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The global picture

‣ Lecture 1 - Introduction to UQ  
    Motivation, terminology, background, Wiener chaos expansions.

‣ Lecture II - Stochastic Galerkin methods 
    Formulation, extensions, polynomial chaos, and examples.

‣ Lecture III - Stochastic Collocation methods 
    Motivation, formulation, high-d integration, and examples.

‣ Lecture IV - Extensions, challenges, and open questions 
    Geometric uncertainty,  ANOVA expansions, and discussion of open questions.  



On smoothness

The assumption of smoothness is on the random variable 
- not on the solution - in MC something similar is natural

Imagine an experiment

After the fit, evolution often  
also leads to  
smooth objects

In this case, we are all out of luck



The local picture

‣ A brief reminder

‣ Stochastic Galerkin methods for ODEs

‣ Stochastic Galerkin methods for PDEs

‣ Extensions to non-Gaussian variables

‣ Summary

Lin et al,  2008



A brief reminder

Through a series of arguments we realized

‣ We need to be able to quantify with the impact of  
    uncertainty in modeling of complex systems.  

‣ While MC is tested and tried, its cost is problematic  
     for complex systems and/or high accuracy requirements 

‣ For many systems the random variables have smooth 
    densities and this we should explore  

‣We introduced the Wiener Chaos expansion for  
    this purpose



A brief reminder

We introduced the homogeneous Chaos expansion

X = (X1, . . . , Xd)
FXi(xi) = P (Xi � xi)

FX = FX1 � . . .� FXd

�i(X) = �i1(X1)� . . .� �id(Xd)

E[�i(X)�j(X)] =
�

�i(x)�j(x) dFX(x) = �i⇥ij �i = E[�2
i ]

to represent functions of d-dimensional random vectors

fN (X) =
N�

|i|=0

f̂i�i(X) � Pd
N dim Pd

N =
�

N + d
N

�
=

(N + d)!
N !d!

Here we defined the Chaos polynomial

For Gaussian variables, these are known as Hermite Poly.



Let us assume that                  and express it as

Stochastic Galerkin for ODEs

Let us now see how we can use these development

We consider again the simple ODE
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orthogonal basis functions (6.2), we obtain the following procedure: for any x and t ,
we seek vN ∈ Pd

N in the form of

vN (x, t, Z) =
N∑

|i|=0

v̂i(x, t)!i(Z), (6.4)

such that for all k satisfying |k| ≤ N ,
⎧
⎪⎪⎨

⎪⎪⎩

E[∂t vN (x, t, Z)!k(Z)] = E[L(vN )!k], D × (0, T ],
E[B(vN )!k] = 0, ∂D × [0, T ],
v̂k = û0,k, D × {t = 0},

(6.5)

where û0,k = E[u0!k]/γk are the gPC projection coefficients for the initial con-
dition. Upon evaluating the expectations in (6.5), the dependence in Z disappears.
The result is a system of (usually coupled) deterministic equations. The size of the
system is dimPd

N =
(

N+d
N

)
.

6.2 ORDINARY DIFFERENTIAL EQUATIONS

Let us use the ordinary differential equation in example 4.4 to illustrate the main
steps of the gPC Galerkin method.

du

dt
(t, Z) = −α(Z)u, u(t = 0, Z) = β,

where the initial condition is assumed to be deterministic (for simplicity). We
also assume that the random rate constant follows a normal distribution; i.e., α ∼
N (µ, σ 2). The corresponding gPC basis will be the Hermite polynomials. Since α

is the only random input, we need only univariate gPC Hermite expansion
{Hk(Z)}N

k=0, N > 0, where Z ∼ N (0, 1) is the standard normal random variable
with zero mean and unit variance. The constant α can be expressed as α = µ+σZ.
Or, in a more general form,

αN (Z) =
N∑

i=0

aiHi(Z),

where
a0 = µ, a1 = σ, ai = 0, i > 1.

Usually αN is an approximation of α. However, in this case it is an exact expression
as long as N ≥ 1. Similarly, the initial condition has a trivial gPC projection,

βN =
N∑

i=0

biHi(Z),

where

b0 = β, bi = 0, i > 0,

which is exact for N > 0.

� � N(µ,⇥2)
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v̂k = û0,k, D × {t = 0},

(6.5)
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Similarly for the deterministic initial condition

Note: This is very simple for illustration only !



Stochastic Galerkin for ODEs

We now seek solutions of the form

To find the N+1 unknown we apply the Galerkin procedure

E

�
dvN

dt
Hk

�
= �E[�NvNHk], �k = 0, . . . , N
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Let

vN (t, Z) =
N∑

i=0

v̂i (t)!i (Z)

be the N th-degree gPC approximation we seek. The gPC Galerkin procedure
results in

E
[

dvN

dt
Hk

]
= E[−αN vN Hk], ∀k = 0, . . . , N.

Upon substituting in the gPC expression for αN and vN , we obtain

dv̂k

dt
= − 1

γk

N∑

i=0

N∑

j=0

ai v̂j eijk ∀k = 0, . . . , N, (6.6)

where

eijk = E[Hi(Z)Hj (Z)Hk(Z)], 0 ≤ i, j, k ≤ N, (6.7)

are constants. Like the normalization factors γk , these constants can be evaluated
prior to any computations. In fact, for Hermite polynomials these constants can be
evaluated analytically,

γk = k! k ≥ 0, (6.8)

eijk = i!j !k!
(s − i)!(s − j)!(s − k)! , s ≥ i, j, k, and 2s = i + j + k is even. (6.9)

For other types of gPC basis functions, the analytical expressions for the con-
stants may not exist. In such cases, one can use numerical quadrature rules with a
sufficient number of points to compute the constants numerically but exactly since
the integrands are of polynomial form.

System (6.6) is thus a system of deterministic ordinary differential equations for
the coefficients {v̂k(t)} with initial conditions

v̂k(0) = bk, 0 ≤ k ≤ N. (6.10)

The size of the system is N +1, and the equations are coupled. Classical numerical
methods, e.g., Runge-Kutta methods, can be applied, and usually the coupling of
the system does not pose serious numerical challenges. (More details on numerical
studies of this problem can be found in [120].)

We can also rewrite the system in a compact form by using vector notation. By
taking the summation over i in (6.6) and defining

Ajk = − 1
γk

N∑

i=0

aieijk,

we let A = (Ajk)0≤j,k≤N be a (N + 1) × (N + 1) matrix. Denote v(t) =
(v̂0, . . . , v̂N )T ; then (6.6) can be written as

dv
dt

(t) = AT v, v(0) = b, (6.11)

where b = (b0, . . . , bN )T .

eijk = E[HiHjHk]
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Can now be solved using a standard method

vN (t, Z) =
N�

i=0

v̂iHi(Z)



Stochastic Galerkin for ODEs

Define (N+1)x(N+1) matrix
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to recover the system

THE WIENER-ASKEY POLYNOMIAL CHAOS 11

5.3. Numerical Results. In this section we present numerical results of the
stochastic ordinary differential equation by the Wiener-Askey polynomial chaos ex-
pansion. For the purpose of benchmarking, we will arbitrarily assume the type of
distributions of the decay parameter k and employ the corresponding Wiener-Askey
chaos expansion, although in practice there is certainly more favorable assumptions
about k depending on the specific physical background. We define the two error
measures for the mean and variance of the solution

εmean(t) =
∣∣∣∣
ȳ(t) − ȳexact(t)

ȳexact(t)

∣∣∣∣ , εvar(t) =
∣∣∣∣
σ(t) − σexact(t)

σexact(t)

∣∣∣∣ , (5.12)

where ȳ(t) = E[y(t)] is the mean value of y(t) and σ(t) = E
[
(y(t) − ȳ(t))2

]
is the

variance of the solution. The initial condition is fixed to be ŷ = 1 and the integration
is performed up to t = 1 (nondimensional time units).

5.3.1. Gaussian Distribution and Hermite-Chaos. In this section the dis-
tribution of k is assumed to be a Gaussian random variable with probability density
function

f(k) =
1√
2π

e−x2/2 (5.13)

which has zero mean value (k̄ = 0) and unit variance (σ2
k = 1). The exact stochastic

mean solution is

ȳ(t) = ŷet2/2. (5.14)

The Hermite-Chaos from the Wiener-Askey polynomial chaos family is employed as
a natural choice due to the fact that the random input is Gaussian. Figure 5.1 shows
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Fig. 5.1. Solution with Gaussian random input by 4th-order Hermite-Chaos; Left: Solution of
each random mode, Right: Error convergence of the mean and the variance.

the solution by the Hermite-Chaos expansion. The convergence of errors of the mean
and variance as the number of expansion terms increases is shown on semi-log plot,
and it is seen that the exponential convergence rate is achieved. It is also noticed that
the deterministic solution remains constant as the mean value of k is zero; however
the mean of the stochastic solution (random mode with index 0, y0) is nonzero and
grows with time.

