
Space-Efficient Re-Pair Compression

Philip Bille†, Inge Li Gørtz†, and Nicola Prezza†∗

Technical University of Denmark, DTU Compute
{phbi,inge,npre}@dtu.dk

Abstract

Re-Pair [5] is an effective grammar-based compression scheme achieving strong compression
rates in practice. Let n, σ, and d be the text length, alphabet size, and dictionary size of
the final grammar, respectively. In their original paper, the authors show how to compute
the Re-Pair grammar in expected linear time and 5n + 4σ2 + 4d +

√
n words of working

space on top of the text. In this work, we propose two algorithms improving on the space of
their original solution. Our model assumes a memory word of dlog2 ne bits and a re-writable
input text composed by n such words. Our first algorithm runs in expected O(n/ε) time
and uses (1+ε)n+

√
n words of space on top of the text for any parameter 0 < ε ≤ 1 chosen

in advance. Our second algorithm runs in expected O(n log n) time and improves the space
to n+

√
n words.

1 Introduction

Re-Pair (short for recursive pairing) is a grammar-based compression invented in
1999 by Larsson and Moffat [5]. Re-Pair works by replacing a most frequent pair
of symbols in the input string by a new symbol, reevaluating all new frequencies on
the resulting string, and then repeating the process until no pairs occur more than
once. Specifically, on a string S, Re-Pair works as follows. (1) It identifies the most
frequent pair of adjacent symbols ab. If all pairs occur once, the algorithm stops. (2)
It adds the rule A→ ab to the dictionary, where A is a new symbol not appearing in
S. (3) It repeats the process from step (1).

Re-Pair achieves strong compression ratios in practice and in theory [2, 4, 7, 10].
Re-Pair has been used in wide range of applications, e.g., graph representation [2],
data mining [9], and tree compression [6].

Let n, σ, and d denote the text length, the size of the alphabet, and the size of
the dictionary grammar (i.e. number of nonterminals), respectively. Larsson et al. [5]
showed how to implement Re-Pair in O(n) expected time and 5n + 4σ2 + 4d +

√
n

words of space in addition to the text (for simplicity, we ignore any additive +O(1)
terms in all space bounds). The space overhead is due to several data structures used
to track the pairs to be replaced and their frequencies. As noted by several authors
this makes Re-Pair problematic to apply on large data, and various workarounds have
been devised (see e.g. [2, 4, 10]).

† Partially supported by the Danish Research Council (DFF 4005-00267, DFF 1323-00178)
∗ This work was done while the author was a PhD student at the University of Udine, Italy

Surprisingly, the above bound of the original paper remains the best known com-
plexity for computing the Re-Pair compression. In this work, we propose two algo-
rithms that significantly improve this bound. As in the previous work we assume a
standard unit cost RAM with memory words of dlog2 ne bits and that the input string
is given in n such word. Furthermore, we assume that the input string is re-writeable,
that is, the algorithm is allowed to modify the input string during execution, and we
only count the space used in addition to this string in our bounds. Since Re-Pair
is defined by repeated re-writing operations, we believe this is a natural model for
studying this type of compression scheme. Note that we can trivially convert any
algorithm with a re-writeable input string to a read-only input string by simply copy-
ing the input string to working memory, at the cost of only n extra words of space.
We obtain the following result:

Theorem 1. Given a re-writeable string S of length n we can compute the Re-Pair
compression of S in

(i) O(n/ε) expected time and (1 + ε)n+
√
n words of space for any 0 < ε ≤ 1, or

(ii) O(n log n) expected time and n+
√
n words.

Note that since ε = O(1) the time in Thm. 1(i) is always at least Ω(n). For
any constant ε, (i) matches the optimal linear time bound of Larsson and Moffat [5],
while improving the leading space term by almost 4n words to (1 + ε)n +

√
n words

(with careful implementation it appears that [5] may be implemented to exploit a re-
writeable input string. If so, our improvement is instead almost 3n words). Thm. 1(ii)
further improves the space to n+

√
n at the cost of increasing time by a logarithmic

factor. By choosing 1/ε = o(log n) the time in (i) is faster than (ii) at the cost of a
slight increase in space. For instance, with ε = 1/ log log n we obtain O(n log log n)
time and n+ n/ log log n+

√
n words.

