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Uncertainty Quantification

. . . but what is UQ? It is, roughly put, the coming to-
gether of probability theory and statistical practice with
‘the real world’.

T. Sullivan, 2015

Statisticians can’t compute and numerical analysts can’t handle data.
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Uncertainty Quantification

There are known knowns;
there are things we know we know.

We also know there are known unknowns;
that is to say, we know there are some things we do not know.

But there are also unknown unknowns – the ones we don’t know we don’t
know.

Donald Rumsfeld, U.S. Secretary of Defense
DoD News Briefing; Feb. 12, 2002
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Uncertainty Quantification
Why UQ?

• There are branches of science where certainty is unattainable.

• Examples
• quantum physics

Heisenberg uncertainty principle
• geosciences

properties of the subsurface, weather, climate
• engineering

manufacturing variations, impurities, sub-scale effects, structural safety,
reliability analysis

• finance
price/interest fluctuations, Knightian uncertainty, ambiguity

• For many (routine) computational problems the effects of uncertainty
outweigh other error sources (roundoff, discretisation);
in others, it is at least an error worth considering.

• We now have the computer hardware, algorithms and data acquisition
technology to address UQ computationally.
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Uncertainty Quantification
Uncertain Data

• We model uncertainty with probability. (There are alternatives.)
• Inasmuch as the associated phenomena are modeled by differential equations,
the uncertain quantities enter as data.

Two fundamental problems:

(1) Given the probability law of the data (inputs), compute that of the outputs
(solution, quantity of interest (QoI)).

This is known as uncertainty propagation.
(2) How do we obtain the probability law of the inputs?

Merge models with observations.

This is an inverse problem for a probability measure.
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Uncertainty Quantification
Uncertainty propagation vs. Bayesian inversion

Input ⇠⇠

Model
 

G = G(⇠)G = G(⇠)
Quantity of Interest 

(QoI)
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Groundwater Flow Problem at WIPP
Setting

• Waste Isolation Pilot Plant (WIPP)
Carlsbad, NM

• Groundwater transport of
radionuclides

• Uncertainty in hydraulic
conductivity

• Quantity of interest (QoI):
contaminant travel time

• Certification: requires travel time
> 104 years in case of breach.

• Approach:
• Model uncertainty (lack of

knowledge) probabilistically.
• Merge stochastic model with

direct and indirect observations.
• Determine probability law of

travel time.
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Groundwater Flow Problem at WIPP
Data

 Development of Culebra T Fields for CRA-2009 PABC  

 17 April, 2010 

 

Figure TFIELD 2-7. Salado dissolution and Rustler mudstone/halite margins. 

• Data publically available: Sandia TRs
1990s, certification/recertification
documents 1996–2014

• Observations of
direct (transmissivity) and
indirect (hydraulic head) data.

• WIPP-2 test data [Caufman et al., 1990],
[La Venue et al., 1990];
38 measurements of head and
transmissivity

• CRA-2014 data: measurements of
head (44) and transmissivity (62).
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Groundwater Flow Problem at WIPP
Mathematical Model

Particle transport by groundwater modeled as ODE:

ẋ(t) = u(x(t)), x(0) = x0.

Groundwater flux u given by Darcy’s law

u(x) = −a(x)∇p(x)

relating hydraulic conductivity a and hydraulic head (pressure) p.

Mass conservation yields elliptic PDE for p:

−∇ · (a(x) ∇p(x)) = 0 on D. (PDE)

Boundary conditions on ∂D = ΓN ∪ ΓD

∂np
∣∣
ΓN

= 0, p
∣∣
ΓD

= g .

Conductivity a and Dirichlet data g unknown – have to be estimated by data.
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Groundwater Flow Problem at WIPP
Mathematical Model

Main interest is in flux u, therefore mixed (weak) form of (PDE) is solved:

Find (u, p) ∈ H0(div;D)× L2(D) such that

〈a−1u, v〉 − 〈∇· v , p〉 = `(v) ∀v ∈ H0(div;D), (PDE-mixed-a)

〈∇·u, q〉 = 0 ∀q ∈ L2(D), (PDE-mixed-b)

where 〈·, ·〉 denotes L2(D)-inner product, `(v) = −
∫

ΓD
g v · ~n s. and

H0(div;D) =
{
v ∈ L2(D) : ∇· v ∈ L2(D),

〈v ,∇v〉+ 〈∇· v , v〉 = 0 ∀v ∈ H1
0,ΓD

(D)
}
.

• 2D model, as Culebra only 7.75m thick over area 20km × 30km.

• FE discretization of (PDE-mixed) using lowest-order Raviart-Thomas
elements (u) / piecewise constants (p).

• Flow divergence-free, thus uh pcw. constant, particle tracking trivial.
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Groundwater Flow Problem at WIPP
Deterministic Calculation

Computational domain with Neumann and Dirichlet boundary ΓN and ΓD , resp.
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Groundwater Flow Problem at WIPP
Deterministic Calculation

Head data (CRA 2014) . . .
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Groundwater Flow Problem at WIPP
Deterministic Calculation

Head data (CRA 2014) . . . and its geostatistical interpolant.
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Groundwater Flow Problem at WIPP
Deterministic Calculation

Log transmissivity data (CRA 2014) . . .
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Groundwater Flow Problem at WIPP
Deterministic Calculation

Particle travel time given these estimates for a and g : 18, 424 years .
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Groundwater Flow Problem at WIPP
Re-evaluate

• What if true transmissivity a differs from best estimate?

Have estimated a on a domain of 20 km × 30 km based on 62 data points!

• Need to quantify the effects of remaining uncertainty regarding a and g .

Alternative:
• Model a as random field a : D × Ω→ R w.r.t. probability space (Ω,A,P).

• In other words, a(x , ·) is a random variable for each x ∈ D where the
randomness describes our uncertainty about a(x).

• Therefore also p and u become random fields where now (PDE-mixed) holds
P-a.s.

• Also QoI particle travel time becomes a random variable and we aim to
compute its distribution function.
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Groundwater Flow Problem at WIPP
More refined modeling

Basic assumption: κ := log a and g are (stationary) Gaussian random fields
(GRF).

Our different approaches so far:

• Variant 1 (done): Consider g as deterministic,
construct random field model for a from observations of a (geostatistics)

• Variant 2 (done): In addition to Variant 1, incorporate measurements of p
into model for a (Bayesian inversion)

• Variant 3 (in progress): In addition to Variant 2, model also g as random
field incorporating observational data.

[Cliffe, Ernst, Sprungk, Ullmann & van den Boogart, 2016],
[Ernst & Sprungk, 2016]
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Plan of Lectures

1 Inverse Problems

2 Bayesian Inference

3 Sampling from the Posterior

4 An Inverse Problem for Groundwater Flow at WIPP
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Contents

1 Inverse Problems

2 Bayesian Inference

3 Sampling from the Posterior

4 An Inverse Problem for Groundwater Flow at WIPP
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Contents

1 Inverse Problems
1.1 Introduction
1.2 Ill-Conditioned Linear Problems, Regularization
1.3 Infinite-Dimensional Problems
1.4 Outlook
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Introduction
Finding x . . .

Oliver Ernst (TU Chemnitz) UQ and Inverse Problems DTU, November 2016 17 / 156



Introduction
Finding x . . .

• Inverse problems are concerned with determining a quantity x which is not
directly observable.

• Available partial knowledge about x : its image y under a mapping F :

F (x) = y .

F is called the forward map.
y is called the data, observation or measurement.
x is called the solution, unknown, parameter or reconstruction.
Determining y given x is called the direct of forward problem.

• Other common characterizations of inverse problems:

Determining a cause from its effect.
Reconstructing an object from partial observations.
Constructing a geometrical body from its projections.
Concluding the input from knowing the output.
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Introduction
Finding x . . .

The forward map at the set level:

F : X → Y

Properties:
• well-definedness
• surjectivity
• injectivity
• (solvability)

• For bijective F , inverse mapping F−1 exists, no (qualitative) difference
between forward and inverse problem at set-theoretic level.

• F not surjective: restrict problem formulation to F (X ) ( Y .
• F not injective: additional information, constraints.
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Introduction
Finding x . . .

The real challenge posed by inverse problems is topological:

F : X → Y

• F “almost not injective”, i.e.,
• F−1 is not continuous, even when
it exists.

• Small changes in y correspond to
large changes in x .

• Well-posed problems in the sense of [Hadamard, 1923] possess unique
solutions x which depend continuously on the data y .

• Last point crucial since, in applications, data always contaminated by noise
due to measurement error, discretization error, floating point error or
uncertainty.

• In this sense inverse problems are ill-posed problems.
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Introduction
Ill-conditioning

Consider linear forward map

F : R2 → R2, x 7→ y = F (x) = Ax , A =

[
1 0
0 ε

]
, ε > 0,

with data vectors

y =

[
1
0

]
(unperturbed), y δ =

[
1
δ

]
, δ > 0 (perturbed).

Then

x := A−1y =

[
1
0

]
, xδ := A−1y δ =

[
1
δ/ε

]
,

giving
‖x − xδ‖p
‖y − y δ‖p

=
δ/ε

δ
=

1
ε
, e.g. for p = 1, 2,∞.

For 0 < ε� 1 noise level strongly amplified in inversion process.
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Introduction
Ill-conditioning

Same applies to any square diagonal matrix

A =


ε1

ε2
. . .

εn

 ∈ Rn×n, ε1 ≥ · · · ≥ εn > 0.

For data and noise vectors y , 0 6= δ ∈ Rn, y δ := y + δ, we obtain

‖x − xδ‖2
‖y − y δ‖2

=
‖A−1δ‖2
‖δ‖2

≥ 1/εn‖δ‖2
‖δ‖2

=
1
εn
.

• Such forward mappings are called ill-conditioned.
• Since A−1 is continuous, the inverse problem Ax = y is, strictly speaking,
still well-posed.