Xiu et al, 2002



‣Solving with the mean coefficients is not sufficient  

‣ A stochastic scalar problem becomes a  
      deterministic system  

‣Some work is needed to derive system and  
      matrix entries  

‣ System is only coupled with multiplicative randomness 

‣ Spectral convergence is clear, i.e., we have recovered 
     the benefits of global expansions from PDE solvers

Stochastic Galerkin for ODEs

A few observations are worth making

eijk = E[HiHjHk]



Stochastic Galerkin for ODEs

Let us briefly discuss the generalization to general SDEs

X = (X1, . . . , Xd)

du(X, t)
dt

= f(�(X), u, t) + g(⇥(X), t), u(X, 0) = h(⇤(X))

�N (X) =
N�

|i|=0

�̂i�i(X) �N (X) =
N�

|i|=0

�̂i�i(X) �N (X) =
N�

|i|=0

�̂i�i(X)

�̂i =
1
�i

E[�(X)�i(X)] �̂i =
1
�i

E[�(X)�i(X)] �̂i =
1
�i

E[�(X)�i(X)]

�(X) = (�1(X), . . . ,�k(X))

�(X) = (�1(X), . . . ,�l(X))

Parameters depends on d-dimensional random space 

�(X) = (�1(X), . . . , �l(X))

As in the simple case they are expanded in Chaos expansion



‣Total number of variables 

‣ Generally terms                       and  
       must be evaluated through quadrature 

Stochastic Galerkin for ODEs

Now proceed and express the solution as

uN (X, t) =
N�

|i|=0

ûi(t)�i(X)

d

dt
E[u �k] =

dûk

dt
= E[f(�N , uN )�k] + E[g(⇥N ) �k], �|k| = 0, . . . , N

ûk(0) =
1
�k

E[h(�N )�k], |k| = 0, . . . , N

Applying a Galerkin approach yields the system to solve

(N + d)!
N !d!

� Nd

d!

E[f(�N , uN ) �k] E[g(�N ) �k]
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Figure 3: Steady-state gene expression of toggle swith. Light (and red) error bars centered around circles are
numerical results; Dark (and blue) error bars around dots are experimental measurements. The re-production
of the experimental results from [10] is courtesy of Dr.Gardner.

bars (dark-colored bars around dots). The switch property is indicated by the sudden
jump in the response curve. At this location, the solution has a bi-modal distribution,
indicated by the larger numerical error bar. (The experimental result at this location is
plotted as two smaller bars corresponding to each modal.) We remark that the form of
the governing equations prevents direct application of gPC-Galerkin approach.

5.3 Cell signaling cascade

Here we consider a mathematical model for autocrine cell-signaling loop developed in [22].
Let e1p, e2p, and e3p denote the dimensionless concentrations of the active form of the
enzymes. The model for dynamics of e1p, e2p, and e3p has the following form

de1p

dt
=

I(t)

1 + G4e3p

Vmax,1(1 − e1p)

Km,1 + (1 − e1p)
−

Vmax,2e1p

Km,2 + e1p
, (5.5)

de2p

dt
=

Vmax,3e1p(1 − e2p)

Km,3 + (1 − e2p)
−

Vmax,4e2p

Km,4 + e2p
, (5.6)

de3p

dt
=

Vmax,5e2p(1 − e3p)

Km,5 + (1 − e3p)
−

Vmax,6e3p

Km,6 + e3p
. (5.7)

For detailed biological background of the model, see [22]. In [22], the parameters are chosen
as Km,1−6 = 0.2, Vmax,1 = 0.5, Vmax,2 = 0.15, Vmax,3 = 0.15, Vmax,4 = 0.15, Vmax,5 = 0.25,� = 0.1

Km,1�6 = 0.2

< Vmax >= (0.5, 0.15, 0.15, 0.15, 0.25, 0.05)

Vmax,i =< Vmax > (1 + �Xi)ModelD. Xiu / Commun. Comput. Phys., 2 (2007), pp. 293-309 307
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Figure 4: Steady input-out behavior computed for several values for gain of the negative feedback Left: de-
terministic simulation. The four curves from top to bottom correspond to G4 = 0, 1, 2, and 4, respectively.
Right: stochastic computation with 10% uncertainty in parameters Vmax,1− 6 Results of G4 = 0 and G4 = 4
are shown in error bars, with the corresponding deterministic results in dotted lines.

and Vmax,6 = 0.05, and the response curve of e3p with respect to the input signal I(t) is
examined at steady state.

Here we introduce 10% uncertainty in the parameters Vmax,1−6 to account for the data
variability, and model these parameter as, for i = 1, . . . , 6, Vmax,i = ⟨Vmax,i⟩(1 + σpi),
where σ = 0.1, pi is a uniformly distributed random variable in (−1, 1), and the mean
values ⟨Vmax,i⟩ are specified as the same values above. Again, the gPC basis functions are
Legendre polynomials for uniform random variables. The random space is six-dimensional
(N = 6), and the sparse grids are used.

The left of Fig. 4 is the result of deterministic simulations, with the four curves corre-
sponds to G4 = 0, 1, 2, and 4, from top to bottom, respectively. This is a reproduction of
Figure 4 in [22]. The steady input-output behavior with random parameters for G4 = 0
and G4 = 4 is plotted on the right of Fig. 4, in error bars to illustrate the uncertainty
in output induced by the uncertainty in parameters. (The corresponding base case deter-
ministic results are plotted in dashed lines.) It can be seen that although the difference
between the mean of the random output and the deterministic output is quite small, rel-
atively large output uncertainty (indicated by error bars) is obtained when the response
curve has larger slope.

For smaller values of G4, the stimulus-response curve takes the form of the Hill equation
y = xnh/(x̄nh + xnh), where nh is the Hill coefficient and x̄ represent the value of x where
y = 1/2. The Hill coefficient is often approximated by

nh =
log(81)

log(I90/I10)
, (5.8)

where I90 and I10 represent the input value that result in 90% and 10% of output activity,
respectively. Here we take nh as another observable and examine it for the response curve
of G4 = 0. It is shown that the mean of nh is 6.4682 and its standard deviation is 0.775.

I(t) is a control parameter

fXi = U(�1, 1)

N=2

Xiu, 2007
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cases.

To further validate the accuracy of the approach, we show in Fig. 8 a direct comparison be-

tween the computed results and those obtained using a direct Monte Carlo solution.The agreement

remains excellent and supports the validity of this approach for high-dimensional problems.
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Figure 8: Gravitational problem with p = 100. We show the computed mean and sensitivity of the position
(left) and velocity (right) using di�erent methods as marked.

6 Numerical examples

In the following we evaluate the ANOVA expansion and the approach to parametric compres-

sion on two more challenging test cases, both of which has been studied previously, albeit using

different techniques.

6.1 Genetic toggle switch

We first consider the genetic toggle switch

du
dt

=
�1

1+ v⇥ �u,

dv
dt

=
�2

1+⌅⇤ � v,22

⌃ =
u

(1+[IPT G]/K )⌅ (6.1)

where �1, �2, ⇥ , ⇤ , ⌅ , K are parameters and [IPT G] is a system input that controls the be-

havior of the steady state solution. This system of equations describes a genetic switch in ES-

cherichia coli [8, 30, 33].

We model the parameters � = (�1, · · · ,�6) = (�1,�2,⇥ ,⇤ ,⌅ ,K ) as random variables on the

form � = ⌅�⇧(1+⇧y), where ⌅�⇧ = (156.25,15.6,2.5,1,2.0015,2.9618⇤ 10�5) are the expec-

tation values. The y = (y(1), · · · ,y(6)) are uniformly distributed random variables in [�1,1]6 and

⇧ = 0.1, i.e., a 10% variation. See [31, 33] for further details.
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Figure 9: Reference steady state solution of the genetic toggle problem using a 3 level Smolyak sparse grid.

We employ a 4th-order Runge-Kutta method to integrate the system and a Gauss-Patterson

based Smolyak sparse integration to obtain a reference solution. Figure 9 shows the steady state

solution and its sensitivity as a function of IPTG. This solution is obtained using 3 levels in the

Smolyak grid with 545 function evaluations and have been verified against a 4 level computation

with 2561 function evaluations.

The sensitivity of the solution to the value of IPTG is noteworthy and suggests different dy-

namic behavior away from and close to the critical value. This is clearly confirmed when the TSI

is computed for different values of IPTG. In Fig. 10 we show the TSI computed for two values of

�(X) =< � > (1 + ⇥X)

fXi = U(�1, 1)
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Model

IPTG is a control parameter

� = 0.1

26

and high accuracy and be highly efficient in practical computations. This is due to the fact
that the gPC framework is a natural extension of spectral methods intomulti-dimensional
random space. Important properties of different approaches are discussed without go-
ing into too much technical details, and more in-depth discussions can be found in the
references which consist of mostly published work. With the field advancing at such a
fast pace, new results are expected to appear on a continuously basis to help us further
understand and enhance the methods.

We close the discussion by another illustrative example, a stochastic computation
of a biological problem in Fig. 5. The figure shows the steady-state of a genetic toggle
switch whose mathematical model consists of a system of differential/algebraic equa-
tions (DAE) with six random parameters. This is a comparison of numerical error bars
(in red) and experimental error bars (in blue). The two sets of bars were generated com-
pletely independently and agree each other well. (The larger discrepancy at the switch
location is due to a non-standard plotting technique used in the experimental work. More
details are in [86].) This kind of comparison is not possible for classical deterministic sim-
ulations. By incorporating uncertainty from the beginning of the computations, we are
one step closer to the ultimate goal of scientific computing – to predict the true physics.

−6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2

0

0.2

0.4

0.6

0.8

1

log10(IPTG)

N
or

m
al

iz
ed

 G
FP

 e
xp

re
ss

io
n

Figure 5: Steady-state gene expression of a genetic toggle switch. Light (and red) error bars centered around
circles are numerical results; Dark (and blue) error bars around dots are experimental measurements. The
re-production of the experimental results from [22] is courtesy of Dr.Gardner. Numerical simulation details can
be found in [86].

Experimental data
Computation results

N=2 Xiu, 2007
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‣ Approach is systematic 

‣ SDE scalar problems leads to deterministic coupled 
systems of ODEs 

‣ Results for both linear and non-linear are convincing 
and the potential for savings significant.

