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Objective of lectures
The main objective of these lectures are  

‣ To offer an overview of Uncertainty Quantification 
(UQ) and discuss its importance in modern predictive 
computational science.

‣ Focus is on the forward problem - uncertainty 
propagation.

‣ To introduce Polynomial Chaos (PC) as an attractive 
and efficient way of dealing with such challenges in the 
context of complex dynamical systems.

‣ To provide enough background to allow the audience to 
evaluate the importance within their own research area

‣ To suggest interesting research directions



The global picture

‣ Lecture 1 - Introduction to UQ  
    Motivation, terminology, background, Wiener chaos expansions.

‣ Lecture II - Stochastic Galerkin methods 
    Formulation, extensions, polynomial chaos, and examples.

‣ Lecture III - Stochastic Collocation methods 
    Motivation, formulation, high-d integration, and examples.

‣ Lecture IV - Extensions, challenges, reduced order 
modeling, and open questions 



The local picture

‣ A few examples to motivate the need for UQ

‣ Classification of types of uncertainty 

‣ Probability 101

‣ Overview of classic and some newer 
computational techniques to deal with uncertainty.

‣ The Wiener Chaos expansion

‣ Summary



Computational Science

From SIAM News, Volume 43, Number 9, November 2010

By Tinsley Oden, Robert Moser, and Omar Ghattas

Recently, a fresh look at how computer predictions are made has combined with several old philosophical ideas to bring about a revolution in 
computational science. The resulting panorama of formidable new challenges and research opportunities have to do with what computer models were 
always intended to do: make predictions of physical reality. Today, however, the phenomena and processes we ask computer models to predict are of 
enormous importance to critical decisions that affect our welfare and security—concerning, for example, climate change, the performance of energy 
and defense systems, the biology of diseases, and the outcome of medical procedures. With such high stakes, we must insist that the predictions include 
concrete, quantifiable measures of uncertainty. In other words, we must know how good the predictions are. The term “predictive simulation” has thus 
taken on a special meaning: the systematic treatment of model and data uncertainties and their propagation through a computational model to produce 
predictions of quantities of interest with quantified uncertainty.

The Predictive Science Process
Our goal is to use scientifically based predictions of physical reality to make informed decisions. Scientifically based predictions are simply fore-

casts of physical events and processes based on the methods of science: scientific theories (assertions about the underlying reality that brings about a 
phenomenon) and observations (knowledge received through the senses or the use of instruments).* 

For our purposes, theory and observation—the fundamental pillars of science—can be cast as mathematical models: mathematical constructs that 
describe a system and represent knowledge of the system in a usable form. Mathematical models are thus abstractions of physical reality. Fundamental 
to all of science, they have been used successfully for millennia. However, mathematical models generally involve parameters that must be “tuned” 
so that the model best represents the particular system or phenomenon about which predictions are to be made. These are the moduli, coefficients, 
solution domains, boundary and initial data, etc., that 
distinguish one model from another within a class 
determined by the theory selected to characterize the 
physical phenomenon. Unfortunately, these model 
parameters are commonly not known with great preci-
sion; they may vary from material to material, speci-
men to specimen, and case to case, or they may not 
be known at all. In short, they generally involve large 
uncertainties that can be resolved only with sufficient 
experimental evidence. At the same time, experimen-
tal observations themselves are often fraught with 
errors and uncertainties owing to imperfections in the 
instruments or the difficulty or impossibility of acquir-
ing observational data relevant to the problem at hand.

The digital computer, one of the greatest triumphs 
of modern science and technology, makes possible the 
use of mathematical models of enormous complex-
ity—leading to the recognition of computer modeling 
and simulation as the third indispensable pillar of sci-
ence. But this comes at a cost. Mathematical models 
are often corrupted as we create the computational 
models that render them amenable to solution via 
computer, and this corruption introduces more errors. 
Thus, a cascade of errors and uncertainties infect 
every aspect of scientifically based predictions (see Figure 1).

How can we cope with these imperfections? It is here that old ideas—from philosopher Karl Popper (1902–1994) and theologian and mathematician 
Thomas Bayes (1702–1761)—re-emerge.

In the Popperian view of scientific philosophy, a hypothesis did not qualify as a legitimate scientific theory unless it could be refuted by experi-
mental evidence. This is the principle of falsification, the answer to the problem of induction, a great paradox in scientific philosophy from the time of 
David Hume in the 18th century. In this view, a scientific theory can never be validated; it can only be invalidated by contrary experimental evidence. 
Experimental observations, then, are intrinsically interwoven into the scientific method: Without a possible program of experiments, scientific theo-

Computer Predictions with 
Quantified Uncertainty, Part I

*This subject is the focus of the National Nuclear Security Administration’s Predictive Science Academic Alliance Program. The mathematical founda-
tions of verification, validation, and uncertainty quantification are also the focus of a new study organized by the Board on Mathematical Sciences and Their 
Applications of the National Research Council.

Figure 1. Imperfect computational modeling: Imperfections in the mathematical models, 
incomplete observational data, observations delivered by imperfect instruments, and corrup-
tion of the model itself in the discretization needed for computation all lead to imperfect paths 
to knowledge. Reproduced from J.T. Oden, “A Brief View of V & V & UQ,” a presentation 
to the Board on Mathematical Sciences and Their Applications, National Research Council, 
October 2009.

Oden, Moser, Ghattas 2010, SIAM News



Motivation for UQ - V&V
Consider the classic problem of  Verification and 
Validation (V&V)  in computational science  

‣  Verification - the need to make sure the problem is  
    solved correctly :  
       Convergence, constructed solutions, analysis, stability etc 

‣ Validation - the need to make sure the right problem  
    is solved :  
       Comparison against other codes, experimental data etc 

While the former is well known, 
the latter quickly gets complex



Motivation for UQ - V&V
Imagine this outcome

All are pleased and happy

Imagine instead this outcome

Let the blame game begin



Motivation for UQ - V&V

.. but what is/could really be going on ?

Imagine the problem is sensitive in some way

We could simply be solving 
different problem due to 
   - initial conditions  
   - boundary conditions 
   - parameters 



Motivation for UQ - unmeassuables

Many types of problem have inaccessible or 
unmeasurable parameters and characterization

Modeling of complex  
environments

Micro/nano scale 
materials

Biological systems

One can question the value of deterministic 
modeling of such systems - but then what ?