• True ill-posedness resides in mappings between infinite-dimensional spaces.
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Ill-Conditioned Linear Problems
The singular value decomposition

Every matrix A ∈ Rm×n has a singular value decomposition (SVD)

A = UΣV>, U ∈ Rm×m,U>U = Im, V ∈ Rn×n,V>V = I n,

Σ =

[
Σr O
O O

]
, Σr = diag(σ1, . . . , σr ), σ1 ≥ · · · ≥ σr > 0,

r = rank(A), 0 ≤ r ≤ min{m, n}.

The equation Ax = y is therefore equivalent with

UΣV>x = y ⇔ Σx̃ = ỹ , x̃ := V>x , ỹ := U>y .

For y δ := y + δ and Axδ = y δ we have

‖x − xδ‖2
‖y − y δ‖2

=
‖x̃ − x̃δ‖2
‖ỹ − ỹ δ‖2

≥ 1
σr
.
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Ill-Conditioned Linear Problems
The singular value decomposition

Writing the transformed equation as[
Σr O
O O

] [
x̃ r

x̃⊥

]
=

[
ỹ r

ỹ⊥

]
, x̃ =

[
x̃ r

x̃⊥

]
, ỹ =

[
ỹ r

ỹ⊥

]
,

we observe
• no solution unless ỹ⊥ = 0⇔ y ∈ range(A),
• solution block x̃⊥ arbitrary, since x̃⊥ ∈ null(A).

Generalized solution x† := V

[
Σ−1r ỹ r

0

]
(least squares solution, LS-solution)

• minimizes ‖y − Ax‖2 among all x ∈ Rn,
• has the smallest 2-norm among all x ∈ Rn that satisfy Ax = y ,
• can be written in terms of the (Moore-Penrose-)Pseudoinverse A† as

x† = A†y , A† := VΣ†U>, Σ† :=

[
Σ−1r 0
0 0

]
.
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0

]
(least squares solution, LS-solution)

• minimizes ‖y − Ax‖2 among all x ∈ Rn,
• has the smallest 2-norm among all x ∈ Rn that satisfy Ax = y ,
• can be written in terms of the (Moore-Penrose-)Pseudoinverse A† as

x† = A†y , A† := VΣ†U>, Σ† :=

[
Σ−1r 0
0 0

]
.

Oliver Ernst (TU Chemnitz) UQ and Inverse Problems DTU, November 2016 25 / 156



Regularization
Truncated singular value decomposition (TSVD)

• In terms of the SVD the LS solution is

xδ = V x̃δ =
r∑

j=1

u>j y δ

σj
v j , V = [v1| · · · |vn], U = [u1| · · · |um].

• Since u>j y δ = u>j y + u>j δ, noise amplification occurs in those (singular
vector expansion) components for which |u>j δ| > σj .

• Regularization: introduce (parameter-dependent) weighting factor

wα : (0, σ21]→ [0, 1], wα(σ2) :=

{
1 if σ2 > α

0 otherwise ,

giving the (TSVD-)regularized solution

xδα :=
r∑

j=1

wα(σ2j )

σj
(u>j y δ) v j =

∑
σj>α

σ−1j (u>j y δ) v j .
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Regularization
Truncated singular value decomposition (TSVD)

• Denoting this regularization operator by Rα, we obtain

xδα = Rαy δ in place of xδ = A†y δ.

• For ‖δ̃‖2 = ‖U>δ‖2 = δ > 0, assuming roughly uniform noise across
components, this suggests δ̃j := u>j δ ≈ δ/

√
m so that truncating the terms

where |u>j δ| > σj corresponds to α = |u>j δ| = |δ̃j | ≈ δ/
√
m.

• Error
A†y − Rαy δ = A†y − Rαy︸ ︷︷ ︸

approximation error

+ Rα(y − y δ)︸ ︷︷ ︸
data error

• By construction

A†y − Rαy =
r∑

j=1

1− wα(σ2j )

σj︸ ︷︷ ︸
→0 as α→0

(u>j y) v j
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Regularization
Truncated singular value decomposition (TSVD)

• Data error: ‖δ‖2 = δ implies

‖Rα(y − y δ)‖22 =

∥∥∥∥∥∥∥∥∥
r∑

j=1

wα(σ2j )

σj︸ ︷︷ ︸
≤α−1/2

(u>j δ) v j

∥∥∥∥∥∥∥∥∥
2

2

≤ δ2

α

and therefore the regularization scheme of choosing

α = α(δ) := δp, 0 < p < 2

leads to xδα → x† as δ → 0.
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Regularization
TSVD Example: Image deblurring

[Hansen, Nagy & O’Leary, 2006]: Image modeled as pixel vector x , blurring due to
atmosphere modelled by discrete convolution A (point-spread-function).

Original image x blurred and noisy y + δ
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Regularization
TSVD Example: Image deblurring

Three different reconstructions (deblurring) via TSVD.
(k refers to the truncation index of the singular values.)

k = 658 k = 2813 k = 7243
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Regularization
Tikhonov regularization

In place of A†y δ, choose xδα to minimize the Tikhonov functional

1
2
‖y δ − Ax‖22︸ ︷︷ ︸
data misfit

+
α

2
‖x‖2︸ ︷︷ ︸

regularization functional

α > 0.

• Corresponds to weighting function wα(σ2) = σ2

σ2+α .
• Also leads to convergent regularization scheme as δ → 0.
• Implementation does not require SVD, can be computed, e.g., with iterative
methods.

• Prototype of optimization-based schemes, also known as variational
regularization.

• Different types of added information can be encoded into structure of
regularizaton functional: smoothness, blockyness, sparsity etc.
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Infinite-Dimensional Problems
Hilbert space setting

Now let A : X → Y be an linear operator between two Hilbert spaces X and Y .

• The problem of solving Ax = y with y ∈ Y is ill-posed in the sense of
[Nashed, 1987] if range(A) = {Ax : x ∈ X} is not closed in Y .

• A class of operators always leading to ill-posed problems is that of compact
operators with an infinite-dimensional range.

• For compact A there exist orthonormal systems {uj}j∈N and {vj}j∈N as well
as a nonincreasing null-sequence of nonnegative singular values (σj)j∈N such
that

Ax =
∞∑
j=1

σj(vj , x)X uj .

• Picard condition: for a compact linear operator A with singular system
(uj , vj , σj), an element y ∈ range(A) also lies in range(A) if

∞∑
j=1

(uj , y)2Y
σ2j

<∞.
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Infinite-Dimensional Problems
Hilbert space setting

For A : X → Y bounded and linear, y ∈ Y we have
•

Ax† = Prange(A)y ⇔ x† = argmin
x∈X

‖y − Ax‖Y

⇔ A∗Ax† = A∗y (normal equations).

• The solutions of the normal equations form a closed and convex set, which is
nonempty iff y ∈ range(A)⊕ range(A)⊥ ( 6= Y in general).

• The pseudoinverse

A† : D(A†)→ X , D(A†) := range(A)⊕ range(A)⊥,

is the linear mapping which assigns to y ∈ D(A†) the unique minimum norm
solution x† of the normal equations.

• A† is continuous iff range(A) is closed.
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Infinite-Dimensional Problems
Hilbert space setting

For a compact operator A : X → Y with singular system {(uj , vj , σj)} its pseudoin-
verse has the representation

A†y =
∞∑
j=1

σ−1j (uj , y)Y vj , y ∈ D(A†).

For a noisy vector yδ ∈ Y we have

A†y − A†yδ =
∞∑
j=1

σ−1j (uj , y − yδ)Y vj .

Given the singular value sequence σj , one can find noise vectors ‖y −yδ‖Y = δ > 0
such that, say, ‖A†y − A†yδ‖X > 1 for arbitrarily small δ.
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Outlook
Nonlinear problems

For nonlinear forward maps F : X → Y variational regularization of the problem

F (x) = y , y ∈ F (X )

consists of minimizing
‖y − F (x)‖2Y + Rα(x)

for a suitable regularization functional Rα.

Ill-posedness in inherited by linearizations (cf. [Colton & Kress, 2013,Theorem 4.21].
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Outlook
Further reading

Important issues not mentioned:

• Optimality of regularization schemes, construction of such schemes.
• Extension to Banach space setting.
• Determining the best value of regularization parameter (discrepancy principle,
cross-validation, L-curve, . . . )

• Computational methods, large-scale implementations.

Oliver Ernst (TU Chemnitz) UQ and Inverse Problems DTU, November 2016 38 / 156



Accounting for Noise Distribution
Example 1

Consider forward map F : R+ → Rn

x 7→ F (x) =
√
x


1

1/2
...

1/n

 =:


f1(x)
f2(x)
...

fn(x)


and data y = F (x) + ε where

yj = fj(x) + εj , j = 1, . . . , n, εj ∼ N(0, 1) i.i.d.

Least squares estimate

x̂LS = argmin
x>0

1
2
‖y − F (x)‖22.
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Accounting for Noise Distribution
Example 1

-2 -1 0 1 2 3 4 5 6 7
y1

-2

-1

0

1

2

3

4

y 2

Data space: 100 samples
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Accounting for Noise Distribution
Example 1
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Accounting for Noise Distribution
Example 1

Observations:
• The LS estimate is biased.
• First-order optimality condition for (nonlinear) LS estimation

n∑
j=1

fj(x̂)f ′j (x̂) =
n∑

j=1

yj f
′
j (x̂)

can be solved in this example to obtain

x̂LS =

[∑n
j=1 yj/j∑n
j=1 1/j2

]2
.

• From the known Gaussian noise distribution we conclude

E [x̂LS ] = x + σ2/Sn, Sn :=
n∑

j=1

1/j2 n→∞−→ 6
π2
.
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Accounting for Noise Distribution
Example 1

• If we wish to estimate z :=
√
x instead of x , the optimality conditions yield

ẑLS =

∑n
j=1 yj/j∑n
j=1 1/j2

, giving E [ẑLS ] =
√
x = z ,

an unbiased estimate.
• One can remove the bias by subtracting σ2/Sn, but this is no longer a LS-fit
to the data.

• Note that an unbiased estimate of x is not obtained as the square of the
unbiased estimate for z =

√
x . (Note: think of a sine wave signal varying

aroind zero with zero mean noise. Best constant estimate of signal is zero,
but power of signal is not zero.)