What changes for SPDEs ?

Lets summarize our results for SDEs 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Consider the general SPDE
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4.3 FORMULATION OF STOCHASTIC SYSTEMS

We now illustrate the main steps in formulating a stochastic system by taking into
account random inputs to a well-established deterministic system. We choose par-
tial differential equations (PDEs) as a basic model, although the concept and pro-
cedure are not restricted to PDEs.

Let us consider a system of PDEs defined in a spatial domain D ⊂ Rℓ, ℓ =
1, 2, 3, and a time domain [0, T ] with T > 0,

⎧
⎪⎪⎨

⎪⎪⎩

ut (x, t, ω) = L(u), D × (0, T ] × #,

B(u) = 0, ∂D × [0, T ] × #,

u = u0, D × {t = 0} × #,

(4.11)

where L is a (nonlinear) differential operator, B is the boundary condition operator,
u0 is the initial condition, and ω ∈ # denotes the random inputs of the system
in a properly defined probability space (#,F , P ). Note in general that it is not
important, nor is it relevant, to identify precisely the probability space. The solution
is therefore a random quantity,

u(x, t, ω) : D̄ × [0, T ] × # → Rnu , (4.12)

where nu ≥ 1 is the dimension of u.
The random inputs to (4.11) can take the form of random parameters and random

processes. Let us assume that they can all be properly parameterized by a set of
independent random variables using the techniques discussed in the previous two
sections. Let Z = (Z1, . . . , Zd) ∈ Rd , d ≥ 1, be the set of independent random
variables characterizing the random inputs. We can then rewrite system (4.11) as

⎧
⎪⎪⎨

⎪⎪⎩

ut (x, t, Z) = L(u), D × (0, T ] × Rd ,

B(u) = 0, ∂D × [0, T ] × Rd ,

u = u0, D × {t = 0} × Rd .

(4.13)

The solution is now

u(x, t, Z) : D̄ × [0, T ] × Rd → Rnu . (4.14)

The fundamental assumption we make is that (4.11) is a well-posed system P -
almost surely in #. Loosely and intuitively speaking, this means that if one gener-
ates an ensemble of (4.13) by generating a collection of realizations of the random
variables Z, then each realization is well posed in its corresponding deterministic
sense.

Example 4.4. Consider the same example of the ordinary differential equation
(ODE) (4.1)

du

dt
(t, ω) = −α(ω)u, u(0, ω) = β(ω). (4.15)

Assume that the uncertainty can be represented by

chapter04 March 5, 2010

FORMULATION OF STOCHASTIC SYSTEMS 51

4.3 FORMULATION OF STOCHASTIC SYSTEMS

We now illustrate the main steps in formulating a stochastic system by taking into
account random inputs to a well-established deterministic system. We choose par-
tial differential equations (PDEs) as a basic model, although the concept and pro-
cedure are not restricted to PDEs.

Let us consider a system of PDEs defined in a spatial domain D ⊂ Rℓ, ℓ =
1, 2, 3, and a time domain [0, T ] with T > 0,

⎧
⎪⎪⎨

⎪⎪⎩

ut (x, t, ω) = L(u), D × (0, T ] × #,

B(u) = 0, ∂D × [0, T ] × #,

u = u0, D × {t = 0} × #,

(4.11)

where L is a (nonlinear) differential operator, B is the boundary condition operator,
u0 is the initial condition, and ω ∈ # denotes the random inputs of the system
in a properly defined probability space (#,F , P ). Note in general that it is not
important, nor is it relevant, to identify precisely the probability space. The solution
is therefore a random quantity,

u(x, t, ω) : D̄ × [0, T ] × # → Rnu , (4.12)

where nu ≥ 1 is the dimension of u.
The random inputs to (4.11) can take the form of random parameters and random

processes. Let us assume that they can all be properly parameterized by a set of
independent random variables using the techniques discussed in the previous two
sections. Let Z = (Z1, . . . , Zd) ∈ Rd , d ≥ 1, be the set of independent random
variables characterizing the random inputs. We can then rewrite system (4.11) as

⎧
⎪⎪⎨

⎪⎪⎩

ut (x, t, Z) = L(u), D × (0, T ] × Rd ,

B(u) = 0, ∂D × [0, T ] × Rd ,

u = u0, D × {t = 0} × Rd .

(4.13)

The solution is now

u(x, t, Z) : D̄ × [0, T ] × Rd → Rnu . (4.14)

The fundamental assumption we make is that (4.11) is a well-posed system P -
almost surely in #. Loosely and intuitively speaking, this means that if one gener-
ates an ensemble of (4.13) by generating a collection of realizations of the random
variables Z, then each realization is well posed in its corresponding deterministic
sense.

Example 4.4. Consider the same example of the ordinary differential equation
(ODE) (4.1)

du

dt
(t, ω) = −α(ω)u, u(0, ω) = β(ω). (4.15)

chapter04 March 5, 2010

FORMULATION OF STOCHASTIC SYSTEMS 51

4.3 FORMULATION OF STOCHASTIC SYSTEMS

We now illustrate the main steps in formulating a stochastic system by taking into
account random inputs to a well-established deterministic system. We choose par-
tial differential equations (PDEs) as a basic model, although the concept and pro-
cedure are not restricted to PDEs.

Let us consider a system of PDEs defined in a spatial domain D ⊂ Rℓ, ℓ =
1, 2, 3, and a time domain [0, T ] with T > 0,

⎧
⎪⎪⎨

⎪⎪⎩

ut (x, t, ω) = L(u), D × (0, T ] × #,

B(u) = 0, ∂D × [0, T ] × #,

u = u0, D × {t = 0} × #,

(4.11)

where L is a (nonlinear) differential operator, B is the boundary condition operator,
u0 is the initial condition, and ω ∈ # denotes the random inputs of the system
in a properly defined probability space (#,F , P ). Note in general that it is not
important, nor is it relevant, to identify precisely the probability space. The solution
is therefore a random quantity,

u(x, t, ω) : D̄ × [0, T ] × # → Rnu , (4.12)

where nu ≥ 1 is the dimension of u.
The random inputs to (4.11) can take the form of random parameters and random

processes. Let us assume that they can all be properly parameterized by a set of
independent random variables using the techniques discussed in the previous two
sections. Let Z = (Z1, . . . , Zd) ∈ Rd , d ≥ 1, be the set of independent random
variables characterizing the random inputs. We can then rewrite system (4.11) as

⎧
⎪⎪⎨

⎪⎪⎩

ut (x, t, Z) = L(u), D × (0, T ] × Rd ,

B(u) = 0, ∂D × [0, T ] × Rd ,

u = u0, D × {t = 0} × Rd .

(4.13)

The solution is now

u(x, t, Z) : D̄ × [0, T ] × Rd → Rnu . (4.14)

The fundamental assumption we make is that (4.11) is a well-posed system P -
almost surely in #. Loosely and intuitively speaking, this means that if one gener-
ates an ensemble of (4.13) by generating a collection of realizations of the random
variables Z, then each realization is well posed in its corresponding deterministic
sense.

Example 4.4. Consider the same example of the ordinary differential equation
(ODE) (4.1)

du

dt
(t, ω) = −α(ω)u, u(0, ω) = β(ω). (4.15)

to recover the recognizable formulation



Stochastic Galerkin for PDEs

Let us first consider the elliptic problem

Chapter 3

Elliptic Equations

The objective of this chapter is to give a broad algorithmic framework to solve stochastic

elliptic partial differential equations based on the generalized polynomial chaos expansion.

The class of problems we solve has the form

⎧
⎨

⎩
∇ · [κ(x; ω)∇u(x; ω)] = f(x; ω), (x; ω) ∈ D × Ω

u(x; ω) = g(x; ω), (x; ω) ∈ ∂D × Ω
(3.1)

where D is a bounded domain in Rd (d = 1, 2, 3) and Ω is a probability space. f , g

and κ are R-values functions on D × Ω. This can be considered as a model of steady

state diffusion problems subject to internal (diffusivity κ) and/or external (source term

f and/or Dirichlet boundary condition g) uncertainties. Babus̆ka was among the first

to study rigorously existence of solutions of the random Dirichlet problem [4]. Bécus &

Cozzarelli studied the existence and properties of the general solution to (3.1), see [7, 8, 9].

Also, in [5, 6, 21] the problem subject to random diffusivity and/or random source terms

was studied and existence and uniqueness of the solution in the finite element concept,

both in physical space and random space, were addressed. Equation (3.1) is also the model

used for flow in porous media, and a large quantity of literature exist on its probabilistic

solutions. Most work, however, is based on perturbation methods or moment equations

approach (cf. [18, 19, 90, 127, 126, 137]). Extensive research efforts have also be devoted to

the evaluation of the ‘effective diffusivity’ or ‘effective permeability’ of the media [100, 101].
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We continue as before

and seek solutions of the form

�N (x,Z(⇥)) =
N�

n=0

�̂n(x)�n(Z)

uN (x,Z(�)) =
N�

n=0

ûn(x)�n(Z)

fN (x, Z(�)) =
N�

n=0

f̂n(x)�n(Z) gN (x,Z(�)) =
N�

n=0

ĝn(x)�n(Z)



Stochastic Galerkin for PDEs

Inserting this into the PDE yields
N�

n=0

N�

m=0

[� · (�̂n�ûm)]�n�m =
N�

n=0

f̂n�n

N�

n=0

N�

m=0

[� · (�̂n�ûm)] emnk = f̂kE[�2
k]

emnk = E[�m �n �k]

ûn = E[gN �n]

Applying the Galerkin procedure yields

with boundary conditions

Essentially the same as for the SDE



Stochastic Galerkin for PDEs

‣ Requires the solution of N+1 coupled of the form  
 
 

‣ In space you can discretize as you prefer to recover 
 
 
where (u,f) are (N+1)xDOF long vectors.  