Motivation for UQ - optimization/design
In computer assisted optimization and design, one 
seeks to minimize a cost-function

min
x��

J(x, µ̄)

Why is this problematic ?

A better approach may be

.. but this requires us to be able to evaluate the impact of 
the parametric uncertainty - quickly.

min
x��

E[J(x, µ)] + �var(J(x, µ))



Motivation for UQ

3

Typical Research Activity in
Computational Science and Engineering

Suggests that we need to re-evaluate our computational 
approach to achieve a true predictive capability

4

Uncertainty Quantification Included
in Analyses for Decision Making



Motivation for UQ

This raises important questions such as

‣ How do we do this reliably ?

‣ What is the cost ?

‣ Do we need to develop everything from bottom up ?

12

Mapping of Inputs to Outputs
Through a Mathematical Model

• The propagation of input quantities through a mathematical model
to obtain outputs can be written as

– where      is a vector of n input quantities
! f is the mathematical model describing some physical process
! y is a scalar output quantity

" f is typically a solution of nonlinear partial differential equation that
is solved numerically

 
y = f (

�
x)

 

�
x

We need to consider a more complex problem



The other side of the story

The forward problem - today

The inverse problem - tomorrow



A little terminology

Uncertainty can be caused by a number of things

‣ Initial and boundary conditions

‣ Geometries

‣ Parametric variations

‣ Modeling errors

‣ Sources

‣ etc

Before embarking on this, let us revisit the sources of 
uncertainty and how we can hope to control them  



A little terminology

‣ Aleatory uncertainty is inherent variation of the 
physical system and the environment 
  - variability, irreducible uncertainty, random uncertainty etc  
 
Examples: Rapid variations in parameters, inherent 
randomness in a microstructure etc 

‣ Epistemic uncertainty is caused by insufficient 
knowledge of parameters or processes 
 - subjective uncertainty, reducible uncertainty, model uncertainty  
 
Examples: Insufficient experimental results, poor 
understanding of system, microstructure etc 



A little terminology
With the need to consider systems subject to both 
types of uncertainty, there is no alternative but to 
model the uncertainty in some way

‣  Aleatory uncertainty is often modeled by some 
assumed probability measure.  

‣ Epistemic uncertainty is more problematic as it is 
grounded in insufficient knowledge of the system.  
 
It is often modeled by intervals of possible values 
 
... but it is, in principle, reducible at added cost.



Probability 101

Before we continue, let us make sure we recall the 
necessary background and terminology.

‣ The outcome of experiment is an event -  
       Ex: Flipping a coin gives head or tails. 

‣ We assign a number to the outcome to recover a 
Random variable -  
       Ex: 

‣ The event space, the empty set, and a number of set 
combinations is called the   -field - called 

‣ We assign probabilities to measure likelyhood of the 
outcome of the random variables -  
      Ex: 

X = X(�)
X(�) � [0, 1]

� � �
� = {head, tail}

�

P (� : X(�)) � [0, 1]
P (� : X(�) = 0) = P (� : X(�) = 1) = 0.5

F



Probability 101

chapter02 March 5, 2010

CONCEPTS OF PROBABILITY THEORY 11

Definition 2.4 (Probability space). A probability space is a triplet (!,F , P )

where ! is a countable event space, F ⊂ 2! is the σ -field of !, and P is a proba-
bility measure such that

1. 0 ≤ P (A) ≤ 1, ∀A ∈ F .
2. P (!) = 1.
3. For A1, A2, . . . ∈ F and Ai ∩ Aj = ∅, ∀i ̸= j ,

P

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

P (Ai).

Definition 2.5 (Distribution function). The collection of the probabilities

FX(x) = P (X ≤ x) = P ({ω : X(ω) ≤ x}), x ∈ R, (2.1)

is the distribution function FX of X.

It yields the probability that X belongs to an interval (a, b]. That is,

P ({ω : a < X(ω) ≤ b}) = FX(b) − FX(a), a < b.

Moreover, we obtain the probability that X is equal to a number

P (X = x) = FX(x) − lim
ϵ→0

FX(x − ϵ).

With these probabilities we can approximate the probability of the event {ω :
X(ω) ∈ B} for very complicated subsets B of R.

Definition 2.6 (Distribution). The collection of the probabilities

PX(B) = P (X ∈ B) = P ({ω : X(ω ∈ B})
for suitable subsets B ⊂ R is the distribution of X.

The suitable subsets of R are called Borel sets. They are sets from B = σ ({(a, b] :
−∞ < a < b < ∞}), the Borel σ -field.

The distribution PX and the distribution function FX are equivalent notions in
the sense that both of them can be used to calculate the probability of any event
{X ∈ B}.

2.2.1 Discrete Distribution

A distribution function can have jumps. That is,

FX(x) =
∑

k:xk≤x

pk, x ∈ R, (2.2)

where

0 ≤ pk ≤ 1, ∀k,

∞∑

k=1

pk = 1.

The distribution function (2.2) and the corresponding distribution are discrete. A
random variable with such a distribution function is a discrete random variable.

A discrete random variable assumes only a finite or countably infinite number of
values x1, x2, . . . and with probability pk = P (X = xk).

‣ The probability density

FX(x) = P (X � x) = P ({� : X(�) � x}), x ⇥ R

FX(x) =
� x

��
fX(y) dy

fX(x) � 0,

� �

��
fX(y) dy = 1

‣ The probability distribution  



Probability 101
We can now more appropriately define  

‣ The mean or expectation 
µX = E[X] =

� �

��
xfX dx E[g(X)] =

� �

��
g(x)fX dx

�2
X = var(X) =

� �

��
(x� µX)2fX dx

E[Xm] =
� �

��
xmfX dx

�2
X = E[X2]� µ2

X

‣The variance

‣ The m’th moment  

‣ The standard deviation



‣ The uniform distribution - 

Probability 101

Let us recall a couple of widely used densities 

‣ The normal/Gaussian distribution -  

chapter02 March 5, 2010

CONCEPTS OF PROBABILITY THEORY 13

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x
f X

Figure 2.2 Normal distribution function with µ = 0, σ 2 = 1.

