
Regular Expression Matching: History, Status, and
Challenges

Philip Bille

Outline

• The problem

• Applications

• Tour of techniques for worst-case efficient regular expression matching

• NFAs and state-set simulation.

• NFA decompositions and micro TNFAs.

• Tabulation-based micro TNFA simulation.

• Word-level parallel micro TNFA simulation.

• 2D decomposition algorithm.

• Open problems

Regular Expressions

• A character α is a regular expression.

• If S and T are regular expressions, then so is

• The union S | T

• The concatenation ST (S·T)

• The kleene star S*

Languages

• The language L(R) of a regular expression R is:

• L(α) = {α}

• L(S|T) = L(S) ∪ L(T)

• L(ST) = L(S)L(T)

• L(S*) = {ε} ∪ L(S) ∪ L(S)2 ∪ L(S)3 ∪ …

Example

• R = a(a*)(b|c)

• L(R) = {ab, ac, aab, aac, aaab, aaac, ...}

Regular Expression Matching

• Given regular expression R and string Q the regular expression matching
problem is to decide if Q ∈ L(R).

• How fast can we solve regular expression matching for |R| = m and |Q| = n?

Applications

• Primitive in large scale data processing:

• Internet Traffic Analysis

• Protein searching

• XML queries

• Standard utilities and tools

• Grep and Sed

• Perl

NFAs and State-Set Simulation

• Construct non-deterministic finite automaton (NFA) from R.

(a) (b)

(c)
(d)

α

N(S)

N(T)

ε

N(T)

N(S)

N(S)
ε

ε

ε

ε

ε

ε ε

�

�
�

��

�
�

�

NFAs and State-Set Simulation

• Thompson NFA (TNFA) N(R) has O(|R|) = O(m) states and transitions.

• N(R) accepts L(R). Any path from start to accept state corresponds to a string
in L(R) and vice versa.

• To solve regular expression traverse TNFA on Q one character at a time
(state-set transition).

• O(m) per character => O(|Q|m) = O(nm) time algorithm [Thompson1968].

• Top ten list of problems in stringology 1985 [Galil1985].

a

�

8

76

54

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

R = a·(a∗)·(b|c)

Large and Small TNFAs

• Suppose we can do state-set transition fast on a micro TNFA of size x ≪ m.

• Can we use that to get efficient state-set transition for N(R)?

• Main problem is non-local dependencies from ε-transitions.

a

�

8

76

54

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

Large and Small TNFAs

• Decompose N(R) into tree of O(m/x) micro TNFAs with at most x states. Each
micro TNFA overlaps with enclosing micro TNFA in 2 states.

• To do state-set transition for N(R) using state-set simulation for micro TNFAs
process micro TNFAs in topological order twice. Propagate reachable
overlapping states.

• State-set transition for micro TNFA in time t(x) => state-set transition for N(R)
in time O(m t(x) /x). [Myers1992, B2006]

a

�A1
A3

8

76

54
A2

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

Tabulation for Micro TNFAs

• Encode micro TNFA and state set in micro TNFA in O(x) bits [Myers 1992,
BFC2005].

• Tabulate state-set transition for all possible micro TNFAs and state-sets
(determinize micro TNFA). Table size: 2O(x).

• With x = Θ(log n) => O(nm/log n) time and O(m + nε) space algorithm.

a

�A1
A3

8

76

54
A2

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

Word-Level Parallelism for Micro TNFAs

• Can we simulate micro TNFA with bitwise logical and arithmetic operations of
the w-bit words instead of tabulation?

• Main challenge is long ε-transitions.

a

�A1
A3

8

76

54
A2

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

• There exists two states θ and ϕ whose removal partitions a micro TNFA A into
two subgraphs, AO and AI, of roughly equal size such that:

• Any path from AO to AI goes through θ.

• Any path from AI to AO goes through ϕ.

Micro TNFA Separators

AI

AO

✓ �

• Compute which of θ and ϕ are reachable.

• Update current set of reachable states

• Recurse on AO and AI in parallel.

• O(log w) levels of recursion each using O(1) time => O(m log w/ w) state-set
transition => O(nm log w/w) time and O(m) space algorithm [B2006].

Recursive Word-Level Parallel State-Set Transition

AI

AO

✓ �

Beyond State-Set Simulation

• To explicitly read/write state-sets at each character we need Ω(m/w) time for
state-set transition.