• Statistics: “Conditioning on estimates gives poor predictive distributions”.
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Accounting for Noise Distribution
Example 1

Does regularization help? Tikhonov would yield

x̂α = argmin
x>0

(
1
2
‖y − F (x)‖22 +

α

2
x2
)

• With regularization both estimates (for x and
√
x) are biased.

• The bias depends on the unknown value x .

Take-away:
• LS estimates may not be quantitatively accurate.
• Regularization makes it harder to fix the bias.
• Best estimates do not map correctly through functions, but one can map
distributions over possible values correctly.
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Accounting for Noise Distribution
Example 2

Consider N measurements of a scalar µ with uniform noise

yj = µ+ εj , εj ∼ U[−1, 1], j = 1, . . . ,N.

• Since µ− 1 ≤ yj ≤ µ+ 1 for all j , we have

max{yj} − 1 ≤ µ ≤ min{yj}+ 1.

• The LS-estimate for µ from N measurements is

µ̂LS =
1
N

N∑
j=1

yj , with mean-square error
1√
3N

.

• The MSE is the variance of the estimate, often quoted as the “error in the
estimate”.
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Accounting for Noise Distribution
Example 2

10 experiments of 10 samples each, red dots: µ̂LS , blue dots the data yj ,
green line: feasible region for µ above:

0 2 4 6 8 10
Experiment number
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10 experiments, 10 samples each.
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Accounting for Noise Distribution
Example 2

Observations:

• In 3 out of 10 experiments the LS estimate is not even feasible. (In Bayesian
terms: outside the posterior distribution).

• The estimation variance 1/
√
3N ≈ ±0.1826 is sometimes larger, sometimes

smalles thatn the actual error in µ̂LS .
• The size of the feasible interval depends on the data, so is not a fixed value.
• An the number of measurements N increases, so does the chance that µ̂LS is
infeasible. At the same time, the estimation error decreases.

We are thus more certain of an estimate that is more likely to be wrong.
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Inverse Problems
Summary

• Solution of inverse problems sensitive to noise.
• Noise always present.
• Regularization formulated as optimization problem.
• Regularization replaces solution operator by nearby continuous operator
controlled by regularization parameter.

• Goal: convergence to solution for vanishing noise.
• Issue: for finite noise, estimate provided by regularization methods does not
convey the variation (distribution) of solution given noise structure.
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Bayesian Inference

When the facts change I change my mind.
What do you do, sir.

(attributed to) J. M. Keynes, 1940

Statistical inference about a quantity of interest is described as the mod-
ification of the uncertainty about its value in the light of evidence, and
Bayes’ theorem precisely specifies how this modification should be made.

José M. Bernardo, Bayesian Statistics, 2003
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Bayesian Inference
Conditional Probability

Given probability space (Ω,A,P), A,B ∈ A, P(B) > 0, then the conditional prob-
ability of A given B is defined by

P(A|B) :=
P(A ∩ B)

P(B)
.

Special cases:
(i) Mutually exclusive events

A ∩ B = ∅ ⇒ P(A|B) = 0.

(ii) “B implies A”
B ⊂ A⇒ P(A|B) = 1.

(iii) A, B independent

P(A ∩ B) = P(A) · P(B)⇒ P(A|B) = P(A).
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Bayesian Inference
Bayes’ Rule

Solving for P(A ∩ B), exchanging roles of A and B, assuming P(A) > 0, gives

P(A|B) =
P(B|A)P(A)

P(B)
Bayes’ rule [Bayes, 1763]

Interpretations:

• A: unobservable state of nature, with prior probability P(A) of occurring;
• B: observable event, probability P(B) known as evidence;
• P(B|A): probability that A causes B to occur (likelihood);
• P(A|B): posterior probability of A knowing that B has occurred.
• Terms: inverse probability, Bayesian inference.
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Bayesian Inference
Bayes’ rule (partitions)

Given partition {Aj}j∈N of Ω into exhaustive and exclusive disjoint events, de Mor-
gan’s rule and countable additivity give, assuming all P(Aj) > 0,

P(B) =
∑
j∈N

P(B|Aj)P(Aj) (law of total probability),

leading to another variant of Bayes’ rule:

P(Ak |B) =
P(B|Ak)P(Ak)∑
j∈N P(B|Aj)P(Aj)

,

giving posterior probability of each Ak after observing B.
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Bayesian Inference
Example: Screening/testing for disease

• Incidence of disease among general population: 0.01 %
• Test has true positive rate (sensitivity) of 99.9 %.
• Same test has true negative rate (specificity) of 99.99 %.
• What is the chance that someone who tests positive actually has the disease?

Answer (Bayes’ formula, total probability)

P(desease|pos) =
P(pos|disease) · P(disease)

P(pos)

where

P(pos) = P(pos|disease) · P(disease) + P(pos|no disease) · P(no disease)

giving

P(desease|pos) =
0.999 · 0.0001

0.999 · 0.0001 + (1− 0.9999) · (1− 0.0001)
≈ 0.4998
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Bayesian Inference
Example: Screening/testing for disease

In [Gigerenzer, 1996]: Medical practitioners were given the following information
regarding mammography screenings for breast cancer:

incidence: 1 %; sensitivity: 80 %; specificity: 90 %.

When asked to quantify the probability of the patient actually having breast cancer
given a positive screening result (≈ 7.5%), 95 out of 100 physicians estimated this
probability to lie above 75%.
See also [Gigerenzer et al., 1998] for similar observations in AIDS counseling.

Alternative phrasing (of same answer using natural frequencies)

• Think of random sample 10,000 people.
• Of these, on average 1 will have the disease, 9,999 will not.
• The person who has the disease will almost certainly test positive.
• of the 9,999 healthy people, on average one will test (falsely) positive.
• Thus, roughly one out of every two positive patients actually has the disease.
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Bayesian Inference
Example: Screening/testing for disease274

The probability that a patient has breast cancer is
1% (the physician’s prior probability).

If the patient has breast cancer, the probability
that the radiologist will correctly diagnose it is 80%

(hit rate or sensitivity).
If the patient has a benign lesion (no breast can-

cer), the probability that the radiologist will incor-
rectly diagnose it as cancer is 10% (false-positive rate).

Question: What is the probability that a patient
with a positive mammography actually has breast
cancer?

Eddy reported that 95 of 100 physicians estimated
the probability of breast cancer after positive mam-
mography to be about 75%. If one inserts the num-
bers into Bayes’ theorem, however, one gets a value
of 7.5%, that is, an estimate one order of magnitude
smaller. Casscells and colleagues9 have reported
similar results with physicians, staff, and students at
the Harvard Medical School. Is there something sys-
tematically wrong with physicians’ statistical train-
ing, with their intuitions, or both?

Physicians are no exception in having difficulties
with probabilities. Numerous undergraduates sitting
through tests in psychological laboratories found
themselves similarly helpless and were diagnosed as
suffering from &dquo;cognitive illusions.&dquo; From these

studies, many have concluded that the human mind
lacks something important: &dquo;People do not appear
to follow the calculus of chance or the statistical the-

ory of prediction&dquo; 10 p 237; &dquo;It appears that people lack
the correct programs for many important judgmen-
tal tasks&dquo; 11; or more bluntly, &dquo;Tversky and Kahne-
man argue, correctly I think, that our minds are not
built (for whatever reason) to work with the rules of

probability.&dquo; 12 p 469 If these conclusions are correct,
then the problem is not so much in training, but in
our minds: there seems to be little hope for physi-
cians, and for their patients as well.

MENTAL COMPUTATIONS DEPEND ON

INFORMATION FORMATS

These conclusions, however, are premature. Let
us be clear why. A discrepancy between human
judgment and the outcome of Bayes’ rule is ob-

served, from which the conclusion is drawn that
there is no cognitive algorithm similar to Bayes’ rule
in people’s minds (but only dubious heuristics such
as &dquo;representativeness&dquo;). However, any claim against
the existence of an algorithm, Bayesian or otherwise,
is impossible to evaluate unless one specifies the in-
formation format for which the algorithm is de-

signed to operate. For instance, numbers can be
represented in various formats: Arabic, Roman, and
binary systems, among others. My pocket calculator
has an algorithm for multiplication that is designed
for Arabic numbers as the input format. If I enter

FIGURE 1. Bayesian computations are simpler when information
is represented in a frequency format (right) than when it is rep-
resented in a probability format (left) p(H) = prior probability
of hypothesis. H (breast cancer), p(D ~ H) = probability of data D
(positive test) given H, and p(D ) - H) = probability of D given - H
(no breast cancer).

binary numbers instead, garbage comes out. The
observation that the output of my pocket calculator
deviates from the normative rule (here: multiplica-
tion), however, does not entail the conclusion that it
has no algorithm for multiplication. Similarly, the
algorithmic operations acquired by humans are de-
signed for particular formats. Consider for a mo-
ment division in Roman numerals.
The format of information is a feature of the de-

cision maker’s environment. Let us apply this ar-
gument to medical diagnosis, such as Eddy’s mam-
mography problem. Assume that through the evo-
lutionary process of adapting to risky environments,
some capacity or cognitive algorithm for statistical
inference has evolved. For what information format
would such an algorithm be designed? Certainly not
probabilities and percentages-as in the above

mammography problem-because these are rela-
tively new (a few hundred years old) formats for
learning and communicating risk.313 So if not prob-
abilities and percentages, for what information for-
mat were these cognitive algorithms designed? I

argue that they evolved to deal with absolute fre-
quencies, because information was experienced
during most of the existence of Homo sapiens in
terms of discrete cases, for example, three out of 20
cases rather than 15%.

 at Universitaetsbibliothek on April 8, 2014mdm.sagepub.comDownloaded from 

Source: Gigerenzer, 1996

Sometimes the description of uncertainty
is crucial for its transparent communica-
tion.
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Bayesian Inference
Bayes’ Rule for densities

Given two random variables (RV) X ,Y , i.e., measurable functions

X ,Y : Ω→ R

with probability density functions (pdf)

P(X ≤ x) =

∫ x

−∞
fX (ξ) dξ, P(Y ≤ y) =

∫ y

−∞
fY (η) dη,

and joint pdf f (x , y) = fX ,Y (x , y) (assumed to exist), then

P(X ≤ x ,Y ≤ y) =

∫ x

−∞

∫ y

−∞
f (ξ, η) dη dξ.