Our algorithm consists of two main phases: high-frequency and low-frequency pair
processing. We define a high-frequency (resp. low frequency) pair as a character pair
appearing at least (resp. less than) d

√
n/3e times in the text (we will clarify later the

reason for using constant 3). Note that there cannot be more than 3
√
n distinct high-

frequency pairs. Both phases use two data structures: a queue Q storing character
pairs (prioritized by frequency) and an array TP storing text positions sorted by
character pairs. Q’s elements point to ranges in TP corresponding to all occurrences
of a specific character pair. In Section 4.2 we show how we can sort in-place and
in linear time any subset of text positions by character pairs. The two phases work
exactly in the same way, but use two different implementations for the queue giving
different space/time tradeoffs for operations on it. In both phases, we extract (high-
frequency/low-frequency) pairs from Q (from the most to least frequent) and replace
them in the text with fresh new dictionary symbols.

When performing a pair replacement A → ab, for each text occurrence of ab
we replace a with A and b with the blank character ’ ’. This strategy introduces a

potential problem: after several replacements, there could be long (super-constant
size) runs of blanks. This could increase the cost of reading pairs in the text by too
much. In Section 4.1 we show how we can perform pair replacements while keeping
the cost of skipping runs of blanks constant.

2 Preliminaries

Let n be the input text’s length. Throughout the paper we assume a memory word
of size dlog2 ne bits, and a rewritable input text T on an alphabet Σ composed by
n such words. In this respect, the working space of our algorithms is defined as the
amount of memory used on top of the input. For reasons explained later, we reserve
two characters (blank symbols) denoted as ’*’ and ’ ’. We encode these characters
with the integers n− 2 and n− 1, respectively1.

The Re-Pair compression scheme works by replacing character pairs (with fre-
quency at least 2) with fresh new symbols. We use the notation D to indicate the
dictionary of such new symbols, and denote by Σ̄ the extended alphabet Σ̄ = Σ∪D.
It is easy to prove (by induction2 on n) that |Σ̄| ≤ n: it follows that we can fit both
alphabet characters and dictionary symbols in dlog2 ne bits. The output of our algo-
rithms consists in a set of rules of the form X → AB, with A,B ∈ Σ̄ and X ∈ D.
Our algorithms stream the set of rules directly to the output (e.g. disk), so we do not
count the space to store them in main memory.

3 Algorithm

We describe our strategy top-down: first, we introduce the queue Q as a blackbox,
and use it to describe our main algorithm. In the next sections we describe the
high-frequency and low-frequency pair processing queues implementations.

3.1 The queue as a blackbox

Our queues support the following operations:
- new low freq queue(T,TP). Return the low-frequency pairs queue.
- new high freq queue(T,TP). Return the high-frequency pairs queue.

1If the alphabet size is |Σ| < n − 1, then we can reserve the codes n − 2 and n − 1 without
increasing the number of bits required to write alphabet characters. Otherwise, if |Σ| ≥ n− 1 note
that the two (or one) alphabet characters with codes n − 2 ≤ x, y ≤ n − 1 appear in at most two
text positions i1 and i2, let’s say T [i1] = x and T [i2] = y. Then, we can overwrite T [i1] and T [i2]
with the value 0 and store separately two pairs 〈i1, x〉, 〈i2, y〉. Every time we read a value T [j] equal
to 0, in constant time we can discover whether T [j] contains 0, x, or y. Throughout the paper we
will therefore assume that |Σ| ≤ n and that characters from Σ ∪ {∗, } fit in dlog2 ne bits.

2For n = 2 the result is trivial. To carry out the inductive step, consider how |Σ|, |D|, and n grow
when extending the text by one character. Three cases can appear: (i) we append a new alphabet
symbol, (ii) we append an existing alphabet symbol and the introduced pair’s frequency is equal to
2, (iii) we append an existing alphabet symbol and the new pair’s frequency is different than 2.