σ 2 > 0. Its density is

fX(x) = 1√
2πσ 2

exp
[
− (x − µ)2

2σ 2

]
, x ∈ R. (2.5)

The density of N (0, 1) is shown in figure 2.2.
The uniform distribution U(a, b) on (a, b) has density

fX(x) =
{

1
b−a

, x ∈ (a, b),

0, otherwise,

which is a constant inside (a, b).

2.2.3 Expectations and Moments

Important characteristics of a random variable X include its expectation, variance,
and moments. The expectation or mean value of a random variable X with density
fX is

µX = E[X] =
∫ ∞

−∞
xfX(x)dx.

The variance of X is defined as

σ 2
X = var(X) =

∫ ∞

−∞
(x − µX)2fX(x)dx.

The mth moment of X for m ∈ N is

E[Xm] =
∫ ∞

−∞
xmfX(x)dx.

For a real-valued function g, the expectation of g(X) is

E[g(X)] =
∫ ∞

−∞
g(x)fX(x)dx.
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2.2.3 Expectations and Moments

Important characteristics of a random variable X include its expectation, variance,
and moments. The expectation or mean value of a random variable X with density
fX is

µX = E[X] =
∫ ∞

−∞
xfX(x)dx.

The variance of X is defined as

σ 2
X = var(X) =

∫ ∞

−∞
(x − µX)2fX(x)dx.

The mth moment of X for m ∈ N is

E[Xm] =
∫ ∞

−∞
xmfX(x)dx.

For a real-valued function g, the expectation of g(X) is

E[g(X)] =
∫ ∞

−∞
g(x)fX(x)dx.

N(µ, �2)

U(a, b)



‣ The variables are independent if 

Probability 101
The last concepts we will recall are  

‣ The correlation between two random variables is
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random vector is nothing but a collection of a finite number of random variables.
Similarly, we can also define concepts such as distribution function, moments, etc.

Definition 2.14. The collection of the probabilities

FX(x) = P (X1 ≤ x1, . . . , Xn ≤ xn), x = (x1, . . . , xn) ∈ Rn, (2.10)

is the distribution function FX of X.

If the distribution of a random vector X has a density fX, we can represent the
distribution function FX as

FX(x1, . . . , xn) =
∫ x1

−∞
· · ·

∫ xn

−∞
fX(y1, . . . , yn)dy1 · · · dyn,

where the density is a function satisfying

fX(x) ≥ 0, ∀x ∈ Rn,

and
∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(y1, . . . , yn)dy1 · · · dyn = 1.

If a vector X has density fX, then all of its components Xi , the vectors of the
pairs (Xi, Xj ), triples (Xi, Xj , Xk), etc., have a density. They are called marginal
densities. For example,

fXi
(xi) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
fX(y1, . . . , yn)dy1 · · · dyi−1dyi+1 · · · dyn.

The important statistical quantities of a random vector include its expectation,
variance, and covariance. The expectation or mean value of a random vector X is
given by

µX = E[X] = (E[X1], . . . ,E[Xn]).
The covariance matrix of X is defined as

CX = (cov(Xi, Xj ))n
i,j=1, (2.11)

where

cov(Xi, Xj ) = E[(Xi − µXi
)(Xj − µXj

)] = E(XiXj ) − µXi
µXj

, (2.12)

is the covariance of Xi and Xj . Note that cov(Xi, Xi) = σ 2
Xi

.
It is also convenient to standardize covariances by dividing the random variables

by their standard deviations. The resulting quantity

corr(X1, X2) = cov(X1, X2)

σX1σX2

(2.13)

is the correlation coefficient. An immediate fact following the Cauchy-Schwarz
inequality is

−1 ≤ corr(X1, X2) ≤ 1. (2.14)

We say the two random variables are uncorrelated if corr(X1, X2) = 0, and strongly
correlated if |corr(X1, X2)| ≈ 1.
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Example 2.15 (Gaussian random vector). A Gaussian or normal random vector
has a Gaussian or normal distribution. The n-dimensional Gaussian distribution is
defined by its density

fX(x) = 1
(2π)n/2(det CX)1/2

exp
{
−1

2
(x − µX)CX

−1(x − µX)T

}
, (2.15)

where µX ∈ Rn is the expectation of X and CX is the covariance matrix. Thus, the
density of a Gaussian vector (hence its distribution) is completely determined via its
expectation and covariance matrix. If CX = In, the n-dimensional identity matrix,
the components are called uncorrelated and the density becomes the product of n

normal densities:

fX(x) = fX1(x1) · · · fXn
(xn),

where fXi
(xi) is the normal density of N (µXi

, σ 2
Xi

). An important and appealing
property of Gaussian random vectors is that they remain Gaussian under linear
transformation.

Theorem 2.16. Let X = (X1, . . . , Xn) be a Gaussian random vector with distribu-
tion N (µ, C) and let A be an m × n matrix. Then AXT has an N (AµT , ACAT )

distribution.

The proof is left as an exercise.

2.4 DEPENDENCE AND CONDITIONAL EXPECTATION

Intuitively, two random events are called independent if the outcome of one event
does not influence the outcome of the other. More precisely, we state the following.

Definition 2.17. Two events A1 and A2 are independent if

P (A1 ∩ A2) = P (A1)P (A2).

Definition 2.18. Two random variables X1 and X2 are independent if

P (X1 ∈ B1, X2 ∈ B2) = P (X1 ∈ B1)P (X2 ∈ B2)

for all suitable subsets B1 and B2 of R. This means that the events {X1 ∈ B1} and
{X2 ∈ B2} are independent.

Alternatively, one can define independence via distribution functions and densities.
The random variables X1, . . . , Xn are independent if and only if their joint distri-
bution function can be written as

FX1,...,Xn
(x1, . . . , xn) = FX1(x1) · · · FXn

(xn), (x1, . . . , xn) ∈ Rn.