Conditional density of X given Y (given Y = y):

fX |Y (x |y) =
f (x , y)∫∞

−∞ f (ξ, y) dξ
=

f (x , y)

fY (y)
.
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Bayesian Inference
Bayes’ Rule for densities

Interpretation:

• Joint density:
P(X = x ,Y = y) =̂ f (x , y) d(x , y).

• Marginal density:

fY (y) =

∫ ∞
−∞

f (ξ, y) dξ, P(Y = y) =̂ fY (y) dy .

• Conditional density:

fX |Y (x |y) =̂
P(X = x ,Y = y)

P(Y = y) dy
=̂ P(X = x |Y = y) dy .
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Bayesian Inference
Bayes’ Rule for densities

Then Bayes’ theorem states that

fX |Y (x |y) =
fY |X (y |x) fX (x)

fY (y)
=

fY |X (y |x) fX (x)∫
fY |X (y |x) fX (x) dx

.

• fY |X (y |x) is now called the likelihood function.
•
∫
fY |X (y |x) fX (x) dx is calles the normalizing factor or marginal.

• Short form:
fX |Y ∝ fY |X fX .
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Bayesian Inference
Estimating probabilities with Bayes’ rule

Problem:(cf. [Gorroochurn, 2012, Chapter 14])
• Given A ∈ A, suppose p := P(A) ∈ [0, 1] is unknown.
• Assume A has occurred in k out of n independent and identical trials.
• For 0 ≤ p1 < p2 ≤ 1, what is the probability that p ∈ (p1, p2)?

Solution:
P(p1 < p < p2) =

(n + 1)!

k!(n − k)!

∫ p2

p1

pk(1− p)n−k dp.

• Classical probability (Bernoulli, Laplace): given probability p = P(A), how
many independent trials n are necessary to be “morally certain” that A occurs
k = pn times?

• Inverse probability (Bayes): Given occurrence rates and notion of prior
probability for A, what is P(A)?
In the literature of Bayes’ day often called the “probability of causes”.
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Bayesian Inference
Choosing a prior: The principle of imdifference

The principle of indifference asserts that if there is no known reason for
predicating of our subject one rather than another of several alternatives,
then relatively to such knowledge the assertions of each of these alterna-
tives have an equal probability.

J. M. Keynes, 1921

• Rule for assigning epistemic probabilities: in the absence of further
information, use the uniform distribution.

• Taken as intuitively obvious by [J. Bernoulli, Ars Conjectandi, 1713].
• Later used by [Laplace, 1774] to define classical probability.
• Originally known as “Principle of insufficient reason” , (cf. Leibniz’ “principle
of sufficient reason”1), current term due to [Keynes, 1921].

• Can lead to contradictions (numerous paradoxes in literature).

1“For every fact F , there must be an explanation why F is the case.”
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Bayesian Inference
Laplace’s rule of succession

Problem: A box contains a large number N of black and white balls. We draw n
balls with replacement, of which k turn out to be black, n − k white. What is the
conditional probability that the next draw will yield a black ball?

Solution:

P(next draw black|k of n previous draws black) =
k + 1
n + 2

.

Problem: [Laplace, 1814] What is the probability that the sun will rise tomorrow,
given that it has risen on each day of the past 5000 years?

Solution: n = 5000 · 365.2426 = 1, 826, 213, k = n,

P(sunrise tomorrow) =
1, 826, 214
1, 826, 215

≈ 0.9999995.

But this number is incomparably greater for him who, recognizing in the totality
of phenomena the principal regulator of days and seasons, sees that nothing at
the present moment can arrest the course of it.

P.-S. Laplace, Essai Philosophique sur les Probabilités,1814
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Bayesian Inference
Model uncertainty or the turkey fallacy

[Taleb & Blythe, 2011], [B. Russell, 1912], [Gigerenzer, 2014]

• A turkey is fed by the farmer every day for many months.
• The turkey applies Laplace’s rule of succession and feels more confident with
every passing day.

• . . . until Thanksgiving.
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Bayesian Inference
Uncertainty and the Problem of Induction

• The turkey had too much confidence in his model of uncertainty; he was
missing important information (unknown unknowns).

• Fundamental question in epistemology (the theory of knowledge), known as
the Problem of Induction [D. Hume, 1748]

• [K. Popper, 1959] postulated that induction is not possible, that scientific
theories can only be falsified.

• The turkey illusion is the belief that a risk can be calculated when it cannot.
• [F. Knight, 1921]: distinction between known risk (“risk”) and unknown risk
(“uncertainty”). Uncertainty in this sense requires more tools than probability.
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Bayesian Inference
Example: A measurement model

Assume we have performed N measurements y = (y1, . . . , yN) of the length ` of a
rod with error model

Y = `+ ε, ε ∼ N(0, σ2), i.e. Y ∼ N(`, σ2).

What is our state of knowledge about `?

For independent measurements the likelihood function is

f (y |`) =
1

(σ
√
2π)N

exp

− N∑
j=1

(yj − `)2

2σ2


The posterior for ` starting with a prior density f is then

f (`|y) =
K

(σ
√
2π)N

exp

− N∑
j=1

(yj − `)2

2σ2

 f (`)

with normalization constant K . Fox et al., Lecture Notes, 2016
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Bayesian Inference
Example: A measurement model

Rearranging terms, factoring out quantities not dependent on `, gives

f (`|y) ∝ exp
[
− N

2σ2
exp(`− y)2

]
f (`), y :=

1
N

N∑
j=1

yj .

• Effect of data collection: multiplication of prior f (`) by Gaussian of mean y
and variance σ2/N.

• If prior f (`) approximately uniform (flat) around y , then posterior almost
completely determined by data.

• For Gaussian posterior mean, median and mode all coincide, so that natural
best estimate is

ˆ̀ := y with uncertainty measure
σ

N
.
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Bayesian Inference
Example: A measurement model

Now assume measurement error variance σ unknown; include in Bayesian formula-
tion by considering σ as new parameter (likelihood function same as before):

f (`, σ|y) = K f (y |`, σ) f (`, σ)

=
K

(σ
√
2π)N

exp
(
− N

2σ2
[
(x − y)2 + s2

])
f (`, σ)

with K normalization constant, s := 1/N(
∑N

j=1 y
2
j )− y2.

For flat prior normalized posterior density given by

f (`, σ|y) =

√
8
Nπ

(
Ns2

2

)N/2 1
s2σNΓ(N/2− 1)

exp
(
− N

2σ2
[
(`− y)2 + s2)

])
Peak of this function at

`MAP = y , σMAP = s,

where MAP stands for maximum a posteriori estimate, which coincides with the
maximum likelihood estimate.
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Bayesian Inference
Example: A measurement model

We can find the marginal densities of the posterior by integrating out the uncon-
sidered variable:

f (`|y) =
Γ(N/2− 1/1)

Γ(N/2− 1)

sN−2
√
π [(`− y)2 + s2](N−1/2)

f (σ|y) =
2

Γ(N/2− 1)

(
Ns2

s

)N/2−1

σ1−N exp
(
−Ns2

2σ2

)
.
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Bayesian Inference
Example: A measurement model
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Bayesian Inference
Example: A measurement model
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Bayesian Inference
Summary

• Bayes theorem as mathematical model of incorporating new observations
with current state of knowledge.

• For UQ: method of updating probabilities.
• Describes step from prior probability distribution to posterior probability
distribution.

• Can incorporate uncertainty also in statistical parameters
(“hyperparameters”).
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Monte Carlo Integration

Given a RV (quantity of interest) X with a known distribution, information on its
variability can be obtained from statistical quantities such as
• Expected value

E [X ] =

∫
x fX (x) dx

• Higher moments:
E
[
X k
]
, k ∈ N.

• Cumulative distribution function

FX (x) =

∫ x

−∞
fX (x) dx .

• Probability of events

P(x ∈ A) =

∫
χA(x) fX (x) dx , χA(x) =

{
1, x ∈ A,

0 otherwise.
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Monte Carlo Integration

• Given a device for generating a sequence {Xk} of i.i.d. realizations of a given
random variable X , basic MC simulation uses the approximation

E [X ] ≈ SN
N
, SN = X1 + · · ·+ XN .

• By the SLLN, SN

N → E [X ] a.s.

• Similarly, for a measurable function f , E [f (X )] ≈ 1
N

∑N
k=1 f (Xk).

• For a RV X ∈ L2(Ω;R) the standardized RV

X ∗ :=
X − E [X ]√

VarX
has E [X ∗] = 0, VarX ∗ = 1.

• If µ = E [X ], σ2 = VarX , then E [SN ] = Nµ, Var SN = Nσ2 and, by the
CLT,

S∗N =
SN − Nµ√

Nσ
→ N(0, 1).
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Monte Carlo Integration
Convergence rate

• Since

E

[(
SN
N
− µ

)2
]

= Var
SN
N

=
σ2

N
→ 0 (N →∞)

we have L2-convergence of SN/N to µ and, for any ε > 0,

P
{∣∣∣∣SNN − µ

∣∣∣∣ > N−1/2+ε

}
≤ σ2

N2ε , (3.1)

i.e., as the number N of samples increases, the probability of the error being
larger than O(N−1/2+ε) converges to zero for any ε > 0.

• If ρ := E
[
|X − µ|3

]
<∞, then the Berry-Esseen bound further gives

|P(S∗N ≤ x)− Φ(x)| ≤ C
ρ

σ3
√
N
, (3.2)

where Φ denotes the cdf of N(0, 1).
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Monte Carlo Integration
Asymptotic confidence intervals

• For a RV Z ∼ N(0, 1) and x ∈ R, this implies

P(S∗N ≤ x) = P(Z ≤ x) + O(N−1/2)

and therefore

P(|S∗N | ≤ x) = P(S∗N ≤ x)− P(S∗N < −x)

= P(Z ≤ x)− P(Z < −x) + O(N−1/2)

= P(|Z | ≤ x) + O(N−1/2)

= erf
(

x√
2

)
+ O(N−1/2)

where

erf
(

x√
2

)
= 2Φ(x)− 1.

