
Compact Multi-frame Blind Deconvolution

James Nagy
Mathematics and Computer Science

Emory University
Atlanta, GA, USA

Michael Hart, University of Arizona
Douglas Hope, HartSCI Company

Stuart Jefferies, University of Hawaii and Georgia State University

Compact MFBD James Nagy, Emory University



Motivation

Big Data Imaging Problems

Multi-Frame Blind Deconvolution (MFBD) where multi = very large

MFBD combined with 3D (shape) or 4D (shape and color)
reconstructions.

Requirements

Powerful computers

More efficient algorithms

More efficient use of current algorithms
Smarter ways to process massive data sets

Collaborative/synergistic teams

e.g., physics, math, computer science, engineering
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Introduction

Convolution

Consider the convolution image formation model:

= ∗ +
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Introduction

Deconvolution

Deconvolution: Given

Blurred image, and

Point spread function (convolution kernel).

⇒ compute ⇒

Compute estimate of true image.
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Introduction

Blind Deconvolution

Blind Deconvolution: Given

Blurred image.

⇒ compute ⇒

Compute estimate of true image, and

Compute estimate of PSF.
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Introduction

Multi-Frame Blind Deconvolution
Multi-Frame Blind Deconvolution (MFBD):

Given multiple frames of blurred images:

Reconstruct PSFs and object:
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Introduction

Single Frame Blind Deconvolution (SFBD) Model

Parameterize point spread function

Using convolution model: b = psf(y) ∗ x + η

Or, using matrix notation: b = A(y)x + η

Example parameterizations:

PSF pixels psf

 
Wavefront phase: psf

  = |F−1(Pe iy)|2

Wavefront phase with Zernikes:

psf

  = |F−1(Pe i(y1z1+···ymzm)|2
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Introduction

General Mathematical Model

General mathematical model for image formation:

b = A(y) x + η

where

b = vector representing observed image

x = vector representing true image

A(y) = matrix defining blurring operation
For example,

Convolution with imposed boundary conditions
Spatially variant blurs

y = vector of parameters defining blurring operation

Goal: Given b, jointly compute approximations of y and x.
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Introduction

Multi-Frame Blind Deconvolution (MFBD)

The MFBD problem is:

b1 = A(y1)x + η1

b2 = A(y2)x + η2

...

bm = A(ym)x + ηm

To solve, could consider least squares best fit objective:∥∥∥∥∥∥∥
 b1 − A(y1)x

...
bm − A(ym)x


∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥
 b1

...
bm

−
 A(y1)

...
A(ym)

 x

∥∥∥∥∥∥∥
2

2

= ‖b− A(y)x‖22

Also need regularization, but we omit that complication for now.
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Compact Multi-Frame Blind Deconvolution

Compact Multi-Frame Blind Deconvolution

Processing a large number of frames is computationally intensive.

Compact MFBD (CMFBD)

D. Hope, S. Jefferies, Optics Letters, 36 (2011), pp. 867–869.

Identify a small set of control frames that contain most independent
information.

Reduce full set of data to small set of control frames, without losing
any important information.
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Compact Multi-Frame Blind Deconvolution

CMFBD: Identifying Control Frames

Suppose Aj ≡ A(yj) are simultaneously diagonalizable
(e.g. Fourier transforms for circulant matrices)

Aj = F∗Λj F

Consider noise free data, and the j-th frame:

Aj x = bj ⇒ Λj x̂ = b̂j

⇒ Λj diag(x̂) = diag(b̂j)

⇒ diag(b̂j)
† = diag(x̂)†Λ†j

where x̂ = Fx and b̂j = Fbj are unitary Fourier transforms.
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Compact Multi-Frame Blind Deconvolution

CMFBD: Identifying Control Frames

Assume there is a uniformly “best” conditioned matrix Ak .
That is, there is a Λk such that

[ |Λk | ]ii ≥ τ if there exists j with [ |Λj |]ii ≥ τ

where τ > 0 is a tolerance.

In this case, where there is a single control frame, observe:

diag(b̂j) = Λjdiag(x̂) and diag(b̂k)† = diag(x̂)†Λ†k

This allows to compute spectral ratios

diag(b̂j) diag(b̂k)†︸ ︷︷ ︸
known

= Λj︸︷︷︸Λ†k︸︷︷︸
unknown
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Compact Multi-Frame Blind Deconvolution

CMFBD: Exploiting Control Frames

WLOG, assume the control frame is k = 1, and observe:∥∥∥∥∥∥∥∥∥


A1

A2
...

Am

 x−


b1
b2
...
bm


∥∥∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥∥∥


Λ1

Λ2
...

Λm

 x̂−


b̂1
b̂2
...

b̂m


∥∥∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥∥∥∥


Λ1Λ

†
1

Λ2Λ
†
1

...

ΛmΛ
†
1

Λ1 x̂−


b̂1

b̂2
...

b̂m


∥∥∥∥∥∥∥∥∥∥

2

2
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Compact Multi-Frame Blind Deconvolution

CMFBD: Exploiting Control Frames

WLOG, assume the control frame is k = 1, and observe:∥∥∥∥∥∥∥∥∥


A1

A2
...

Am

 x−


b1
b2
...
bm


∥∥∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥∥∥


Λ1

Λ2
...

Λm

 x̂−


b̂1
b̂2
...

b̂m


∥∥∥∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥∥∥∥


I
D2
...