If the random vector X = (X1, . . . , Xn) has density fX, then X1, . . . , Xn are inde-
pendent if and only if

fX1,...,Xn
(x1, . . . , xn) = fX1(x1) · · · fXn

(xn), (x1, . . . , xn) ∈ Rn. (2.16)

Independence� Uncorrelated

They are uncorrelated if 



‣         dependent then

‣        independent then

(Some) classic methods for UQ
Let us now - finally - return to the quest at hand:

How do we account for the impact of the 
uncertainty on the output of a dynamical system

To briefly recall a few classic methods, let us consider 
the following problem
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Chapter Four

Formulation of Stochastic Systems

This chapter is devoted to the general aspects of formulating stochastic equations,
i.e., given an established deterministic model for a physical system, how to prop-
erly set up a stochastic model to study the effect of uncertainty in the inputs to the
system. Prior to any simulation, the key step is to properly characterize the ran-
dom inputs. More specifically, the goal is to reduce the infinite-dimensional prob-
ability space to a finite-dimensional space that is amenable to computing. This is
accomplished by parameterizing the probability space by a set of a finite num-
ber of random variables. More importantly, it is desirable to require the set of
random variables to be mutually independent. We remark that the independence
requirement is very much a concern from a practical point of view, for most, if
not all, available numerical techniques require independence. This is not as strong
a requirement from a theoretical point of view. Although there exist some tech-
niques to loosen it, in this book we shall continue to employ this widely adopted
requirement.

To summarize, the critical step in formulating a stochastic system is to properly
characterize the probability space defined by the random inputs by a set of a finite
number of mutually independent random variables. In many cases such a charac-
terization procedure cannot be done exactly and will induce approximation errors.

4.1 INPUT PARAMETERIZATION: RANDOM PARAMETERS

When the random inputs to a system are the system parameters, the parameteriza-
tion procedure is straightforward, for the inputs are already in the form of parame-
ters. The more important issue is then to identify the independent parameters in the
set. The problem can be stated as follows.

Let Y = (Y1, . . . , Yn), n > 1, be the system parameters with a pre-
scribed distribution function FY (y) = P (Y ≤ y), y ∈ Rn, and find
a set of mutually independent random variables Z = (Z1, . . . , Zd) ∈
Rd , where 1 ≤ d ≤ n, such that Y = T (Z) for a suitable transforma-
tion function T .

Let us use a simple example to illustrate the idea. Consider an ordinary differen-
tial equation with two random parameters,

du

dt
(t, ω) = −α(ω)u, u(0, ω) = β(ω), (4.1)

(�, ⇥)

u(t, �) : [0, T ]� �� R

u(t, X1, X2) : [0, T ]� R2 � R

u(t, X, g(X)) : [0, T ]� R� R(�, ⇥)

du(t, �)
dt

= �X1u, u(0,�) = X2

du(t, �)
dt

= �Xu, u(0,�) = g(X)



Monte Carlo methods
The truly classic and simple approach

1. Create M iid’s from the assumed distribution -

2. Solve problem for each set of iid’s - 

3. Compute required statistics - 

(�(i),⇥(i))

u(i)(t) = u(t, X(i))

ū(t) =
1
M

M�

i=1

u(t,X(i)) � E[u]

As samples are based on iid’s, the central limit theorem implies

|ū(t)� E[u]| ⇥ 1⇤
M

This result is both the curse and the strength
‣ The convergence is slow, i.e., expensive for good accuracy
‣ The convergence does not depend on dimension

Note: Lots of games in town to improve



A few remarks on MLMC

A powerful approach has emerged within the last few years 
to accelerate the classic MC - known as Multi-Level MC

Consider
E[u] =

1

M

MX

i=1

ui

A standard way to accelerate convergence is to consider

E[u] =
1

M

MX

i=1

(ui � �(gi � E[g]))

Where g is supposed to well correlated with f

This reduces variance and increases convergence



A few remarks on MLMC

Instead, consider

E[u] = E[u1] + E[u� u1]

Then, if

‣           is cheap to compute  

‣ 

E[u1]

u ' u1

We can compute

E[u] =
1

N1

N1X

i=1

(u1)i +
1

N0

N0X

i=1

(ui � (u1)i)

Fast Quick convergence



A few remarks on MLMC

Hence, there is a potential for substantial savings - in 
particular for multiple levels

Main challenge is to determine number of samples at 
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Fig. 6. Distributions of random maximal wave speeds of samples for all resolution levels in the MLMC-FVM simulation reported in Figs. 4–5. The spread is 
approximately from 1 to 3.5, leading to very heterogeneous computational loads for samples at the same mesh resolution level.

Fig. 7. Error convergence of the mean of the acoustic pressure p(x, t, ω). The asymptotically optimized number of samples (3.18) provided slightly higher
accuracy for the same computational work. Both MLMC2 methods are approximately two orders of magnitude faster than the MC2 method.

Fig. 8. Error convergence of the variance of the acoustic pressure p(x, t, ω). The asymptotically optimized number of samples (3.18) provided slightly higher
accuracy for the same computational work. Both MLMC(2) methods are approximately one order of magnitude faster than the MC(2) method.

set to zero, i.e. p0(x, ω) ≡ 0, u0(x, ω) ≡ 0. Analogously, identical periodic (in time) acoustic pressure pulses are injected into 
two locations of the domain through the deterministic source term f ,

f (x, t,ω) =
{

Ap

(
exp

(
−∥x−xc

1∥
2σ

)
+ exp

(
−∥x−xc

2∥
2σ

))
if {3t} < 0.02,

0 else,
(6.5)

S. Mishra et al. / Journal of Computational Physics 312 (2016) 192–217 211

Fig. 9. Top left: one sample of the coefficient c(x, ω) with layer-dependent variances and correlation lengths as specified in (6.4). Remaining plots: time 
snapshots of the approximated acoustic pressure p(x, 1, ω). Interchanging layers of isotropic and anisotropic material coefficient regions c(x, 1, ω) are 
present; at the interfaces, each realization of the random material coefficient c(x, ω) is discontinuous in x2-direction.

Fig. 10. Distributions of random maximal wave speeds of samples for all resolution levels in the MLMC-FVM simulation reported in Figs. 11–12. The spread 
is approximately from 1.5 to 5.0, leading to very heterogeneous computational loads for samples at the same mesh resolution level.

where Ap = 5000, xc
1 = (0.5, 2.0), xc

2 = (1.5, 2.0), σ = 0.04 and {·} denotes the fractional part. Perfectly reflecting boundary 
conditions (3.4) are assumed at the top and the bottom, and the periodic boundary conditions (3.3) are assumed at the 
sides of the domain.