• If the O(N−1/2)-term is assumed negligible, this can be used to construct
(asymptotic) confidence intervals for S∗N , i.e., the MC estimate SN/N.
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Monte Carlo Integration
Confidence intervals from Berry-Esseen estimate

True confidence intervals are obtained if we carry along the bound in the Berry-
Esseen estimate (3.2), denoted by BN ,

−BN ≤ P(S∗N ≤ x)− Φ(x) ≤ BN

i.e., for R ≥ 0 we have

P(|S∗N | ≤ R) = P(S∗N ≤ R)− P(S∗N < −R)

≥ Φ(R)− BN − (Φ(−R) + BN)

= Φ(R)− Φ(−R)︸ ︷︷ ︸
=:γR

−2BN

and, in the same manner, P(|S∗N | ≤ R) ≤ γR + 2BN , i.e.,

γR − 2BN ≤ P
(
µ ∈

[
SN
N
− σR√

N
,
SN
N

+
σR√
N

])
≤ γR + 2BN .
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Markov Chains
Terminology

A stochastic process X = {Xn(ω) : n ∈ N0} with values in a set S is called a
Markov chain (MC)2 if
for all A ⊂ S, for all n ∈ N0 and for all x0, x1, . . . xn ∈ S, there holds

P(Xn+1 ∈ A|Xn = xn,Xn−1 = xn−1, . . .X0 = x0) = P(Xn+1 ∈ A|Xn = xn),

i.e., the value of the chain is independent of its past history.

A MC X is time-homogeneous if its transition probabilities

P(Xn+1 ∈ A|Xn = x) = P(x ,A) =

∫
A

p(x , y) dy

do not depend on n. P(x ,A) is called the transition kernel which we assume
absolutely continuous for every x ∈ S.
The n-step transition densities are defined as

P(Xn+1 ∈ A|X0 = x) = P(n)(x ,A) =

∫
A

p(n)(x , y) dy .

2The material on Markov chains and MCMC alorithms closely follows the excellent
presentation in the lecture notes by Gareth Roberts at this link.
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Markov Chains
Terminology

For a finite state space |S| = k <∞ the transition matrix P ∈ Rk×k is defined by

pi,j = P(Xn+1 = i |Xn = j), i , j ,∈ S.

Example:

0.6

0.25
0.4

0.5

0.6

0.25

0.4

P =

 0.4 0.6 0
0.25 025 0.5
0 0.4 0.6


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Markov Chains
Distribution at time n

If the distribution of X0 is given by the density q(0), then the density of X at time
n is

q(n)(x) =

∫
S
q(0)(y) p(n)(x , y) dy

and, for finite state spaces,
q(n) = q(0)Pn.

Example: For the weather chain, if q(0) = [1, 0, 0] (sunny on first day), then

q(2) = [1, 0, 0]P2 = [1, 0, 0]

 0.31 0.39 0.3
0.1625 0.4125 0.425
0.1 0.34 0.56

 = [0.31, 0.1625, 0.1],

i.e., on day n = 2 there ist a 31 % chance on sunny weather.
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Markov Chains
Ergodicity

Under certain regularity conditions the distribution of a MC converges to a limiting
distribution, the stationary, invariant or equilibrium distribution, in which case the
chain is said to be ergodic.

A MC is said to be irreducible if all states intercommunicate, i.e., if for all i , j ∈ S
there is an n ∈ N0 such that P(Xn = i |X0 = j) > 0.

A MC is said to be recurrent if P(Xn = i , n > 0|X0 = i) > 0 for all i ∈ S.

A MC is said to be positive recurrent if E [Ti,i ] < ∞ for all i ∈ S, where Ti,i

denotes the time of the first return to state i .
If X is ergodic with invariant distribution π, then π(i) = 1/E [Ti,i ].

A MC is sait to be aperiodic if there do not exist d ≥ 2 disjoint subsets S1, . . .Sd
such that

P(x ,Si+1) = 1 for all x ∈ Si , 1 ≤ i ≤ d − 1,
P(x ,S1) = 1 for all x ∈ Sd .
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Markov Chains
Ergodicity

Remarks:
1 Recurrence and aperiodicity are class properties: If a MC is irreducible, then

all of S is one communicating class. Thus an irreducible chain is recurrent if
one of its states is recurrent. The same is true for positive recurrence and
aperiodicity.

2 Irreducibility essentially ensures there is no partition of S into subsets
between which the chain cannot move.

3 (Positive) Recurrence ensures that the chain eventually visits every subset of
the state space of positive measure (sufficiently often).

4 Perodicity states there exists a partition of S into subsets which are visited by
the chain in cyclical sequential order.
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Markov Chains
Irreducibility for continuous state spaces

If X denotes a continuous state space, a MC on X is called µ-reducible if there
exists a measure µ on X such that for all A ⊂ X with µ(A) > 0 and all x ∈ X
there exists n ∈ N0 such that

Pn(x ,A) > 0.

• Setting µ(A) = δx0(A) requires that state x0 can be reached from every other
state. (Therefore irreducibility ist stronger than µ-irreducibility.)

• Aperiodicity applies also to continuous MC.
• A MC that is µ-irreducible and aperiodic has a limit distribution.

Oliver Ernst (TU Chemnitz) UQ and Inverse Problems DTU, November 2016 88 / 156



Markov Chains
Limit distributions

The total variation distance dTV (P1,P2) between two probability measures P1 and
P2 is defined as

dTV (P1,P2) := sup
A⊂X
|P1(A)− P2(A)|.

Theorem 3.1 (Limit distribution)
The distribution of an aperiodic µ-irreducible MC converges to a limit distribution
π in the sense that

lim
n→∞

dTV (Pn(x , ·), π(·)) = 0 for π-almost all x ∈ X .

A MC is said to be Harris recurrent if for all B ⊂ X with π(B) > 0 and all x ∈ X
there holds

P(Xn ∈ B for some n ∈ N|X0 = x) = 1.
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Markov Chains
Irreducibility for continuous state spaces

Theorem 3.2

The distribution of an aperiodic Harris recurrent MC converges to a limit
distribution π, i.e.,

lim
n→∞

dTV (Pn(x , ·), π(·)) = 0 for all x ∈ X .

• Because
qn(A) := P(Xn ∈ A) =

∫
q(0)(x)Pn(x ,A) dx

it follows that limn→∞ P(Xn ∈ A) = π(A) for all A ⊂ X and all initial
distributions q(0).

• Since Theorem 3.2 holds for any q(0), if we run an ergodic MC for a long
time, it will reach a statistical equilibrium, regardless of its starting point.

• If we start a chain in equilibrium then it remains in equilibrium.
• We assume all MC in the following to be ergodic.
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Markov Chains
Detailed balance

• If the chain begins in equilibrium, it stays there.
• This implies (dominated convergence theorem) that

π(x) =

∫
S
π(y) p(y , x) dy (general balance relation).

Lemma 3.3
A distribution π on S which satisfies the detailed balance relation

π(x)p(x , y) = π(y)p(y , x) ∀x , y ∈ S,

where p(·, ·) is the density of an ergodic MC X , is the stationary distribution of X .

• Detailed balance is sufficient, but not necessary for general balance.
• If detailed balance holds, then the MC is time-reversible.
(Not all ergodic MCs are time-reversible.)
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Markov Chains
Ergodic and Central Limit Theorems

Theorem 3.4 (Ergodic theorem)
Let f be a real-valued function, X an ergodic MC with stationary distribution π
and Y a RV with pdf π. If Eπ [|f (Y )|] <∞, then

f N :=
1
N

N∑
n=1

f (Xn) −→ Eπ [f (Y )] as N →∞ with probability one.

The ergodic theorem is a law of large numbers.
There is also a corresponding central limit theorem for MC, but this requires a
stronger convergence (geometric ergodicity).
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Markov Chains
Ergodic and Central Limit Theorems

An ergodic MC with invariant distribution π is said to be geometrically ergodic if
there exist r ∈ (0, 1) and a nonnegative function M on S with Eπ [M(X )] < ∞
such that

dTV (Pn(x , ·), π(·)) ≤ M(x) rn ∀x ∈ S,∀n ∈ N.

If M is bounded above then the chain is called uniformly ergodic.

Theorem 3.5 (Central limit theorem)
If X is geometrically ergodic and f such that Eπ

[
f (Y )2+ε

]
<∞ for some ε > 0

then
1
N

N∑
n=1

f (Xn)
dist−→ N

(
Eπ [f (Y )] ,

τ2

N

)

• Convergence in distribution.
• τ related to integrated autocorrelation time of X .
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MCMC
Idea

• Inspired by ergodic theorem: to approximate E [f (Y )] for function f and RV
Y with pdf π.

• However, we cannot compute

Eπ [f (Y )] =

∫
f (y)π(y) dy

directly, e.g. because cannot sample directly from π.
• Instead, Markov chain Monte Carlo (MCMC) methods construct an ergodic
Markov chain with π as its limiting distribution and, having generated N
samples by running the chain, compute approximation

Eπ [f (Y )] ≈ 1
N

N∑
n=1

f (Xn).

Ergodic theorem assures convergence as N →∞.
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MCMC
Metropolis-Hastings Sampler

Family of methods for achieving this: “samplers”.
(Many chains with invariant distribution π)

One of the most popular is the Metropolis-Hastings sampler [Rosenbluth & al., 1953],
[Hastings, 1970]:

• ∀ x ∈ S: choose density q(x , ·) specifying transition probability from x to
another state in S. (Should be easy to sample from.)

• Xn = x : Sample possible new state z according to q(x , ·) (proposal).
• Accept proposal with acceptance probability

α(x , z) = min
{
1,
π(z)q(z , x)

π(x)q(x , z)

}
.

