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The global picture

‣ Lecture 1 - Introduction to UQ  
    Motivation, terminology, background, Wiener chaos expansions.

‣ Lecture II - Stochastic Galerkin methods 
    Formulation, extensions, polynomial chaos, and examples.

‣ Lecture III - Stochastic Collocation methods 
    Motivation, formulation, high-d integration, and examples.

‣ Lecture IV - Extensions, challenges, open questions 
    Geometric uncertainty,  ANOVA expansions, reduced order modeling and    
           discussion of some open questions.  



The local picture

‣ A brief overview

‣ Dealing with geometric uncertainty

‣ ANOVA expansions and parameter reduction

‣ Open questions and challenges

‣ Want to know more ?

‣ References

Lin et al, 2010



A brief overview

‣Wiener Chaos expansion and the generalized Polynomial  
      Chaos (gPC) expansion to represent random variables.

‣Superior performance for ‘smooth’ random variables

‣Developed the Stochastic Galerkin methods to solve 
      SDE/SPDEs with uncertainty.

‣ Formal, systematic, general, and rigorous, leading to large systems of equations
‣ Requires new solvers to be developed 
     

‣Developed the Stochastic Collocation method to improve 
        efficiency and eliminate need to develop new solvers.

‣Reformulates the problem to require the solution of many decoupled problems
‣Connection to approximate high-d integration forms leads to further savings 

‣ Identified the Karhunen-Loeve expansion to represent  
         fields and processes

We have the majority of the tools in place



A brief overview

‣ How to deal with geometric uncertainty  

‣ How to continue to push towards high-d 

There are a few issues we should still consider

Shock reflection from 
rough boundary 

From G. Lin et al (2008)



Uncertain geometries

Consider the random domain problem 
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practice. (Detailed discussions are in section 4.2.) Let ∂D(Z), Z ∈ Rd , d ≥ 1,
be the parameterization of the random boundary. A partial differential equation
defined on this domain can be written as

⎧
⎪⎨

⎪⎩

ut (x, t) = L(x; u), D(Z) × (0, T ],
B(u) = 0, ∂D(Z) × [0, T ],
u = u0, D(Z) × {t = 0},

(8.1)

where x = (x1, . . . , xℓ), ℓ = 1, 2, 3, is the coordinate in the random domain D(Z).
For simplicity, here the only source of uncertainty is assumed to be from ∂D(Z).
Note that even though the form of the governing equations is deterministic (it does
not need to be), the solution still depends on the random variables Z and is a sto-
chastic quantity. That is,

u(x, t) : D(Z) × [0, T ] → Rnu

depends implicitly on the random variables Z ∈ Rd .
The key to solving (8.1) is to define the problem on a fixed domain where the op-

erations for statistical averaging become meaningful. A general approach is to use
a one-to-one mapping ([130]). Let y = (y1, . . . , yℓ), ℓ = 1, 2, 3, be the coordinate
in a fixed domain E ⊂ Rℓ and let

y = y(x, Z), x = x(y, Z), ∀Z ∈ Rd , (8.2)

be a one-to-one mapping and its inverse such that the random domain D(Z) can be
uniquely transformed to the deterministic domain E. Then (8.1) can be transformed
to the following: for all Z ∈ Rd , find v = v(y, Z) : Ē × Rd → Rnu such that

⎧
⎪⎨

⎪⎩

vt (y, t, Z) = L(y, Z; v), E × (0, T ] × Rd ,

B(v) = 0, ∂E × [0, T ] × Rd ,

v = v0, E × {t = 0} × Rd ,

(8.3)

where the operators L and B are transformed from L and B, respectively, and v0

is transformed from u0 because of the random mapping (8.2). The transformed
problem (8.3) is a stochastic PDE in a fixed domain, and the standard numerical
techniques, including those based on gPC methodology, can be readily applied.

The mapping technique seeks to transform a problem defined in a random do-
main into a stochastic problem defined in a fixed domain. The randomness in the
domain specification is absorbed into the mapping and further into the definition
of the transformed equation. Thus, it is crucial to construct a unique and invertible
mapping that is also robust and efficient in practice. For some domains, this can be
achieved analytically ([102]).

Example 8.1 (Mapping for a random channel domain). Consider a straight
channel in two dimensions, with length L and height H . Let us assume that the
bottom boundary is a random process with zero mean value and other known dis-
tribution functions. That is, the channel is defined as

(x1, x2) ∈ D(ω) = [0, L] × [h(x, ω), H ], (8.4)
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⎧
⎪⎨

⎪⎩

vt (y, t, Z) = L(y, Z; v), E × (0, T ] × Rd ,

B(v) = 0, ∂E × [0, T ] × Rd ,

v = v0, E × {t = 0} × Rd ,

(8.3)

where the operators L and B are transformed from L and B, respectively, and v0

is transformed from u0 because of the random mapping (8.2). The transformed
problem (8.3) is a stochastic PDE in a fixed domain, and the standard numerical
techniques, including those based on gPC methodology, can be readily applied.

The mapping technique seeks to transform a problem defined in a random do-
main into a stochastic problem defined in a fixed domain. The randomness in the
domain specification is absorbed into the mapping and further into the definition
of the transformed equation. Thus, it is crucial to construct a unique and invertible
mapping that is also robust and efficient in practice. For some domains, this can be
achieved analytically ([102]).

Example 8.1 (Mapping for a random channel domain). Consider a straight
channel in two dimensions, with length L and height H . Let us assume that the
bottom boundary is a random process with zero mean value and other known dis-
tribution functions. That is, the channel is defined as

(x1, x2) ∈ D(ω) = [0, L] × [h(x, ω), H ], (8.4)

Introduce an invertible mapping

to obtain

Deterministic problem in random domain is transformed 
to a stochastic problem in a fixed domain



Uncertain geometries

Example: Diffusion in channel - (L,H) with random boundary
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where E[h(x,ω)] = 0. It is easy to see that a simple mapping

y1 = x1, y2 = H

H − h(x,ω)
(x2 − h(x,ω))

can map the domain into

(y1, y2) ∈ E = [0, L] × [0, H ].

Example 8.2 (Mapping of a diffusion equation). Consider a deterministic Pois-
son’s equation with homogeneous Dirichlet boundary conditions in a random do-
main D(Z(ω)), Z ∈ IZ ,

∇ · [c(x)∇u(x, Z)] = a(x) in D(Z),
(8.5)

u(x, Z) = 0 on ∂D(Z),

where no randomness exists in the diffusivity field c(x) and the source field a(x).
The stochastic mapping (8.2) transforms (8.5) into a stochastic Poisson’s equation
in a deterministic domain E:

ℓ∑

i=1

∂

∂yi

⎡

⎣κ(y, Z)

ℓ∑

j=1

(
αij (y, Z)

∂v

∂yj

)⎤

⎦ = J −1f (y, Z) in E × IZ, (8.6)

v(y, Z) = 0 on ∂E × IZ,

where the random fields κ and f are the transformations of c and a, respectively,
J is the transformation Jacobian

J (y, Z) = ∂(y1, . . . , yℓ)

∂(x1, . . . , xℓ)
,

and

αij (y, Z) = J −1∇yi · ∇yj , 1 ≤ i, j ≤ ℓ. (8.7)

Though (8.6) is more complex, it is a stochastic diffusion problem in a fixed do-
main. The existing methods, such as those based on gPC, can be readily applied.

Example 8.3 (Diffusion in a random channel domain). Now let us combine the
aforementioned two examples and consider diffusion problem in a random channel
domain. This is the same example as that used in [130].

Consider the steady-state diffusion (8.5) with a = 0 and constant diffusivity
c(x) in a two-dimensional channel (8.4). To be specific, we set L = 5, H = 1, and
the random bottom boundary as a random field with zero mean and an exponential
two-point covariance function

Chh(r, s) = E [h(r,ω)h(s,ω)] = σ 2 exp
(

− |r − s|
b

)
, 0 ≤ r, s ≤ L, (8.8)

where b > 0 is the correlation length. In the computational examples below, b =
L/5 = 1, which corresponds to a boundary of moderate roughness. Finally, we
prescribe Dirichlet boundary conditions u = 1 at x2 = H and u = 0 elsewhere.
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Figure 8.1 Channels with a rough wall generated with the 10-term (K = 10) KL expan-
sion (8.9). (a) Four sample realizations of the bottom boundary s(x1, ωj ) (j =
1, . . . , 4). (b) A sample realization of the channel in the physical domain (x1, x2)

and in the mapped domain in (ξ1, ξ2). Chebyshev meshes are used in both do-
mains. (More details are in [130].)

We employ the finite-term Karhunen-Loève (KL)–type expansion (4.8) to
decompose the boundary process. That is,

h(x1, ω) ≈ σ

d∑

k=1

√
λkψk(x1)Zk(ω), (8.9)

where {λk, ψk(x1)} are the eigenvalues and eigenfunctions of the integral equations
∫ L

0
Chh(r, s)ψk(r)dr = λkψk(s), k = 1, . . . , d. (8.10)

We further set {Zi(ω)} ∼ U(−1, 1) to be independent uniform random variables in
(−1, 1) and use the parameter 0 < σ < 1 to control the maximum deviation of the
randomness. (In the computational examples in this section, we set σ = 0.1.) We
employ Legendre polynomials as the gPC basis functions.

It is worthwhile to stress again that the expansion (8.9) introduces two sources of
errors—errors due to the finite d-term truncation and errors due to the assumption
of independence of {Zk(ω)}. The truncation error is typically controlled by select-
ing the value of d to ensure that the eigenvalues {λk} with k > d are sufficiently
small. For example, in this example the expansion with d = 10 captures 95 percent
of the total spectrum (i.e., eigenvalues). A few realizations of the bottom boundary,
obtained by the 10-term KL expansion, are shown in figure 8.1a. In figure 8.1b,
one realization of the channel domain is mapped onto the corresponding rectangu-
lar domain E = [0, L] × [0, H ]. Also shown here are the Chebyshev collocation
mesh points that are used to solve the mapped stochastic diffusion problem (8.6).

Figure 8.2 shows the first two moments of the solution, i.e., its mean (top) and
standard deviation (STD) (bottom). We observe that the STD reaches its maximum
close to, but not at, the random bottom boundary.