Results of the deterministic FVM simulation up to t = 1.0 are presented in Fig. 13, where the approximated sample of 
the random material coefficient c(x, ω) and the acoustic pressure p(x, t, ω) at different time instances are provided. The 
computation is performed using the HLL two wave Rusanov solver and a second order accurate piecewise linear WENO 
reconstruction on the mesh resolution of 1024 × 1024 × 1024 cells, and took almost 3 hours on 4096 cores. Analogously 
to the two-dimensional experiment in Sect. 6.3, the long correlation length in xz-plane combined with short correlation 
length in y-dimension results in a random material coefficient exhibiting layered structures. For a slice taken parallel to 
the xz-plane, the “entire” layer is obtained. The structure of acoustic pressure wave propagation consists of close-to-circular 
wave fronts interfering in the center of the domain and getting distorted by the heterogeneity of the underlying physical 
domain.

Mishra et al, JCP 2016
Accelerates MC - but convergence 
remains the same



Moment methods

Consider the following equation

µ(t) = E[u] dµ

dt
= �E[�u], µ(0) = E[⇥]

dE[�u]
dt

= �E[�2u], µ(0) = E[�⇥]

dµk

dt
= �µk+1, µk(0) = E[�k⇥]µk = E[�ku]

µk+1 = g(µ0, . . . , µk)

The unknown can be computed

.. and can be continued

but the ‘closure problem’ remains - often solved by assuming

‣ Accuracy is unclear in model
‣Complex for a large problem

dµ

dt
= �E[�]µ, µ(0) = E[⇥]

Tempting



Perturbation methods
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4.4.3 Perturbation Method

In the perturbation method, the random part of the solution is treated as a perturba-
tion. The fundamental assumption is that such a perturbation is small. And this is
typically achieved by requiring the standard deviation of the solution to be small.
To illustrate the idea, let us again use the simple ODE example (4.15). For ease of
exposition, let us further assume that the mean value of α is zero, i.e., E[α] = 0,
and that the initial condition is a fixed value. That is,

du

dt
(t, ω) = −α(ω)u, u(0, ω) = β.

The perturbation method can be applied when the variation of α is small, that is,
ϵ = O(α(ω)) ∼ σα ≪ 1. If this is the case, we seek to expand the solution as a
power series of α,

u(t, ω) = u0(t) + α(ω)u1(t) + α2(ω)u2(t) + · · · , (4.22)

where the coefficients u0, u1, . . . are supposed to be of same order of magnitude.
After substituting the expression into the governing equation (4.1), we obtain

du0

dt
+ α

du1

dt
+ α2 du2

dt
+ · · · = −α(u0 + αu1 + α22u2 + · · · ).

Since O(αk) = ϵk becomes increasingly small as k increases, we match the terms
in the equation according to the power of α.

O(1) : du0

dt
= 0,

O(ϵ) : du1

dt
= −u0,

O(ϵ2) : du2

dt
= −u1,

. . . . . .

O(ϵk) : duk

dt
= −uk−1,

Similar expansion and term matching of the initial condition result in the initial
conditions for the coefficients,

u0(0) = β, uk(0) = 0, k > 1.

It is then easy to solve the system recursively and obtain

u0(t) = β, u1 = −βt, . . . , uk = β(−1)k tk

k! .
The power series then gives us the solution

u(t, ω) =
∞∑

k=0

β
−t k

k! αk(ω), (4.23)

which is the infinite power series of the exact solution uexact (t, ω) = β exp(−αt).

chapter04 March 5, 2010

FORMULATION OF STOCHASTIC SYSTEMS 55

4.4.3 Perturbation Method

In the perturbation method, the random part of the solution is treated as a perturba-
tion. The fundamental assumption is that such a perturbation is small. And this is
typically achieved by requiring the standard deviation of the solution to be small.
To illustrate the idea, let us again use the simple ODE example (4.15). For ease of
exposition, let us further assume that the mean value of α is zero, i.e., E[α] = 0,
and that the initial condition is a fixed value. That is,

du

dt
(t, ω) = −α(ω)u, u(0, ω) = β.

The perturbation method can be applied when the variation of α is small, that is,
ϵ = O(α(ω)) ∼ σα ≪ 1. If this is the case, we seek to expand the solution as a
power series of α,

u(t, ω) = u0(t) + α(ω)u1(t) + α2(ω)u2(t) + · · · , (4.22)

where the coefficients u0, u1, . . . are supposed to be of same order of magnitude.
After substituting the expression into the governing equation (4.1), we obtain

du0

dt
+ α

du1

dt
+ α2 du2

dt
+ · · · = −α(u0 + αu1 + α22u2 + · · · ).

Since O(αk) = ϵk becomes increasingly small as k increases, we match the terms
in the equation according to the power of α.

O(1) : du0

dt
= 0,

O(ϵ) : du1

dt
= −u0,

O(ϵ2) : du2

dt
= −u1,

. . . . . .

O(ϵk) : duk

dt
= −uk−1,

Similar expansion and term matching of the initial condition result in the initial
conditions for the coefficients,

u0(0) = β, uk(0) = 0, k > 1.

It is then easy to solve the system recursively and obtain

u0(t) = β, u1 = −βt, . . . , uk = β(−1)k tk

k! .
The power series then gives us the solution

u(t, ω) =
∞∑

k=0

β
−t k

k! αk(ω), (4.23)

which is the infinite power series of the exact solution uexact (t, ω) = β exp(−αt).

chapter04 March 5, 2010

FORMULATION OF STOCHASTIC SYSTEMS 55

4.4.3 Perturbation Method

In the perturbation method, the random part of the solution is treated as a perturba-
tion. The fundamental assumption is that such a perturbation is small. And this is
typically achieved by requiring the standard deviation of the solution to be small.
To illustrate the idea, let us again use the simple ODE example (4.15). For ease of
exposition, let us further assume that the mean value of α is zero, i.e., E[α] = 0,
and that the initial condition is a fixed value. That is,

du

dt
(t, ω) = −α(ω)u, u(0, ω) = β.