• If proposal accepted, set Xn+1 = z , otherwise Xn+1 = x .
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MCMC
Metropolis-Hastings Sampler

Example: Bimodal normal mixture distribution

• Target density: (could also sample directly)

π(x) =
p

σ1
√
2π

exp
(
− (x − µ1)2

2σ21

)
+

1− p

σ2
√
2π

exp
(
− (x − µ2)2

2σ22

)
where 0 < p < 1.

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

µ1 = −4, µ2 = 4,
σ1 = σ1 = 1,
p = 0.8.
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MCMC
Metropolis-Hastings Sampler

• Proposal density: sample w from N(0, 1) and propose z = x + w , i.e.,
z ∼ N(x , 1), giving proposal density

q(x , z) =
1√
2π

exp
(
− (z − x)2

2

)
.

• Acceptance probability:

α(x , z) = min
{
1,
π(x)q(z , x)

π(x)q(x , z)

}

= min

{
1,
π(z) 1√

2π
exp((x − z)2/2)

π(x) 1√
2π

exp((x − z)2/2)

}

= min
{
1,
π(z)

π(x)

}
.
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MCMC
MH theory

• Much freedom in choosing proposal mechanism. Natural requirement:

S = suppπ ⊂
⋃
x∈S

supp q(x , ·).

• Note: acceptance probability depends on ratios of π, hence knowledge of
normalizing constant not required.

• Acceptance probability terms chosen in order that detailed balance holds.
• Acceptance/rejection step needed to “steer” limit distribution of MC to target
(“Metropolization”)

Lemma 3.6
The transition kernel of the MH sampler is given by

p(x , y) = q(x , y)α(x , y) + 1{x=y}r(x)

where

r(x) =

{∑
y∈S q(x , y) (1− α(x , y)) , S discrete,∫
S (1− α(x , y)) dy , S continuous.
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MCMC
MH theory

Lemma 3.7
The MH chain satisfies the detailed balance relation with respect to π.

Proof: For x 6= y we obtain

π(x)p(x , y) = π(x)q(x , y)α(x , y)

= min
{
π(x)q(x , y), π(y)q(y , x)

}

= π(y)q(y , x)min
{
π(x)q(x , y)

π(y)q(y , x)
, 1
}

= π(y)p(y , x).

Oliver Ernst (TU Chemnitz) UQ and Inverse Problems DTU, November 2016 100 / 156



Contents

3 Sampling from the Posterior
3.1 Monte Carlo Integration
3.2 Markov Chains
3.3 Markov Chain Monte Carlo
3.4 Proposal Distributions

Oliver Ernst (TU Chemnitz) UQ and Inverse Problems DTU, November 2016 101 / 156



Proposal Distributions
Gibbs sampler

To generate proposals from s d-variate distribution, the Gibbs sampler proceeds
component by component:

• at state x = (x1, . . . , xd), denote

x−i := (x1, . . . , xi−1, xi+1, . . . xd), 1 ≤ i ≤ d .

• Choose component i ∈ {1, . . . , d}, propose new state

z = (x1, . . . , xi−1, y , xi+1, . . . , xd).

with y sampled from full conditional density

π(y |x−i ) =
π(z)∫

π(x1, . . . , xi−1,w , xi+1, . . . , xd) dw
.

• Acceptance probability equal to one. If full conditionals standard distributions
they are easily sampled.
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Proposal Distributions
Independence sampler

The independence sampler proposes states which are independent of the currenst
state of the MC.

• For a fixed density f , proposal is

q(x , y) = f (y) ∀x ∈ S.

• Acceptance probability

α(x , y) = min
{
1,
π(y)f (x)

π(x)f (y)

}
.

• Well understood, but often slow.
• Ergodic as long as suppπ ⊂ supp f .
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Proposal Distributions
Metropolis sampler

Metropolis et al. originally proosed to use symmetric proposal densities, i.e.,

q(x , y) = q(y , x).

The acceptance probability then simplifies to

α(x , y) = min
{
1,
π(y)

π(x)

}
.

Oliver Ernst (TU Chemnitz) UQ and Inverse Problems DTU, November 2016 104 / 156



Proposal Distributions
Random walk Metropolis-Hastings sampler

The random walk Metropolis-Hastings sampler makes proposals y according to a
random walk

y = x + z

where z is drawn from a proposal density f .
• Proposal density: q(x , y) = f (y − x).
• Acceptance probability:

α(x , y) = min
{
1,
π(y)f (x − y)

π(x)f (y − x)

}
.

• Reduces to Metropolis sampler when density f symmetric about origin.
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Sampling from the Posterior
Summary

• Posterior distribution of Bayesisn inference generally inaccessible.
• MCMC is a way of drawing samples from the posterior distribution.
• This suffices for computing statistical measures of QoI.
• MH sampler flexible approach for generating MC with given limit distribution.
• Samples correlated.
• Convergence needs to be assured.
• Note: for PDE forward models each MCMC step requires a PDE solve.
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Gaussian Random Fields

Random field κ : D × Ω→ R is Gaussian iff for n ∈ N and x i ∈ D, i = 1, . . . , n,

(κ(x1), . . . , κ(xn)) ∼ N(m,C ), m ∈ Rn,C ∈ Rn×n.

A GRF κ is determined by its mean and covariance function

m(x) = E [κ(x)] , c(x , y) = Cov(κ(x), κ(y)).

Depending on m and c , realizations κ(·, ω) are P-a.s. continuous (or smoother).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.5

-1

-0.5

0

0.5

1

1.5

2

c(x , y) = min(x , y)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

c(x , y) = exp(−100 |x − y |22)

Oliver Ernst (TU Chemnitz) UQ and Inverse Problems DTU, November 2016 109 / 156



Gaussian Random Fields
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Gaussian Random Fields
Random fields as Hilbert space-valued random variables

Let κ be a Gaussian random field with a.s. continuous paths.

Can view κ also as random variable κ : Ω→ C (D) with values in C (D).

Since C (D) ↪→ L2(D) for bounded D ⊂ Rd , we take κ : Ω → L2(D) as Hilbert
space-valued random variable.

For separable Hilbert spaces H we can (analogously to Rn) define
• Lebesgue spaces L2(Ω;H),
• expectations E [κ] ∈ H,
• covariances Cov(κ) ∈ L(H),
• Gaussian random variables κ ∼ N(m,C ).

If κ GRF with m, c as mean and covariance function, then κ ∼ N(m,C ) with

Cφ(x) =

∫
D

c(x , y)φ(y) dy

(and vice versa).
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Gaussian Random Fields
Representations of (Gaussian) random fields

Consider a CONS {φk}k∈N of H. Then for κ ∼ N(0,C )

κ(ω) =
∞∑
k=1

ξk(ω)φk , ξk(ω) = 〈κ(ω), φk〉,

and ξ = (ξk)k∈N is a Gaussian random variable in `2(R) with

E [ξk ] = 0, Cov(ξk , ξl) = 〈Cφk , φl〉.

Common choice for CONS uses eigenpairs (λk , φk) of C ; then

ξ ∼ N(0,Λ), Λ = diag (λk)k∈N.

This yields Karhunen-Loève expansion (KLE) of random field κ(·, ω).

For numerical purposes: truncate series after M terms

κ(x , ω) ≈ κM(x , ω) =
M∑

m=1

ξm(ω)φm(x).
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Gaussian Random Fields
Example:

Brownian bridge on D = [0, 1], i.e., Gaussian random field with

m(x) = 0, c(x , y) = min(x , y)− xy

Realizations
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Gaussian Random Fields
Example: Matérn Family of Covariance Kernels

c(x , y) = c(r) =
σ2

2ν−1 Γ(ν)

(
2
√
ν r

ρ

)ν
Kν

(
2
√
ν r

ρ

)
, r = ‖x − y‖2

Kν : modified Bessel function of order ν

Parameters σ2 : variance
ρ : correlation length
ν : smoothness parameter

Special cases:

ν = 1
2 : c(r) = σ2 exp(−

√
2r/ρ) exponential covariance

ν = 1 : c(r) = σ2
(

2r
ρ

)
K1

(
2r
ρ

)
Bessel covariance

ν →∞ : c(r) = σ2 exp(−r2/ρ2) Gaussian covariance

Smoothness: Realizations κ(·, ω) are k times differentiable ⇔ ν > k.
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Gaussian Random Fields
Matérn Eigenvalue Asymptotics

Preasymptotic plateau (determined by correlation length ρ) before asymptotic decay
sets in.

10
0

10
1

10
2

10
−6

10
−4

10
−2

10
0

m

λ
m

 

 

ν=1/2, ρ=1

ν=1/2, ρ=1/10

ν=1/2, ρ=1/50

ν=1, ρ=1

ν=1, ρ=1/10

ν=1, ρ=1/50

Eigenvalue decay, Matérn kernel,
D = [−1, 1].

Rate:

λm ∼ m−(1+2ν/d) (m→∞)

[Lord, Powell & Shardlow, 2014],
[Widom, 1963]
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Gaussian Random Fields
Realizations of GRF with Matérn covariance

Matérn covariance, σ = 1, ν = 1
2 , ρ = 0.5
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Gaussian Random Fields
Realizations of GRF with Matérn covariance

Matérn covariance, σ = 1, ν = 1
2 , ρ = 0.05
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Gaussian Random Fields
Realizations of GRF with Matérn covariance

Matérn covariance, σ = 1, ν = 3
2 , ρ = 0.05
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Gaussian Random Fields
Realizations of GRF with Matérn covariance

Matérn covariance, σ = 1, ν = 5
2 , ρ = 0.05
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Gaussian Random Fields
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Gaussian Random Field Models from Direct Observations
REML estimation

Assumptions on m and c:

• m(x) = E [κ] (x) =
∑n

i=1 βi fi (x), here: n = 1, f1 ≡ 1

• c belongs to Matérn class of covariance functions:

c(x , y) =
σ2

2ν−1 Γ(ν)

(
2
√
ν |x − y |2
ρ

)ν
Kν

(
2
√
ν |x − y |2
ρ

)
,

Kν : modified Bessel function of order ν

with σ2 variance, ρ correlation length, ν smoothness parameter

Results: Restricted maximum likelihood estimates given measurements of a are

β1 = −10.55, σ2 = 17.15, ρ = 6510, ν = 0.5 (fixed)
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Gaussian Random Field Models from Direct Observations
REML estimation

With these REML estimates, pointwise mean and variance of log a obtained as:
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Gaussian Random Field Models from Direct Observations
Geostatistical interpolation (Kriging)

Better: geostatistical interpolant
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Gaussian Random Field Models from Direct Observations
Geostatistical interpolation (Kriging)

Better: geostatistical interpolant and its error
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Gaussian Random Field Models from Direct Observations
Geostatistical interpolation (Simple Kriging)

Let κ be a zero-mean GRF with covariance function c .

