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Objective of lectures -

The main objective of these lectures are

» To offer an overview of Uncertainty Quantification
(UQ) and discuss its importance in modern predictive
computational science.

» Focus is on the forward problem - uncertainty
propagation.

» To introduce Polynomial Chaos (PC) as an attractive
and efficient way of dealing with such challenges in the
context of complex dynamical systems.

» To provide enough background to allow the audience to
evaluate the importance within their own research area

» To suggest interesting research directions
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The gl obal picture o ronEcHNIOU:

» Lecture | - Introduction to UQ

Motivation, terminology, background, Wiener chaos expansions.

» Lecture Il - Stochastic Galerkin methods

Formulation, extensions, polynomial chaos, and examples.

» Lecture lll - Stochastic Collocation methods

Motivation, formulation, high-d integration, and examples.

» Lecture IV - Extensions, challenges, reduced order
modeling, and open questions
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The local picture o ronEcHNIOU:

» A few examples to motivate the need for UQ
» Classification of types of uncertainty

» Probability 101

» Overview of classic and some newer
computational techniques to deal with uncertainty.

» TheWiener Chaos expansion

» Summary
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Uncertainty

Face it kid, Not even Mr. Owl knows how many licks it takes.
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Oden, Moser, Ghattas 2010, SIAM News
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Motivation for UQ -V&V ol onmican:

Consider the classic problem of Verification and
Validation (V&YVY) in computational science

» Verification - the need to make sure the problem is
solved correctly :

Convergence, constructed solutions, analysis, stability etc

» Validation - the need to make sure the right problem
is solved :

Comparison against other codes, experimental data etc

Model
Qualification

[ REALITY J\ .
Analysis
A .\
I ‘
1
Model Computer CONCEPTUAL
Validation Simu!ation MODEL

1 .
I Programming

COMPUTERIZED
MODEL

While the former is well known,
the latter quickly gets complex

g

Model
Verification
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Motivation for UQ - V&V ol onIoNIGH

Imagine this outcome

¥ versus x with linear model

All are pleased and happy

X values
©.OriginaIArtist

Imagine instead this outcome e

P ENC
ith lin 1 )
¥ Versus X wi ear mode = 46F = 40% = :’:L'::,) 8.98#1/3 =
\91-4 -~

T R R Let the blame game begin
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Motivation for UQ -V&V .(”_

.. but what is/could really be going on ?

Imagine the problem is sensitive in some way

Sensitive dependency

on initial conditions
y 4 attractor D

attractor C

attractor A

We could simply be solving D/o\c
different problem due to a-
- Inltlal Condltlons Key: Blue squares represent initial states; ’x

black circles represent equilibria

- boundary conditions
- parameters
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Motivation for UQ - unmeassuables scois onECHMQU:

Many types of problem have inaccessible or
unmeasurable parameters and characterization

Biological systems
Modeling of complex

environments

Micro/nano scale
materials

One can question the value of deterministic
modeling of such systems - but then what ?
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Motivation for UQ - optimization/design il

In computer assisted optimization and design, one
seeks to minimize a cost-function

min J(x

min (z, 1)

Why is this problematic ? w m
Stable Metastable Unstable

A better approach may be

min E|J(z, p)| + kvar(J(z, p))

.. but this requires us to be able to evaluate the impact of
the parametric uncertainty - quickly.
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Motivation for UQ I

Suggests that we need to re-evaluate our computational
approach to achieve a true predictive capability

Simulation Credibility

Nondeterministic Results

Parametric uncertamty Normal environments
Model form uncertamty Abnormal environments
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Motivation for UQ ol onmican:

We need to consider a more complex problem

Scenarios
Physics parameters System response
quantities of interest
Geometry System of PDE’s
Initial conditions and sub-models
Boundary conditions
Environments 1) Propagation of uncertainties

through the model
2) Estimation of model form
uncertainty

This raises important questions such as
» How do we do this reliably ?

» What is the cost ?