Introducing this yields
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main D(Z(ω)), Z ∈ IZ ,

∇ · [c(x)∇u(x, Z)] = a(x) in D(Z),
(8.5)

u(x, Z) = 0 on ∂D(Z),

where no randomness exists in the diffusivity field c(x) and the source field a(x).
The stochastic mapping (8.2) transforms (8.5) into a stochastic Poisson’s equation
in a deterministic domain E:

ℓ∑

i=1

∂

∂yi

⎡

⎣κ(y, Z)

ℓ∑

j=1

(
αij (y, Z)

∂v

∂yj

)⎤

⎦ = J −1f (y, Z) in E × IZ, (8.6)

v(y, Z) = 0 on ∂E × IZ,

where the random fields κ and f are the transformations of c and a, respectively,
J is the transformation Jacobian

J (y, Z) = ∂(y1, . . . , yℓ)

∂(x1, . . . , xℓ)
,

and

αij (y, Z) = J −1∇yi · ∇yj , 1 ≤ i, j ≤ ℓ. (8.7)

Though (8.6) is more complex, it is a stochastic diffusion problem in a fixed do-
main. The existing methods, such as those based on gPC, can be readily applied.

Example 8.3 (Diffusion in a random channel domain). Now let us combine the
aforementioned two examples and consider diffusion problem in a random channel
domain. This is the same example as that used in [130].

Consider the steady-state diffusion (8.5) with a = 0 and constant diffusivity
c(x) in a two-dimensional channel (8.4). To be specific, we set L = 5, H = 1, and
the random bottom boundary as a random field with zero mean and an exponential
two-point covariance function

Chh(r, s) = E [h(r,ω)h(s,ω)] = σ 2 exp
(

− |r − s|
b

)
, 0 ≤ r, s ≤ L, (8.8)

where b > 0 is the correlation length. In the computational examples below, b =
L/5 = 1, which corresponds to a boundary of moderate roughness. Finally, we
prescribe Dirichlet boundary conditions u = 1 at x2 = H and u = 0 elsewhere.
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Figure 8.3 The STD profiles along the cross section y = 0.25 computed with the first-,
second-, and third-degree Legendre polynomials.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

x

S
T

D

MC: 100
MC: 500
MC: 1,000
MC: 2,000
SG: 2nd−order

Figure 8.4 The STD profiles along the cross section y = 0.25 computed with the SG method
(second-order Legendre chaos) and Monte MCS consisting of 100, 500, 1000,
and 2000 realizations.
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Figure 8.2 The mean and the STD of the dependent variable u computed with the stochastic
Galerkin method.

To ascertain the convergence of the polynomial chaos expansion, we examine the
STD profile along the cross section y = 0.25, where the STD is close to its maxi-
mum. Figure 8.3 shows the STD profiles obtained with different orders of Legendre
expansions. One can see that the second order is sufficient for the Legendre expan-
sion to converge. Although not shown here, the convergence of the mean solution
is similar to that of the STD.

Monte Carlo simulations (MCSs) are also conducted to verify the results ob-
tained by the stochastic Galerkin method. Figure 8.4 compares the STD profile
along the cross section y = 0.25 computed via the second-order Legendre expan-
sion with those obtained from MCS. We observe that as the number of realizations
increases, the MCS results converge to the converged SG results. With about 2,000
realizations, the MCS results agree well with the SG results. In this case, at second
order (N = 2) and 10 random dimensions (d = 10), the gPC stochastic Galerkin
method requires (N + d)!/N !d! = 66 basis functions and is computationally more
efficient than Monte Carlo simulation.

Often analytical mapping is not available; then a numerical technique can be em-
ployed to determine the mapping ([130]). This involves solving of a set of boundary
value problems for the mapping. Other techniques for casting random domain prob-
lems into deterministic problems include the boundary perturbation method [126],
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mum. Figure 8.3 shows the STD profiles obtained with different orders of Legendre
expansions. One can see that the second order is sufficient for the Legendre expan-
sion to converge. Although not shown here, the convergence of the mean solution
is similar to that of the STD.

Monte Carlo simulations (MCSs) are also conducted to verify the results ob-
tained by the stochastic Galerkin method. Figure 8.4 compares the STD profile
along the cross section y = 0.25 computed via the second-order Legendre expan-
sion with those obtained from MCS. We observe that as the number of realizations
increases, the MCS results converge to the converged SG results. With about 2,000
realizations, the MCS results agree well with the SG results. In this case, at second
order (N = 2) and 10 random dimensions (d = 10), the gPC stochastic Galerkin
method requires (N + d)!/N !d! = 66 basis functions and is computationally more
efficient than Monte Carlo simulation.

Often analytical mapping is not available; then a numerical technique can be em-
ployed to determine the mapping ([130]). This involves solving of a set of boundary
value problems for the mapping. Other techniques for casting random domain prob-
lems into deterministic problems include the boundary perturbation method [126],
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Simple 2D example

Mapping extends to multiple dimensions – yielding a
stochastic metric based on a ’mean’ mesh.

x

y

0 1

1

u1

u2

u3

ξ

η

x(ξ, η,ω) = (1 − ξ − η)u1(ξ(ω)) + ξu2(ξ(ω)) + ηu3(ξ(ω)) .
OSU IEEE Seminar, Mar 14, 2005 – p.52
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and the components of the tensor F are defined by

Fi(q) =
(

−ei × H
ei × E

)
, (7)

where ei denotes the Cartesian unit vectors. On the right-hand
side of (5), S = [SE ,SH ] is the source term, which depends
on the incident field, and the material matrix Q is a diagonal
matrix with values (ϵ, ϵ, ϵ, µ, µ, µ) on its diagonal. We assume
that the computational domain, Ω, is tessellated by triangles
in two spatial dimensions and tetrahedrons in three spatial
dimensions denoted D, and we represent the local solution
qN as

qN (x, t) =
N∑

i=1

q̃i(t)Li(x), (8)

where q̃i reflects nodal values, defined on the element. L i(x)
signifies an pth order Lagrange polynomial (N = p(p + 1)/2
for triangles and N = (p+1)(p+2)(p+3)/6 for tetrahedrons),
associated with grid points on the reference triangle (see
[6], [7], [8], [9] for details). The discrete solution, qN , of
Maxwell’s equations is required to satisfy

∫

D

(
Q

∂qN

∂t
+ ∇ · F(qN ) − SN

)
Li(x)dx (9)

=
∮

∂D
n̂ · [F(qN ) − F∗]Li(x)dx.

In (9), F∗ denotes a numerical flux, which expression can
be found in [6], and n̂ is an outward pointing unit vector
defined at the boundary ∂D of the element D. Note that this
is an entirely local formulation, and relaxing the continuity
of the elements decouples the elements, resulting in a block-
diagonal global mass matrix which can be trivially inverted
in preprocessing. After discretization of the operators and
evaluation of the integrals appearing in (9), the problem can
be rewritten in matrix-vector form (see [7])

QM
dqN

dt
+ S · FN − MSN = Fn̂ · [FN − F∗]. (10)

The matricesM, S, and F represent the local mass-, stiffness-,
and face-integration matrices, respectively, the exact entries of
which only depend on the metric of the triangle (see [6]). The
local nature of the scheme allows for the use of an explicit
solver for the time discretization of (10) and this is done using
an explicit Runge–Kutta method.

III. ACCOUNTING FOR UNCERTAINTY

A. Modelling of a random surface

We consider an object whose shape can vary in a random
fashion. As an example, Figure 1 shows a disc which is mod-
elled by (n−1) segment lines [XiXi+1]1≤i≤n−1 from a finite
element mesh. Those segment lines are defined by the points of
polar coordinates Xi = (ri cos(θi), ri sin(θi))1≤i≤n. We now
assume that the pointXi can be moved randomly by a quantity
δXi = (δri cos(θi), δri sin(θi))1≤i≤n to take a new position
(Xi +δXi) = ((ri +δri) cos(θi), (ri +δri) sin(θi))1≤i≤n. We
further assume that two points (say Xi and Xj) with polar
angles θi and θj close to each other should have a random

X0
X1

X2

Xi

O

ri

θ i

Fig. 1. Points Xi = (ri cos(θi), ri sin(θi)) defining the boundary of an
object.

Xi+ Xi

Xi+1

δ

0

ri

ri+1

ri

ri+1δ

Xi

Xi+1+ Xi+1

δ

δ

A

Fig. 2. Illustration showing how the points on the boundary of an object are
moved randomly.

height δXi close to δXj . This is done by introducing the
covariance matrix K such that:

Kij = ce−
|βi−βj |

b , (11)

where

βi =
{

θi if θi ∈ [0, π]
π − θi if θi ∈]0, 2π] (12)

In the definition of βi we have to separate the cases θi ∈
[0, π] and θi ∈]0, 2π] to ensure that two points on the random
surface, one with a polar angle close to 0 and the other one
with a polar angle close to 2π, be strongly correlated. In the
relation (11), b is a parameter which can control how correlated
two pointsXi andXj can be and c is another parameter which
controls the roughness of the surface.

For an element based scheme, it is similar

Mapping is essentially  
around a mean grid

            

A Simple 3D Example

Scattering by a ka = 2π sphere with uncertain radius (10%),
uniformly distributed.
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Fig. 14. RCS for the rocket problem at higher frequency. Results are shown
with the mean RCS as well as ± one standard deviation.

Fig. 15. One sample of a surface mesh for the sphere with a random radius.

uncertainty in the radius of the sphere affects the RCS mainly
in the sideband.

F. Three-dimensional rocket
For the second experiment with three spatial dimensions

we consider the scattering of a plane wave, with frequency
ω = 1, from a PEC rocket with a geometric description given
in Figure 17. The direction of the incident field is assumed
to be uniformly distributed in the interval [10, 20] degrees.
Here the incident angle is measured from direct incidence with
the parabolic cone and the scattering plane is the xy-plane.
As for the sphere, a fourth Legendre-Gauss-Lobatto is used
for collocation in the one-dimensional random space. For this
calculation the physical space is discretized with degree five
polynomials in each element. Figure 18 shows the mesh used
restricted to the surface of the rocket and Figure 19 shows
the average of the RCS and the possible variations around its
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Fig. 16. RCS for the sphere problem. Results are shown with the mean RCS
as well as ± one standard deviation.
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3
4λ Diameter

End View

Fig. 17. Geometric description of the three-dimensional rocket. Here λ is
the wavelength of the incident field.

average value. The uncertainty in the direction of the incident
affects the RCS mainly in the peaks and valleys.

V. POSSIBLE EXTENSIONS TO OTHER TYPES OF
UNCERTAINTIES

So far, we only have discussed PEC objects with random
shapes and uncertainties in the incident field, however the
approach described above can equally be used for others
types of uncertainties. For example, instead of being purely
reflective, the object can be material with a random shape. In
that case, it is necessary to mesh the entire domain and define
a permittivity ε that will takes some value inside the object and
another value outside. For material objects, the shape of the
objects can be moved randomly in the same way as a PEC
object. In [2], the uncertainty in shape of a material object
was studied, however, the approach used was limiting the
uncertainty to be modeled by a single random variable. Others

10% uncertain radius
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Fig. 3. Original mesh for the rocket problem.