- Q[ab], ab ∈ Σ̄2. If ab is in the queue, return a triple 〈Pab, Lab, Fab〉, with Lab ≥ Fab

such that: (i) ab has frequency Fab in the text, and (ii) all text occurrences of ab are
contained in TP [Pab, . . . , Pab + Lab − 1]. Note that—for reasons explained later—Lab

can be strictly greater than Fab.
- Q.max()/Q.min(): return the pair ab in Q with the highest/lowest Fab.
- Q.remove(ab): delete ab from Q.
- Q.contains(ab): return true iff Q contains pair ab.
- Q.size() return the number of pairs stored in Q.
- Q.decrease(ab): decrease Fab by one.
- Q.synchronize(AB). If FAB < LAB, then TP [PAB, . . . , PAB + LAB − 1] con-
tains occurrences of pairs XY 6= AB (and/or blank positions). The procedure sorts
TP [PAB, . . . , PAB+LAB−1] by character pairs (ignoring positions containing a blank)
and, for each such XY , removes the least frequent pair in Q and creates a new
queue element for XY pointing to the range in TP corresponding to the occurrences
of XY . If XY is less frequent than the least frequent pair in Q, XY is not in-
serted in the queue. Before exiting, the procedure re-computes PAB and LAB so that
TP [PAB, . . . , PAB +LAB − 1] contains all and only the occurrences of AB in the text
(in particular, LAB = FAB).

3.2 Main algorithm

Our main procedure taking as input the text T and computing its RePair grammar
works as follows. First, we initialize global variables n (T ’s length) and X = |Σ| (next
free dictionary symbol). We then start replacing pairs in two phases: high-frequency
and low-frequency pair processing. The high-frequency pair processing phase repeats
the following loop until the highest pair frequency in the text becomes smaller than√
n/3. We initialize array TP containing T ’s positions sorted by pairs. We create

the high-frequency queue Q by calling new high freq queue(T, TP). Then, we call
substitution round(Q) (see next section) until Q is empty. Finally, we free the mem-
ory allocated for Q and TP and we compact T ’s characters by removing blanks. The
low-frequency pair processing phase works exactly as above, except that: (i) we build
the queue with new low freq queue(T, TP) and (ii) we repeat the main loop until
the highest pair frequency in the text becomes smaller than 2.

3.3 Replacing a pair

In Algorithm 1 we describe the procedure substituting the most frequent pair in the
text with a fresh new dictionary symbol. We use this procedure in the main algorithm
to compute the re-pair grammar. Variables T (the text), TP (array of text positions),
and X (next free dictionary symbol) are global, so we do not pass them from the
main algorithm to Algorithm 1. Note that—in Algorithm 1—new pairs appearing
after a substitution can be inserted in Q only inside procedure Q.synchronize at
Lines 14, and 15. However, the operation at Line 14 is executed only under a certain
condition. As discussed in the next sections, this trick allows us to amortize operations

while preserving correctness of the algorithm. In Lines 4, 5, and 12 of Algorithm 1
we assume that—if necessary—we are skipping runs of blanks while extracting text
characters (constant time, see Section 4.1). In Line 5 we extract AB and the two
symbols x, y preceding and following it (skipping runs of blanks if necessary). In
Line 12, we extract a text substring s composed by X and the symbol preceding it
(skipping runs of blanks if necessary). After this, we replace each X with AB in s
and truncate s to its suffix of length 3. This is required since we need to reconstruct
AB’s context before the replacement took place. Moreover, note that the procedure
could return BAB if we replaced a substring ABAB with XX.

Algorithm 1: substitution round(Q)
input : The queue Q
behavior: Pop the most frequent pair from Q and replace its occurrences with a new symbol

1 AB ← Q.max();

2 ab← Q.min(); /* global variable storing least frequent pair */

3 output X → AB; /* output new rule */

4 for i = TP [PAB], . . . , TP [PAB + LAB − 1] and T [i, i+ 1] = AB do

5 xABy ← get context(T, i); /* AB’s context (before replacement) */

6 replace(T, i,X); /* Replace X → AB at position i in T */

7 if Q.contains(xA) then
8 Q.decrease(xA);

9 if Q.contains(By) then
10 Q.decrease(By);

11 for i = TP [PAB], . . . , TP [PAB + LAB − 1] and T [i] = X do

12 xAB ← get context′(T, i); /* X’s left context */

13 if Q.contains(xA) and FxA ≤ LxA/2 then
14 Q.synchronize(xA);