The perturbation method can be applied when the variation of α is small, that is,
ϵ = O(α(ω)) ∼ σα ≪ 1. If this is the case, we seek to expand the solution as a
power series of α,

u(t, ω) = u0(t) + α(ω)u1(t) + α2(ω)u2(t) + · · · , (4.22)

where the coefficients u0, u1, . . . are supposed to be of same order of magnitude.
After substituting the expression into the governing equation (4.1), we obtain

du0

dt
+ α

du1

dt
+ α2 du2

dt
+ · · · = −α(u0 + αu1 + α22u2 + · · · ).

Since O(αk) = ϵk becomes increasingly small as k increases, we match the terms
in the equation according to the power of α.

O(1) : du0

dt
= 0,

O(ϵ) : du1

dt
= −u0,

O(ϵ2) : du2

dt
= −u1,

. . . . . .

O(ϵk) : duk

dt
= −uk−1,

Similar expansion and term matching of the initial condition result in the initial
conditions for the coefficients,

u0(0) = β, uk(0) = 0, k > 1.

It is then easy to solve the system recursively and obtain

u0(t) = β, u1 = −βt, . . . , uk = β(−1)k tk

k! .
The power series then gives us the solution

u(t, ω) =
∞∑

k=0

β
−t k

k! αk(ω), (4.23)

which is the infinite power series of the exact solution uexact (t, ω) = β exp(−αt).

chapter04 March 5, 2010

FORMULATION OF STOCHASTIC SYSTEMS 55

4.4.3 Perturbation Method

In the perturbation method, the random part of the solution is treated as a perturba-
tion. The fundamental assumption is that such a perturbation is small. And this is
typically achieved by requiring the standard deviation of the solution to be small.
To illustrate the idea, let us again use the simple ODE example (4.15). For ease of
exposition, let us further assume that the mean value of α is zero, i.e., E[α] = 0,
and that the initial condition is a fixed value. That is,

du

dt
(t, ω) = −α(ω)u, u(0, ω) = β.

The perturbation method can be applied when the variation of α is small, that is,
ϵ = O(α(ω)) ∼ σα ≪ 1. If this is the case, we seek to expand the solution as a
power series of α,

u(t, ω) = u0(t) + α(ω)u1(t) + α2(ω)u2(t) + · · · , (4.22)

where the coefficients u0, u1, . . . are supposed to be of same order of magnitude.
After substituting the expression into the governing equation (4.1), we obtain

du0

dt
+ α

du1

dt
+ α2 du2

dt
+ · · · = −α(u0 + αu1 + α22u2 + · · · ).

Since O(αk) = ϵk becomes increasingly small as k increases, we match the terms
in the equation according to the power of α.

O(1) : du0

dt
= 0,

O(ϵ) : du1

dt
= −u0,

O(ϵ2) : du2

dt
= −u1,

. . . . . .

O(ϵk) : duk

dt
= −uk−1,

Similar expansion and term matching of the initial condition result in the initial
conditions for the coefficients,

u0(0) = β, uk(0) = 0, k > 1.

It is then easy to solve the system recursively and obtain

u0(t) = β, u1 = −βt, . . . , uk = β(−1)k tk

k! .
The power series then gives us the solution

u(t, ω) =
∞∑

k=0

β
−t k

k! αk(ω), (4.23)

which is the infinite power series of the exact solution uexact (t, ω) = β exp(−αt).

chapter04 March 5, 2010

FORMULATION OF STOCHASTIC SYSTEMS 55

4.4.3 Perturbation Method

In the perturbation method, the random part of the solution is treated as a perturba-
tion. The fundamental assumption is that such a perturbation is small. And this is
typically achieved by requiring the standard deviation of the solution to be small.
To illustrate the idea, let us again use the simple ODE example (4.15). For ease of
exposition, let us further assume that the mean value of α is zero, i.e., E[α] = 0,
and that the initial condition is a fixed value. That is,

du

dt
(t, ω) = −α(ω)u, u(0, ω) = β.

The perturbation method can be applied when the variation of α is small, that is,
ϵ = O(α(ω)) ∼ σα ≪ 1. If this is the case, we seek to expand the solution as a
power series of α,

u(t, ω) = u0(t) + α(ω)u1(t) + α2(ω)u2(t) + · · · , (4.22)

where the coefficients u0, u1, . . . are supposed to be of same order of magnitude.
After substituting the expression into the governing equation (4.1), we obtain

du0

dt
+ α

du1

dt
+ α2 du2

dt
+ · · · = −α(u0 + αu1 + α22u2 + · · · ).

Since O(αk) = ϵk becomes increasingly small as k increases, we match the terms
in the equation according to the power of α.

O(1) : du0

dt
= 0,

O(ϵ) : du1

dt
= −u0,

O(ϵ2) : du2

dt
= −u1,

. . . . . .

O(ϵk) : duk

dt
= −uk−1,

Similar expansion and term matching of the initial condition result in the initial
conditions for the coefficients,

u0(0) = β, uk(0) = 0, k > 1.

It is then easy to solve the system recursively and obtain

u0(t) = β, u1 = −βt, . . . , uk = β(−1)k tk

k! .
The power series then gives us the solution

u(t, ω) =
∞∑

k=0

β
−t k

k! αk(ω), (4.23)

which is the infinite power series of the exact solution uexact (t, ω) = β exp(−αt).

Let us assume that  

Then we can express the solution as 

Matching orders in the expansion yields

‣ Only applies for small variance(s)
‣ Derivation is problem specific



Challenges in classic methods

‣Moment/Perturbation methods are too complex and  
       intrusive to serve as a general tool.  

‣Monte Carlo methods are flexible/ general - the convergence 
       rate is problematic: 1 digit requires 100 simulations

How can be strive to improve this ?

MC approximates the density 
using piecewise constant 
samples - resulting in the slow 
pointwise convergence

There are serious problems with these methods 



Challenges in classic methods

‣ Make assumption on the nature of the aleatory uncertainty 
through the input variables.  

‣ Make some assumptions on the character of the epistemic 
uncertainty, possibly using just uniformly distributed variables.

These are random variables with a smooth density

From an approximation standpoint, using piecewise constant 
functions to represent a smooth function is ‘a poor choice’

But recall the context here - we will



Detour on global expansions

Consider the smooth period function
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Figure 2.1 (a) Continuous Fourier series approximation of Example 2.3 for
increasing resolution. (b) Pointwise error of the approximation for increasing
resolution.