To generate a random surface, the problem can be
formulated as follows: find a random vector δr =
(δr1, δr2, ..., δrn)T with a given covariance matrix K that
will generate the new random surface (Xi + δXi) = ((ri +
δri) cos(θi), (ri + δri) sin(θi))1≤i≤n. This procedure is illus-
trated on Figure 2, where a triangle (A,Xi,Xi+1) having one
side [XiXi+1] sitting on the boundary of the object is distorted
into a new triangle (A,Xi + δXi,Xi+1 + δXi+1) which side
[(Xi + δXi)(Xi+1 + δXi+1)] will compose the new shape of
the object. From a practical point of view, this can be easily
done by first generating a vector G =

√
3(α1, α2, ..., αn)T ,

where α1, α2, ..., αn are random independent variables follow-
ing (for example) a uniform law on the interval [−1, 1]. Since
K is symmetric definite positive, it can be decomposed like
K = PDP−1, where D is a diagonal matrix with positive
eigenvalues on its diagonal. Then, it can be shown that the
vector δr given by δr = PD1/2G will be a random vector
with covariance matrix K. In terms of implementation, one
generates independents pseudo-random numbers α 1, α2, ..., αn

with a uniform law on the interval [−1, 1], then the vector δr
is given by the matrix-vector product PD1/2G (the matrix
PD1/2 can be pre-computed and stored once for all). The
coordinates of the points of the new random surface will be
(Xi + δXi) for i = 1, ..., n. The procedure described here
for a disc can be easily adapted to objects with more general
shapes, as will be shown in the numerical experiments section.
As an example, we have represented a somewhat simplified

rocket in Figure 3. Figure 4 shows a zoom of its front part for
the original (non-distorted) rocket and a typical sample mesh,
when the procedure described above has been applied (here,
we take b = 5 and c = 0.002 in equation (11)). It should be
noted that with this procedure, one just needs to generate a
single mesh for the problem to be solved (the mesh of the
object with its original shape, i.e. the mesh of Figure 3, for
example). One needs to be careful that once the points defining
the original object have been moved randomly, the triangles
sitting on the object do not distort the mesh too much. This
can be easily controlled by the parameter c in equation (11)

Fig. 4. One sample of a mesh for the rocket with a random shape together
with its original shape.

which is directly linked to the amplitude that δri can take. The
coordinates of the points which define the finite element mesh
only occurs in the matrices M, S, and F of equation (10) and
those quantities are constant element by element. Since those
matrices appear as multiplicative coefficients into Maxwell’s
equations we have transformed a problem with an object
having a random shape (which usually requires the generation
of a new mesh for each sample) into an equivalent stochastic
problem having a fixed mesh but with random coefficients.

B. Monte-Carlo simulation

A Monte-Carlo simulation is therefore quite simple:
one simply need to generate (say) M random vectors
{δrm}1≤m≤M as described above. Each set of random num-
bers will give a new random surface from which we can
compute M solutions of Maxwell’s equations. Those M solu-
tions of Maxwell’s equations, will give M radar cross section
{RCSm}1≤m≤M from which we can compute averages as
follows:

< RCS >=
1
M

M∑

m=1

RCSm. (13)

And for the variance, we have

var(RCS) =
1
M

M∑

m=1

(RCSm)2− < RCS >2 . (14)

It should be noted that the advantage of the Monte-Carlo
approach is its simplicity (it only requires repetitive runs of
an existing deterministic solver), but it is hard to get accurate
solutions due to its slow rate of convergence O(M −1/2). In
the next subsection, we will introduce a stochastic collocation
method which has the simplicity of the Monte-Carlo approach
but with better rates of convergence.

JOURNAL OF LATEX CLASS FILES 3

Fig. 3. Original mesh for the rocket problem.

To generate a random surface, the problem can be
formulated as follows: find a random vector δr =
(δr1, δr2, ..., δrn)T with a given covariance matrix K that
will generate the new random surface (Xi + δXi) = ((ri +
δri) cos(θi), (ri + δri) sin(θi))1≤i≤n. This procedure is illus-
trated on Figure 2, where a triangle (A,Xi,Xi+1) having one
side [XiXi+1] sitting on the boundary of the object is distorted
into a new triangle (A,Xi + δXi,Xi+1 + δXi+1) which side
[(Xi + δXi)(Xi+1 + δXi+1)] will compose the new shape of
the object. From a practical point of view, this can be easily
done by first generating a vector G =

√
3(α1, α2, ..., αn)T ,

where α1, α2, ..., αn are random independent variables follow-
ing (for example) a uniform law on the interval [−1, 1]. Since
K is symmetric definite positive, it can be decomposed like
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which is directly linked to the amplitude that δri can take. The
coordinates of the points which define the finite element mesh
only occurs in the matrices M, S, and F of equation (10) and
those quantities are constant element by element. Since those
matrices appear as multiplicative coefficients into Maxwell’s
equations we have transformed a problem with an object
having a random shape (which usually requires the generation
of a new mesh for each sample) into an equivalent stochastic
problem having a fixed mesh but with random coefficients.

B. Monte-Carlo simulation

A Monte-Carlo simulation is therefore quite simple:
one simply need to generate (say) M random vectors
{δrm}1≤m≤M as described above. Each set of random num-
bers will give a new random surface from which we can
compute M solutions of Maxwell’s equations. Those M solu-
tions of Maxwell’s equations, will give M radar cross section
{RCSm}1≤m≤M from which we can compute averages as
follows:

< RCS >=
1
M

M∑

m=1

RCSm. (13)

And for the variance, we have

var(RCS) =
1
M

M∑

m=1

(RCSm)2− < RCS >2 . (14)

It should be noted that the advantage of the Monte-Carlo
approach is its simplicity (it only requires repetitive runs of
an existing deterministic solver), but it is hard to get accurate
solutions due to its slow rate of convergence O(M −1/2). In
the next subsection, we will introduce a stochastic collocation
method which has the simplicity of the Monte-Carlo approach
but with better rates of convergence.
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Fig. 15. One sample of a surface mesh for the sphere with a random radius.

uncertainty in the radius of the sphere affects the RCS mainly
in the sideband.

F. Three-dimensional rocket
For the second experiment with three spatial dimensions

we consider the scattering of a plane wave, with frequency
ω = 1, from a PEC rocket with a geometric description given
in Figure 17. The direction of the incident field is assumed
to be uniformly distributed in the interval [10, 20] degrees.
Here the incident angle is measured from direct incidence with
the parabolic cone and the scattering plane is the xy-plane.
As for the sphere, a fourth Legendre-Gauss-Lobatto is used
for collocation in the one-dimensional random space. For this
calculation the physical space is discretized with degree five
polynomials in each element. Figure 18 shows the mesh used
restricted to the surface of the rocket and Figure 19 shows
the average of the RCS and the possible variations around its
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Fig. 16. RCS for the sphere problem. Results are shown with the mean RCS
as well as ± one standard deviation.
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Fig. 17. Geometric description of the three-dimensional rocket. Here λ is
the wavelength of the incident field.

average value. The uncertainty in the direction of the incident
affects the RCS mainly in the peaks and valleys.

V. POSSIBLE EXTENSIONS TO OTHER TYPES OF
UNCERTAINTIES

So far, we only have discussed PEC objects with random
shapes and uncertainties in the incident field, however the
approach described above can equally be used for others
types of uncertainties. For example, instead of being purely
reflective, the object can be material with a random shape. In
that case, it is necessary to mesh the entire domain and define
a permittivity ε that will takes some value inside the object and
another value outside. For material objects, the shape of the
objects can be moved randomly in the same way as a PEC
object. In [2], the uncertainty in shape of a material object
was studied, however, the approach used was limiting the
uncertainty to be modeled by a single random variable. Others

Correlation length is about 1/5  
of total length

d=22
Stroud-3 is used



Summary

We can now address and have demonstrated the 
ability to deal with uncertainty of a variety of types

‣Geometrics
‣Initial and boundary conditions
‣Materials
‣Sources
‣Both steady and unsteady problems
‣etc

The use of random mappings in combination with the 
Stochastic collocation approach is flexible and robust.  

Computational cost is becoming problematic for d>>1



ANOVA Expansions

In many cases we are left with wanting to evaluate

f(X(x))
�

f(X(x)) dx X = (X1, . . . , Xd), d� 1

which quickly becomes an expensive exercise.

Q: Can we reduce the cost without loosing accuracy ?

DEF: The ANOVA expansion

f(X) = f0 +
�

t�D
ft(Xt)

ft(Xt) =
�

Ad�|t|
f(X)dXD/t �

�

w�t

fw(Xw)� f0

f0 =
�

Ad

f(X) dX,

�

A0
f(X) dX0 = f(X)

D = {1, . . . , d}

� = [0, 1]d

Xt

A|t|

|t| dimensional hypercube

t indexed sub-vector



ANOVA Expansions

A few characteristics - 

‣The ANOVA expansion is unique and exact
‣It is a finite expansion with      terms 
‣ All terms are mutually orthogonal

2d

Example:

f(�1,�2,�3) = f0 +
3�

i=1

f̂i(�i) +
�

1=i<j<d

f̂ij(�i,�j)

f(X, s) = f0 +
�

t�D;|t|⇥s

ft(Xt)

We have not achieved much yet.

Now define the truncated expansion

S = truncation dimension



ANOVA Expansions

Let us first introduce

Vt(f) =
�

Ad

(ft(Xt))2 dX, V (f) =
�

|t|>0

Vt(f)

�

0<|t|�ps

Vt(f) � qV (f)

Err(X, ps) =
1

V (f)

�

Ad

[fX� f(X, ps)]2 dX

Err(X, ps) � 1� q

q � 1

... subset specific variances

Define the effective dimension through

Then one can prove

NOTE: If p<<d there is hope!
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Is that relevant ?
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where Err(� , ps) is the normalized approximation error defined by

Err(� , ps) =
1

V (u)

�

Ap
[u(�)�u(�; ps)]

2 d� .

This highlights that if the superposition dimension is small, ps ⇧ p, the function can be well

approximated by using just a few terms in the ANOVA expansion. This promises to dramatically

reduce the cost of the computation of the expansion.

To illustrate the efficiency of the ANOVA expansion in accurately and efficiently representing

a high-dimensional function using a truncated expansion, let us consider a subset of the classic

test functions [9, 10].