15 Q.synchronize(AB); /* Find new pairs in AB’s occurrences list */

16 Q.remove(AB);
17 X ← X + 1; /* New dictionary symbol */

3.4 Amortization: correctness and complexity

Assuming the correctness of the queue implementations (see next sections), all we
are left to show is the correctness of our amortization policy at Lines 13 and 14 of
Algorithm 1. More formally: in Algorithm 1, replacements create new pairs; however,
to amortize operations we postpone the insertion of such pairs in the queue (Line 14 of
Algorithm 1). To prove the correctness of our algorithm, we need to show that every
time we pick the maximum AB from Q (Line 1, Algorithm 1), AB is the pair with
the highest frequency in the text (i.e. all postponed pairs have lower frequency than
AB). Suppose, by contradiction, that at Line 1 of Algorithm 1 we pick pair AB, but

the highest-frequency pair in the text is CD 6= AB. Since CD is not in Q, we have
that (i) CD appeared after some substitution D → zw which generated occurrences
of CD in portions of the text containing Czw, and3 (ii) FCz > LCz/2, otherwise
the synchronization step at Line 14 of Algorithm 1 (Q.synchronize(Cz)) would have
been executed, and CD would have been inserted in Q. Note that all occurrences
of CD are contained in TP [PCz, . . . , PCz + LCz − 1]. Inequality FCz > LCz/2 means
that more than half of the entries TP [PCz, ..., PCz + LCz − 1] contain an occurrence
of Cz, which implies than less than half of such entries contain occurrences of pairs
different than Cz (in particular CD, since D 6= z). This, combined with the fact that
all occurrences of CD are stored in TP [PCz, ..., PCz + LCz − 1], yields FCD ≤ LCz/2.
Then, FCD ≤ LCz/2 < FCz means that Cz has a higher frequency than CD. This
leads to a contradiction, since we assumed that CD was the pair with the highest
frequency in the text.

Note that operations Q.synchronize(xA) and Q.synchronize(AB) at Lines 14
and 15 scan xA’s and AB’s occurrences list (Θ(LxA) and Θ(LAB) time). However,
to keep time under control, we are allowed to spend only time proportional to FAB.
Since LxA and LAB could be much bigger than FAB, we need to show that our strategy
amortizes operations. Consider an occurrence xABy of AB in the text. After replace-
ment X → AB, this text substring becomes xXy. In Lines 8-10 we decrease by one
in constant time the two frequencies FxA and FBy (if they are stored in Q). Note: we
manipulate just FxA and FBy, and not the actual intervals associated with these two
pairs. As a consequence, for a general pair ab in Q, values Fab and Lab do not always
coincide. However, we make sure that, when calling Q.max() at Line 1 of Algorithm
1, the invariant Fab > Lab/2 holds for every pair ab in the priority queue. This invari-
ant is maintained by calling Q.synchronize(xA) (Line 14, Algorithm 1) as soon as
we decrease by “too much” FxA (i.e. FxA ≤ LxA/2). It is easy to see that this policy
amortizes operations: every time we call procedure Q.synchronize(ab), either—Line
15—we are replacing ab with a fresh new dictionary symbol (thus Lab < 2 · Fab work
is allowed), or—Line 14—we just decreased Fab by too much (Fab ≤ Lab/2). In the
latter case, we already have done at least Lab/2 work during previous replacements
(each one has decreased ab’s frequency by 1), so O(Lab) additional work does not
asymptotically increase running times.

4 Details and Analysis

We first describe how we implement character replacement in the text and how we
efficiently sort text positions by pairs. Then, we provide the two queue implementa-
tions. For the low-frequency pairs queue, we provide two alternative implementations
leading to two different space/time tradeoffs for our main algorithm.