Dm

Λ1 x̂−


b̂1
b̂2
...

b̂m


∥∥∥∥∥∥∥∥∥
2

2

where Dj = diag(b̂j) diag(b̂1)†
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Compact Multi-Frame Blind Deconvolution

CMFBD Observations

The initial MFBD problem has unknowns:

A1, A2, . . . , Am, x or, equivalently Λ1, Λ2, . . . , Λm, x̂

After identifying a control frame, significantly fewer unknowns:

A1, x or, equivalently Λ1, x̂

More control frames may be needed to capture all [ |Λj |]ii ≥ τ .

For noisy data, algebra relating known and unknown information holds only
approximately.

Frame Selection: Based on heuristics

“Best” conditioned Ak ⇔ least blurred image
Many techniques can be used – we use a Fourier based power spectrum
approach.
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Compact Multi-Frame Blind Deconvolution

CMFBD Practical Details

Reduction of Single Frame Problem: Use Givens rotations∥∥∥∥∥∥∥∥∥Q
∗




I
D2

...
Dm

Λ1 x̂−


b̂1
b̂2
...

b̂m



∥∥∥∥∥∥∥∥∥

2

2

=

∥∥∥∥∥∥∥∥∥


D
0
...
0

Λ1 x̂−


d1
d2
...
dm


∥∥∥∥∥∥∥∥∥
2

2

Therefore, we need only consider

‖DΛ1 x̂− d1‖22 = ‖DFA1 x− d1‖22
Thus, the MFBD problem

min
yj , x

m∑
j=1

‖A(yj) x− bj‖22

reduces to the CSFBD problem

min
y1, x
‖WA(y1) x− d1‖22 , W = DF

Compact MFBD James Nagy, Emory University



Compact Multi-Frame Blind Deconvolution

Numerical Illustration of Time Savings
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Global Variable Consensus

Global Variable Consensus

The MFBD problem can be written as:

min
yi ,x

m∑
i=1

‖bi − A(yi )x‖22 + g(x)

where here we include an object regularization term, g(x).

Remarks:

Regularization g(x) can be used to enforce nonnegativity, sparsity, etc.

The unknown x couples the objective terms i = 1, . . . ,m

We can get a partial decoupling by reformulating as:

min
yi , xi

m∑
i=1

‖bi − A(yi )xi‖22 + g(z) subject to xi = z, i = 1, . . . ,m
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Global Variable Consensus

Global Variable Consensus
Using an augmented Lagrangian approach, and the Alternating Direction
Method of Multipliers (ADMM)1, the optimization decouples:

for k = 1, 2, ...[
y
(k+1)
i , x

(k+1)
i

]
= argmin

yi , xi
‖bi − A(yi )xi‖22 +

β

2
‖xi − z(k) + u

(k)
i ‖

2
2

x̄(k+1) =
1

m

m∑
i=1

x
(k+1)
i

ū(k) =
1

m

m∑
i=1

u
(k)
i

z(k+1) = argmin
z

{
g(z) +

mβ

2
‖z− x̄(k+1) − ū(k)‖22

}
u
(k+1)
i = u

(k)
i + x

(k+1)
i − z(k+1)

end

1Good ADMM references: Wahlberg, Boyd, Annergren, Wang, Proc. 16th IFAC
Symposium on System Identification, 2012, and Boyd, et. al., Foundations and Trends in
Machine Learning, 2010.
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Global Variable Consensus

Global Variable Consensus
Advantages:

Decoupling allows for easy parallel processing of groups of frames

subgroup 1 subgroup 2 subgroup 3 subgroup 4

Can either use standard MFBD on subgroups of frames, or
Use CMFBD on subgroups of frames

Regularization term is also decoupled, allowing users to plug in many
options, and it simplifies the computation.

Sliding window approach might be possible:
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Global Variable Consensus

Global Variable Consensus: Numerical Illustration2

50 total frames, split in three different ways

10 subgroups 5 subgroups 2 subgroups
(5 frames each) (10 frames each) (25 frames each)

2J. D. Schmidt, Numerical Simulation of Optical Wave Propagation, SPIE Press
Monograph Vol. PM199, 2010
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Higher Dimensional Image Reconstruction

Higher Dimensional Image Reconstruction

Three dimensional reconstruction from two dimensional measurements:
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Higher Dimensional Image Reconstruction

Higher Dimensional Image Reconstruction

Some computational challenges:

Requires processing many, many frames of data.

Mathematical model is similar to MFBD, but

Number of unknowns for object significantly increases.
Additional unknowns associated with parameters defining object
orientation.

Some related work has been done for molecular structure
determination, e.g. in Cryo-EM and x-ray crystallography3

3J. Chung, P. Sternberg and C. Yang, High Performance 3-D Image Reconstruction
for Molecular Structure Determination, International Journal of High Performance
Computing Applications, 24 (2010), pp. 117–135.
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Higher Dimensional Image Reconstruction

Higher Dimensional Image Reconstruction

What further information can be used?

Possibly assume blocks of data have constant orientation parameters
Idea like this was used in PET brain image reconstruction4

Can use consensus ADMM type approach on blocks of data.

Use other information (e.g., a frozen flow assumption), or
technologies (e.g., laser guide stars).

4P. Wendykier, J. Nagy, Parallel Colt: High Preformance Java Library for Scientific
Computing and Image Processing, ACM Transactions on Mathematical Software, 37
(2010), pp. 31:1–31:22
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Higher Dimensional Image Reconstruction

Summary

Big data, multi-frame image processing requires not only powerful
computers, but also new approaches to process massive data sets.

This is especially true for 3D/4D image reconstructions.

Goal should be to extract as much information as possible from
collected data, but to also do it quickly.

Important to have synergistic collaborations with various expertise.
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