• Product Peak function: u1(x) = ’p
i=1(c

�2
i +(xi �⇥i)2)�1,

• Corner Peak function: u2(x) = (1+
p
Â

i=1
cixi)�(p+1),

• Gaussian function: u3(x) = exp(�
p
Â

i=1
c2

i (xi �⇥i)2),

• Continuous function: u4(x) = exp(�
p
Â

i=1
ci|xi �⇥i)|,

where the parameters c = (c1, · · · ,cp) and ⇥ = (⇥1, · · · ,⇥p) are generated randomly. The param-

eter ⇥ acts as a shift parameter and the parameters c are constrained. See [9, 10] for the details.

In Fig. 1 we show both the L2 error, L• error of the ANOVA expansion for p = 10 for the

four Genz test functions. The error is computed using a fine sparse grid. It is clear that once the

4th order terms in the ANOVA expansion are computed, the complete expansion approximates the

full parametric variation very well to accuracies below 10�10. It is encouraging that this appears

to be insensitive to the choice of test-function. This has been confirmed with many other tests

also, typically showing that simply including 2nd order terms often suffices. The observation that

one often finds a small effective dimension for high-dimensional problems has also been noted by

others [17, 28], e.g., for large classes of problems one often finds that including 2nd or 3rd order

terms in the ANOVA expansion suffices for problems of moderate dimensionality such as p ⌅ 25.
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Figure 1: The accuracy of the ANOVA expansion measured in both the L2 and the L� norm as a function of
the number of terms for the four test functions described in the text. a) u1, b) u2, c) u3, d) u4.

5 Parameter space compression through sensitivity estimation

While the use of the ANOVA expansion allows for an efficient way to represent the high-dimensional

function, the dimension of the parameter space remains unchanged. However, for many types of

problems, certain parameters are likely more important than others, in particular in cases where

one is mainly interested in a subset of the dependent variables or some specific output functional.

This suggests that if we could reliably and at modest cost quantify the importance of the

individual parameters on an output of interest, this could be used to compress the parameter space

without adversely impacting the accuracy of the prediction of the output and its sensitivity.

To accomplish this we consider the Total Sensitivity Indices (TSI) used in the Fourier Ampli-

Observation:
The majority of high-dimensional 
functions have a low effective 
dimension.

The ANOVA expansion exposes 
this and makes it accessible

d=10
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Lets take it one step further and define

15

tude Sensitivity Test (FAST) and Sobol’ methods, [14, 22, 23]. The TSI of parameter i is defined

to measure the combined sensitivity of all terms depending on this particular parameter. To realize

how to most efficiently compute this, we define the sensitivity measure

S(t) =
Vt

V
, (5.1)

where Vt and V are defined in (4.8). It should be noted that this can be defined based on any output

function of interest or on a particular entry in a vector valued function.

Summing up all the terms S(t), |t|> 0 we recover

�
|t|>0

S(t) = �
|t|>0

Vt

V
= 1. (5.2)

We now express this as

�
i⇥t

S(t)+ �
i/⇥t

S(t) = 1, (5.3)

where i = 1, · · · , p is the index of variable � i. The first term in this expression is TSI(i) of variable

� i while the second term reflect all interactions not involving � i.

The individual elements in the TSI are computable directly from the truncated ANOVA ex-

pansion. However, this may in it self be quite expensive to compute for a high-dimensional case.

To overcome this bottleneck, we observe that the use of the TSI is just as an indicator and low

accuracy of this will likely be adequate.

We therefore propose an approach in which the ANOVA expansion is first computed for the

output of interest using a low order Stroud based integration scheme. This enables the computation

of the TSI for the full parameter space at low cost and the identification of the parameters of

importance. With this information, we compress the dimensionality of the problem, retaining only

the important parameters and freezing less important ones at their mean value. This results in a

compressed system which contain the parameters of dynamic importance. We now proceed and

recompute the ANOVA expansion of this problem at a higher accuracy to enable the accurate

modeling of the sensitivity of the output of interests. In the following we shall discuss in more

detail the validity of this approach on a non-trivial problem with intuitive behavior.

Sensitivity index:
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We therefore propose an approach in which the ANOVA expansion is first computed for the

output of interest using a low order Stroud based integration scheme. This enables the computation

of the TSI for the full parameter space at low cost and the identification of the parameters of

importance. With this information, we compress the dimensionality of the problem, retaining only

the important parameters and freezing less important ones at their mean value. This results in a

compressed system which contain the parameters of dynamic importance. We now proceed and

recompute the ANOVA expansion of this problem at a higher accuracy to enable the accurate

modeling of the sensitivity of the output of interests. In the following we shall discuss in more

detail the validity of this approach on a non-trivial problem with intuitive behavior.

i = {1, . . . , d},Xi

Then sensitivity of variable “i” is measured through

We can now measure impact of variable on output of interest

‣ Compute ANOVA expansion using Stroud-2/3 rule
‣ Evaluate which parameters are of importance
‣ Compress parameter set to these and maintain the  
        remaining at expectation value.
‣Compute ANOVA expansion of compressed set
‣Evaluate statistics of compressed problem 
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Example: 25 planets of uncertain mass pull in a unit mass space-ship
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5.1 Numerical example

We consider a situation with p particles, each held fixed at a random position in a two-dimensional

space [�a,a]2. Let us furthermore assume that a single particle of unit mass is initially positioned

at (0,0) and feels an acceleration through Newtonian gravitational forces from all the other parti-

cles. This leads to a simple dynamical equation

ẍ(t) =
p

�
i=1

mir̂i/r2
i , x(t0) = x0. (5.4)

Here r̂i is the distance vector between the fixed particle i and the moving particle and ri is the

Eulerian distance between the fixed particle i and the moving particle.

To endow this problem with a high-dimensional characteristic, we assume that all the masses,

mi, are uniformly distributed random variables with a mean of 1/(p+1) and a 10% variance. The

goal is to predict the mean trajectory of the moving particle as well as its sensitivity due to the

variation in mass.

Intuitive understanding of the problem suggests that just a small number of fixed masses will

contribute significantly to the dynamics of the moving particle. Hence, we expect that the paramet-

ric compression computed using the TSI approach will work well in this case and identify particles

situated close to the moving particle. As the function of sensitivity we consider the kinetic energy

but this is not a unique choice.

5.1.1 25 dimensional problem

We first consider a small problem with p = 25. In Fig. 2 we show the the first part of the approach

in which the ANOVA expansion of the kinetic energy for the full problem is computed using the

Stroud-3 integration and TSI computed based on that.

We notice in Fig. 2 that including only 2nd order terms suffice in the ANOVA expansion to

accurately represent the output function. Furthermore, and as expected, the TSI clearly indicates

that only a fraction of the fixed particles are of significant importance for computing the sensitivity.

The next step is to reduce the number of parameters by freezing those of minimal influence at

their expectation and the specification of the threshold is a question of judgement. Experimentation

has shown that parameters with a TSI of 2% or less can typically be frozen without any substantial

mi =
1

p + 1
[1 + 0.1 � U(�1, 1)]
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Figure 2: Gravitational problem with p = 25, Left: L2 error and L� error for the ANOVA expansion. Right: TSI
for the kinetic energy of the moving particle based on the parametrized masses of the fixed particles.

effect and we shall use this in what remains. In Fig. 3 we illustrate which particles have been

identified by the TSI approach based on the kinetic energy, confirming that it identifies those

particles which are closest to the particle track as one would intuitively expect.
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Figure 3: Gravitational problem with p = 25. Illustration of the 7 most important particles as identified by the
TSI approach.

In Fig. 4 we show the convergence of the ANOVA expansion based on the reduced set of

Full ANOVA based on Stroud-3
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Does it work ?
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parameters as well as the computed solution and the sensitivity obtained by using the compressed

set of parameters. For comparison we also show the result based on the full set of 25 parameters.

A third order ANOVA expansion remains sufficient and the agreement between the full problem

and the compressed problem is excellent, both for the mean and the sensitivity of the problem.

The sensitivities are computed using Monte Carlo in both cases.
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Figure 4: Gravitational problem with p = 25. Left: We show the the accuracy of the ANOVA expansion for
the compressed problem based on 7 parameters. Right: Computed solution and sensitivity obtained using the
compressed set of parameters as well as the full set of 25 parameters.

To further validate the accuracy of the approach, we show in Fig. 5 a direct comparison

between the computed results and those obtained using a direct Monte Carlo approach. The agree-

ment is excellent.

The value at which we choose to truncate the number of parameters based on TSI has several

implications. The most immediate one is naturally the accuracy of the reduced model and for this

we find that 2% is a suitable value for all test cases we have considered. However, there may

be reasons for having to include additional parameters beyond what is suggested by the cut-off

value. Once the parameters are chosen, we build a full response surface following [2] by fitting

a second order polynomial to available data through a least squares approximation. Higher order

approximations may at times be advantageous but we have not found strong arguments for doing

so in the cases considered here.
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Figure 5: Gravitational problem with p = 25. We show the computed mean and sensitivity of the position (left)
and velocity (right) using di�erent methods as marked.

Once the least squares approximation is built, it can be sampled a low cost and we use this to

compute sensitivities and other statistical measures. However, if the parameter space is strongly

reduced and/or the ANOVA expansion is short, the least squares approximation may not exist.

In such case, we add parameters drawn randomly from those just below the 2% cut-off until the

least squares approximation is computable. This typically involves just adding a few additional

parameters.

5.1.2 100 dimensional problem

Let us make the problem more challenging and consider a problem with p = 100 particles. In

Fig. 6 we illustrate the values of the ANOVA expansion of the full problem computed using the

Stroud-3 integration and the TSI for the kinetic energy computed based on that.

We notice in Fig. 6 that including all 2nd order terms suffice in the ANOVA expansion to

accurately represent the output function. Furthermore, we see clear indications in the TSI that

only a fraction of the fixed particles are of significant importance. Using the previously discussed

thresh hold, we find that as little at 10 parameters suffice to accurately compute the dynamics of

the moving particle.

In Fig. 7 we show the convergence of the ANOVA expansion based on the reduced set of
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Figure 6: Gravitational problem with p = 100, Left: L2 error and L� error for the ANOVA expansion. Right:
Sensitivity index for the kinetic energy of the moving particle based on the parametrized masses of the fixed
particles. Unmarked slices contribute less than 1%.
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Figure 7: Gravitational problem with p = 100. Left: We show the the accuracy of the ANOVA expansion for
the compressed problem based on 10 parameters. Right: Computed solution and sensitivity obtained using the
compressed set of parameters as well as the full set of 100 parameters based on Monte Carlo.

parameters as well as the computed solution and sensitivity obtained using the compressed set of

parameters as well as the full set of parameters. A third order ANOVA expansion is sufficient

and the agreement between the full problem and the compressed problem is excellent, both for the

mean and the sensitivity of the problem. The sensitivities are computed using Monte Carlo in both
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cases.