3Note that, if CD appears after some substitution C → zw which creates occurrences of CD in
portions of the text containing zwD, then all occurrences of CD are contained in TP [Pzw, . . . , Pzw +
Lzw − 1], and we insert CD in Q at Line 15 of Algorithm 1 within procedure Q.synchronize(zw)

4.1 Skipping blanks in constant time

As noted above, pair replacements generate runs of the blank character ’ ’. Our aim
in this section is to show how to skip these runs in constant time. Recall that the
text is composed by dlog2 ne-bits words. Recall that we reserve two blank characters:
’*’ and ’ ’. If the run length r satisfies r < 10, then we fill all run positions with
character ’ ’ (skipping this run takes constant time). Otherwise, (r ≥ 10) we start
and end the run with the string *i* , where i = r − 1, and fill the remaining run
positions with ’ ’. It is not hard to show that this representation allows us to perform
the following actions in constant time: skipping a run, accessing a text character,
apply a pair substitution and—if needed—merge two runs. For space reasons, we do
not discuss full details here.

4.2 Sorting pairs and frequency counting

We now show how to sort the pairs of an array T of n words lexicographically in linear
time using only n additional words. Our algorithm only requires read-only access to
T . Furthermore, the algorithm generalizes to substrings of any constant length in
the same complexity. As an immediate corollary, this implies that we can compute
the frequency of each pair in the same complexity simply by traversing the sorted
sequence. We need the following results on in-place sorting and merging.

Lemma 1 (Franceschini et al. [3]). Given an array A of length n with O(log n) bit
entries, we can in-place sort A in O(n) time.

Lemma 2 (Salowe and Steiger [8]). Given arrays A and B of total length n, we can
merge A and B in-place using a comparison-based algorithm in O(n) time.

The above results immediately provide simple but inefficient solutions to sorting
pairs. In particular, we can copy each pair of T into an array of n entries each storing
a pair using 2 words, and then in-place sort the array using Lemma 1. This uses
O(n) time but requires 2n words space. Alternatively, we can copy the positions of
each pair into an array and then apply a comparison-based in-place sorting algorithm
based on 2. This uses O(n log n) time but only requires n words of space.

Our algorithm works as follows. Let A be an array of n words. We greedily process
T from left-to-right in phases. In each phase we process a contiguous segment T [i, j]
of overlapping pairs of T and compute and store the corresponding sorted segment in
A[i, j]. Phase i = 0, . . . , k proceeds as follows. Let ri denote the number of remaining
pairs in T not yet processed. Initially, we have that r0 = n. Note that ri is also
the number of unused entries in A. We copy the next ri/3 pairs of T into A. Each
pair is encoded using the two characters of the pair and the position of the pair in
T . Hence, each encoded pair uses 3 words and thus fills all remaining ri entries in
A. We sort the encoded segment using the in-place sort from Lemma 1, where each
3-words encoded pair is viewed as a single key. We then compact the segment back
into ri/3 only entries of A by throwing away the characters of each pair and only

keeping the position of the pair. We repeat the process until all pairs in T have
been processed. At the end A consists of a collection of segments of sorted pairs.
We merge the segments from right-to-left using the in-place comparison-based merge
from Lemma 2. See the full version [1] for the analysis. We obtain:

Lemma 3. Given a string T of length n with dlog2 ne-bit characters, we can sort the
pairs of T in O(n) time using n words.

Lemma 4. Given a string T of length n with dlog2 ne-bit characters, we can count
the frequencies of pairs of T in O(n) time using n words.

4.3 High-Frequency Pairs Queue

The capacity of the high-frequency pairs queue is
√
n/11. We implement Q with the

following two components:
(i) Hash H. We keep a hash table H : Σ̄2 → [0,

√
n/11] with (2/11)

√
n entries. H

will be filled with at most
√
n/11 pairs (hash load ≤ 0.5). Collisions are solved by

linear probing. The size of the hash is (6/11)
√
n words (1 pair and integer per entry)

(ii) Queue array B. We keep an array B of quadruples from Σ̄2×[0, n)×[0, n)×[0, n).
B will be filled with at most

√
n/11 entries. We denote with 〈ab, Pab, Lab, Fab〉 a

generic element of B. Every time we pop the highest-frequency pair from the queue,
the following holds: (i) ab has frequency Fab in the text, and (ii) ab occurs in a subset
of text positions TP [Pab], . . . , TP [Pab + Lab − 1]. The size of B is (5/11)

√
n words.

