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Regular Expressions

• A character α is a regular expression.

• If S and T are regular expressions, then so is

• The union S | T

• The concatenation ST  (S·T)

• The kleene star S* 



Languages

• The language L(R) of a regular expression R is:

• L(α) = {α}

• L(S|T) = L(S) ∪ L(T)

• L(ST) = L(S)L(T)

• L(S*) = {ε} ∪ L(S) ∪ L(S)2 ∪ L(S)3 ∪ …



Example

• R = a(a*)(b|c)

• L(R) = {ab, ac, aab, aac, aaab, aaac, ...}



Regular Expression Matching

• Given regular expression R and string Q the regular expression matching 
problem is to decide if Q ∈ L(R).

• How fast can we solve regular expression matching for |R| = m and |Q| = n?



Applications

• Primitive in large scale data processing:

• Internet Traffic Analysis

• Protein searching

• XML queries

• Standard utilities and tools

• Grep and Sed

• Perl



NFAs and State-Set Simulation

• Construct non-deterministic finite automaton (NFA) from R. 
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NFAs and State-Set Simulation

• Thompson NFA (TNFA) N(R) has O(|R|) = O(m) states and transitions. 

• N(R) accepts L(R). Any path from start to accept state corresponds to a string 
in L(R) and vice versa.

• To solve regular expression traverse TNFA on Q one character at a time 
(state-set transition).

• O(m) per character => O(|Q|m) = O(nm) time algorithm [Thompson1968].

• Top ten list of problems in stringology 1985 [Galil1985].
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Large and Small TNFAs

• Suppose we can do state-set transition fast on a micro TNFA of size x ≪ m.

• Can we use that to get efficient state-set transition for N(R)?

• Main problem is non-local dependencies from ε-transitions.
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Large and Small TNFAs

• Decompose N(R) into tree of O(m/x) micro TNFAs with at most x states. Each 
micro TNFA overlaps with enclosing micro TNFA in 2 states.  

• To do state-set transition for N(R) using state-set simulation for micro TNFAs 
process micro TNFAs in topological order twice. Propagate reachable 
overlapping states. 

• State-set transition for micro TNFA in time t(x) => state-set transition for N(R) 
in time O(m t(x) /x). [Myers1992, B2006]
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Tabulation for Micro TNFAs 

• Encode micro TNFA and state set in micro TNFA in O(x) bits [Myers 1992, 
BFC2005].

• Tabulate state-set transition for all possible micro TNFAs and state-sets 
(determinize micro TNFA). Table size: 2O(x).

• With x = Θ(log n) => O(nm/log n) time and O(m + nε) space algorithm.
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Word-Level Parallelism for Micro TNFAs

• Can we simulate micro TNFA with bitwise logical and arithmetic operations of 
the w-bit words instead of tabulation? 

• Main challenge is long ε-transitions.
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• There exists two states θ and ϕ whose removal partitions a micro TNFA A into 
two subgraphs, AO and AI, of roughly equal size such that:

• Any path from AO to AI goes through θ.

• Any path from AI to AO goes through ϕ.

Micro TNFA Separators
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• Compute which of θ and ϕ are reachable.

• Update current set of reachable states

• Recurse on AO and AI in parallel.

• O(log w) levels of recursion each using O(1) time => O(m log w/ w) state-set 
transition => O(nm log w/w) time and O(m) space algorithm [B2006].

Recursive Word-Level Parallel State-Set Transition
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Beyond State-Set Simulation 

• To explicitly read/write state-sets at each character we need Ω(m/w) time for 
state-set transition.

• => Any algorithm takes Ω(nm/w) time with this approach. 

• Can we process multiple characters quickly?

• Even larger challenges from non-local ε-transitions.
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2D Decomposition Algorithm

• Decompose N(R) into O(m/x) micro TNFAs with at most x = Θ(log n) states [as 
earlier). 

• Partition Q into segments of length y = Θ(log1/2 n).

• State-set transition on segments in O(m/x) time.

• => algorithm using O(nm/xy) = O(nm/log1,5n) time.
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2D Decomposition Algorithm: Overview

• Goal: Do a state set transition on y = Θ(log1/2 n) characters in O(m/x) = O(m/
log n) time. 

• Algorithm: 4 traversals on tree of micro TNFAs. 

• 1-3 iteratively “builds” information. 

• 4 computes the actual state-set transition.

• Tabulation to do each traversal in constant time per micro TNFA



Computing Accepted Substrings

• Goal: For micro TNFA A compute the substrings of q that are accepted by Ā. 
We have A1 : {ε,a,aa}, A2 : {b}, A3 : {ab,aab}. 

• Bottom-up traversal using tabulation in constant time per micro TNFA.

• Encode set of substrings in O(y2) = O(log n) bits.

• Table input: micro TNFA, substrings of children, q.

• Table size 2O(x + y2+ y) = 2O(x + y2) = O(nε).
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Computing Path Prefixes to Accepting States

• Goal: For micro TNFA A compute the prefixes of q matching a path from S to 
the accepting state in Ā. We have A1 : {a, aa}, A2 : ∅, A3 : {aab}. 

• Bottom-up traversal using tabulation in constant time per micro TNFA.

• Encode prefixes in O(y) = O(log1/2 n) bits.

• Table input: micro TNFA, substrings and path prefixes of children, q, state-set 
for A. 

• Table size 2O(x + y2) = O(nε).
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Computing Path Prefixes to Start States

• Goal: For micro TNFA A compute the prefixes of q matching a path from S to 
the start state in N(R). We have A1 : {a}, A2 : {a, aa}, A3 : {ε}. 

• Top-down traversal using tabulation in constant time per micro TNFA.

• Tabulation: Similar to previous traversal.
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Updating State-Sets 

• Goal: For micro TNFA A compute the next state-set. We have A1 : ∅, A2 : 
{7,10}, A3 : {10}. 

• Traversal using tabulation in constant time per micro TNFA.

• Tabulation: Similar to previous traversal.
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2D Decomposition Algorithm: Algorithm Summary

• Tabulation in 2O(x + y2) = O(nε) time and space.

• 4 traversals each using O(m/x) time to process length y segment of Q.

• => algorithm using O(nm/xy) = O(nm/log1,5n) time and O(nε) space [BT2009]



Challenges

• Better than polylog improvements of O(nm) algorithm?

• Hardness reductions to other problems?
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