‣ Procedure requires solvers to be rewritten.

N�

m=0

� · (⇥̃mk�ûm) = f̂k�k �̃mk =
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Lets consider a couple of examples
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k(x) − u0

k(x)∥
≤ ε, ∀k ∈ [0, M ], (3.8)

where ε is a small positive number and different types of norm ∥ · ∥ can be used. Here the

L∞ norm is used and ε is set to be 10−5 ∼ 10−7. For all the results we present here, the

block Gauss-Seidel iteration normally converges within about 10 steps. A similar iteration

technique was used in [2] for stochastic modeling of elasto-plastic body problems with the

Hermite-chaos and fast convergence was reported too.

3.2 Numerical Examples

In this section we present numerical results of the proposed generalized polynomial chaos

expansion to stochastic diffusion problem. We first consider an one-dimensional model

problem where the exact solution is available; then a more complicated two-dimensional

problem where we use Monte Carlo simulation to validate the chaos solution. Among the

types of chaos expansions listed in table 2.1, we choose two continuous chaos: Hermite-

chaos and Jacobi-chaos; and two discrete chaos: Charlier-chaos and Krawtchouk-chaos

for demonstration purposes. Finally, we solve the random heat conduction problem in a

grooved channel as an example of a more practical application.

3.2.1 One-Dimensional Model Problem

Consider the following problem

d

dx

[
κ(x; ω)

du

dx
(x; ω)

]
= 0, x ∈ [0, 1], (3.9)

with boundary conditions

u(0; ω) = 0, u(1; ω) = 1.

The random diffusivity has the form

κ(x; ω) = 1 + ϵ(ω)x, (3.10)
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Diffusivity is assumed random

�(⇤) = ⇥X

fX = N(0, 1)

� = 0.1
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Figure 3.2: Convergence of Hermite-chaos for the one-dimensional model problem.

The corresponding generalized polynomial chaos is the Charlier-chaos (table 2.1). The

exponential convergence of the Charlier-chaos expansion is shown in figure 3.3 for two

different values of the parameter λ.
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Figure 3.3: Convergence of Charlier-chaos for the one-dimensional model problem.
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Consider a 2nd example
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Krawtchouk-chaos and Binomial Distribution

In this section ϵ(ω) = σξ(ω) in equation (3.10) is assumed to be a discrete random variable

with binomial distribution, i.e. ξ(ω) has PDF

f(ξ; p, N) =
(

N

ξ

)
qξ(1 − q)N−ξ, 0 ≤ q ≤ 1, ξ = 0, 1, . . . , N. (3.13)

The corresponding generalized polynomial chaos is the Krawtchouk-chaos (table 2.1). Ex-

ponential convergence of the Krawtchouk-chaos expansion can be seen in figure 3.4 with

different values of the parameters (N, q).
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Figure 3.4: Convergence of Krawtchouk-chaos for the one-dimensional model problem.

3.2.2 Two-Dimensional Model Problem

In this section we consider the two-dimensional problem

∇ · [κ(x, y; ω)∇u(x, y; ω)] = f(x, y; ω), (x, y) ∈ [−1, 1] × [−1, 1] (3.14)

with boundary conditions

u(−1, y; ω) = 1,
∂u

∂x
(1, y; ω) = 0, u(x,−1; ω) = 0,

∂u

∂y
(x, 1; ω) = 0.
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f(x, y;X1) = �fX1 �(x, y;X2) = (1 + ⇥�)X2 fXi = N[0, 1]

�f = �� = 0.2
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Similar results are obtained for other solution profiles in the domain, for example, the

vertical centerline.

Hermite-chaos and Gaussian Distribution

We now assume the random field κ(x, y; ω) and f(x, y; ω) are Gaussian processes with

σκ = σf = 0.2. All the remaining parameters are the same as the above example. The

corresponding generalized polynomial chaos is the Hermite-chaos.

The same solution profiles along the horizontal centerline of the domain are shown in

figure 3.10 and 3.11, for the mean solution and the variance, respectively. In this case,

a fourth-order Hermite-chaos (p = 4) is required to obtain converged result in random

space. This corresponds to a 70-term expansion from formula (2.37) for n = 4, p = 4.

The corresponding solution of the Monte Carlo simulation converges relatively fast in this

case, and for 20, 000 realizations it converges to the Hermite-chaos solution.
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Figure 3.10: Two-dimensional model problem: Gaussian random distribution and
Hermite-chaos; Left: Mean solution along the horizontal centerline, Right: Close-up view.

Charlier-chaos and Poisson Distribution

As an example of the discretely distributed random fields, we now assume the diffusivity

κ(x, y; ω) and source term f(x, y; ω) are processes resulted from Poisson random variables

in the Karhunen-Loeve decomposition (2.11), with σκ = σf = 0.2. The parameter λ = 1

as in equation (3.12).

Model

N=4

Xiu, 2004
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Let us also consider time dependent problems
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6.3 HYPERBOLIC EQUATIONS

Let us now consider a simple linear wave equation

∂u(x, t, Z)

∂t
= c(Z)

∂u(x, t, Z)

∂x
, x ∈ (−1, 1), t > 0, (6.12)

where c(Z) is a random transport velocity that is a function of a random variable
Z ∈ R. For now we will leave the distribution of Z unspecified and study the
general properties of the resulting gPC Galerkin system. The initial condition is
given by

u(x, 0, Z) = u0(x, Z). (6.13)

The boundary conditions are more complicated, as they depend on the sign of
the random transport velocity c(Z). A well-posed set of boundary conditions is
given by

u(1, t, Z) = uR(t, Z), c(Z) > 0,

u(−1, t, Z) = uL(t, Z), c(Z) < 0. (6.14)

The interesting issue to understand is how to properly pose the boundary conditions
for the gPC Galerkin system.

Again an univariate gPC expansion is sufficient. For ease of analysis, let us use
the normalized gPC basis functions,

E["i (Z)"j (Z)] = δij , 0 ≤ i, j ≤ N.

Note that the normalization only requires dividing the nonnormalized basis by the
square root of the normalization constants. It facilitates the theoretical analysis
only. In practical implementations, one does not need to normalize the basis. With
the gPC Galerkin method, we seek, for any (x, t),

vN (x, t, Z) =
N∑

i=0

v̂i (x, t)"i (Z) (6.15)

and conduct the projection

E
[

∂vN (x, t, Z)

∂t
"k(Z)

]
= E

[
c(Z)

∂vN (x, t, Z)

∂x
"k(Z)

]

for each of the first N + 1 gPC basis k = 0, . . . , N . We obtain

∂ v̂k(x, t)

∂t
=

N∑

i=0

aik

∂ v̂i (x, t)

∂x
, k = 0, . . . , N, (6.16)

where

aik = E[c(Z)"i (Z)"k(Z)], 0 ≤ i, k ≤ N. (6.17)

This is now a coupled system of wave equations of size N + 1, where the coupling
is through the random wave speed. If we denote by A the (N + 1) × (N + 1)
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matrix whose entries are {aik}0≤i,k≤N , then by definition aik = aki and A = AT is
symmetric. Let v = (v̂0, . . . , v̂N )T be a vector of length N + 1; then system (6.16)
can be written as

∂v(x, t)

∂t
= A

∂v(x, t)

∂x
. (6.18)

It is now clear that system (6.18) is symmetric hyperbolic. Therefore, a complete
set of real eigenvalues and eigenfunctions exists. Moreover, we can understand
the signs of the eigenvalues, which indicate the direction of the wave for the gPC
Galerkin system (6.18), based on the signs of wave direction in the original system
(6.12).

Theorem 6.1. Consider the gPC Galerkin system (6.18) derived from the original
system (6.12). Then if c(Z) ≥ 0 (respectively, c(Z) ≤ 0) for all Z, then the eigen-
values of A are all nonnegative (respectively, nonpositive); if c(Z) changes sign,
i.e., c(Z) > 0 for some Z and c(Z) < 0 for some other Z, then A has both positive
and negative eigenvalues for sufficiently high gPC expansion order N .

The proof can be found in [48].
A less trivial issue is how to impose the inflow-outflow boundary conditions for

the hyperbolic system (6.18), especially when the wave speed changes signs in the
original system (6.12). Note that the explicit information about the sign of the wave
speed disappears in the gPC Galerkin system (6.18). Because (6.18) is symmetric
hyperbolic, we can diagonalize the system and then impose boundary conditions
based on the sign of the eigenvalues.

Since A is symmetric, there exists an orthogonal matrix ST = S−1 such that
ST AS = ", where " is a diagonal matrix whose entries are the eigenvalues of A;
i.e.,

" = diag(λ0, . . . , λj+ , . . . , λj− , . . . , λN ).

Here the positive eigenvalues occupy indices j = 0, . . . , j+, the negatives ones
occupy indices j = j−, . . . , N , and the rest, if they exist, are zeros. Obviously,
j+, j− ≤ N .

Denote q = (q0, . . . , qN )T = ST v, i.e., qj (x, t) = ∑N
k=0 skj v̂k(x, t), where sjk

are the entries for S; then we obtain

∂q(x, t)

∂t
= "

∂q(x, t)

∂x
. (6.19)

The boundary conditions of this diagonal system are determined by the sign of the
eigenvalues; i.e., we need to specify

qj (1, t) =
N∑

k=0

skj ûk(1, t), j = 0, . . . , j+,

qj (−1, t) =
N∑

k=0

skj ûk(−1, t), j = j−, . . . , N.

