruder has limited access to the HSMs; experimenting
with different settings we have found that we can verify
all our goals if the intruder cannot access the signature
function for long-term keys, while we may still give him
access to all other functions without breaking the security.

C. Long-Term Key Update Protocol

The long-term signature generation key of the HSM is
used to authenticate messages with the real identity of the
HSM. The long-term decryption key of the HSM is used
to decrypt encrypted messages that are intended for the
vehicle. These keys are generated by the HSM typically at
manufacturing time, and the CA creates the certificates
for such keys (LongTerm : {ltsig , ltdec}):

λHSM ,Root ,LongTerm.RK ∈ dbr(Root)
=[K ]⇒ K ∈ db(HSM ,LongTerm, uptodate).
K ∈ dbca(HSM ,LongTerm).RK ∈ dbr(Root).ik(K ).
ik(cert [HSM ,K ,RK ]).K ∈ timer(expsoon);

Here, cert [HSM ,K ,RK ] denotes a certificate by the CA
that K is a key of HSM (signed with the private root key
inv(RK)). K ∈ timer(expsoon) ensures that K is directly
usable (as the certification is already finished) and at any
time we can start the update for a new key.

As explained before, the key update happens in several
phases. First, the HSM generates new long-term key pairs
and produces a certificate request message for the CA and



6

waits for receiving a corresponding certificate. The second
phase begins when the current keys expires, and only now
the HSM starts to use the newly generated key.

The goals for the long-term keys are similar to those for
the root keys, only here we have a relevant authentication
goal. We formalize that whenever the CA has recorded the
key K as a valid long-term key (for signing or decryption)
of a particular HSM, then this machine also has K stored
in the database (either in status uptodate or updating). It
would thus count as an attack, if the intruder manages to
confuse the the CA about the long-term keys of an HSM.
This is formulated as follows in AIF:

λHSM ,LongTerm.K ∈ dbca(HSM ,LongTerm).
K /∈ db(HSM ,LongTerm, updating).
K /∈ db(HSM ,LongTerm, uptodate)⇒ attack;

This goal is particularly important for accountability,
because it ensures that the CA does never attribute keys
to a wrong HSM. We verified that our model is safe under
the assumption that the intruder does not have full access
to the long-term signature function.

D. Short-Term Key Update Protocol

The short-term keys are used to sign or decrypt the
periodic beacon messages broadcasted or received by the
vehicle. For privacy reasons, the public keys that corre-
spond to these short-term private keys may be certified in
an anonymous manner by a trusted third party, called the
pseudonym provider (PP), which is a particular instance
of CAs within the PKI. An anonymous certificate contains
only the public key, the validity period of the certificate,
the identifier of the issuer, and the digital signature of the
issuer. In particular, it does not contain the identifier of
the vehicle to which it has been issued.

However the HSM does not store the certificates but
only supports the pseudonym management application by
generating short-term key pairs, storing the private keys,
and computing signatures (when requested). The HSM
can be instructed (through its API) to generate a new
short-term signature key pair. When the HSM generates
a new key pair, it creates a new entry in the internal key
database and it stores the private key together with the
corresponding context information and outputs the public
key. It is the responsibility of applications running on the
car to obtain a certificate for it. The certificate request is
passed back to the HSM for being signed with the long-
term signature key of the HSM.

Also for short-term keys we check the above mentioned
goals of secrecy, authentication and freshness. The SeVe-
Com specification assumes an authentic and confidential
communication channel between the HSM and the PP.
We made experiments both with realizing the channels
with the long-term keys of the HSM, and by using an
ideal channel model that abstracts from the implemen-
tation [11]. In both cases, we can verify that the system
is safe, even allowing the intruder to have access to the
short-term signature function.

V. Conclusions

We conclude with a summary of our results. Our anal-
ysis of the root key update protocol of SeVeCom has
revealed two potential weaknesses. Under reasonable as-
sumptions though, we can exclude these attacks and verify
the root key update. The detection of the attacks and the
verification of the fixed system take a few minutes each. We
have also considered a comprehensive model of the system
including all communication protocols and have verified
all goals under the assumption that the intruder does not
have access to the signing functionality of all HSMs. The
verification of this more complex task takes less than 2
hours. The specifications are available at [9].

Our work was inspired by a similar work of Steel [12],
who modeled parts of the SeVeCom-system using
SATMC [13]. Here, the number of steps had to be
bounded. Since he did not model the certification author-
ity, he could not find the problems in root key update.

Our work shows that even complex systems (that require
features like the revocation of keys) can be efficiently
verified without bounding the number of steps that agents
can perform. More generally, it shows that even the rele-
vant aspects of time can be integrated into a model that
abstracts from the traces and transitions (and thereby any
notion of time): using sets for different time periods, we
can integrate the time information into the abstraction.

References

[1] SEVECOM, “Deliverable 2.1-App.A: Baseline Security Specifi-
cations,” www.sevecom.org, 2009.

[2] C. Cremers, “The Scyther Tool: Verification, falsification, and
analysis of security protocols,” in Computer Aided Verification.
Springer, 2008, pp. 414–418.

[3] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna,
J. Cuéllar, P. Drielsma, P. Héam, O. Kouchnarenko, J. Manto-
vani et al., “The AVISPA tool for the automated validation of
internet security protocols and applications,”in Computer Aided
Verification. Springer, 2005, pp. 281–285.

[4] Y. Boichut, P.-C. Héam, O. Kouchnarenko, and F. Oehl, “Im-
provements on the Genet and Klay technique to automatically
verify security protocols,” in AVIS’04, 2004, pp. 1–11.

[5] C. Weidenbach, “Towards an automatic analysis of security
protocols,” in CADE’99, ser. LNCS 1632, Berlin, 1999, pp. 378–
382.

[6] K. Bhargavan, C. Fournet, A. D. Gordon, and R. Pucella,
“Tulafale: A security tool for web services,” in FMCO, 2003,
pp. 197–222.

[7] L. Bozga, Y. Lakhnech, and M. Perin, “Pattern-based abstrac-
tion for verifying secrecy in protocols,” Int. J. on Software Tools
for Technology Transfer, vol. 8, no. 1, pp. 57–76, 2006.

[8] B. Blanchet, “An efficient cryptographic protocol verifier based
on prolog rules,” in CSFW’01. IEEE Computer Society Press,
2001, pp. 82–96.

[9] S. Mödersheim,“Abstraction by Set-Membership—Verifying Se-
curity Protocols and Web Services with Databases,” in CCS
2010. ACM, 2010, implementation and examples, including
SeVeCom specifications, available on www.imm.dtu.dk/˜samo.

[10] C. Weidenbach, R. A. Schmidt, T. Hillenbrand, R. Rusev, and
D. Topic, “System description: Spass version 3.0,” in CADE,
2007, pp. 514–520.

[11] S. Mödersheim and L. Viganò,“Secure pseudonymous channels,”
in ESORICS, 2009, pp. 337–354.

[12] G. Steel, “Towards a formal security analysis of the Sevecom
API.” in ESCAR, 2009.

[13] A. Armando and L. Compagna, “SATMC: A SAT-based model
checker for security protocols,” Logics in Artificial Intelligence,
pp. 730–733, 2004.

www.sevecom.org
www.imm.dtu.dk/~samo

	Introduction
	AIF
	Root Key Update
	Modeling the Authority
	Goals
	An Attack
	Revoking the wrong key

	Comprehensive Model
	A Timed Model
	Modelling the intruder and the API
	Long-Term Key Update Protocol
	Short-Term Key Update Protocol

	Conclusions
	References