To further validate the accuracy of the approach, we show in Fig. 8 a direct comparison be-

tween the computed results and those obtained using a direct Monte Carlo solution.The agreement

remains excellent and supports the validity of this approach for high-dimensional problems.
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Figure 8: Gravitational problem with p = 100. We show the computed mean and sensitivity of the position
(left) and velocity (right) using di�erent methods as marked.

6 Numerical examples

In the following we evaluate the ANOVA expansion and the approach to parametric compres-

sion on two more challenging test cases, both of which has been studied previously, albeit using

different techniques.

6.1 Genetic toggle switch

We first consider the genetic toggle switch

du
dt

=
�1

1+ v⇥ �u,

dv
dt

=
�2

1+⌅⇤ � v,

Active # of parameters is 10
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Consider again the toggle-problem
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cases.

To further validate the accuracy of the approach, we show in Fig. 8 a direct comparison be-

tween the computed results and those obtained using a direct Monte Carlo solution.The agreement

remains excellent and supports the validity of this approach for high-dimensional problems.
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6 Numerical examples

In the following we evaluate the ANOVA expansion and the approach to parametric compres-

sion on two more challenging test cases, both of which has been studied previously, albeit using

different techniques.

6.1 Genetic toggle switch

We first consider the genetic toggle switch

du
dt

=
�1

1+ v⇥ �u,

dv
dt

=
�2

1+⌅⇤ � v,
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⌃ =
u

(1+[IPT G]/K )⌅ (6.1)

where �1, �2, ⇥ , ⇤ , ⌅ , K are parameters and [IPT G] is a system input that controls the be-

havior of the steady state solution. This system of equations describes a genetic switch in ES-

cherichia coli [8, 30, 33].

We model the parameters � = (�1, · · · ,�6) = (�1,�2,⇥ ,⇤ ,⌅ ,K ) as random variables on the

form � = ⌅�⇧(1+⇧y), where ⌅�⇧ = (156.25,15.6,2.5,1,2.0015,2.9618⇤ 10�5) are the expec-

tation values. The y = (y(1), · · · ,y(6)) are uniformly distributed random variables in [�1,1]6 and
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Figure 9: Reference steady state solution of the genetic toggle problem using a 3 level Smolyak sparse grid.

We employ a 4th-order Runge-Kutta method to integrate the system and a Gauss-Patterson

based Smolyak sparse integration to obtain a reference solution. Figure 9 shows the steady state

solution and its sensitivity as a function of IPTG. This solution is obtained using 3 levels in the

Smolyak grid with 545 function evaluations and have been verified against a 4 level computation

with 2561 function evaluations.

The sensitivity of the solution to the value of IPTG is noteworthy and suggests different dy-

namic behavior away from and close to the critical value. This is clearly confirmed when the TSI

is computed for different values of IPTG. In Fig. 10 we show the TSI computed for two values of
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where �1, �2, ⇥ , ⇤ , ⌅ , K are parameters and [IPT G] is a system input that controls the be-
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We employ a 4th-order Runge-Kutta method to integrate the system and a Gauss-Patterson

based Smolyak sparse integration to obtain a reference solution. Figure 9 shows the steady state

solution and its sensitivity as a function of IPTG. This solution is obtained using 3 levels in the

Smolyak grid with 545 function evaluations and have been verified against a 4 level computation

with 2561 function evaluations.

The sensitivity of the solution to the value of IPTG is noteworthy and suggests different dy-

namic behavior away from and close to the critical value. This is clearly confirmed when the TSI

is computed for different values of IPTG. In Fig. 10 we show the TSI computed for two values of

IPTG is a control parameter

�(X) =< � > (1 + ⇥X)
fXi = U(�1, 1)

� = 0.1
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IPTG with one being very close to the critical value.
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Figure 10: Total sensitivity index of each random variable. Left: IPTG=10�6. Right: IPTG=10�4.5.

The results in Fig. 10 nicely illustrate that only three of the parameters are important for

IPT G = 10�6 whereas they all enter into the dynamics in the highly sensitive range around

IPT G = 10�4.5. Depending on the area of interest this provides guidance to a possible param-
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these subtleties of the different regimes at low computational cost.
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six variables for different values of IPT G. The results confirm the efficiency of the ANOVA

expansion, requiring only 2nd order terms and a total of 21 terms, and also the insensitivity of the

truncation dimension to the value of IPT G. The combination of this and the TSI hence provides

an efficient and accurate way of dealing with this otherwise challenging problem.

IPTG = 1E-6 IPTG = 1E-4.5
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We employ a 4th-order Runge-Kutta method to integrate the system and a Gauss-Patterson

based Smolyak sparse integration to obtain a reference solution. Figure 9 shows the steady state

solution and its sensitivity as a function of IPTG. This solution is obtained using 3 levels in the

Smolyak grid with 545 function evaluations and have been verified against a 4 level computation

with 2561 function evaluations.

The sensitivity of the solution to the value of IPTG is noteworthy and suggests different dy-

namic behavior away from and close to the critical value. This is clearly confirmed when the TSI

is computed for different values of IPTG. In Fig. 10 we show the TSI computed for two values of

Parametric importance is nicely 
reflected in sensitivity index



ANOVA Expansions
Consider a problem of pollution chemistry
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The problem is given in 20 dimensional space u ⇤ R20 and with a right hand side on the form

f(u) =

�
⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇤

⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⌅⇥

� �
j⇤{1,10,14,23,24}

r j + �
j⇤{2,3,9,11,12,22,25}

r j

�r2 � r3 � r9 � r12 + r1 + r21

�r15 + r1 + r17 + r19 + r22

�r2 � r16 � r17 � r23 + r15

�r3 + 2⇥ r4 + r6 + r7 + r13 + r20

�r6 � r8 � r14 � r20 + r3 + 2⇥ r18

�r4 � r5 � r6 + r13

r4 + r5 + r6 + r7

�r7 � r8

�r12 + r7 + r9

�r9 � r10 + r8 + r11

r9

�r11 + r10

�r13 + r12

r14

�r18 � r19 + r16

�r20

r20

�r21 � r22 � r24 + r23 + r25

�r25 + r24

(6.2)

The auxiliary variables, ri, are connected to the state variables as defined in Table 1 and the initial

conditions are prescribed as

u(0) = (0,0.2,0,0.04,0,0,0.1,0.3,0.01,0,0,0,0,0,0,0,0.007,0,0,0)T .

The auxiliary variables in Table 1 depends on 25 coefficients, ki, with mean values given in Table

2.

26

r1=k1 ·u1

r2=k2 ·u2 ·u3

r3=k3 ·u2 ·u5

r4=k4 ·u7

r5=k5 ·u7

r6=k6 ·u6 ·u7

r7=k7 ·u9

r8=k8 ·u6 ·u9

r9=k9 ·u2 ·u11

r10=k10 ·u1 ·u11

r11=k11 ·u13

r12=k12 ·u2 ·u10

r13=k13 ·u14

r14=k14 ·u1 ·u6

r15=k15 ·u3

r16=k16 ·u4

r17=k17 ·u4

r18=k18 ·u16

r19=k19 ·u16

r20=k20 ·u6 ·u17

r21=k21 ·u19

r22=k22 ·u19

r23=k23 ·u1 ·u4

r24=k24 ·u1 ·u19

r25=k25 ·u20

Table 1: Auxiliary variables for the pollution problem

k1=0.350

k2=0.266 ·102

k3=0.123 ·105

k4=0.860 ·10�3

k5=0.820 ·10�3

k6=0.150 ·105

k7=0.130 ·10�5

k8=0.240 ·105

k9=0.165 ·105

k10=0.900 ·104

k11=0.220 ·10�1

k12=0.120 ·105

k13=0.188 ·10

k14=0.163 ·105

k15=0.480 ·107

k16=0.350 ·10�3

k17=0.175 ·10�1

k18=0.100 ·109

k19=0.444 ·1012

k20=0.124 ·104

k21=0.210 ·10

k22=0.578 ·10

k23=0.474 ·10�1

k24=0.178 ·104

k25=0.312 ·10

Table 2: Mean values of parameters in the pollution problem

In the following we assume that all 25 parameters are uncertain as ki = ⇤ki⌅(1+�yi), where

� = 0.1, and yi are uniformly distributed independent random variables in [�1,1].

To demonstrate the efficiency of the proposed approach, we randomly select u8(t) as the output

of interest. The first step is to compute an approximation of the ANOVA expansion in the full 25-

dimensional space and use this to recover the TSI. This is illustrated in Fig. 12 where we observe

that we can safely use a truncation dimension of only two in the ANOVA expansion. Using this to
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In the following we assume that all 25 parameters are uncertain as ki = ⇤ki⌅(1+�yi), where

� = 0.1, and yi are uniformly distributed independent random variables in [�1,1].

To demonstrate the efficiency of the proposed approach, we randomly select u8(t) as the output

of interest. The first step is to compute an approximation of the ANOVA expansion in the full 25-

dimensional space and use this to recover the TSI. This is illustrated in Fig. 12 where we observe

that we can safely use a truncation dimension of only two in the ANOVA expansion. Using this to
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25 RV (Uniformly distributed with 10%)
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compute the associated TSI shows that only a small number of the random variables are important

– these can be identified as being (k2,k3,k4,k6,k16,k19). We subsequently keep these as random

variables but freeze the other 19 variables at their expectation value.
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Figure 12: Results for the analysis of u8, Left: L2 error and L� error for the full ANOVA expansion. Right: The
TSI for the parameter space for u8.

We proceed by computing the ANOVA expansion for the reduced parametric function and use

this to predict the output of interest. The results are shown in Fig. 13, illustrating the efficiency

of the ANOVA expansion on the reduced parameter space, requiring only a 2nd order expansion,

and the accuracy of prediction of the reduced model, obtained by using only the six parameters

identified as being important.

We finally show in Fig. 14 the computational solution of u8 compared to Monte Carlo results,

confirming the validity of the solution for both expectation and sensitivity results.

To illustrate the importance of performing this analysis if a new output function is chosen,

we show in Fig. 15 the TSI computed for the two variables, u14 and u17. The analysis not only

highlights that the important parameters change, but also that the actual number of parameters

needed may change, i.e., for u14 two parameters suffice while for u17 at least 8 parameters are

needed.

The ANOVA expansions for the reduced parameter space have truncation dimension of two

for both variables, resulting in a highly compressed approach to compute the solutions, shown in

Active # of parameters is 6

28

1 2 3 4 5 6
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

order of ANOVA expansion

 

 

L
2
 error

L
∞

 error

−1 0 1 2 3 4 5 6 7 8
0.299

0.3

0.301

0.302

0.303

0.304

0.305

time

so
lu

tio
n

 

 

six parameters

all parameters

Figure 13: On the left we show the convergence of the ANOVA expansion of the compressed parametrized
problem, while the right shows the solution obtained using both the full system and the compressed set of
parameters.
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Figure 14: Computational solution and sensitivities of u8 computed using the reduced approach and a Monte
Carlo method.

