

Reduced order models for parameterized problems: Lecture Three

Jan S Hesthaven
EPFL-SB-MATHICSE-MCSS
jan.Hesthaven@epfl.ch

w/ assistance from B. Stamm (Aachen, D) and G. Rozza (SISSA, IT)

Overview of the lectures

Lecture 1: Introduction, motivation, basics

Lecture 2: Certified reduced methods

Lecture 3: The 'non's '

Hesthaven, Rozza, Stamm
Certified Reduced Basis Methods for Parametrized
Partial Differential Equations
Springer Briefs in Mathematics, 2015

Free: https://infoscience.epfl.ch/record/213266?ln=en

Overall goals

Understand Reduced models

Overall goals

Understand Reduced models

WHAT do we mean by 'reduced models'?

WHY should we care?

WHEN could it work?

HOW do we know?

DOES it work?

WHAT's next?

Overall goals

Understand Reduced models

WHAT do we mean by 'reduced models'?

WHY should we care?

WHEN could it work?

HOW do we know?

DOES it work?

WHAT's next?

The affine assumption is key to speed

Assumption:

$$a(w,v;\mu) = \sum_{q=1}^{Q_{\mathtt{a}}} heta_{\mathtt{a}}^q(\mu) \; a_q(w,v),$$
 $f(v;\mu) = \sum_{q=1}^{Q_{\mathtt{f}}} heta_{\mathtt{f}}^q(\mu) \; f_q(v),$ $\ell(v;\mu) = \sum_{q=1}^{Q_1} heta_{\mathtt{l}}^q(\mu) \; \ell_q(v),$

where

$$\theta_{\mathbf{a}}^{q}, \theta_{\mathbf{f}}^{q}, \theta_{\mathbf{1}}^{q} : \mathbb{P} \to \mathbb{R}$$
 μ - dependent functions,
 $a_{q} : \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ μ - independent forms,
 $f_{q}, \ell_{q} : \mathbb{V} \to \mathbb{R}$ μ - independent forms,

In many problems, this does not hold

- ▶ Geometric parametrization
- Material variations
- etc

In this case, we do not have the offline-online decomposition and cannot eliminate dependence on the truth problem

In many problems, this does not hold

- Geometric parametrization
- Material variations
- etc

In this case, we do not have the offline-online decomposition and cannot eliminate dependence on the truth problem

Except if we can - somehow - express non-affine terms as an affine expansion, e.g.

We consider a general parametrized function

$$\mathcal{M} = \{ f(\cdot; \mu) \mid \mu \in \mathbb{P} \} \subset \mathbb{V},$$

and seek to approximate it as

$$f(x,\mu) \simeq f_N(x,\mu) = \sum_{n=0}^{N} \alpha_n(\mu)\varphi_n(x)$$

and now we seek a problem specific interpolation with

$$\varphi_n(x) = f(x; \mu_n), \qquad n = 1, \dots, N,$$

We consider a general parametrized function

$$\mathcal{M} = \{ f(\cdot; \mu) \mid \mu \in \mathbb{P} \} \subset \mathbb{V},$$

and seek to approximate it as

$$f(x,\mu) \simeq f_N(x,\mu) = \sum_{n=0}^{N} \alpha_n(\mu)\varphi_n(x)$$

and now we seek a problem specific interpolation with

$$\varphi_n(x) = f(x; \mu_n), \qquad n = 1, \dots, N,$$

How do we find the interpolation points - greedy!

Given a parametrised family of functions $f(\cdot; \mu), \mu \in \mathbb{P}$, a set of N-1 basis functions $\varphi_1, \ldots, \varphi_{N-1}$ and N-1 interpolation points x_1, \ldots, x_{N-1} let us define

$$\left(\mu_N = \arg\max_{\mu \in \mathbb{P}} \|f(\cdot; \mu) - \mathbf{I}_{N-1} f(\cdot; \mu)\|_{L^{\infty}(\Omega)}.\right)$$

 \Rightarrow the worst approximation results if taking μ_N .

Thus the basis should be enriched by $f(\cdot; \mu_N)$.