» Do we need to develop everything from bottom up !
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The other side of the story il

Model
Qualification

{ REALITY )\ .
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OMPUTERIZED
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Model
Verification

The forward problem - today

The inverse problem - tomorrow
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A little terminology I

Before embarking on this, let us revisit the sources of
uncertainty and how we can hope to control them

Uncertainty can be caused by a number of things
Initial and boundary conditions
Geometries

Parametric variations
Modeling errors

Sources

vV VvV VvV VvV VvV Vv

etc
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A little terminolo gy fcoue ronTichNIoL:

» Aleatory uncertainty is inherent variation of the
physical system and the environment

- variability, irreducible uncertainty, random uncertainty etc

Examples: Rapid variations in parameters, inherent
randomness in a microstructure etc

» Epistemic uncertainty is caused by insufficient
knowledge of parameters or processes

- subjective uncertainty, reducible uncertainty, model uncertainty

Examples: Insufficient experimental results, poor
understanding of system, microstructure etc
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A little terminolo gy fcoue ronTichNIoL:

With the need to consider systems subject to both
types of uncertainty, there is no alternative but to
model the uncertainty in some way

» Aleatory uncertainty is often modeled by some
assumed probability measure.

» Epistemic uncertainty is more problematic as it is
grounded in insufficient knowledge of the system.

It is often modeled by intervals of possible values

..but it is, in principle, reducible at added cost.



Probability 101 il

Before we continue, let us make sure we recall the
necessary background and terminology.

» The outcome of experiment is an event - w € {2
Ex: Flipping a coin gives head or tails. {2 = {head, tail}

» WVe assign a number to the outcome to recover a
Random variable - X = X (w)
Ex. X(w)el0,1]

» The event space, the empty set, and a number of set
combinations is called the_o-field - called F

» We assign probabilities to measure likelyhood of the
outcome of the random variables - P(w : X(w)) € [0, 1]
Ex: Plw:X(w)=0)=Pw:X(w)=1)=0.5
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Probability 101 -

Definition 2.4 (Probability space). A probability space is a triplet (82, F, P)
where Q is a countable event space, F C 2% is the o-field of Q, and P is a proba-
bility measure such that

1. 0< P(4) <1,VA4 e F.
2. P(Q2) =1.
3. For Ay, Ao, ... e Fand A; N A4; =0,Vi # J,

0 ©¢
P (U A,-) => P4).
i=1 i=1 I

Randoan’able X
» The probability distribution /\\
Fx(x)=P(X<z)=P{w: X(w)<z}), z€R e \
» The probability density | * ______
Fx(x) = i fx(y)dy oo
@ 20, [ pxty=1
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Probabil It)’ |01 fcoue ronTichNIoL:

We can now more appropriately define

» The mean or expectation

px = E[X] :/ rfxdr  Elg(X)] = /OO g(z) fx dx

— 00 — 00

» The variance

05 = var(X) = / (z — pux)?fx dz
» The m’th moment
E X = / ™" fx dx

» The standard deviation

% = EIXY) - 14
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Probability 101 -

Let us recall a couple of widely used densities

» The normal/Gaussian distribution - N (1, 0%)

(x — )"
202 ’

1
fx(x) = exp
2o’

<

» The uniform distribution - U(a, b)

L xe(a,b),

fx(x) = { b-a’

0, otherwise, (

X



0. Wil
Probabil It)’ |01 fcoue ronTichNIoL:

The last concepts we will recall are

» The correlation between two random variables is

cov(X1, X»)
corr( Xy, Xp) = —1 < corr(Xj, Xp) < 1.
O x, O')(2

cov(X1, Xg) = E[(X1 — pux, ) (X2 — pix, )|
They are uncorrelated if corr(X;, X5) =0

» The variables are independent if P(4; N 45) = P(A4,)P(A4,)
fxix. (21, 22) = fx, (21) fx, (72)

Independence = Uncorrelated
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(Some) classic methods for UQ il

Let us now - finally - return to the quest at hand:

How do we account for the impact of the
uncertainty on the output of a dynamical system

To briefly recall a few classic methods, let us consider
the following problem

ccl:’_t(t w) = —o(w)u, u(0, w) = f(w),

u(t,w) : 10, T] x Q@ = R

» (o, B)independent then  u(t, X1, X5) : [0,7] x R* — R
du(t,w)

dt
» (a,3)dependent then  w(t, X,g(X)):[0,T] xR —R

= —Xju, u(0,w) =Xy

du(t,w)
dt

= —Xu, u(0,w)=g(X)