H’s entries point to B’s entries: at any stage of the algorithm, if H contains a pair
ab, then B[H[ab]] = 〈ab, Pab, Lab, Fab〉. Overall, Q = 〈H, B〉 takes

√
n words of space.

For space reasons, we do not show how operations on the queue are implemented.
All operations run in constant (expected) time, except Q.max() and Q.min()—
which are supported in O(

√
n) time—and Q.synchronize(AB)—which is supported

in O(LAB+N ·
√
n) time, where LAB is AB’s interval length at the moment of entering

in this procedure, and N is the number of new pairs XY inserted in the queue.

Time complexity To find the most frequent pair in Q we scan all Q’s elements;
since |Q| ∈ O(

√
n) and there are at most 3

√
n high-frequency pairs, the overall time

spent inside procedure max(Q) does not exceed O(n). Since we insert at most
√
n/11

pairs in Q but there may be up to 3
√
n high-frequency pairs, once Q is empty we may

need to fill it again with new high-frequency pairs. We need to repeat this process
at most (3

√
n)/(
√
n/11) ∈ O(1) times, so the number of rounds is constant. We call

Q.min() in two cases: (i) after extracting the maximum from Q (Line 2, Algorithm
1), and (ii) within procedure Q.synchronize, after discovering a new high-frequency
pair XY and inserting it in Q. Case (i) cannot happen more than 3

√
n times. As for

case (ii), note that a high-frequency pair can be inserted at most once per round in
Q within procedure Q.synchronize. Since the overall number of rounds is constant
and there are at most 3

√
n high-frequency pairs, the time spent inside Q.min() is

O(n). Finally, considerations of Section 3.4 imply that sorting occurrences lists inside
operation Q.synchronize takes overall linear time thanks to our amortization policy.

4.4 Low-Frequency Pairs Queue

We describe two low-frequency queue variants, denoted in what follows as fast and
light. We start with the fast variant.

Fast queue Let 0 < ε ≤ 1 be a parameter chosen in advance. Our fast queue has
maximum capacity (ε/13) · n and is implemented with three components:
(i) Set of doubly-linked lists B. This is a set of lists; each list is associated
to a distinct frequency. B is implemented as an array of elements of the form
〈ab, Pab, Lab, Fab, P revab, Nextab〉, where Prevab points to the previous B element with
frequency Fab and Nextab points to the next B element with frequency Fab (NULL if
this is the first/last such element, resp.). Every B element takes 7 words. We allocate
ε · (7/13) · n words for B (maximum capacity: (ε/13) · n)
(ii) Doubly-linked frequency vector F . This is a word vector F [0, . . . ,

√
n/3− 1]

indexing all possible frequencies of low-frequency pairs. We say that F [i] is empty
(F [i] = NULL) if i is not the frequency of any pair in T . Non-empty F ’s entries
are doubly-linked: we associate to each F [i] two values F [i].prev and F [i].next rep-
resenting the two non-empty pair’s frequencies immediately smaller/larger than i.
We moreover keep two variables MAX and MIN storing the largest and smallest
frequencies in F . If i is the frequency of some character pair, then F [i] points to the
first B element in the chain associated with frequency i
(iii) Hash H. We keep a hash table H : Σ2 → [0, n] with ε · (2/13) · n entries. The
hash is indexed by character pairs. H will be filled with at most ε · n/13 pairs (hash
load ≤ 0.5). Collisions are solved by linear probing. The overall size of the hash is
ε·(6/13)·n words: 3 words (one pair and one integer) per hash entry. H’s entries point
to B’s entries: if ab is in the hash, then B[H[ab]] = 〈ab, Pab, Lab, Fab, P revab, Nextab〉

For space reasons, we do not show how operations on the queue are implemented.
All operations run in constant (expected) time, except Q.synchronize(AB)—which is
supported in O(LAB) expected time, LAB being AB’s interval length at the moment
of entering in this procedure.