We proceed as before

Applying the Galerkin procedure results in 

aik = E[c(Z) �i(Z)�k(Z)]

or the system
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possible solution values with an associated probability. This would immediately en-
able the computation of statistical moments, e.g., means and variances, and of other
valuable information about the sensitivity of solutions and derived quantities.

In this paper we pursue this goal and present a systematic, accurate, and efficient
way of addressing this type of problem, essentially enabling one to compute with
an ensample of data and, subsequently, obtain a full space-time ensample of solutions
with an associated probability density. It is important to realize that is this not a sim-
ple situation, since solutions may vary nonlinearly in the uncertainty due to stochastic
correlations even if the deterministic problem is linear, e.g., Maxwell’s equations.

A standard way of addressing problems of the type mentioned in the above is
through Monte Carlo sampling [13], e.g., run a deterministic code a large number of
times and, subsequently, extract the statistics of interest. The main problem with this
approach is the very slow convergence rate, O(N−1/2), with N being the number of
samples, which makes even the computation of mean solutions expensive and accurate
recovery of higher moments, e.g., variances, prohibitive. As we shall see through
examples, the techniques proposed here suggests that a very considerable reduction
is possible without impacting the accuracy.

Our platform on which to demonstrate this approach is the time-domain Max-
well’s equations, solved using a high-order accurate discontinuous Galerkin method
[9]. However, the basic elements of the formulation are general and can be used with
any computational kernel.

What remains of the paper is organized as follows. In the next two sections, we
recall the deterministic Maxwell’s equations in the time domain and we give some
details of its space discretization using a high-order discontinuous Galerkin method.
In section 4 we continue with an introduction to homogeneous chaos and stochastic
collocation methods, enabling the transition from deterministic to stochastic model-
ing. In the same section, we explain how to model uncertainties and how to extract
statistics of interest (i.e., mean and variance) from the computed stochastic solution.
This sets the stage for numerous examples presented in section 5, comparing the two
approaches and validating the general approach. In section 6 we conclude and offer
some suggestions for continued research in this direction.

2. Maxwell’s equations. Let us consider a general domain Ω and let Es and
Hs denote the scattered electric and magnetic fields, respectively. With ε(x) and
µ(x) being the local permittivity and permeability, and σ(x) the conductivity of the
media, the time-dependent Maxwell’s equations in the scattered field formulation are
given as

ϵ
∂Es

∂t
= ∇× Hs + σEs + SE ,(2.1)

µ
∂Hs

∂t
= −∇× Es + SH ,(2.2)

where, as is common in time-domain schemes, we have neglected divergence con-
straints, assuming that these amount to constraints on the initial conditions.

The source terms, SE and SH , appearing on the right-hand side of (2.1)–(2.2),
take the form

SE = −(ϵ− ϵi)
∂Ei

∂t
+ (σ − σi)Ei,(2.3)

SH = −(µ− µi)
∂Hi

∂t
,(2.4)
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Fig. 5.1. Illustration of one-dimensional loaded cavity.

Table 5.1
Numerical mean and variance of resonance frequencies for cavity with random material. The

discrepancy in the variance for ω1 is caused by quantization errors in the frequency identification
approach and is not related to the accuracy of the modeling of the uncertainty. This is confirmed by
having an identical error in the Monte Carlo model.

Mean of Resonance Frequencies for Uncertainty in Material
iterations ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Exact 3600 1.1955 2.5689 3.6543 5.0158 6.2310 7.4079 8.7898 9.8795 11.2263 12.4614
Formula 7200 1.1957 2.5692 3.6549 5.0168 6.2319 7.4093 8.7913 9.8811 11.2285 12.4632

14400 1.1954 2.5688 3.6541 5.0155 6.2307 7.4074 8.7894 9.8790 11.2257 12.4609
Monte 300 1.1938 2.5715 3.6620 5.0209 6.2350 7.4083 8.7895 9.8837 11.2325 12.4675
Carlo 600 1.1938 2.5712 3.6618 5.0230 6.2346 7.4102 8.7916 9.8869 11.2341 12.4680

1200 1.1938 2.5691 3.6583 5.0185 6.2301 7.4050 8.7862 9.8803 11.2262 12.4611
Stochastic 3600 1.1938 2.5705 3.6595 5.0214 6.2313 7.4109 8.7936 9.8836 11.2214 12.4753
Galerkin 7200 1.1938 2.5708 3.6603 5.0225 6.2328 7.4126 8.7952 9.8842 11.2231 12.4775
P = 40 14400 1.1938 2.5706 3.6594 5.0213 6.2316 7.4111 8.7937 9.8826 11.2203 12.4752

Stochastic 3600 1.1938 2.5705 3.6592 5.0196 6.2330 7.4076 8.7901 9.8826 11.2291 12.4639
Galerkin 7200 1.1938 2.5707 3.6595 5.0199 6.2330 7.4074 8.7901 9.8828 11.2293 12.4645
P = 100 14400 1.1938 2.5707 3.6599 5.0205 6.2334 7.4082 8.7908 9.8836 11.2300 12.4652

Variance of Resonance Frequencies for Uncertainty in Material
iterations ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Exact 3600 1.41e-04 2.81e-04 8.40e-04 1.87e-03 1.58e-03 4.32e-03 4.21e-03 5.26e-03 9.82e-03 6.42e-03
Formula 7200 1.38e-04 2.75e-04 8.23e-04 1.83e-03 1.54e-03 4.23e-03 4.11e-03 5.15e-03 9.60e-03 6.28e-03

14400 1.38e-04 2.76e-04 8.25e-04 1.83e-03 1.55e-03 4.24e-03 4.13e-03 5.16e-03 9.64e-03 6.30e-03
Monte 300 2.62e-29 2.69e-04 1.28e-03 2.41e-03 1.98e-03 4.03e-03 4.06e-03 5.72e-03 9.89e-03 7.04e-03
Carlo 600 2.15e-28 2.85e-04 1.36e-03 2.43e-03 2.09e-03 4.06e-03 4.13e-03 5.65e-03 9.92e-03 7.02e-03

1200 1.66e-28 3.92e-04 1.49e-03 2.44e-03 2.30e-03 4.47e-03 4.52e-03 6.13e-03 1.08e-02 7.46e-03
Stochastic 3600 4.06e-27 3.23e-04 1.43e-03 2.40e-03 2.18e-03 3.84e-03 3.78e-03 5.62e-03 9.76e-03 7.66e-03
Galerkin 7200 5.84e-27 3.06e-04 1.42e-03 2.32e-03 2.18e-03 3.77e-03 3.72e-03 5.45e-03 9.62e-03 7.58e-03
P = 40 14400 2.74e-07 3.17e-04 1.41e-03 2.32e-03 2.18e-03 3.78e-03 3.72e-03 5.53e-03 9.61e-03 7.68e-03

Stochastic 3600 4.06e-27 3.19e-04 1.42e-03 2.35e-03 2.12e-03 4.23e-03 4.19e-03 5.86e-03 1.03e-02 6.82e-03
Galerkin 7200 5.84e-27 3.10e-04 1.41e-03 2.38e-03 2.16e-03 4.29e-03 4.24e-03 5.89e-03 1.06e-02 7.12e-03
P = 100 14400 6.82e-27 3.11e-04 1.42e-03 2.38e-03 2.13e-03 4.26e-03 4.21e-03 5.89e-03 1.02e-02 7.07e-03

For the stochastic Galerkin method with random permittivity, the terms Q, Z, Z,
Y , Y in the semidiscrete equation are all dependent on ε(x, θ) so that the equations
are given by (4.9). The case of random permittivity gives rise to a coupled system of
P deterministic equations, where the coupling is through the many scalar products
defined in (4.9). These scalar products are computed in the preprocessing stage and
stored.

Numerical results. We evaluate the technique by computing the mean and vari-
ance of the resonance frequencies of the loaded cavity. In Table 5.1 we show val-
ues computed by three different methods. The results labeled “Exact Formula” are
obtained by performing Monte Carlo sampling on the equation that describes the
resonance frequencies (5.1). As a benchmark, we show results obtained using a stan-
dard Monte Carlo method on (5.2) with up to 1200 samples. The frequencies in the
stochastic Galerkin method are computed using the method described in section 4.5.1.
Results for two values of P , 40 and 100, are shown. The results show good agreement
between the stochastic Galerkin approach and the statistics of the exact solution as
well as the Monte Carlo method, although it is not clear that the latter results are

�1 = µ1 = µ2 = 1 ⇥2(x, Z) = 2.25
�

1 + �
Z2

1 + Z2

�

Consider Maxwell’s equations

We first consider a 1D cavity problem

We wish to estimate sensitivity of eigenfrequencies
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Direct comparison with MC

1200 samples N=120
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Computation for large variation

            

Large (25%) material variation

.. in this regime perturbation methods are not feasible.
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ω
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ω

mean ω       
ω ±  σ

material σ 2=.5  T=75, 120 modes, 28800 samples 

OSU IEEE Seminar, Mar 14, 2005 – p.42
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Let us also consider a 2D scattering problem
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Consider a 2D material scattering problem

N=8
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Fig. 5.4. Left: RCS for the randomness in the angle of the wave vector. Right: RCS for the
randomness in the norm of the wave vector. Results are shown with the mean RCS as well as ±1
standard deviation.
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Fig. 5.5. Typical mesh using 1318 spectral elements.