Theorem 2.2 If a function u(x), its first (m − 1) derivatives, and their periodic
extensions are all continuous and if the mth derivative u(m)(x) ∈ L2[0, 2π ], then
∀n ̸= 0 the Fourier coefficients, ûn, of u(x) decay as

|ûn| ∝
(

1
n

)m

.

What happens if u(x) ∈ C∞
p [0, 2π ]? In this case ûn decays faster than any

negative power of n. This property is known as spectral convergence. It follows
that the smoother the function, the faster the truncated series converges. Of
course, this statement is asymptotic; as we showed in Chapter 1, we need at
least two points per wavelength to reach the asymptotic range of convergence.

Let us consider a few examples.

Example 2.3 Consider the C∞
p [0, 2π ] function

u(x) = 3
5 − 4 cos(x)

.

Its expansion coefficients are

ûn = 2−|n|.

As expected, the expansion coefficients decay faster than any algebraic order
of n. In Figure 2.1 we plot the continuous Fourier series approximation of u(x)
and the pointwise error for increasing N .

This example clearly illustrates the fast convergence of the Fourier series and
also that the convergence of the approximation is almost uniform. Note that we
only observe the very fast convergence for N > N0 ∼ 16.
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20 Trigonometric polynomial approximation

where the expansion coefficients are

ân = 1
cnπ

∫ 2π

0
u(x) cos(nx) dx,

with the values

cn =
{

2 n = 0,

1 n > 0,

and

b̂n = 1
π

∫ 2π

0
u(x) sin(nx) dx, n > 0.

Alternatively, the Fourier series can be expressed in the complex form

F[u] =
∑

|n|≤∞
ûneinx , (2.2)

with expansion coefficients

ûn = 1
2π

∫ 2π

0
u(x)e−inx dx =

⎧
⎪⎨

⎪⎩

â0 n = 0,

(ân − i b̂n)/2 n > 0,

(â−n + i b̂−n)/2 n < 0.

(2.3)

Remark The following special cases are of interest.

1. If u(x) is a real function, the coefficients ân and b̂n are real numbers and, con-
sequently, û−n = ûn . Thus, only half the coefficients are needed to describe
the function.

2. If u(x) is real and even, i.e., u(x) = u(−x), then b̂n = 0 for all values of n,
so the Fourier series becomes a cosine series.

3. If u(x) is real and odd, i.e., u(x) = −u(−x), then ân = 0 for all values of n,
and the series reduces to a sine series.

For our purposes, the relevant question is how well the truncated Fourier series
approximates the function. The truncated Fourier series

PN u(x) =
∑

|n|≤N/2

ûneinx , (2.4)

is a projection to the finite dimensional space

B̂N = span{einx | |n| ≤ N/2}, dim(B̂N ) = N + 1.

The approximation theory results for this series are classical.
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36 Trigonometric polynomial approximation

We rewrite this summation
∑

|n|>N

|ûn|2 =
∑

|n|>N

1
n2q n2q |ûn|2

≤ N−2q
∑

|n|>N

n2q |ûn|2

≤ N−2q
∑

|n|≥0

n2q |ûn|2

= 1
2π

N−2q
∥∥u(q)

∥∥2
L2[0,2π ].

Putting this all together and taking the square root, we obtain our result.
QED

Note that the smoother the function, the larger the value of q, and therefore,
the better the approximation. This is in contrast to finite difference or finite
element approximations, where the rate of convergence is fixed, regardless of
the smoothness of the function. This rate of convergence is referred to in the
literature as spectral convergence.

If u(x) is analytic then
∥∥u(q)

∥∥
L2[0,2π ] ≤ Cq! ∥u∥L2[0,2π ],

and so

∥u − P2N u∥L2[0,2π ] ≤ C N−q
∥∥u(q)

∥∥
L2[0,2π ] ≤ C

q!
N q ∥u∥L2[0,2π ].

Using Stirling’s formula, q! ∼ qqe−q , and assuming that q ∝ N , we obtain

∥u − P2N u∥L2[0,2π ] ≤∼ C
( q

N

)q
e−q∥u∥L2[0,2π ] ∼ K e−cN ∥u∥L2[0,2π ].

Thus, for an analytic function, spectral convergence is, in fact, exponential
convergence.

Since the Fourier method is used for computation of derivatives, we are
particularly interested in estimating the convergence of both the function and
its derivative. For this purpose, the Sobolev norm is appropriate.

Theorem 2.11 For any real r and any real q where 0 ≤ q ≤ r , if u(x) ∈
W r

p[0, 2π ], then there exists a positive constant C, independent of N , such
that

∥u − P2N u∥W q
p [0,2π ] ≤ C

Nr−q ∥u∥W r
p[0,2π ].

Proof: Parseval’s identity yields

∥u − P2N u∥2
W q

p [0,2π ] = 2π
∑

|n|>N

(1 + |n|2q )|ûn|2.

P1: FQF/GQE P2: FQF/GQE QC: FQF/GQE T1: FQF
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Since |n| + 1 ≥ N , we obtain

(1 + |n|2q ) ≤ (1 + |n|)2q = (1 + |n|)2r

(1 + |n|)2(r−q)
≤ (1 + |n|)2r

N 2(r−q)

≤ (1 + r )
(1 + |n|2r )

N 2(r−q)
,

for any 0 ≤ q ≤ r .
This immediately yields

∥u − P2N u∥2
W q

p [0,2π ] ≤ C
∑

|n|>N

(1 + |n|2r )
N 2(r−q)

|ûn|2 ≤ C
∥u∥2

W r
p[0,2π ]

N 2(r−q)
.

QED

A stricter measure of convergence may be obtained by looking at the point-
wise error in the maximum norm.

Theorem 2.12 For any q > 1/2 and u(x) ∈ Cq
p[0, 2π ], there exists a positive

constant C, independent of N , such that

∥u − P2N u∥L∞ ≤ C
1

N q− 1
2

∥∥u(q)
∥∥

L2[0,2π ] .

