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Outline

® The problem
e Applications
e Tour of techniques for worst-case efficient regular expression matching
e NFAs and state-set simulation.
e NFA decompositions and micro TNFAs.
e Tabulation-based micro TNFA simulation.
¢ \Word-level parallel micro TNFA simulation.
e 2D decomposition algorithm.

e Open problems



Reqgular Expressions

e A character a is a regular expression.

e [f S and T are regular expressions, then so is
e TheunionS|T
e The concatenation ST (S-T)

e The kleene star S*



Languages

e The language L(R) of a regular expression R is:
* L(a) ={a}
* L(S[T) = L(S) u L(T)

e L(ST) = LS)L(T)
e (S ={e} UL(S)UL(SZuULS?U ...




—Xample

* R = a(@")(blc)

e | (R) = {ab, ac, aab, aac, aaab, aaac, ...}



Regular Expression Matching

e Given regular expression R and string Q the regular expression matching
problem is to decide if Q € L(R).

e How fast can we solve regular expression matching for |R| = m and |Q| = n?



Applications

* Primitive in large scale data processing:
¢ |Internet Traffic Analysis
¢ Protein searching
e XML queries
e Standard utilities and tools
e Grep and Sed

e Perl



NFAs and State-Set Simulation

e Construct non-deterministic finite automaton (NFA) from R.



NFAs and State-Set Simulation

R =a-(a*)(blc)
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e Thompson NFA (TNFA) N(R) has O(|R|) = O(m) states and transitions.

e N(R) accepts L(R). Any path from start to accept state corresponds to a string
in L(R) and vice versa.

e To solve regular expression traverse TNFA on Q one character at a time
(state-set transition).

e O(m) per character => O(|Q|m) = O(nm) time algorithm [Thompson1968].
e Top ten list of problems in stringology 1985 [Galil1985].



Large and Small TNFAs
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e Suppose we can do state-set transition fast on a micro TNFA of size x « m.

e Can we use that to get efficient state-set transition for N(R)?

e Main problem is non-local dependencies from e-transitions.



Large and Small TNFAs

e Decompose N(R) into tree of O(m/x) micro TNFAs with at most x states. Each
micro TNFA overlaps with enclosing micro TNFA in 2 states.

e To do state-set transition for N(R) using state-set simulation for micro TNFAs
process micro TNFAs in topological order twice. Propagate reachable
overlapping states.

e State-set transition for micro TNFA in time t(x) => state-set transition for N(R)
in time O(m t(x) /x). [Myers1992, B2006]



Tabulation for Micro TNFAs

e Encode micro TNFA and state set in micro TNFA in O(x) bits [Myers 1992,
BFC2005].

e Tabulate state-set transition for all possible micro TNFAs and state-sets
(determinize micro TNFA). Table size: 20X,

e \With x = ©(log n) => O(hm/log n) time and O(m + n¢) space algorithm.



Word-Level Parallelism for Micro TNFAS

e Can we simulate micro TNFA with bitwise logical and arithmetic operations of
the w-bit words instead of tabulation?

* Main challenge is long e-transitions.



Micro TNFA Separators

e There exists two states 8 and ¢ whose removal partitions a micro TNFA A into
two subgraphs, Ao and A, of roughly equal size such that:

e Any path from Ao to Al goes through 6.
e Any path from A, to Ao goes through .



Recursive Word-Level Parallel State-Set Transition

e Compute which of 8 and ¢ are reachable.
e Update current set of reachable states
e Recurse on Ao and A in parallel.

e O(log w) levels of recursion each using O(1) time => O(m log w/ w) state-set
transition => O(nm log w/w) time and O(m) space algorithm [B2006].



Beyond State-Set Simulation

e To explicitly read/write state-sets at each character we need Q2(m/w) time for
state-set transition.

e —> Any algorithm takes Q2(nm/w) time with this approach.
e Can we process multiple characters quickly?

e Even larger challenges from non-local e-transitions.



2D Decomposition Algorithm

e Decompose N(R) into O(m/x) micro TNFAs with at most x = ©(log n) states [as
earlier).

e Partition Q into segments of length y = ©(log’? n).
e State-set transition on segments in O(m/x) time.

e => algorithm using O(nm/xy) = O(hnm/log-°n) time.



2D Decomposition Algorithm: Overview

e Goal: Do a state set transition on y = ©(log'’? n) characters in O(m/x) = O(m/
log n) time.

e Algorithm: 4 traversals on tree of micro TNFAs.
e 1-3 iteratively “builds” information.
e 4 computes the actual state-set transition.

¢ Tabulation to do each traversal in constant time per micro TNFA



Computing Accepted Substrings

e Goal: For micro TNFA A compute the substrings of q that are accepted by A.
We have A1:{g,a,aa}, A2: {b}, As:{ab,aab}.

e Bottom-up traversal using tabulation in constant time per micro TNFA.
e Encode set of substrings in O(y?) = O(log n) bits.
e Table input: micro TNFA, substrings of children, q.

* Table size 200 +y2+Y) = 20(x+¥2) = O(ng).



Computing Path Prefixes to Accepting States

 Goal: For micro TNFA A compute the prefixes of g matching a path from S to
the accepting state in A. We have A1:{a, aa}, A2: @, Az : {aab}.

e Bottom-up traversal using tabulation in constant time per micro TNFA.
e Encode prefixes in O(y) = O(log'? n) bits.

e Table input: micro TNFA, substrings and path prefixes of children, g, state-set
for A.

* Table size 20x+Y2) = O(ne).



Computing Path Prefixes to Start States

e Goal: For micro TNFA A compute the prefixes of g matching a path from S to
the start state in N(R). We have A1 :{a}, A>:{a, aa}, As:{€}.

e Top-down traversal using tabulation in constant time per micro TNFA.

e Tabulation: Similar to previous traversal.



Updating State-Sets

e Goal: For micro TNFA A compute the next state-set. We have A1: @, Az
{7,10}, As: {10}.

e Traversal using tabulation in constant time per micro TNFA.

e Tabulation: Similar to previous traversal.



2D Decomposition Algorithm: Algorithm Summary

* Tabulation in 2°x+¥9) = O(n¢) time and space.
e 4 traversals each using O(m/x) time to process length y segment of Q.

e => algorithm using O(nm/xy) = O(nm/log'-°n) time and O(n¢) space [BT2009]



Challenges

e Better than polylog improvements of O(nm) algorithm?

e Hardness reductions to other problems?
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