Here again, our concern is not the correctness of the probabilistic law chosen in (5.21)
for the uncertainty of the permittivity ε(x, θ), since for any reasonable law, the tech-
niques presented in this paper should work equally well. With an uncertainty of the
form e0.1θ (which is a log-normal law), the permittivity is guaranteed to remain pos-
itive. For uncertainty in the permittivity of the material, the source term of (2.1)
takes the form

SE = −(ϵ(x, θ) − ϵi)
∂Ei

∂t
,(5.22)

where (Ei,Hi) denotes the incident field which is a solution to Maxwell’s equations.
For that test case, it is necessary to mesh the entire domain, as shown in Figure 5.5
(here 1318 spectral elements are represented).

Stochastic Galerkin method. Projecting the source term using the chaos basis, we
obtain

∀k ∈ [1, P ] : Sk
N = −

(
⟨ϵ(x, θ),Ψk⟩ − ϵi

) ∂Ei

∂t
.(5.23)
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Let us again consider
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6.3 HYPERBOLIC EQUATIONS

Let us now consider a simple linear wave equation

∂u(x, t, Z)

∂t
= c(Z)

∂u(x, t, Z)

∂x
, x ∈ (−1, 1), t > 0, (6.12)

where c(Z) is a random transport velocity that is a function of a random variable
Z ∈ R. For now we will leave the distribution of Z unspecified and study the
general properties of the resulting gPC Galerkin system. The initial condition is
given by

u(x, 0, Z) = u0(x, Z). (6.13)

The boundary conditions are more complicated, as they depend on the sign of
the random transport velocity c(Z). A well-posed set of boundary conditions is
given by

u(1, t, Z) = uR(t, Z), c(Z) > 0,

u(−1, t, Z) = uL(t, Z), c(Z) < 0. (6.14)

The interesting issue to understand is how to properly pose the boundary conditions
for the gPC Galerkin system.

Again an univariate gPC expansion is sufficient. For ease of analysis, let us use
the normalized gPC basis functions,

E["i (Z)"j (Z)] = δij , 0 ≤ i, j ≤ N.

Note that the normalization only requires dividing the nonnormalized basis by the
square root of the normalization constants. It facilitates the theoretical analysis
only. In practical implementations, one does not need to normalize the basis. With
the gPC Galerkin method, we seek, for any (x, t),

vN (x, t, Z) =
N∑

i=0

v̂i (x, t)"i (Z) (6.15)

and conduct the projection

E
[

∂vN (x, t, Z)

∂t
"k(Z)

]
= E

[
c(Z)

∂vN (x, t, Z)

∂x
"k(Z)

]

for each of the first N + 1 gPC basis k = 0, . . . , N . We obtain

∂ v̂k(x, t)

∂t
=

N∑

i=0

aik

∂ v̂i (x, t)

∂x
, k = 0, . . . , N, (6.16)

where

aik = E[c(Z)"i (Z)"k(Z)], 0 ≤ i, k ≤ N. (6.17)

This is now a coupled system of wave equations of size N + 1, where the coupling
is through the random wave speed. If we denote by A the (N + 1) × (N + 1)
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Figure 6.1 Convergence property of the gPC Galerkin solution to the wave problem (6.12).
Left: error convergence with respect to the order of gPC expansion at different
times. Right: evolution of the solution in mean-square norm in time at different
gPC orders.

Here the coefficients ûk at the boundaries are determined by the exact gPC projec-
tion of the boundary conditions of u, i.e., uR and uL. Subsequently, the boundary
conditions for the gPC Galerkin system of equations (6.16) are specified as

v(1, t) = Sq(1, t), v(−1, t) = Sq(−1, t).

For vanishing eigenvalues, if they exist, no boundary conditions are required.
It can be shown that the solution of the gPC Galerkin system (6.18) converges to

the exact solution. In fact, the following error bound was established (see
theorem 2.2 in [48]),

E
[
∥u − vN∥2

2

]
≤ C

N2m−1
t, (6.20)

where ∥ · ∥ is the standard L2 norm in the physical domain (−1, 1), C is a con-
stant independent of N , t is time, and m > 0 is a real constant depending on the
smoothness of u in terms of Z.

A notable feature of the error bound is that the error depends on time in a linear
manner. This implies that for any fixed gPC expansion order N , the error will grow
linearly in time. This can be seen in figure 6.1, where the gPC Galerkin solution is
applied to a simpler version of (6.12) with c(Z) = Z, a uniform random variable in
(−1, 1), periodic boundary conditions in space in a domain 0 ≤ x ≤ 2π , and initial
condition u(x, 0, Z) = cos(x). The exact solution is uex = cos(x −Zt). On the left
side of figure 6.1, while we again see the exponential error convergence as the gPC
order is increased, the error is bigger at a larger time t and requires higher expansion
orders to reach the converging regime. The time dependence becomes more evident
on the right side of figure 6.1, where the evolution of the mean-square norm of the
solutions are plotted. We observe that the gPC Galerkin solutions deviate from the
exact solution after a certain time. The time at which the accuracy is lost, i.e., errors
become O(1), is roughly proportional to the order of the gPC expansion.

‣ Spectral convergence at fixed time as expected 

‣ Resolution requirement is time-dependent

Xiu, 2010
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One easily proves the following result

E[�u� uN�2] �
C

N2m�1
t

m depends on smoothness in Z

ûn(t, Z) = ûn(0) exp(inc(Z)t)

Assume periodicity in x and write the solution as

Shows that in Z the wavenumber to resolve is t-dependent

It is a property of the equation -- worst case scenario.

This remains a major practical challenge
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Let us briefly consider nonlinear problems
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solve with no loss of accuracy in time integration. For example, a first-oder Euler
forward-backward semi-implicit scheme takes the form

vn+1 − vn

!t
− ∇x ·

[
D(x)∇xvn+1] = ∇x ·

[
S(x)∇xvn

]
+ fn+1, (6.29)

where the superscript n denotes numerical solutions at time level tn, !t is the time
step, and

D = diag(A), A = D + S.

Similarly, if we consider the steady-state counterpart of (6.21),

−∇x · (κ(x, Z)∇xu(x, Z)) = f (x), x ∈ D; u(x, Z)|∂D = 0, (6.30)

we find that the gPC Galerkin system is

−∇x · [A(x)∇xv] = f, x ∈ D; v|∂D = 0. (6.31)

This is a coupled system of elliptic equations. By using the separation of diago-
nal and off-diagonal terms of A, an efficient iterative scheme can be designed to
solve the system as an uncoupled system of equations. These algorithms were first
proposed in [119, 122] and later analyzed in [128].

6.5 NONLINEAR PROBLEMS

The above examples all involve linear problems. This does not imply that the gPC
Galerkin method can be applied only to linear problems. (In fact, as far as the ran-
dom space is concerned, none of the examples are linear because the randomness
in the equations is all in a multiplicative manner.)

Let us consider the Burgers’ equation from the supersensitivity example in
section 1.1.1 to illustrate application of the gPC Galerkin method to nonlinear
problems.

{
ut + uux = νuxx, x ∈ [−1, 1],
u(−1) = 1 + δ(Z), u(1) = −1,

(6.32)

where δ(Z) > 0 is a random perturbation to the left boundary condition at (x =
−1) and ν > 0 is the viscosity. Again this requires a one-dimensional gPC expan-
sion. We seek

vN (x, t, Z) =
N∑

i=0

v̂i (x, t)&i (Z)

such that

E
[

∂vN

∂t
&k

]
+ E

[
vN

∂vN

∂x
&k

]
= νE

[
∂2vN

∂x2
&k

]
, k = 0, . . . , N.

By substituting vN into the equation and using the orthogonality relation of the
basis functions, we obtain

∂ v̂k

∂t
+ 1

γk

N∑

i=0

N∑

j=0

v̂i

∂ v̂j

∂x
eijk = ν

∂2v̂k

∂x2
, k = 0, . . . , N, (6.33)
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i=0

N∑

j=0

v̂i

∂ v̂j

∂x
eijk = ν

∂2v̂k

∂x2
, k = 0, . . . , N, (6.33)
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solve with no loss of accuracy in time integration. For example, a first-oder Euler
forward-backward semi-implicit scheme takes the form

vn+1 − vn

!t
− ∇x ·

[
D(x)∇xvn+1] = ∇x ·

[
S(x)∇xvn

]
+ fn+1, (6.29)

where the superscript n denotes numerical solutions at time level tn, !t is the time
step, and

D = diag(A), A = D + S.

Similarly, if we consider the steady-state counterpart of (6.21),

−∇x · (κ(x, Z)∇xu(x, Z)) = f (x), x ∈ D; u(x, Z)|∂D = 0, (6.30)

we find that the gPC Galerkin system is

−∇x · [A(x)∇xv] = f, x ∈ D; v|∂D = 0. (6.31)

This is a coupled system of elliptic equations. By using the separation of diago-
nal and off-diagonal terms of A, an efficient iterative scheme can be designed to
solve the system as an uncoupled system of equations. These algorithms were first
proposed in [119, 122] and later analyzed in [128].

6.5 NONLINEAR PROBLEMS

The above examples all involve linear problems. This does not imply that the gPC
Galerkin method can be applied only to linear problems. (In fact, as far as the ran-
dom space is concerned, none of the examples are linear because the randomness
in the equations is all in a multiplicative manner.)

Let us consider the Burgers’ equation from the supersensitivity example in
section 1.1.1 to illustrate application of the gPC Galerkin method to nonlinear
problems.