Set

$$x_N = \arg \max_{x \in \Omega} |f(x; \mu_N) - I_{N-1} f(x; \mu_N)|,$$

and

$$\varphi_N(x) = \frac{f(x; \mu_N) - I_{N-1} f(x; \mu_N)}{f(x_N; \mu_N) - I_{N-1} f(x_N; \mu_N)}, \quad \forall x \in \Omega.$$

Step N:

Given: $\{\varphi_1, ..., \varphi_{N-1}\}, \{x_1, ..., x_{N-1}\}.$

o Solve the interpolation problem: Find $\{\alpha_n(\mu)\}_{n=1}^{N-1}$ s.t.

$$\sum_{n=1}^{N-1} \varphi_n(x_i)\alpha_n(\mu) = f(x_i; \mu), \qquad i = 1, \dots, N-1.$$

Step N:

Given: $\{\varphi_1, ..., \varphi_{N-1}\}, \{x_1, ..., x_{N-1}\}.$

o Solve the interpolation problem: Find $\{\alpha_n(\mu)\}_{n=1}^{N-1}$ s.t.

$$\left(\sum_{n=1}^{N-1} \varphi_n(x_i)\alpha_n(\mu) = f(x_i; \mu), \qquad i = 1, \dots, N-1.\right)$$

o Compute the interpolating function

$$I_{N-1}f(\cdot;\mu) = \sum_{n=1}^{N-1} \alpha_n(\mu)\varphi_n$$

$$(I_{N-1}f(x_i;\mu) = f(x_i;\mu), i = 1, \dots, N-1).$$

Step N:

Given: $\{\varphi_1, \dots, \varphi_{N-1}\}, \{x_1, \dots, x_{N-1}\}.$

o Solve the interpolation problem: Find $\{\alpha_n(\mu)\}_{n=1}^{N-1}$ s.t.

$$\sum_{n=1}^{N-1} \varphi_n(x_i)\alpha_n(\mu) = f(x_i; \mu), \qquad i = 1, \dots, N-1.$$

o Compute the interpolating function

$$I_{N-1}f(\cdot;\mu) = \sum_{n=1}^{N-1} \alpha_n(\mu)\varphi_n$$

$$(I_{N-1}f(x_i;\mu) = f(x_i;\mu), i = 1,\dots, N-1).$$

o Define

$$\mu_{N} = \arg \max_{\mu \in \mathbb{P}} ||f(\cdot; \mu) - I_{N-1}f(\cdot; \mu)||_{L^{\infty}(\Omega)},$$

$$x_{N} = \arg \max_{x \in \Omega} ||f(x; \mu_{N}) - I_{N-1}f(x; \mu_{N})||,$$

$$q_{N} = \frac{f(x; \mu_{N}) - I_{N-1}f(x; \mu_{N})}{f(x_{N}; \mu_{N}) - I_{N-1}f(x_{N}; \mu_{N})}$$

Consider the parametrized family of functions:

$$u(x;\mu) = x - \frac{e^{\frac{x}{\mu}} - 1}{e^{\frac{1}{\mu}} - 1}, \quad \text{for } x \in (0,1), \mu \in [0.01, 0.5].$$

Consider the parametrized family of functions:

$$u(x;\mu) = x - \frac{e^{\frac{x}{\mu}} - 1}{e^{\frac{1}{\mu}} - 1}, \quad \text{for } x \in (0,1), \mu \in [0.01, 0.5].$$

Consider the parametrized family of functions:

$$u(x;\mu) = x - \frac{e^{\frac{x}{\mu}} - 1}{e^{\frac{1}{\mu}} - 1}, \quad \text{for } x \in (0,1), \mu \in [0.01, 0.5].$$

Interpolation: Bad accuracy until there are enough interpolation points in the boundary layer.

EIM - errors

The error analysis of the interpolation procedure classically involves the Lebesgue constant $\Lambda_N = \sup_{x \in \Omega} \sum_{i=1}^N |h_i^N(x)|$, where the h_i^N is the associated Lagrange basis.

A (in practice very pessimistic) upper-bound for the Lebesque constant is $2^N - 1$.

Lemma:

For any $f \in \mathcal{M}$, the interpolation error satisfies

$$||f - I_N f||_{L^{\infty}(\Omega)} \le (1 + \Lambda_N) \inf_{v_N \in \mathbb{V}_N} ||f - v_N||_{L^{\infty}(\Omega)}.$$

Comparison with polynomial interpolation:

Equidistant points: $\Lambda_N \sim \frac{2^{N+1}}{eN \log N}$

Chebychev points: $\Lambda_N < \frac{2}{\pi} \log(N+1) + 1$

EIM - errors

Magic points:

- o Hierarchical set of points.
- o Application to any domain Ω as we will see in the next slides.