• => Any algorithm takes Ω(nm/w) time with this approach.

• Can we process multiple characters quickly?

• Even larger challenges from non-local ε-transitions.

a

�A1
A3

8

76

54
A2

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

2D Decomposition Algorithm

• Decompose N(R) into O(m/x) micro TNFAs with at most x = Θ(log n) states [as
earlier).

• Partition Q into segments of length y = Θ(log1/2 n).

• State-set transition on segments in O(m/x) time.

• => algorithm using O(nm/xy) = O(nm/log1,5n) time.

a

�A1
A3

8

76

54
A2

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

2D Decomposition Algorithm: Overview

• Goal: Do a state set transition on y = Θ(log1/2 n) characters in O(m/x) = O(m/
log n) time.

• Algorithm: 4 traversals on tree of micro TNFAs.

• 1-3 iteratively “builds” information.

• 4 computes the actual state-set transition.

• Tabulation to do each traversal in constant time per micro TNFA

Computing Accepted Substrings

• Goal: For micro TNFA A compute the substrings of q that are accepted by Ā.
We have A1 : {ε,a,aa}, A2 : {b}, A3 : {ab,aab}.

• Bottom-up traversal using tabulation in constant time per micro TNFA.

• Encode set of substrings in O(y2) = O(log n) bits.

• Table input: micro TNFA, substrings of children, q.

• Table size 2O(x + y2+ y) = 2O(x + y2) = O(nε).

a

�A1
A3

8

76

54
A2

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

q = aab

Computing Path Prefixes to Accepting States

• Goal: For micro TNFA A compute the prefixes of q matching a path from S to
the accepting state in Ā. We have A1 : {a, aa}, A2 : ∅, A3 : {aab}.

• Bottom-up traversal using tabulation in constant time per micro TNFA.

• Encode prefixes in O(y) = O(log1/2 n) bits.

• Table input: micro TNFA, substrings and path prefixes of children, q, state-set
for A.

• Table size 2O(x + y2) = O(nε).

a

�A1
A3

8

76

54
A2

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

q = aab
S = {1,3}

Computing Path Prefixes to Start States

• Goal: For micro TNFA A compute the prefixes of q matching a path from S to
the start state in N(R). We have A1 : {a}, A2 : {a, aa}, A3 : {ε}.

• Top-down traversal using tabulation in constant time per micro TNFA.

• Tabulation: Similar to previous traversal.

a

�A1
A3

8

76

54
A2

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

q = aab
S = {1,3}

Updating State-Sets

• Goal: For micro TNFA A compute the next state-set. We have A1 : ∅, A2 :
{7,10}, A3 : {10}.

• Traversal using tabulation in constant time per micro TNFA.

• Tabulation: Similar to previous traversal.

a

�A1
A3

8

76

54
A2

� �

��

c

b

1

�

2 3 4 5

6 7

8 9
10

a
� �

q = aab
S = {1,3}

2D Decomposition Algorithm: Algorithm Summary

• Tabulation in 2O(x + y2) = O(nε) time and space.

• 4 traversals each using O(m/x) time to process length y segment of Q.

• => algorithm using O(nm/xy) = O(nm/log1,5n) time and O(nε) space [BT2009]

Challenges

• Better than polylog improvements of O(nm) algorithm?

• Hardness reductions to other problems?

References

• S. C. Kleene. Representation of events in nerve nets and finite automata. In
Automata Studies, Ann. Math. Stud. No. 34, 1956.

• K. Thompson. Regular expression search algorithm. Comm. ACM, 11:419–422,
1968.

• Z. Galil. Open problems in stringology. In A. Apostolico and Z. Galil, editors,
Combinatorial problems on words, NATO ASI Series, Vol. F12, 1985.

• E. W. Myers. A four-russian algorithm for regular expression pattern matching.
J. ACM, 39(2):430–448, 1992.

• P. Bille and M. Farach-Colton. Fast and compact regular expression matching.
Theoret. Comput. Sci., 409:486 – 496, 2008.

• P. Bille. New algorithms for regular expression matching. In Proc. 33rd ICALP,
2006.

• P. Bille and M. Thorup. Faster regular expression matching. In Proc. 36th ICALP
2009