Monte Carlo methods o rorEcNIOU:

The truly classic and simple approach
|. Create M iid’s from the assumed distribution - (o, 3")

2. Solve problem for each set of iid’s - «”(¢) = u(t, X)

1 M

3. Compute required statistics - a(t) = Vi > uft, X)) ~ E[u]

As samples are based on iid’s, the central limit theorem implies

a(t) — Efu]| ~ ——

v M
This result is both the curse and the strength

» The convergence is slow, i.e., expensive for good accuracy
» The convergence does not depend on dimension

Note: Lots of games in town to improve
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A few remarks on MLMC B

EEEEEEEEEEEEEEEEE

A powerful approach has emerged within the last few years
to accelerate the classic MC - known as Multi-Level MC

Consider M
Elu] = — i
ul = 77 ; u

A standard way to accelerate convergence is to consider

1 M

Elul = + > (ui — Agi — Elg)]))

1=1

Where g is supposed to well correlated with f

This reduces variance and increases convergence
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A few remarks on MLMC (”_

Instead, consider
Flu| = Flui| 4+ Elu — uq]
Then, if

» Elup| is cheap to compute

We can compute

No

Elu] = Nil D (u1); - ]\1,0 > (u; — (u1)s)

Fast Quick convergence
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A few remarks on MLMC .(”_

Hence, there is a potential for substantial savings - in
particular for multiple levels

Main challenge is to determine number of samples at

c att=1.00

Rel. L* (L* )-error of the mean of p (K=5)

~-~
-~

1.0_ —u MC ....................................................................................... Lo
+—+ MLMC 5 : : - !8
0.8_ —o MC2 ................... - Lo - 16
*—+ MLMC2 14

09 | i i i 12
4 2.6 2.8 3.0 3.2 3.4 1.0f { 1o
log10(cells) in x-direction {-2

-4

0.5 {1
6
I—s
: : : ~10

0'8.0 0.5 1.0 1.5 2.0

Accelerates MC - but convergence
remains the same Mishra et al, JCP 2016
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Moment methods .(”_

Consider the following equation

p) =Ef] = Efau, u(0) = EI]
The unknown can be computed Tzr:mmg
dEC[;zu] el W) =Bl e MO ED
..and can be continued
i, = Elou] % = —pri1, px(0) = E[a”g]

but the ‘closure problem’ remains - often solved by assuming
Hik+1 = g(:u()a SO muk)

» Accuracy is unclear in model
» Complex for a large problem



Perturbation methods cous ovatcra

Let us assume that ¢ = O(@(w)) ~ o, < 1

Then we can express the solution as

u(t, ) = up(t) + a(w)u (t) + a*(@)us(t) + - -,

Matching orders in the expansion yields

dM2
dt

duo du1
O(1): — =0 O(€):

- O(€?):
dt dt Ho-

— —Uur,

» Only applies for small variance(s)
» Derivation is problem specific
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Challenges in classic methods it

There are serious problems with these methods

» Moment/Perturbation methods are too complex and
intrusive to serve as a general tool.

» Monte Carlo methods are flexible/ general - the convergence
rate is problematic: | digit requires 100 simulations

How can be strive to improve this !

o
wn

MC approximates the density
using piecewise constant
samples - resulting in the slow
pointwise convergence

o o
NN

o

Relative Frequency

027

3 4 5 B 7
Material 1 : Cohesion (kN/m2)
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Challenges in classic methods -

But recall the context here - we will

» Make assumption on the nature of the aleatory uncertainty
through the input variables.

» Make some assumptions on the character of the epistemic
uncertainty, possibly using just uniformly distributed variables.