Fig. 16 where we show the computed solutions and their sensitivities, confirming the validity of

the approach with a reduced parameter space.

To validate the accuracy of the overall approach, we show in Fig. 17 a direct comparison with

the computed results and those obtained with a Monte Carlo approach. The agreement is excellent
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Fig. 16 where we show the computed solutions and their sensitivities, confirming the validity of

the approach with a reduced parameter space.

To validate the accuracy of the overall approach, we show in Fig. 17 a direct comparison with

the computed results and those obtained with a Monte Carlo approach. The agreement is excellent
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Active parameters depends on output of interest
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Figure 15: Left: TSI for u14. Right: TSI for u17.
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Figure 16: On the left is shown the computed solution and the sensitivity of it for u14. A similar result is shown
on the right for u17.

and the results in Fig. 16 are obtained at a fraction of the overall computational time.

7 Concluding remarks

The goal of this paper has been to present a systematic approach to accurately and efficiently

model the sensitivity of parametrized differential equations with a high degree of uncertainty as-
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and the results in Fig. 16 are obtained at a fraction of the overall computational time.

7 Concluding remarks

The goal of this paper has been to present a systematic approach to accurately and efficiently

model the sensitivity of parametrized differential equations with a high degree of uncertainty as-

u17 - Active # of parameters is 8u14 - Active # of parameters is 8
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It is valuable tool to analyze and compress functions of many 
parameters:  

‣ It is exact and finite
‣ It nicely exposes low-dimensional effective dimensions
‣ It provides a practical tool for parametric compression

Only one bottleneck left

f0 =
�

Ad

f(X) dX,

�

A0
f(X) dX0 = f(X)

This is a full high-d integration -  
       
               if done accurately, it is very expensive

Only one bottleneck left



ANOVA Expansions

The ANOVA expansion can be expressed with an 
arbitrary measure - 

Only one bottleneck left

�

Ad

f(X) dX =
�

Ad

f(X) dµ(X)

µ(X) = ⇥(X� �)

� = (�1, . . . ,�d)

Let us choose the measure

With the anchor point

In that case we get the expansion

f0 = f(�1, . . . ,�d)

ft(Xt) = f(�1, . . . ,�d,Xt)�
�

w�t

fw(Xw)� f0

No integrals - just function evaluations
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Does this really work ?

Only one bottleneck left

To illustrate the e⇥ciency and accuracy of the Lebesque ANOVA expansion as well as

the concept of the e�ective dimension, we consider a p-dimensional oscillatory function,

u1(�) = cos(2⌅⇧1 +
p�

i=1

ci�i). (17)

proposed in [22, 23] as a suitable test function for high-dimensional integration schemes.

Both ci and ⇧1 are generated as random numbers and we consider p = 10 as a test case.
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Figure 1: On the left, we show the L2 and the L⇥ errors of the 6th order truncated Lebesgue

ANOVA expansion with increasing number of terms. The right shows the associated com-

putational time.

Figure 1 shows the accuracy and the computational cost of the Lebesque ANOVA ex-

pansion measured in both the L2 norm and the L⇥ norm. Clearly, the 4th-order truncated

expansion can represent the function well down to an accuracy below 10�10. However, this

accuracy comes at considerable computational cost due to the need to evaluate the high

dimensional integrations.

2.2 The Dirac expansion

Let us now assume that dµ is a Dirac measure located at the anchor point ⇥ = (⇥1, ⇥2 · · · ⇥p) ⇥

[0, 1]p. This leads to what is known as the anchored or the Dirac ANOVA expansion.

7
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Figure 1 shows the accuracy and the computational cost of the Lebesque ANOVA ex-

pansion measured in both the L2 norm and the L⇥ norm. Clearly, the 4th-order truncated

expansion can represent the function well down to an accuracy below 10�10. However, this

accuracy comes at considerable computational cost due to the need to evaluate the high

dimensional integrations.

2.2 The Dirac expansion

Let us now assume that dµ is a Dirac measure located at the anchor point ⇥ = (⇥1, ⇥2 · · · ⇥p) ⇥

[0, 1]p. This leads to what is known as the anchored or the Dirac ANOVA expansion.

7

The recursive formula Eq. (2) and the initial formula Eq. (3) now takes the forms

ut(�t) = u(⇥1, · · · , ⇥i1�1,�1, ⇥i1+1, · · · , ⇥i2�1,�2, ⇥i2+1, · · · , ⇥i|t|�1,�|t|, ⇥i|t|+1, · · · , ⇥p)

�
�
w⇥t

uw(�w)� u0,

(18)

and

u0 = u(⇥1, ⇥2 · · · ⇥p). (19)

The computational realization of the anchored ANOVA expansion is considerably more ef-

ficient than the Lebesque ANOVA expansion as there is no need for high-dimensional inte-

grations in Eqs. (18)-(19).

To illustrate this representation, let us again consider the example in Eq. (17). In Fig.

2.2 we illustrate that errors are again reduced to below 10�12 with the 4th-order anchored

ANOVA expansion with the anchor point taken to be (0, 0, . . . , 0). With a comparable

accuracy, the anchored ANOVA expansion is achieved at a fraction of the time required for

the classic ANOVA expansion. For higher dimensional problems, the gain can be expected

to be even more significant.
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ANOVA Expansions

The key out-standing issue is now the choice of anchor

Only one bottleneck left

‣Randomly chose the point
‣ Always choose the center point
‣Choose a MC based mean point
‣Centroid of associated sparse grid
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Figure 3: Relative errors of the test functions computed using di�erent strategies for choosing

the anchor point. All variables are assumed to be uniformly distributed. i) u1, ii) u2, iii) u3,

iv) u4, v) u5, vi) u6.

In Fig. 5 we show the results which confirm that the anchored ANOVA expansion is the

most e⇤cient method to integrate the test function until the dimension of problem becomes

su⇤ciently high. When this happens naturally depends on the problem at hand, in particular
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4 Numerical examples

In the following we consider a comparative study of the di�erent approaches for choosing

the anchor point. We shall do this using standard high-dimensional test functions and also

directly compare the accuracy of the anchored ANOVA expansion to that of the Lebesque

ANOVA expansion for a high-dimensional system of ordinary di�erential equations.

4.1 Integration of high-dimensional functions

To measure the accuracy of the ANOVA expansion we define a measure of relative error of

an integral as

⇥tr =
|
⇤
Ap u(�)d��

⇤
Ap utr(�)d�|

|
⇤
Ap u(�)d�|

(32)

where utr(�) is the truncated ANOVA expansion.

We consider the classic test functions [22, 23] and one additional test example:

• Product Peak function: u2(�) =
p⇥

i=1
(c�2

i + (�i � ⇤i)2)�1,

• Corner Peak function: u3(�) = (1 +
p�

i=1
ci�i)�(p+1),

• Gaussian function: u4(�) = exp(�
p�

i=1
c2i (�i � ⇤i)2),

• Continuous function: u5(�) = exp(�
p�

i=1
ci|�i � ⇤i)|,

• Quadrature test example: u6(�) = (1 + 1
p)

p
p⇥

i=1
(�i)

1
p .

where the parameters c = (c1, · · · , cp) and ⇤ = (⇤1, · · · , ⇤p) are generated randomly. The

parameter ⇤ acts as a shift parameter and the parameters c are constrained. See [22, 23] for

the details. Note that the test function u1 is defined in Eq.(17).

4.1.1 Uniformly distributed variables

In the first set of tests, we assume that all variables, �i, i = 1, 2, · · · , 10, are uniformly

distributed variables defined on [0, 1]. We use a 10-dimensional 7-level sparse grids based

on the one-dimensional Gauss-Patterson quadrature points to compute the integrals and
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The choice matters a great deal



ANOVA Expansions

For non-uniformly distributed variables it is worse

Only one bottleneck left
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Figure 4: Relative errors of the test functions computed using di�erent strategies for choosing

the anchor point. All variables are assumed to be beta-distributed with � = 1/2, ⇥ = 1/3.

i) u1, ii) u2, iii) u3, iv) u4, v) u5, vi) u6.

the cost of evaluating the function, i.e., for more complex and expensive function evaluations

one can expect further advantages of using the ANOVA expansion over a Monte Carlo based

technique.
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Figure 4: Relative errors of the test functions computed using di�erent strategies for choosing

the anchor point. All variables are assumed to be beta-distributed with � = 1/2, ⇥ = 1/3.

i) u1, ii) u2, iii) u3, iv) u4, v) u5, vi) u6.

the cost of evaluating the function, i.e., for more complex and expensive function evaluations

one can expect further advantages of using the ANOVA expansion over a Monte Carlo based

technique.
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Xi � (1 + x)1/2(1� x)1/3

Table 1: Sums of coe⇥cients of the Oscillatory function

p: number of dimension. bp =
p�

i=1
ci.

p 5 10 15 20 25 30 35 40 45 50

bp 9.0 9.0 9.0 9.0 9.0 27 31.5 36 40.5 45
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Figure 5: Computational costs of computing the integral of the oscillatory function using a

sparse grids, the anchored ANOVA expansion with a sparse grid, and Monte Carlo method.

On the left is shown the results with a 5-level sparse grid and on the right a 4-level sparse

grid is used. The computational cost of the Monte Carlo is estimated from 15-dimensional

and 40-dimensional test functions,respectively.

4.2 Higher dimensional ODE

Let us finally consider a more complex problem and also use this to compare the accuracy

of the Lebesque and the anchored ANOVA expansions.

We consider a situation with p = 25 particles, each held fixed at a random position in

a two-dimensional space [�a, a]2. Let us furthermore assume that a single particle of unit

mass is initially positioned at (0, 0) and feels an acceleration through Newtonian gravitational

forces from all the other particles. This leads to a simple dynamical equation

ü(t) =
p⇥

i=1

mir̂i/r
2
i , u(t0) = u0. (34)

Here r̂i is the distance vector between the fixed particle i and the moving particle and ri is the

17

Small order => low cost

Directly comparing cost of integration

Cost for 
comparable 
accuracy



ANOVA Expansions

Final example

Only one bottleneck left

Anchor Points Matter in ANOVA Decomposition 7

truncation order centered point optimal point
1 6.6207×10−2 3.7949×10−3
2 5.2552×10−3 8.8265×10−5
3 2.3796×10−4 1.2680×10−6
4 6.2412×10−6 1.1568×10−8
5 9.0972×10−8 6.6648×10−11

Table 1 Error in the mean: N = 10.
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Fig. 1 Mean solution using the optimum anchor point c1 (left) and a different point c2 (right). Here
M = 4;L= 1.