Since we insert at most (ε/13) · n pairs in Q but there may be up to O(n) low-
frequency pairs, once Q is empty we may need to fill it again with new low-frequency
pairs. We need to repeat this process O(n/(n · ε/13)) ∈ O(1/ε) times before all
low-frequency pairs have been processed. Since—in our main algorithm—computing
array TP , building the queue, and compacting the text take O(n) time, the overall
time spent inside these procedures is O(n/ε). Using the same reasonings of the
previous section, it is easy to show that the time spent inside Q.synchronize is
bounded by O(n) thanks to our amortization policy. Since all queue operations
except Q.synchronize take constant time, we spend overall O(n) time operating on
the queue. These considerations imply that the high-frequency pair processing phase
of our main algorithm takes overall O(n/ε) randomized time. Theorem 1(i) follows.

Light queue We observe that we can re-use the space of blank text characters gen-
erated after replacements to store B and H. Let Si be the capacity (in terms of

number of pairs) of the queue at the i-th time we re-build it in our main algorithm;
at the beginning, S1 = 1. After replacing all Q’s pairs and compacting text positions,
new blanks are generated and this space is available at the end of the memory allo-
cated for the text, so we can accumulate it on top of Si obtaining space Si+1 ≥ Si.
At the next execution of the while loop, we fill the queue until all the available space
Si+1 is filled. We proceed like this until all pairs have been processed.

Replacing a pair ab generates at least Fab/2 blanks: in the worst case, the pair is
of the form aa and all pair occurrences overlap, e.g. in aaaaaa (which generates 3
blanks). Moreover, replacing a pair with frequency Fab decreases the frequency of at
most 2Fab pairs in the active priority queue (these pairs can therefore disappear from
the queue). Note that Fab ≥ 2 (otherwise we do not consider ab for substitution).
After one pair ab is replaced at round i, the number Mi of elements in the active
priority queue is at least Mi ≥ Si − (1 + 2Fab). Letting f1, f2, . . . be the frequencies
of all pairs in the queue, we get that after replacing all elements the number (0) of
elements in the priority queue is: 0 ≥ Si − (1 + 2f1) − (1 + 2f2) − · · · which yields
Si ≤ (1 + 2f1) + (1 + 2f2) + · · · ≤ 2.5f1 + 2.5f2 + · · · = 2.5

∑
i fi, since fi/2 ≥ 1 for

all i. So when the active priority queue is empty we have at least
∑

i fi/2 ≥ Si/5
new blanks. Recall that a pair takes 13 words to be stored in our queue. In the next
round we therefore have room for a total of (1 + 1/(5 · 13))Si = (1 + 1/65)Si new
pairs. This implies Si = (1 + 1/65)i−1. Since Si ≤ n for any i, we easily get that the
number R of rounds is bounded by R ∈ O(log n). With the same reasonings used
before to analyze the overall time complexity of our algorithm, we get Theorem 1(ii).

5 References

[1] P. Bille, I. L. Gørtz, and N. Prezza. Space-Efficient Re-Pair Compression. arXiv
preprint arXiv:1611.01479, 2016.

[2] F. Claude and G. Navarro. Fast and Compact Web Graph Representations. ACM
Trans. Web, 4(4):16:1–16:31, 2010.

[3] G. Franceschini, S. Muthukrishnan, and M. Patrascu. Radix Sorting with No Extra
Space. In Proc. 15th ESA, pages 194–205, 2007.

[4] R. González and G. Navarro. Compressed text indexes with fast locate. In Proc. 18th
CPM, pages 216–227.

[5] N. J. Larsson and A. Moffat. Off-line dictionary-based compression. Proceedings of the
IEEE, 88(11):1722–1732, 2000.

[6] M. Lohrey, S. Maneth, and R. Mennicke. XML tree structure compression using RePair.
Information Systems, 38(8):1150 – 1167, 2013.

[7] G. Navarro and L. Russo. Re-pair Achieves High-Order Entropy. In Proc. 18th DCC,
page 537, 2008.

[8] J. S. Salowe and W. L. Steiger. Simplified Stable Merging Tasks. J. Algorithms,
8(4):557–571, 1987.

[9] Y. Tabei, H. Saigo, Y. Yamanishi, and S. J. Puglisi. Scalable Partial Least Squares
Regression on Grammar-Compressed Data Matrices. In Proc. 22Nd KDD, pages 1875–
1884, 2016.

[10] R. Wan. Browsing and Searching Compressed Documents. PhD thesis, Department of
Computer Science and Software Engineering, University of Melbourne., 1999.