EIM - extensions

On a half-moon:

A non-affine example

Let us consider problems described by integral equations

Electric field integral equation (EFIE)

$$ik \int_{\Gamma \times \Gamma} G_k(\boldsymbol{x}, \boldsymbol{y}) \left[\boldsymbol{j}(\boldsymbol{x}) \cdot \boldsymbol{j}^t(\boldsymbol{y}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{j}(\boldsymbol{x}) \operatorname{div}_{\Gamma} \boldsymbol{j}^t(\boldsymbol{y}) \right] d\boldsymbol{x} d\boldsymbol{y} = \boldsymbol{F}(\boldsymbol{j}^t)$$

$$G_k(\boldsymbol{x}, \boldsymbol{y}) := rac{e^{ik|\boldsymbol{x} - \boldsymbol{y}|}}{|\boldsymbol{x} - \boldsymbol{y}|}.$$

Truth approximation is a standard MoM solver.

CERFACS

After discretization we again have

$$a(\boldsymbol{u}_h(\boldsymbol{\mu}), \boldsymbol{v}_h; \boldsymbol{\mu}) = f(\boldsymbol{v}_h; \boldsymbol{\mu}) \qquad \forall \boldsymbol{v}_h \in \mathbb{V}_h.$$

Output functional is

$$A_{\infty}(\boldsymbol{u}, \hat{\boldsymbol{d}}) = \frac{ikZ}{4\pi} \int_{\Gamma} \hat{\boldsymbol{d}} \times (\boldsymbol{u}(\boldsymbol{x}) \times \hat{\boldsymbol{d}}) e^{-ik\boldsymbol{x} \cdot \hat{\boldsymbol{d}}} d\boldsymbol{x}$$

$$RCS(\boldsymbol{u}, \hat{\boldsymbol{d}}) = 10 \log_{10} \left(\frac{|A_{\infty}(\boldsymbol{u}, \hat{\boldsymbol{d}})|^2}{|A_{\infty}(\boldsymbol{u}, \hat{\boldsymbol{d}}_0)|^2} \right)$$

u: current on surface

d: given directional unit vector

 d_0 : reference unit direction

Incident field
$$\boldsymbol{E}^{i}(\boldsymbol{x};k) = -\boldsymbol{p}\,e^{ik\boldsymbol{x}\cdot\hat{\boldsymbol{s}}_{(\frac{\pi}{4},0)}}$$

One problem - the affine assumption fails

Caution: This is not feasible in the framework of the EFIE!

$$a(\boldsymbol{u}_h, \boldsymbol{v}_h; \boldsymbol{\mu}) = ikZ \int_{\Gamma} \int_{\Gamma} \frac{e^{i\boldsymbol{k}|\boldsymbol{x}-\boldsymbol{y}|}}{|\boldsymbol{x}-\boldsymbol{y}|} \left\{ \boldsymbol{u}_h(\boldsymbol{x}) \cdot \overline{\boldsymbol{v}_h(\boldsymbol{y})} - \frac{1}{k^2} \operatorname{div}_{\Gamma, \boldsymbol{x}} \boldsymbol{u}_h(\boldsymbol{x}) \cdot \overline{\operatorname{div}_{\Gamma, \boldsymbol{y}} \boldsymbol{v}_h(\boldsymbol{y})} \right\} d\boldsymbol{x} d\boldsymbol{y}$$
$$f(\boldsymbol{v}_h; \boldsymbol{\mu}) = \boldsymbol{n} \times (\boldsymbol{p} \times \boldsymbol{n}) \int_{\Gamma} e^{i\boldsymbol{k}\boldsymbol{x} \cdot \hat{\boldsymbol{s}}_{(\boldsymbol{\theta}, \boldsymbol{\phi})}} \cdot \overline{\boldsymbol{v}_h(\boldsymbol{x})} d\boldsymbol{x}$$

One problem - the affine assumption fails

Caution: This is not feasible in the framework of the EFIE!