∂u
∂ t

+V(t;ξ )
∂u
∂x

= 0

in the interval [−1,1] with periodic boundary conditions and initial condition
u(x,t = 0) = sin(π(x+ 1)). The advection velocity is a stochastic process with
zero mean and is represented using a Karhunen-Loeve expansion, i.e. V (t,ξ ) =

∑Mk=0
√

λkφk(t)ξk, with ξk being uncorrelated and also independent variables fol-
lowing a uniform distribution. The eigenpairs (λk,φk) are derived from the co-
variance kernel of the form exp [−|t1− t2|/L], where L is the correlation length.
Here we consider three values of L corresponding to different truncations, i.e.,
(L,M) = (1,4);(0.1,10);(0.005;500) selected so that 90% of the energy is cap-
tured by the coefficients of the truncated expansion. In the simulations we employ a
Fourier-collocation in space and a probabilistic collocation method in random space
using Legendre-chaos (8th-order).
In figure 1 we plot the mean solution at t = 0.5 in order to compare the effect of

the anchor point on the convergence of the ANOVA expansion. We see that for the
optimum point c1 = (0,0, . . . ,0) the solution converges to the exact solution when
ν = 2 but for another point c2 = (1,1, . . . ,1) the solution converges to the exact
solution only if ν = M = 4, i.e., for the full expansion. Here the exact solution is
computed as in [7]. Using the optimum point we can now vary the correlation length
L and produce accurate solutions in the high-dimensional space for small values of
L and up toM = 500 dimensions as shown in figure 2.

V (t, ⇥) =
M�

k=0

�
�k⇤k(t)⇥k cov(V (t1), V (t2)) = exp(�|t1 � t2|/L)

(L,M) = (1, 4); (0.1, 10); (0.005, 500)

x � [�1, 1]

� � U(�1, 1)
8 Zhongqiang Zhang, Minseok Choi and George Em Karniadakis
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Fig. 2 Mean solution (left) and Variance (right) using the optimum anchor point c1 for different
values of the correlation length (L = 1,0.1,0.005) and corresponding truncation dimension (ν =
2,2,1).
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UQ using reduced order models
What we need is an accurate way to evaluate the 
solution at new parameter values at reduced 
complexity.

The Reduced Basis Method
Goal

Fast input-output procedure:

input: parameter value µ � D

output: sh(µ) = l(uh(µ);µ)

Lh(uh(µ);µ) = 0
P

D
E

so
lv

er



.. but WHY ?
Assume we are interested in 

��2u(x, µ) = f(x, µ) x � �

µ
and wish to solve it accurately for many values of 

‘some’ parameter

We can use our favorite numerical method

Ahuh(x, µ) = fh(x, µ)

For many parameter values, this is expensive 
- and slow !

dim(uh) = N � 1



.. but WHY (con’t)

Assume we (somehow) know

uh(x, µ) � uRB(x, µ) = Va(µ)

Then we can recover a solution for a new 
parameter as little cost

(VT AhV)VT uh(µ) = VT fh(µ)

VT V = I

dim(a) = N

N �N N N

dim(V ) = N �N

.. if this behaves !



‣.. we know the orthonormal basis - 

‣.. and it allows an accurate representation -

‣.. and we can evaluate RHS ‘fast’-  

.. but WHY (con’t)

So IF

we can evaluate new solutions at cost - 

uRB(µ)

V

So WHY ? - promise to do 
sampling at low cost

O(N)

O(N)



Does this even work ?

We can get a good sense by a feasibility study
Feasibility study: Check SVD 
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x

0
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0.1
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0 0.2 0.4 0.6 0.8 1
x

0
0.2
0.4
0.6
0.8

1

     = 0.01

u(µ3)

u(µ2)

u(µ1)

µ1 µ2 µ3

= A

o Define a point-set Ph = {µ1, . . . , µM} ⇢ P.
o Compute for each µi the truth solution u(µi) using a simplified model.

o Store the degrees of freedom row-wise in a matrix A.

This samples the solution manifold



Solution manifold

3D EM scattering with the angle
varying 0-360 deg. RCS is 
computed every 2 deg.

Computing the SVD of the 180
solutions shows that less than 60
samples would suffice -- and likely
much less for applications

Computation by CERFACS



Basic setting

We consider physical systems of the form

where the solutions are implicitly parameterized by

L(x, µ)u(x, µ) = f(x, µ)

u(x, µ) = g(x, µ)

x � �
x � ��

‣ How do we find the basis.

‣ How do we ensure accuracy under 
parameter variation ?

‣ What about speed ?

µ 2 D 2 RN

Free: https://infoscience.epfl.ch/record/213266?ln=en

http://infoscience.epfl.ch/record/213266?ln=en


Basis by POD approachPOD: implementation
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u(µ3)

u(µ2)

u(µ1)

µ1 µ2 µ3

= A

Find eigen-decomposition of C

C = A⇤M�A



Basis by POD approach

Ahu� = fh

(V TAhV )V Tu� = V T fh V TV = I

Arburb = frb

The reduced model is now obtained as

)

or

and the output of interest is 

s(u) ' s(u�) ' s(Vurb)

N ⌧ NSince we have the potential for speed



POD example - Ex 1POD: parametrized convection-diffusion equation

5 10 15 20 25 30
N

1x10-17
1x10-16
1x10-15
1x10-14
1x10-13
1x10-12
1x10-11
1x10-10
1x10-9
1x10-8
1x10-7
1x10-6

0.00001
0.0001
0.001
0.01
0.1

Eigenvalues:

o Nodal values of exact solutions used instead of FE-approximations.

o Ph : 491 equidistant points in P = [0.01, 0.5].

Example 1: parametrized Convection-Diffusion

Convection-Di�usion equation:

�u�� + u� = 1, in (0, 1),
u(0) = u(1) = 0.
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     = 0.01
�
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Variational setting:

V = H1
0 (0, 1),

a(u, v; ") = "

Z 1

0
u0
(x)v0(x) dx+

Z 1

0
u0
(x)v(x) dx,

f(v) =

Z 1

0
v(x) dx.

Parametrized problem: Given " 2 [0.01, 0.5], find u(") 2 V such that

a(u("), v; ") = f(v), 8v 2 V.

Then, compute s(") = u(0.5; ").

POD: parametrized convection-diffusion equation

5 10 15 20 25 30
N

1x10-17
1x10-16
1x10-15
1x10-14
1x10-13
1x10-12
1x10-11
1x10-10
1x10-9
1x10-8
1x10-7
1x10-6

0.00001
0.0001
0.001
0.01
0.1

Eigenvalues:
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X
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5 first basis functions:

� Precision of � 10�6 with 5 basis functions.

o Nodal values of exact solutions used instead of FE-approximations.

o Ph : 491 equidistant points in P = [0.01, 0.5].



2D Pacman problem

Scattering by 2D PEC Pacman

Backscatter depends very sensitively on 
cutout angle and frequency.

0 1 2 3 4 5 6
−20

−10

0

10

20

30
Cylinder
WedgeAngle = 18.5 Deg
WedgeAngle = 21.5 Deg

Fig. 1.1. Radar cross sections for the Pacman with wave number 10 π. Three cases with different wedge angles are
plotted.

1. TM Case.

1

TM polarization

Difference in scattering is clear in fields



2D Pacman prototype for UQ

Fast evaluation over parameter space allows for rapid 
uncertainty quantification

THE PACMAN SCATTERING PROBLEM

1. Problem description. We consider the scattering of TM-polarized electromagnetic waves by
a perfectly conducting 2D cylinder with a cut-out wedge. The basic problem is illustrated in Figure 1.1.
θW denotes the angle of the wedge, θi direction of the incidence wave, and θr the observation angle.
The integrating contour for the RCS is the red circle just outside of the scatterer. Curvilinear PML is
applied sufficiently far away.

θ i

θ r

θw

P

M

L

P

M

L

Fig. 1.1. The configuration of the pacman scattering problem.
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Fig. 3.10. Results of a Monte Carlo simulation with a 5% error in θW that is normally distributed. Plotted are
10log10 value of the mean of RCS(10π, θW , 0, 0), that of “mean of RCS(10π, θW , 0, 0) ± i standard deviation”. i = 1 for
the top and i = 2 for the bottom (cut below −40).

3.4.2. Others. See the two .avi files for movies of the electric field and RCS plots. They contain
129 RBM evaluations (20 bases) with the corresponding parameter values uniformly distributed on the
parameter domain.

Next, we will study the nonlinearity of this problem in the bilinear form and linear forms (both the
right hand side f(·) and the output functional ℓ(·)). Once an appropriate magic point interpolation is
incorporated, we will appreciate the tremendous speedup of the full reduced basis method with complete
offline-online decomposition.
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Fig. 3.10. Results of a Monte Carlo simulation with a 5% error in θW that is normally distributed. Plotted are

10log10 value of the mean of RCS(10π, θW , 0, 0), that of “mean of RCS(10π, θW , 0, 0) ± i standard deviation”. i = 1 for

the top and i = 2 for the bottom (cut below −40).

3.4.2. Others. See the two .avi files for movies of the electric field and RCS plots. They contain

129 RBM evaluations (20 bases) with the corresponding parameter values uniformly distributed on the

parameter domain.
Next, we will study the nonlinearity of this problem in the bilinear form and linear forms (both the

right hand side f(·) and the output functional ℓ(·)). Once an appropriate magic point interpolation is

incorporated, we will appreciate the tremendous speedup of the full reduced basis method with complete

offline-online decomposition.
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Uniformly distributed  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3D Multiple scattering problems

Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)

where µ = (k, �,⇥,p) ⇥ D � R7 is a vector of parameters:
1) k: wave number
2) ŝ(�, ⇥): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to ŝ(�, ⇥))

� = R3\�i

� = �⇥i

n

(perfect conductor)

�

�
�i�R3⇤ � [0, 2⇥]; k = 3, � = ⇥/2

ka = 1; kd = 4

Full RCS computed in less than 
3 minutes for 36 spheres

RB for single scatterer has 5 parameters
(frequency(1), angle (2), polarization (2))

RB for interaction operator has 8 parameters
(frequency(1), relative size(1), distance (2), 
rotation (2), polarization (2))

Full scattering result computed with iteration



Multiple scattering problem

Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)

where µ = (k, �,⇥,p) ⇥ D � R7 is a vector of parameters:
1) k: wave number
2) ŝ(�, ⇥): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to ŝ(�, ⇥))

� = R3\�i

� = �⇥i

n

(perfect conductor)

�

�
�i�R3

Vertical position of 
middle cavity uniformly 
distributed within [-1,1]
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Other developments
There are naturally several other developments

‣Multi-element gPC  
      X. Wan and G. E. Karniadakis, SISC 28 (2006), pp. 901-928.  
            J. Foo, X. Wan and G. E. Karniadakis, JCP 227 (2008), pp. 9572-9595.  
 