Given observations {κ(x j) = κj}Nj=1, compute best linear unbiased estimate

κ̂(x) =
N∑
j=1

mj(x)κ(x j).

Explicit solution

κ̂(x) = C−1c(x), C = [c(x i , x j)]Ni,j=1, c(x) = [c(x i , x)]Ni=1

with error covariance

ĉ(x , x) := E [(κ(x)− κ̂(x), κ(y)− κ̂(y))] = c(x , y)− c(x)C−1c(y)

coincide with mean and covariance of GRF κ conditioned on {κ(x j) = κj}Nj=1.

Note: Kriging coincides with radial basis interpolation with suitable radial basis.
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Geostatistical interpolation (Simple Kriging)

Let κ be a zero-mean GRF with covariance function c .

Given observations {κ(x j) = κj}Nj=1, compute best linear unbiased estimate

κ̂(x) =
N∑
j=1

mj(x)κ(x j).

Explicit solution

κ̂(x) = C−1c(x), C = [c(x i , x j)]Ni,j=1, c(x) = [c(x i , x)]Ni=1

with error covariance
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Solution of the Forward Problem
Parametric representation of random fields

Given Kriging mean κ̂ and covariance ĉ , compute the KL expansion {λm, φm}∞m=1
for ĉ and approximate, using ξm ∼ N(0, λm)

log a(x , ω) = κ(x , ω) ≈ κ̂(x) +
M∑

m=1

φm(x) ξm(ω)

Can think of log a as a function of x with random parameter ξ = (ξ1, . . . , ξM).

Solution (u, p) of (PDE-Mixed) pair of functions of x with random parameter ξ,

(u, p)(·, ξ) ∈ H0(div;D)× L2(D) ∀ξ ∈ RM ,

analogously for the travel time of released particles:

texit(ξ) ∈ R, ∀ξ ∈ RM .
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Given Kriging mean κ̂ and covariance ĉ , compute the KL expansion {λm, φm}∞m=1
for ĉ and approximate, using ξm ∼ N(0, λm)
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Solution of the Forward Problem
Parametric representation of random fields

To approximate CDF of texit,

F (t) = P(texit(ξ(ω)) < t)

sample ξ ∼ N(0,Λ) and solve (Mixed)/ODE many times. (Here many = 20,000.)

ξ =



0.53
1.83
−2.26
0.21
1.31
...



log a(x, ξ) p(x, ξ)

texit(ξ) =
19, 311 years
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Solution of the Forward Problem
Parametric representation of random fields

To approximate CDF of texit,

F (t) = P(texit(ξ(ω)) < t)

sample ξ ∼ N(0,Λ) and solve (Mixed)/ODE many times. (Here many = 20,000.)

ξ =


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−0.97
−0.71
−0.09
−0.17

...



log a(x, ξ) p(x, ξ)

texit(ξ) =
8, 272 years
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Solution of the Forward Problem
Parametric representation of random fields

To approximate CDF of texit,

F (t) = P(texit(ξ(ω)) < t)

sample ξ ∼ N(0,Λ) and solve (Mixed)/ODE many times. (Here many = 20,000.)

ξ =



−1.03
−1.76
−2.01
1.32
0.63
...



log a(x, ξ) p(x, ξ)

texit(ξ) =
31, 237 years
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Solution of the Forward Problem
Parametric representation of random fields

To approximate CDF of texit,

F (t) = P(texit(ξ(ω)) < t)

sample ξ ∼ N(0,Λ) and solve (Mixed)/ODE many times. (Here many = 20,000.)

ξ =



0.03
2.30
−0.19
0.58
−0.39

...



log a(x, ξ) p(x, ξ)

texit(ξ) =
102, 238 years
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Solution of the Forward Problem
Parametric representation of random fields

To approximate CDF of texit,

F (t) = P(texit(ξ(ω)) < t)

sample ξ ∼ N(0,Λ) and solve (Mixed)/ODE many times. (Here many = 20,000.)

More efficient:
• Compute cheaper surrogate of mapping ξ 7→ (u, p)(·, ξ) or ξ 7→ texit(ξ).
• Evaluate surrogate 20,000 times.

We tried two kind of surrogates: [Cliffe et al., 2016]

• polynomial approximation based on sparse grid collocation operators (popular
among numerical analysts in UQ community)

• Gaussian process emulators based on GRF approach/Kriging for mapping
(popular among statisticians in UQ community)
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Solution of the Forward Problem
Results for surrogates (M = 20)

Plain Monte Carlo and Polynomials for (u, p), Polynomials for texit, Gaussian
process emulators for texit for increasing degrees/number of training points
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Solution of the Forward Problem
Results for surrogates (M = 20)

Plain Monte Carlo and Polynomials for (u, p), Polynomials for texit, Gaussian
process emulators for texit for increasing degrees/number of training points
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Solution of the Forward Problem
Effect of KL truncation

4 4.5 5 5.5 6
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M = 30

M = 100

M = 500

M = 1000

Problem seems to require substantially more than M = 100 KL terms.
This makes the use of surrogates infeasible.
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Bayesian Inversion
Data fit from Kriged trasmissivity

So far: random field model for log a based only on (direct) measurements of log a.

How well, does this random field model accomodate the observed values of p?

observed values
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Bayesian Inversion
Recall inverse problem approach

y !
= G (ξ)

• Problem severely underdetermined.
• Observational noise: instead of y , may observe perturbed data

yobs = G (ξ) + ε,

possibly not in range of G .
• G strongly smoothing, reconstruction unstable (ill-posed problem).
• Variational formulation (output least squares): determine ξ to minimize
data misfit functional

Φ(ξ) =
1
2
‖yobs − G (ξ)‖2.

• Regularization: include additional information to constrain solution.
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Bayesian Inversion
Regularization approaches

• Restriction to compact set. If G is defined on a Banach space X , let E
denote a reflexive Banach space compactly embedded in X , with norm ‖ · ‖E .
Instead of minimizing Φ(ξ) on X , restrict ξ to

Eα := {ξ ∈ E : ‖ξ‖E ≤ α}, α > 0.

Then any minimizing sequence {ξn} in Eα contains a weakly convergent
subsequence with limit ξ? ∈ Eα such that φ(ξ?) = infξ∈Eα φ(ξ).

• Tikhonov regularization. Add a penalization term to data misfit functional
and minimize the Tikhonov functional

I (ξ) = Φ(ξ) +
α

2
‖ξ‖2E , α > 0,

over E . Again, minimizing sequences have weakly convergent subsequences
with limit attaining infξ∈E I (ξ).

Analysis of selection strategies for regularization parameter α in limit of
vanishing noise ‖ε‖ can be found in [Engl et al., 1996], [Hofmann, 2015].
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Bayesian Inversion
Noise models

• Bounded noise with noise level δ > 0 (ususal deterministic formulation):

‖ε‖ ≤ δ.

• Random noise: ε has known multivariate probability distribution, e.g. with
(Lebesgue) density ρ = ρ(ε). For given ξ, the observation data

yobs = G (ξ) + ε

is a random vector with density ρ(yobs − G (ξ)).

For centered Gaussian noise:

ε ∼ N(0,C ), C ∈ RK×K positive definite,

we have

ρy |ξ(y) =
1√

(2π)K detC
exp

(
−1
2

(y − G (ξ))>C−1(y − G (ξ))

)
.
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Bayesian Inversion
Maximum likelihood estimate

The conditional density ρy |ξ is the likelihood of observing y given ξ.
Maximizing this is equivalent to minimizing the negative log-likelihood

− log ρy |ξ(y) =
1
2
log
(
(2π)K detC

)
+

1
2
‖y − G (ξ)‖2C−1 ,

i.e., the data misfit functional adapted to the covariance of the Gaussian noise

Φ(ξ) :=
1
2
‖y − G (ξ)‖2C−1 .

A solution for the inverse problem with random noise may be defined as the maxi-
mum likelihood estimator ξ̂ obtained by minimizing the negative log-likelihood.

For centered Gaussian noise we recover the (weighted) output least squares solution.
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Bayesian Inversion
Bayesian formulation

• We now add uncertainty in the parameter to be estimated to our model by
introducing a probability measure µ0 on the space X containing the
parameter ξ.

• In the finite-dimensional case ξ ∈ RM , we may assume µ0 to have a
(Lebesgue) density ρ0.

• Viewing µ0 as the prior probability distribution for ξ, Bayes’ theorem yields
the posterior density for ξ after making the observations y as

ρξ|y (ξ) =
ρy |ξ(y) ρ0(ξ)

Z
, Z :=

∫
RM

ρy |ξ(y) ρ0(ξ) dξ

• We observe that the posterior measure µy of ξ conditioned on the
observation y is absolutely continuous with respect to the prior measure µ0
(µ� µ0) and that its Radon-Nikodym derivative satisfies

dµy

dµ0
(ξ) ∝ exp (−Φ(ξ; y)) .
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Bayesian Inversion
Piecewise constant parametrization

Groundwater flow example:

Realization of log a(ξ), piecewise
constant on mesh with 5135 triangles.
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Bayesian Inversion
Parametrization by covariance eigenmodes

log a(ξ) =
∞∑

m=1

√
λmφm(x)ξm.

m = 1 m = 8 m = 35
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Bayesian Inversion
Merging indirect observations

We want to incorporate into our model

log a(x , ξ(ω)) = κ̂(x) +
∞∑

m=1

φm(x) ξm(ω), ξm ∼ N(0, λm)

the available (noisy) observations of p at certain locations x j ∈ D.