{
ut + uux = νuxx, x ∈ [−1, 1],
u(−1) = 1 + δ(Z), u(1) = −1,

(6.32)

where δ(Z) > 0 is a random perturbation to the left boundary condition at (x =
−1) and ν > 0 is the viscosity. Again this requires a one-dimensional gPC expan-
sion. We seek

vN (x, t, Z) =
N∑

i=0

v̂i (x, t)&i (Z)

such that

E
[

∂vN

∂t
&k

]
+ E

[
vN

∂vN

∂x
&k

]
= νE

[
∂2vN

∂x2
&k

]
, k = 0, . . . , N.

By substituting vN into the equation and using the orthogonality relation of the
basis functions, we obtain

∂ v̂k

∂t
+ 1

γk

N∑

i=0

N∑

j=0

v̂i

∂ v̂j

∂x
eijk = ν

∂2v̂k

∂x2
, k = 0, . . . , N, (6.33)
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where eijk = E[!i!j !k] are constants and γk = E[!2
k] are the normalization

constants (which will be 1 if the basis functions are normalized).
This is a coupled system of equations where each equation resembles the origi-

nal Burgers’ equation and the coupling is through the nonlinear term. The classical
semi-implicit scheme can be applied to solve the system in time, where the non-
linear coupling terms are treated explicitly and the diffusion terms implicitly. For
more details, see [123].

The nonlinear term uux in the Burgers’ equation is in quadratic form and results
in a gPC projection

E
[
vN

∂vN

∂x
!k

]
=

N∑

i=0

N∑

j=0

v̂i

∂ v̂j

∂x
E[!i!j !k]

that can be easily evaluated as long as the term is treated as being explicit in time.
In many cases, however, nonlinear terms in a system do not take polynomial form
and a direct gPC projection is not straightforward. For example, let us consider the
projection of a nonlinear term eu, where u is the unknown solution. A gPC Galerkin
projection requires us to evaluate

E
[
evN !k

]
=

∫
e
∑

i v̂i!i (z)!k(z)dFZ(z), (6.34)

where vN is the N th-degree gPC approximation of u. It is clear that the integral over
z cannot be separated from the summation over i, as in the case of polynomial-type
nonlinearity.

A feasible treatment for such kinds of nonlinearity is to approximate the integral
(6.34) numerically. To this end, one can employ a quadrature rule, or a cubature
rule in multivariate cases, with sufficient accuracy. That is,

E
[
evN !k

]
≈

Q∑

j=1

evN (z(j))!k(z(j))w(j), (6.35)

where z(j) and w(j) are the nodes and weights of the integration rule in the domain
defined by the integral. Note that since vN (Z) takes a known polynomial form, the
evaluation of evN at any node is a simple exercise in polynomial evaluation.

Assume again

Following the same procedure yields
emnk = E[�m �n �k]

More complex non-linearities become problematic

eu �



Stochastic Galerkin for PDEs

Consider the Burgers problem
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Figure 5.27: Stochastic solution by Jacobi-chaos (α = β = 10) with δ ∼ G(10,10)(0, 0.1)
and ν = 0.05. The upper and lower bounds are the deterministic solutions corresponding
to the bounds of the random inputs δ = 0.1 and δ = 0, respectively.
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Figure 5.28: Stochastic solution by Jacobi-chaos (α = β = 10) with δ ∼ G(10,10)(0, 0.1)
and ν = 0.1. The upper and lower bounds are the deterministic solutions corresponding
to the bounds of the random inputs δ = 0.1 and δ = 0, respectively.
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and ν = 0.05. The upper and lower bounds are the deterministic solutions corresponding
to the bounds of the random inputs δ = 0.1 and δ = 0, respectively.
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Figure 5.28: Stochastic solution by Jacobi-chaos (α = β = 10) with δ ∼ G(10,10)(0, 0.1)
and ν = 0.1. The upper and lower bounds are the deterministic solutions corresponding
to the bounds of the random inputs δ = 0.1 and δ = 0, respectively.

� = 0.1 � = 0.05

� = (1 + 0.1Z)

fZ = N[0, 1] Referred to supersensitivity
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Stochastic Galerkin for PDEs

‣ Galerkin approach reformulates SPDE to larger 
system of deterministic PDE 

‣ The approach is systematic and applicable to general 
systems of SPDE’s.  

‣ Standard PDE solvers need to be rewritten but 
standard methods are applicable 

‣ Main issue with nonlinear problems is cost.  

‣ Advection dominated problems have special challenges 



Non-Gaussian variables and gPC

Focus has been on homogeneous Chaos expansions and 
Hermite polynomials as originally proposed by Wiener.  

From the weak approximation results, we know this is ok

But is it a good idea ?
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Figure 5.1 Approximating beta distributions by gPC Hermite expansions: convergence of
probability density functions with increasing order of expansions. Left: approxi-
mation of uniform distribution α = β = 0. Right: approximation of beta distri-
bution with α = 2, β = 0. (More details are in [120].)
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Figure 5.2 Approximating an exponential distribution by gPC Hermite expansions: conver-
gence of probability density function with increasing order of expansions.

Example 5.10 (Approximating Gaussian distribution by gPC Jacobi expan-
sion). Let us assume that the distribution of Y is the standard Gaussian N (0, 1)

and use the gPC Jacobi expansion to approximate the distribution. The conver-
gence in PDF is shown in figure 5.3, where both the Legendre polynomials and the
Jacobi polynomials with α = β = 10 are used. We observe some numerical oscilla-
tions when using the gPC Legendre expansion. Again, if we use the corresponding
gPC basis for Gaussian distribution, the Hermite polynomials, then the first-order
expansion Y1 = H1(Z) = Z will have precisely the desired N (0, 1) distribution.

It is also worth noting that the approximations by gPC Jacobi chaos with α =
β = 10 are quite good, even at the first order. This implies that the beta distribution
with α = β = 10 is very close to the Gaussian distribution N (0, 1). However,

Approximation of uniform density Approximation of Beta density

Xiu, 2010



Non-Gaussian variables and gPC

Recall that we introduced the polynomial chaos basis as

E[�m(X)�n(X)] =
�

�m(X(x))�n(X(x)) dFX(x) = �n⇥mn

�n = E[�2
n(X)]

f(X) =
��

n=0

f̂n�n(X) f̂n =
1
�n

E[f(X)�n(X)]

and the Chaos expansion as

dFX = �(x)dx

where the density is associated with the random variable
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Obviously, {!m(z)} are orthogonal polynomials of z ∈ R with the weight func-
tion ρ(z), which is the probability function of the random variable Z. This estab-
lishes a correspondence between the distribution of the random variable Z and the
type of orthogonal polynomials of its gPC basis.

Example 5.1 (Hermite polynomial chaos). Let Z ∼ N (0, 1) be a standard Gaus-
sian random variable with zero mean and unit variance. Its PDF is

ρ(z) = 1√
2π

e−z2/2.

The orthogonality (5.2) then defines the Hermite orthogonal polynomials {Hm(Z)}
as in (3.19). Therefore, we employ the Hermite polynomials as the basis functions,

H0(Z) = 1, H1(Z) = Z, H2(Z) = Z2 − 1, H3(Z) = Z3 − 3Z, . . . .

This is the classical Wiener-Hermite polynomial chaos basis ([45]).

Example 5.2 (Legendre polynomial chaos). Let Z ∼ U(−1, 1) be a random vari-
able uniformly distributed in (−1, 1). Its PDF is ρ(z) = 1/2 and is a constant. The
orthogonality (5.2) then defines the Legendre orthogonal polynomials (3.16), with

L0(Z) = 1, L1(Z) = Z, L2(Z) = 3
2

Z2 − 1
2

, . . . .

Example 5.3 (Jacobi polynomial chaos). Let Z be a random variable of beta dis-
tribution in (−1, 1) with PDF

ρ(z) ∝ (1 − z)α(1 + z)β, α, β > 0,

whose precise definition is in (A.21). The orthogonality (5.2) then defines the
Jacobi orthogonal polynomials (A.20) with the parameters α and β, where

J
(α,β)
0 (Z) = 1, J

(α,β)
1 (Z) = 1

2
[α − β + (α + β + 2)Z], . . . .

The Legendre polynomial chaos becomes a special case of the Jacobi polynomial
chaos with α = β = 0.

In table 5.1, some of the well-known correspondences between the probability
distribution of Z and its gPC basis polynomials are listed.

5.1.1 Strong Approximation

The orthogonality (5.2) ensures that the polynomials can be used as basis functions
to approximate functions in terms of the random variable Z.

Definition 5.4 (Strong gPC approximation). Let f (Z) be a function of a random
variable Z whose probability distribution is FZ(z) = P (Z ≤ z) and support is
IZ . A generalized polynomial chaos approximation in a strong sense is fN (Z) ∈
PN (Z), where PN (Z) is the space of polynomials of Z of degree up to N ≥ 0, such
that ∥f (Z) − fN (Z)∥ → 0 as N → ∞, in a proper norm defined on IZ .

FX = N[0, 1] �

This suggests that the suitable basis depends on the density



Non-Gaussian variables and gPC

Uniformly distributed variables: U [�1, 1]

Legendre polynomials

�(x) =
1
2

P0(x) = 1, P1(x) = x, P2(x) =
1
2
(3x2 � 1), . . .



Non-Gaussian variables and gPC

Beta-distributed variables: B(�, ⇥)

P (�,⇥)
0 (x) = 1, P (�,⇥)

1 (x) =
1
2
(�� ⇥ + (� + ⇥ + 2)x), . . .

⇤(x) = C(�, ⇥)(1� x)�(1 + x)� , x � [�1, 1], �, ⇥ � 0

C(�, ⇥) =
�(� + ⇥ + 2)

2�+�+1�(� + 1)�(⇥ + 1)

Jacobi polynomials:

Well suited to model
general densities.