Proof: Provided u(x) ∈ Cq
p[0, 2π ], q > 1/2, we have for any x ∈ [0, 2π ],

|u − P2N u| =
∣∣∣∣∣
∑

|n|>N

ûneinx

∣∣∣∣∣

=
∣∣∣∣∣
∑

|n|>N

nq ûn
einx

nq

∣∣∣∣∣

≤
(

∑

|n|>N

1
n2q

)1/2 (
∑

|n|>N

n2q |ûn|2
)1/2

,

using the Cauchy–Schwartz inequality. The second term in the product above is
bounded by the norm. The first term is the tail of a power series which converges
for 2q > 1. Thus, for q > 1

2 , we can bound the tail, and so we obtain

|u − P2N u| ≤ C
N q−1/2

∥∥u(q)
∥∥

L2[0,2π ] .

QED

Again, we notice spectral accuracy in the maximum norm, with exponential
accuracy for analytic functions. Finally, we are ready to use these results to
bound the truncation error for the case of a constant coefficient differential
operator.

Using a Fourier series

Rigorous theory confirms that

Challenge: How to take advantage of this for UQ ?



Provided                we have 

The Wiener Chaos expansion

E[�m(X)�n(X)] =
�

�m(X(x))�n(X(x)) dFX(x) = �n⇥mn

�n = E[�2
n(X)]

f(X) =
��

n=0

f̂n�n(X)
f̂n =

1
�n

E[f(X)�n(X)]

L2
FX

= {f : I � R |E[f2] <⇥}

f � L2
FX

Define the space of square integrable functions

Where the basis - the Chaos Polynomial - satisfies

Basis depends on the distribution of the random variable !



The Wiener Chaos expansion

Consider Gaussian variables with

fX(x) =
1�
2�

e�x2/2

H0(X) = 1, H1(X) = X, H2(X) = X2 � 1, H3(X) = X3 � 3X

The corresponding polynomials are the Hermite Polynomials



The Wiener Chaos expansion

PNf(X) =
N�

n=0

f̂n�n(X)

If we now consider the truncated expansion

then strong convergence follows directly from classic theory

⌅f � PNf⌅L2
FX
⇥ 0, N ⇥⇤

If we now consider a more general problem

ZN =
N�

n=0

ân�n(X) X � L2
FX

Z � L2
FZ

ân =
1
�n

EX [F�1
Z (FX(X))�n(X)]

Weak convergence can be achieved by defining

We can use one random variable to approximate another



The Wiener Chaos expansion
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Figure 5.3 Approximations of Gaussian distribution by gPC Jacobi expansions: conver-
gence of probability density functions with increasing order of expansions. Left:
approximation by gPC Jacobi polynomials with α = β = 0 (Legendre polyno-
mials). Right: approximation by gPC Jacobi polynomials with α = β = 10.

a distinct feature of the beta distribution is that it is strictly bounded in a close
interval. This suggests that in practice when one needs a distribution that is close
to Gaussian but with strict bounds, mostly because of concerns from a physical
or mathematical point of view, then the beta distribution can be a good candidate.
More details on this approximation can be found in appendix B.

From these examples it is clear that when the corresponding gPC polynomials
for a given distribution function can be constructed, particularly for the well-known
cases listed in table 5.1, it is best to use these basis polynomials because a proper
first-order expansion can produce the given distribution exactly. Using other types
of polynomials can still result in a convergent series at the cost of inducing approx-
imation errors and more complex gPC representation.

5.2 DEFINITION IN MULTIPLE RANDOM VARIABLES

When more than one independent random variables are involved, multivariate gPC
expansion is required. Let Z = (Z1, . . . , Zd) be a random vector with mutually
independent components and distribution FZ(z1, . . . , zd) = P (Z1 ≤ z1, . . . , Zd ≤
zd). For each i = 1, . . . , d, let FZi

(zi) = P (Zi ≤ zi) be the marginal distribution of
Zi , whose support is IZi

. Mutual independence among all Zi implies that FZ(z) =∏d
i=1 FZi

(zi) and IZ = IZi
× · · · × IZd

. Also, let {φk(Zi)}N
k=0 ∈ PN (Zi) be the

univariate gPC basis functions in Zi of degree up to N . That is,

E [φm(Zi)φn(Zi)] =
∫

φm(z)φn(z)dFZi
(z) = δmnγm, 0 ≤ m, n ≤ N. (5.20)

Let i = (i1, . . . , id) ∈ Nd
0 be a multi-index with |i| = i1 + · · · + id . Then, the

d-variate N th-degree gPC basis functions are the products of the univariate gPC
polynomials (5.20) of total degree less than or equal to N ; i.e.,

&i(Z) = φi1(Z1) · · · φid (Zd), 0 ≤ |i| ≤ N. (5.21)

It is clear that choosing the right basis -- associated with the 
nature of the random variable -- is key to performance

This the advantage and the curse -- as we shall see

Xiu, 2010



The Wiener Chaos expansion

The extension to multiple random variables follows

X = (X1, . . . , Xd)
FXi(xi) = P (Xi � xi) xi � IXi

FX = FX1 � . . .� FXd

�i(X) = �i1(X1)� . . .� �id(Xd) |i| � N

E[�i(X)�j(X)] =
�

�i(x)�j(x) dFX(x) = �i⇥ij �i = E[�2
i ]

Define

and the multi-dimensional polynomial chaos

fN (X) =
N�

|i|=0

f̂i�i(X) � Pd
N dim Pd

N =
�

N + d
N

�
=

(N + d)!
N !d!

The homogeneous Chaos expansion is

The ‘curse of dimension’ shows its face !



The Wiener Chaos expansion

Assuming the Chaos expansion is known, we need statistics

fN (X) =
N�

|i|=0

f̂i�i(X) � Pd
N

The expectation follows from

µ = E[f ] � E[fN ] =
� N�

|i|=0

f̂i�i dFX = f̂0

In a similar fashion, the variance is

Other moments can be obtained in a similar fashion. 

Functions of the expansion can also be estimated through 
Monte Carlo sampling

var(f) = E[(f � µ)2)] �
N�

|i|>0

�if̂
2
i



Summary

‣ Motivated the need for UQ in Computational Science  

‣ Discussed in some detail the shortcomings of classic  
     methods such as Monte Carlo methods.  

‣ Realizing that smoothness in the behavior of the  
    random variables should be explored 

‣.. and introduced the Chaos expansion to achieve this

We have still to use this insight to solve differential equations -  
and demonstrate the promised benefits

We have achieved quite a bit