In stochastic terms: condition random field log a(·, ω) resp. random vector ξ(ω) on
the data p(x j) = pj , j = 1, . . . ,K .

But due to nonlinearity of the mapping log a 7→ p , no nice explicit solution in this
case.

Bayes’ rule provides expression for conditional probability measure.
For events, A,B, P(A),P(B) > 0:

P(A|B)︸ ︷︷ ︸
posterior probability

=

likelihood︷ ︸︸ ︷
P(B|A)

prior probability︷ ︸︸ ︷
P(A)

P(B)︸ ︷︷ ︸
evidence
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Bayesian Inversion
Hilbert Space Formulation

• Random noise is multivariate Gaussian: ε ∼ N(0,Σ)

• Prior measure is Gaussian measure on H : µ0 = N(0,C0)

• Forward map G : H → Rk is continuous and ∀α > 0 ∃Kα <∞:

|G (ξ)| ≤ Kα exp(α‖ξ‖2H ).

• ξ ∼ µ0 and ε ∼ N(0,Σ) are independent

Then the conditional probability measure µy is given by Bayes’ rule:

Theorem 4.1 (Bayes’ rule [Stuart (2010)],[Dashti & Stuart (2016)])
The posterior measure µy is given by

µy (dξ) ∝ exp(−Φ(ξ; y))µ0(dξ), Φ(ξ; y) =
1
2
|y − G (ξ)|2Σ−1 .
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Bayesian Inversion
Formard map

• Parameter-to-observable map

G : `2(N)→ RJ , ξ → κ(ξ)→ p(ξ)→ {p(ξ)|x=xj}kj=1 =: pobs.

• Gaussian random field in Hilbert space H, e.g., H = L2(D):

κ(x , ω) = κ̂(x) +
∑
m≥1

ξm(ω) φm(x), {φm}∞m=1 CONS of H.

• Direct measurements of κ used to fit Gaussian prior µ0 for κ resp. ξ:

ξ ∼ N(0,C0) =: µ0 on `2(N).

• Merge indirect data pobs by conditioning prior ξ ∼ µ0 on

pobs = G (ξ) + ε, ε ∼ N(0,Σ) Gaussian noise.
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Bayesian Inversion
Sampling the conditional measure

Method of choice in Bayesian inference: Markov chain Monte Carlo sampling

• Construct a Markov chain {ξn(ω)}n∈N with P
(
ξ ∈ · | p(x j) = pj ∀j

)
as its

limiting (invariant) distribution.

• Simple method: Metropolis-Hastings update

• Dimension-independent variants

• Let the chain run long enough (to converge) and take samples along the path
ξn for Monte Carlo.

Need to evaluate p(x j , ξ) resp. solve (PDE-mixed) many, many times (≈500,000)
due to burn-in and autocorrelation.

Sampling-free alternatives: Filtering methods (EnKF, PC + EnKF), may be
arbitarily wrong [Ernst, Sprungk & Starkloff, 2015].
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Bayesian Inversion
Markov Chain Monte Carlo

Markov chain (ξn)n∈N in `2 with transition kernel

Q(η,A) := P(ξn+1 ∈ A|ξn = η), A ∈ B(`2)

which is reversible w.r.t. µ:

Q(ξ, dη) µ(dξ) = Q(η, dξ) µ(dη) ⇒ µ = µQ.

Then – under suitable conditions – we have for QoI texit

1
N

N∑
n=1

texit(ξn)
N→∞−−−−→

∫
texit(ξ)µ(dξ) = Eµ [texit] .

Mean squared error ∝ N−
1
2 , constant is sum of autocovariances:

∞∑
k=−∞

γ(k), γ(k) = Cov
(
texit(ξ1), texit(ξ1+k)

)
, ξ1 ∼ µ.

Rapid decay of autocovariance function γ ⇒ high statistical efficiency.
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Bayesian Inversion
Markov Chain Monte Carlo

Metropolis-Hastings (MH) MCMC where ξn → ξn+1 is as follows:

1 Propose new state η according to proposal kernel q(ξn, dη), e.g.,

η ∼ q(ξn, ·) = N(ξn, s
2C0), s ∈ R+ stepsize.

2 Accept proposal η with probability α(ξn,η): draw a ∼ U[0, 1] and set

ξn+1 =

{
η, a ≤ α(ξn,η),

ξn, otherwise.

Resulting transition kernel of MH chain:

Q(ξ, dη) = α(ξ,η)q(ξ, dη) +

[
1−

∫
α(ξ, ζ) q(ξ, dζ)

]
︸ ︷︷ ︸

= rejection probability

δξ(dη),
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2 Accept proposal η with probability α(ξn,η): draw a ∼ U[0, 1] and set

ξn+1 =

{
η, a ≤ α(ξn,η),

ξn, otherwise.

Resulting transition kernel of MH chain:

Q(ξ, dη) = α(ξ,η)q(ξ, dη) +

[
1−

∫
α(ξ, ζ) q(ξ, dζ)

]
︸ ︷︷ ︸

= rejection probability

δξ(dη),
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Bayesian Inversion
MH-MCMC in Hilbert Space

Sufficient for reversibility w.r.t. µ is the choice

α(ξk ,η) = min
{
1,

dν>

dν
(ξk ,η)

}
,

where ν(dξ, dη) := q(ξ, dη) µ(dξ), ν>(dξ, dη) := ν(dη, dξ).

In finite dimensions dν>
dν is simply ratio of densities (w.r.t. Lebesgue measure).

E.g., if q has density ρ(|ξ − η|), then

dν>

dν
(ξ,η) =

π(η)

π(ξ)
, µ(dξ) ∝ π(ξ) dξ.

In infinite dimensions, µ0-reversibility of proposal q sufficient in order that

dν>

dν
(ξ,η) exists and

dν>

dν
(ξ,η) =

dµ
dµ0

(η)

(
dµ
dµ0

(ξ)

)−1
= eΦ(ξ)−Φ(η).
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Bayesian Inversion
Dimension-independent proposal kernels

Example: 2D groundwater flow model, synthetic data.
Acceptance rate vs. stepsize for increasing dimension M of ξ = (ξ1, . . . , ξM).

Random walk-proposal q(ξ) = N(ξ, s2C0)
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average acceptance rate: ᾱ = Eν [α(ξ,η)]
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Example: 2D groundwater flow model, synthetic data.
Acceptance rate vs. stepsize for increasing dimension M of ξ = (ξ1, . . . , ξM).

pCN-proposal q(ξ) = N(
√
1− s2ξ, s2C0)
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introduced in [Cotter, Roberts, Stuart & White, 2013]
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Improving MCMC Proposals in Hilbert Space
Adapting proposal covariance

Example: µ = N(0,C ) in 2D, different Random Walk proposals
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Higher statistical efficiency of proposal with same covariance as µ shown in [Roberts
& Rosenthal, 2001].
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Improving MCMC Proposals in Hilbert Space
Gauss-Newton type approximation of posterior covariance

If forward map G : H → Rd were linear, µ0 = N(0,C0) and ε ∼ N(0,Σ), then

µ = N (m,C ) , C = (C−10 + G∗Σ−1G )−1.

Idea: Gauss-Newton-type linear approximation of nonlinear G

G (ξ) ≈ G̃ (ξ) := G (ξ0) + Lξ, L = ∇G (ξ0)

and use
C ≈ C̃ = (C−10 + L∗Σ−1L)−1

as proposal covariance.

Good choice for ξ0 might be the maximum a posteriori estimator:

ξMAP = argmin
ξ

(
Φ(ξ) + ‖C−1/20 ξ‖2

)
.
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Improving MCMC Proposals in Hilbert Space
Posterior-informed proposals in Hilbert space

In place of prior covariance C0, use approximated posterior covariance

C̃ = (C−10 + Γ)−1, Γ positive, self-adjoint, bounded (otherwise arbitrary),

for a Random Walk-like proposal kernel

q̃s(u) = N(Psu, s
2C̃ ).

Enforcing reversibility of kernel q̃s w.r.t. µ0 – as for pCN-proposal – yields

Ps = C
1/2
0

√
I − s2(I + H)−1 C

−1/2
0 , H := C

1/2
0 ΓC

1/2
0 .

We call q̃s Gauss-Newton pCN-proposal (GNpCN), [Ernst & Sprungk, 2015].

Related approaches: [Law, 2013], [Cui, Law & Marzouk, 2014]
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Improving MCMC Proposals in Hilbert Space
Random Walk vs. GNpCN

Same example as for pCN, C̃ = (C−10 + L∗Σ−1L)−1 where L = ∇G (ξMAP).
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Improving MCMC Proposals in Hilbert Space
Convergence

• Markov operator Q : L2µ(H )→ L2µ(H ) associated with kernel Q(ξ, dη):

Qf (ξ) :=

∫
H

f (η)Q(ξ, dη), f ∈ L2µ(H ).

• Existence of an L2-spectral gap of operator Q

0 < gap(Q) = 1− ‖Q − Eµ‖L2
µ→L2

µ

implies geometric ergodicity/convergence to µ in total variation norm

‖µ− µ0Qn‖TV ≤ C exp(−r n).

• For the pCN-proposal a (dimension-independent) L2-spectral gap was proven
under certain conditions on Φ in [Hairer, Stuart & Vollmer, 2014]

• [Rudolf & Sprungk, 2015]: derive spectral gap for GNpCN from that of pCN.
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Bayesian Inversion
Results for WIPP
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Bayesian Inversion
Results for WIPP
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⇒ Run chain only in smaller subspace and employ surrogates for solving PDE
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Bayesian Inversion
Results for WIPP
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Bayesian Inversion
Results for WIPP

ACRF in QoI for pCN (blue) and GNpCN (green)
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Bayesian Inversion
Results for WIPP
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Summary

• WIPP case study: inverse problem for hydraulic conductivity and particle
travel time.

• Estimation-based methods much improved by Bayesian inference on indirect
observations.

• Method: MCMC in high (infinite-)dimensional space.
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