 

‣Techniques for failure prediction  
       Jing Li and D. Xiu, JCP., 2010  
 
 

‣UQ using reduced order modeling 
 
 

‣High-dimensional interpolation and reconstruction 

MULTI-ELEMENT GPC FOR ARBITRARY PDF 921
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Fig. 3.11. Adaptive meshes for case (ii) of the K-O problem. p = 4, θ1 = 10−4, and θ2 = 10−2.
Left: Beta distribution with α = 1 and β = 4. Right: Gaussian distribution.
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Fig. 3.12. Speedup for case (ii) of the K-O problem at t = 10. Left: Beta distribution with
α = 1 and β = 4. Right: Gaussian distribution.

order. However, since the error of gPC increases with time, the above speedups will
decrease with time. The long-term behavior of gPC and ME-gPC was studied in [29].

In Figure 3.11, we show the adaptive meshes of case (ii) for Beta and Gaussian
distributions. Since the discontinuity occurs at the line ξ1 = 0 in the random space
for this case, it can be seen that the meshes are well refined along the line ξ1 = 0. It is
not surprising that the random elements are bigger where the PDF is smaller because
Pr(IBk = 1) is relatively smaller in these elements. In Figure 3.12, the speedup for
case (ii) is shown. We can see that the Monte Carlo method is competitive for low
accuracy and ME-gPC can achieve a good speedup for high accuracy.

In Figure 3.13, the evolution of y1 in case (iii) is shown. We take c = 1 for the Beta
distribution and 0.3 for the Gaussian distribution. For the purpose of comparison, we
include the results of gPC. For both cases, gPC with p = 3 begins to fail at t ≈ 1.
Since increasing polynomial order does not improve gPC [28], the results of gPC
with a higher order are not shown. ME-gPC can maintain convergence by increasing
random elements adaptively. However, for a comparable accuracy of O(10−3), the
Monte Carlo method is about twice as fast as ME-gPC for the Beta distribution and
about four times as fast as ME-gPC for the Gaussian distribution. This is mainly due
to two factors. First, the discontinuity for case (iii) is strong because the discontinuity

P. Chen, A. Quarteroni, G. Rozza, SAM Report 2015-03, ETHZ  
P. Chen and C. Schwab, SAM Report 2015-28, ETHZ
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Figure 13. Top: assimilated velocity field (left) and pressure (right); bottom: the corresponding errors.

in fluid dynamics. Although rather academic, these examples have highlighted the remarkable
reduction of computational costs, demonstrating the potential of reduced order methods in
solving uncertainty quantification problems when the solution manifold and/or the manifold
of the quantity of interest are low dimensional.

Several computational and mathematical challenges still need to be tackled in order to
pave the way for more general and practical applications. The first is curse of dimensionality,
where a larger number of random variables are present in the underpinning system, more ad-
vanced sampling techniques are required in order to build the efficient and accurate reduced
basis space. Dimension-adaptive sparse grid sampling [16], importance sampling, multilevel
construction, are all in active development for reduced order methods in high-dimensional
uncertainty quantification problems. Secondly, highly nonlinear problems expose reduced or-
der methods to additional substantial difficulty for computational reduction, for which several
techniques have been recently developed such as empirical interpolation and its discrete ver-
sion [4, 37, 13, 22], best point interpolation [50], gappy POD [30, 69], Gauss Newton with
approximated tensor [11], etc. However, these techniques do not necessarily guarantee the
well-posedness of the approximated problem, in particular its stability, which is necessary to
enable reliable computational reduction. Furthermore, in the construction of reduced basis
spaces, it is crucial to balance the errors arising from high-fidelity and reduced basis approxi-
mation, which lead to the total error of the computational approximation of the underpinning
parametric/stochastic problems. Other challenges, such as long-time integration behaviour,

Narayan, Xiu et al; Doostan et al



Open questions and challenges

Many challenges and interesting questions remain open

variance of the lift coefficient using the results given by ME-gPC with N = 20 and M = 8 as a reference. It can be seen that
the errors of gPC increase quickly to O(1). ME-gPC with N = 20 and p = 6 reaches an error of O(10!2) at t " 135. We note
that errors less than 10!5 are not shown because the output data are truncated after the fifth digit.

In Section 3 we have shown that the error of ME-gPC at a fixed time can be estimated from that of gPC of the same
polynomial order but shifted by a factor N. Here we cannot use this result directly because the decomposition of random
shedding frequencies is not necessarily uniform although the noise at the inflow is uniform. However, we can estimate the
scaling factor from the simulation results for the errors of gPC and ME-gPC of sixth order, which is about 12. Using this
value we know that the error of ME-gPC with N = 20 and M = 8 at tU/D = 150 should be roughly equal to the error of
eighth-order gPC at tU/D = 150/12, which is O(10!3). Thus, ME-gPC with N = 20 and M = 8 can provide accurate results
in the range tU/D 6 150, corresponding to about 20 shedding periods after the transient stage. In contrast, gPC provides
accurate result up to less than two shedding periods.

In Fig. 10 the RMS of vorticity is plotted. The global structure is (approximately) symmetric and the values of RMS of
vorticity are decreasing gradually from the front stagnation point, through the boundary layers, into the wake. This sug-
gests that the vorticity behind the cylinder should contain a harmonic signal A(x,Y)cos(2pfv(Y)t) with random frequencies
fv. The RMS of such a harmonic response will approach

R
Y A

2ðx; Y Þf ðY Þ=2dY as t ! 1, where f(Y) is the PDF of Y. Since
the flux of vorticity decreases in the x direction due to viscous diffusion, the value of A(x,Y) should also decrease in the x
direction. This explains qualitatively why we only observe decreasing RMS values of vorticity in the wake without the von
Karmon vortex street.

4.2. Random-amplitude inflow noise

In this section we consider another noisy boundary condition at the inflow

u ¼ 1þ rn cos 2pfint; v ¼ 0; ð50Þ

where we add a harmonic signal with a random amplitude into the inflow. We use fin = 0.75fs, where fs is the vortex shed-
ding frequency at Re = 100. Let n be a uniform random variable with zero mean and unit variance. We set r to 0.1.

x
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5

Fig. 6. Schematic of the domain for noisy flow past a circular cylinder. The size of the domain is [!15D, 25D] · [!9D,9D] and the cylinder is at the origin
with diameter D = 1. The mesh consists of 412 triangular elements.
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variance of the lift coefficient using the results given by ME-gPC with N = 20 and M = 8 as a reference. It can be seen that
the errors of gPC increase quickly to O(1). ME-gPC with N = 20 and p = 6 reaches an error of O(10!2) at t " 135. We note
that errors less than 10!5 are not shown because the output data are truncated after the fifth digit.

In Section 3 we have shown that the error of ME-gPC at a fixed time can be estimated from that of gPC of the same
polynomial order but shifted by a factor N. Here we cannot use this result directly because the decomposition of random
shedding frequencies is not necessarily uniform although the noise at the inflow is uniform. However, we can estimate the
scaling factor from the simulation results for the errors of gPC and ME-gPC of sixth order, which is about 12. Using this
value we know that the error of ME-gPC with N = 20 and M = 8 at tU/D = 150 should be roughly equal to the error of
eighth-order gPC at tU/D = 150/12, which is O(10!3). Thus, ME-gPC with N = 20 and M = 8 can provide accurate results
in the range tU/D 6 150, corresponding to about 20 shedding periods after the transient stage. In contrast, gPC provides
accurate result up to less than two shedding periods.

In Fig. 10 the RMS of vorticity is plotted. The global structure is (approximately) symmetric and the values of RMS of
vorticity are decreasing gradually from the front stagnation point, through the boundary layers, into the wake. This sug-
gests that the vorticity behind the cylinder should contain a harmonic signal A(x,Y)cos(2pfv(Y)t) with random frequencies
fv. The RMS of such a harmonic response will approach

R
Y A

2ðx; Y Þf ðY Þ=2dY as t ! 1, where f(Y) is the PDF of Y. Since
the flux of vorticity decreases in the x direction due to viscous diffusion, the value of A(x,Y) should also decrease in the x
direction. This explains qualitatively why we only observe decreasing RMS values of vorticity in the wake without the von
Karmon vortex street.

4.2. Random-amplitude inflow noise

In this section we consider another noisy boundary condition at the inflow

u ¼ 1þ rn cos 2pfint; v ¼ 0; ð50Þ

where we add a harmonic signal with a random amplitude into the inflow. We use fin = 0.75fs, where fs is the vortex shed-
ding frequency at Re = 100. Let n be a uniform random variable with zero mean and unit variance. We set r to 0.1.
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Fig. 6. Schematic of the domain for noisy flow past a circular cylinder. The size of the domain is [!15D, 25D] · [!9D,9D] and the cylinder is at the origin
with diameter D = 1. The mesh consists of 412 triangular elements.
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‣Efficient ways to deal with  
    long term integration

‣Random variables with non-smooth 
     behavior
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Open questions and challenges

‣Robust UQ and Epistemic UQ

Predictions need to be robust to initial assumptions - how ?

‣Error estimation, correct choice of N etc based on a  
      priori and a posteriori error theory.



Open questions and challenges

‣Design and optimization under uncertainty
Horn solutions
Reference geometry, RB model with N=150Horn solutions

Reference geometry, RB model with N=150

Robust design
Optimization over parameter range

‣UQ for multi-scale problems 
        What is important at one scale may (not) be important at another  

‣UQ for very high-d problems 
        How do we continue to push the limit ?  

Willcox et al, 2010



What to know more ?
D. Xiu, Numerical Methods for Stochastic Computations: A 
Spectral Method Approach, Princeton University Press, 
2010. 

O.P. Le Maitre and O.M. Knio, Spectral Methods for 
Uncertainty Quantification. Springer Verlag, 2010

R.C. Smith, Uncertainty Quantification: Theory, Implementation and 
Applications. SIAM CSE series, 2014.

UQ Community webpage: http://wwwmaths.anu.edu.au/~jakeman/index.html

UQ enabled large scale software: DAKOTA (Sandia NL):
http://www.cs.sandia.gov/optimization/

SIAM Activity Group in UQ and SIAM Conference on UQ

R.G. Ghamen and P.D. Spanos, Stochastic Finite Elements: 
A spectral approach. Dover Publishing, 2002.

http://wwwmaths.anu.edu.au/~jakeman/index.html
http://www.cs.sandia.gov/optimization/
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