Ex: Approximation of  
Gaussian by 

Effective truncated 
Gaussian

P (10,10)(x)
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Figure 5.3 Approximations of Gaussian distribution by gPC Jacobi expansions: conver-
gence of probability density functions with increasing order of expansions. Left:
approximation by gPC Jacobi polynomials with α = β = 0 (Legendre polyno-
mials). Right: approximation by gPC Jacobi polynomials with α = β = 10.

a distinct feature of the beta distribution is that it is strictly bounded in a close
interval. This suggests that in practice when one needs a distribution that is close
to Gaussian but with strict bounds, mostly because of concerns from a physical
or mathematical point of view, then the beta distribution can be a good candidate.
More details on this approximation can be found in appendix B.

From these examples it is clear that when the corresponding gPC polynomials
for a given distribution function can be constructed, particularly for the well-known
cases listed in table 5.1, it is best to use these basis polynomials because a proper
first-order expansion can produce the given distribution exactly. Using other types
of polynomials can still result in a convergent series at the cost of inducing approx-
imation errors and more complex gPC representation.

5.2 DEFINITION IN MULTIPLE RANDOM VARIABLES

When more than one independent random variables are involved, multivariate gPC
expansion is required. Let Z = (Z1, . . . , Zd) be a random vector with mutually
independent components and distribution FZ(z1, . . . , zd) = P (Z1 ≤ z1, . . . , Zd ≤
zd). For each i = 1, . . . , d, let FZi

(zi) = P (Zi ≤ zi) be the marginal distribution of
Zi , whose support is IZi

. Mutual independence among all Zi implies that FZ(z) =∏d
i=1 FZi

(zi) and IZ = IZi
× · · · × IZd

. Also, let {φk(Zi)}N
k=0 ∈ PN (Zi) be the

univariate gPC basis functions in Zi of degree up to N . That is,

E [φm(Zi)φn(Zi)] =
∫

φm(z)φn(z)dFZi
(z) = δmnγm, 0 ≤ m, n ≤ N. (5.20)

Let i = (i1, . . . , id) ∈ Nd
0 be a multi-index with |i| = i1 + · · · + id . Then, the

d-variate N th-degree gPC basis functions are the products of the univariate gPC
polynomials (5.20) of total degree less than or equal to N ; i.e.,

&i(Z) = φi1(Z1) · · · φid (Zd), 0 ≤ |i| ≤ N. (5.21)

Xiu, 2010



Non-Gaussian variables and gPC
Gamma distributed variable:

L0(x) = 1, L1(x) = �x + 1, L2(x) =
1
2
(x2 � 4x + 2), . . .

�(r, c)

Laguerre polynomials

�(x) = xr�1 e�x/c

cr�(r)
, x � 0, r, c > 0



Non-Gaussian variables and gPC

What about discrete random variables ?

There is no essential difference

E[�m(X)�n(X)] =
�

i

�m(xi)�n(xi)⇤i = �n⇥nm

This defines the appropriate Chaos basis

Ex: Poisson distribution
⇥(x) =

�xe��

x!
, x = 0, 1, 2, 3, . . .

Charlier polynomials is  
the appropriate basis



Non-Gaussian variables and gPC

The much broader class of processes to consider is  
known as generalized Polynomial Chaos (gPC)
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Table 5.1 Correspondence Between the Type of Generalized Polynomial Chaos and Their
Underlying Random Variablesa

Distribution of Z gPC basis polynomials Support
Continuous Gaussian Hermite (−∞, ∞)

Gamma Laguerre [0, ∞)

Beta Jacobi [a, b]
Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, . . . }
Binomial Krawtchouk {0, 1, . . . , N}
Negative binomial Meixner {0, 1, 2, . . . }
Hypergeometric Hahn {0, 1, . . . , N}

aN ≥ 0 is a finite integer.

One obvious strong approximation is the orthogonal projection. Let

L2
dFZ

(IZ) =
{
f : IZ → R | E[f 2] < ∞

}
(5.6)

be the space of all mean-square integrable functions with norm ∥f ∥L2
dFZ

=
(E[f 2])1/2. Then, for any function f ∈ L2

dFZ
(IZ), we define its N th-degree gPC

orthogonal projection as

PN f =
N∑

k=0

f̂k!k(Z), f̂k = 1
γk

E[f (Z)!k(Z)]. (5.7)

The existence and convergence of the projection follow directly from the classical
approximation theory; i.e.,

∥f − PN f ∥L2
dFZ

→ 0, N → ∞, (5.8)

which is also often referred to as mean-square convergence. Let PN (Z) be the linear
space of all polynomials of Z of degree up to N ; then the following optimality
holds:

∥f − PN f ∥L2
dFZ

= inf
g∈PN (Z)

∥f − g∥L2
dFZ

. (5.9)

Though the requirement for convergence (L2-integrable) is rather mild, the rate of
convergence will depend on the smoothness of the function f in terms of Z. The
smoother f is, the faster the convergence. These results follow immediately from
the classical results reviewed in chapter 3.

When a gPC expansion fN (Z) of a function f (Z) converges to f (Z) in a strong
norm, such as the mean-square norm of (5.8), it implies that fN (Z) converges to

f (Z) in probability, i.e., fN
P→ f , which further implies the convergence in distri-

bution, i.e., fN
d→ f , as N → ∞. (See the discussion of the modes of convergence

in section 2.6.)

What about ‘non-classic’ cases ?

Given a weight one can always constructed a  
corresponding orthogonal polynomial basis

Xiu, 2010



Non-Gaussian variables and gPC

We consider again the simple ODE

Assume a Gamma distribution of the unknown -  

du

dt
(t, X) = �k(X)u, u(0) = 1

k � e�xx�

�(� + 1) µ = k̄ = � + 1, ⇥2 = � + 1

12 D. XIU AND G. E. KARNIADAKIS

5.3.2. Gamma Distribution and Laguerre-Chaos. In this section we as-
sume the distribution of the decay parameter k is the Gamma distribution with PDF
of the form

f(k) =
e−kkα

Γ(α + 1)
, 0 ≤ k < ∞, α > −1. (5.15)

The mean and variance of k are: µk = k̄ = α + 1 and σ2
k = α + 1, respectively. The

mean of stochastic solution is

ȳ(t) = ŷ
1

(1 + t)α+1
. (5.16)

The special case of α = 0 corresponds to another important distribution: the exponential
distribution. Because the random input has a Gamma distribution, we employ the
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Fig. 5.2. Solution with Gamma random input by 4th-order Laguerre-Chaos; Left: Solution of
each mode (α = 0: exponential distribution), Right: Error convergence of the mean and the variance
with different α.

Laguerre-Chaos as the specific Wiener-Askey chaos (see table 4.1). Figure 5.2 shows
the evolution of each solution mode over time, together with the convergence of the
errors of the mean and the variance with different values of parameter α. The special
case of exponential distribution is included (α = 0). Again the mean of stochastic
solution and deterministic solution show significant difference. As α becomes larger,
the spread of the Gamma distribution is larger and this leads to larger errors with
fixed number of Laguerre-Chaos expansion. However, the exponential convergence
rate is still realized.

5.3.3. Beta Distribution and Jacobi-Chaos. We now assume the distribu-
tion of the random variable k to be the Beta distribution with probability density
function of the form

f(k;α,β) =
(1 − k)α(1 + k)β

2α+β+1B(α + 1,β + 1)
, −1 < k < 1, α,β > −1, (5.17)

where B(α,β) is the Beta function defined as B(p, q) = Γ(p)Γ(q)/Γ(p + q). We then
employ the Jacobi-Chaos expansion which has the weighting function in the form of
the Beta distribution. An important special case is α = β = 0 when the distribution

Xiu et al, 2002



Non-Gaussian variables and gPC

We consider again the simple ODE

Assume a Poisson distribution of the unknown -  

du

dt
(t, X) = �k(X)u, u(0) = 1

k � e���x

x!
µ = k̄ = �, ⇥2 = �14 D. XIU AND G. E. KARNIADAKIS
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Fig. 5.4. Solution with Poisson random input by 4th-order Charlier-Chaos; Left: Solution of
each mode (λ = 1), Right: Error convergence of the mean and the variance with different λ.
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Fig. 5.5. Solution with binomial random input by 4th-order Krawtchouk-Chaos; Left: Solution
of each mode (p = 0.5, N = 5)), Right: Error convergence of the mean and the variance with
different p and N .

Figure 5.5 shows the solution with 4th-order Krawtchouk-Chaos. With different
parameter sets, Krawtchouk-Chaos expansion correctly approximates the exact solu-
tion, and the convergence rate with respect to the order of expansion is exponential.

5.3.6. Negative Binomial Distribution and Meixner-Chaos. In this sec-
tion we assume the distribution of the random input of k is the negative binomial
distribution

f(k;β, c) =
(β)k

k!
(1 − c)βck, 0 ≤ c ≤ 1, β > 0, k = 0, 1, . . . . (5.22)

In case of β being integer, it is often called the Pascal distribution. The exact mean
solution of (5.6) is

ȳ(t) = ŷ

(
1 − ce−t

1 − c

)−β

. (5.23)

The Meixner-Chaos is chosen since the random input is negative binomial (see
table 4.1). Figure 5.6 shows the solution with 4th-order Meixner-Chaos. Exponential

Xiu, 2010



Summary

‣ Developed and demonstrated the Stochastic Galerkin 
     methods to quantify uncertainty in general problems 

‣ Discussed both steady and time-dependent problems 

‣ Introduced generalized Polynomial Chaos to most  
    effectively deal with general random variables 

‣ New solvers are required 

‣ Computational cost 

We have achieved quite a bit

Problems remain