These are random variables with a smooth density

From an approximation standpoint, using piecewise constant
functions to represent a smooth function is ‘a poor choice’
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Detour on global expansions T

Consider the smooth period function o 3
U\X) =

5 —4cos(x)

Using a Fourier series

7’
————T
~

[ERY] 2R v N s oo\ 1A

T RV A A N R R VA VAR VY

R I A LR Y B i A A |

! : "' Yoo \|l' \‘N=“16‘ Vo '
r

v | 0 v \!\(\/\’ e l\ \‘\/\/ ]

! RSN RAER |

|

Pyu(x)= Y fze™,

[n|<N/2

1 21 _
= —/ u(x)e " dx
27 0

\,\,\/\ \/\,
v

M Hll'"m\r\p Hin m«,wv\ ’VW r‘wmvvvm i ”ﬂ‘ v

P
=

0.2 0.4 0.6 0.8 1.0
X/2r

Rigorous theory confirms that

(q)
lu = Povtellwgronm < wr= lullwyiozm e = Pavielis < € i g

N9~

Challenge: How to take advantage of this for UQ ?
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The Wiener Chaos expansion T

Define the space of square integrable functions
L3, = {f: 1 - R|E[f?] < o0}

Provided f € L%, we have |
fr = —E[f(X)®,(X)]

FX) = 3 Fuba(X) T
”;0 Tn = E[(I)%(X)]

Where the basis - the Chaos Polynomial - satisfies

E[®, (X) P (X)] = /q)m(X(SB))@n(X(ﬂf))de(iv) = VnOmn

Basis depends on the distribution of the random variable !




The Wiener Chaos expansion

Consider Gaussian variables with

fx(x) =

1
V2T

€

—z?/2

(gl
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The corresponding polynomials are the Hermite Polynomials

Hy(X)=1, Hi(X)=X, Hy(X)=X? -1, H3(X)= X" -3X

H_n (x)

50

40

30

20

10

-10

-20

-30

-40

Hermite (physicists") Polynomials

|

|

|

0D 3 33 335
LU | | O | B | B |
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The Wiener Chaos expansion -

If we now consider the truncated expansion

7DNf an

then strong convergence follows directly from classic theory

Hf—PNfHL%X — 0, N — o0

If we now consider a more general problem
N 2

Zn =) Gn®p(X)
2
Weak convergence can be achieved by defining
1

in = —Ex[Fy HFx (X)) ®n(X)]

We can use one random variable to approximate another
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* )
c iIener d0S eXpansion ECOLS POLYTECHNIGUE
FEDERALE DE LAUSANNE
Xiu, 2010
0.6 T T T T T T T 0.45 l
— exact
= = 1{st-order
d
3rd-order rrd?err
. 5th—order 0.4 rder
0.5
0.35F
0.4 03k
0.25F
0.3
0.2
0.2 1 o.15F
0.1f
0.1F
0.05F
0 0
-4 4 -4 4

It is clear that choosing the right basis -- associated with the
nature of the random variable -- is key to performance

This the advantage and the curse -- as we shall see
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The Wiener Chaos expansion T

The extension to multiple random variables follows
Define Fx,(x;) = P(X; <) @ € Ix,
X:(le“'de) Fx =Fx, x...x Fx,

and the multi-dimensional polynomial chaos
(I)Z(X) — (I)il (Xl) X ... X (I)z'd(Xd) |i| < N

[0, (X)) (X)] — / D;(x)0;(x) dFx (z) =30, ~; = E[®?]

The homogeneous Chaos expansion is

N
In(X) =Y fi®(X) € Ph dimPY = ( N +d ) _ (N +ad)
|4|=0

N Nld!

The ‘curse of dimension’ shows its face !
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The Wiener Chaos expansion il

Assuming the Chaos expansion is known, we need statistics

N
17]=0

The expectation follows from

N
~ E[fn] = / Z [i®: dFx = fo
1i|=0
In a similar fashion, the variance is

var(f) = E[(f — p)? Z Vi f?

17| >0
Other moments can be obtained in a similar fashion.

Functions of the expansion can also be estimated through
Monte Carlo sampling
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We have achieved quite a bit

» Motivated the need for UQ in Computational Science

» Discussed in some detail the shortcomings of classic
methods such as Monte Carlo methods.

» Realizing that smoothness in the behavior of the
random variables should be explored

»..and introduced the Chaos expansion to achieve this

We have still to use this insight to solve differential equations -
and demonstrate the promised benefits