$$a(\boldsymbol{u}_h, \boldsymbol{v}_h; \boldsymbol{\mu}) = ikZ \int_{\Gamma} \int_{\Gamma} \frac{e^{i\boldsymbol{k}|\boldsymbol{x}-\boldsymbol{y}|}}{|\boldsymbol{x}-\boldsymbol{y}|} \left\{ \boldsymbol{u}_h(\boldsymbol{x}) \cdot \overline{\boldsymbol{v}_h(\boldsymbol{y})} - \frac{1}{k^2} \operatorname{div}_{\Gamma, \boldsymbol{x}} \boldsymbol{u}_h(\boldsymbol{x}) \cdot \overline{\operatorname{div}_{\Gamma, \boldsymbol{y}} \boldsymbol{v}_h(\boldsymbol{y})} \right\} d\boldsymbol{x} d\boldsymbol{y}$$
$$f(\boldsymbol{v}_h; \boldsymbol{\mu}) = \boldsymbol{n} \times (\boldsymbol{p} \times \boldsymbol{n}) \int_{\Gamma} e^{i\boldsymbol{k}\boldsymbol{x} \cdot \hat{\boldsymbol{s}}(\boldsymbol{\theta}, \boldsymbol{\phi})} \cdot \overline{\boldsymbol{v}_h(\boldsymbol{x})} d\boldsymbol{x}$$

Solution - empirical interpolation method (EIM)

Seek $\{\mu_m\}_{m=1}^M$ such that

$$\mathcal{I}_M(f)(oldsymbol{x};oldsymbol{\mu}) = \sum_{m=1}^M lpha_m(oldsymbol{\mu}) f(oldsymbol{x};oldsymbol{\mu}_m)$$

For the EFIE formulation this results in

$$a(\boldsymbol{w},\boldsymbol{v};k) \approx 1 \int_{\Gamma \times \Gamma} \frac{\boldsymbol{w}(\boldsymbol{x}) \cdot \overline{\boldsymbol{v}(\boldsymbol{y})}}{4\pi |\boldsymbol{x}-\boldsymbol{y}|} d\boldsymbol{x} \, d\boldsymbol{y}$$
 blue: parameter independent red: parameter dependent $-\frac{1}{k^2} \int_{\Gamma \times \Gamma} \frac{\operatorname{div}_{\Gamma} \boldsymbol{w}(\boldsymbol{x}) \, \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{y})}{4\pi |\boldsymbol{x}-\boldsymbol{y}|} d\boldsymbol{x} \, d\boldsymbol{y}$
$$+ \sum_{m=1}^{M} \alpha_m(k) \int_{\Gamma \times \Gamma} G_{k_m}^{ns}(|\boldsymbol{x}-\boldsymbol{y}|) \boldsymbol{w}(\boldsymbol{x}) \cdot \overline{\boldsymbol{v}(\boldsymbol{y})} d\boldsymbol{x} \, d\boldsymbol{y}$$

$$- \sum_{m=1}^{M} \frac{\alpha_m(k)}{k^2} \int_{\Gamma \times \Gamma} G_{k_m}^{ns}(|\boldsymbol{x}-\boldsymbol{y}|) \operatorname{div}_{\Gamma} \boldsymbol{w}(\boldsymbol{x}) \, \overline{\operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{y})} d\boldsymbol{x} \, d\boldsymbol{y}$$

and for the source

$$F(\boldsymbol{v};\boldsymbol{\mu}) \approx \sum_{m=1}^{M_f} \alpha_f(\boldsymbol{\mu}) \int_{\Gamma} \boldsymbol{\gamma}_t \mathbf{E}^i(\boldsymbol{y};\boldsymbol{\mu}_m) \cdot \overline{\boldsymbol{v}(\boldsymbol{y})} d\boldsymbol{y}$$

Results for EIM

$$f(x;k) = \frac{e^{ikx} - 1}{x}, \quad x \in (0, R_{\text{max}}], k \in [1, k_{\text{max}}]$$

Picked parameters k_m in the parameter domain

Interpolation error depending on the length of the expansion

Results for EIM

$$f(\boldsymbol{x}; \boldsymbol{\mu}) = e^{i\boldsymbol{k}\hat{\boldsymbol{s}}(\boldsymbol{\theta}, \phi) \cdot \boldsymbol{x}}, \quad \boldsymbol{x} \in \Gamma, \boldsymbol{\mu} \in \mathcal{D},$$
$$\boldsymbol{\mu} = (k, \theta), \quad \phi \text{ fixed},$$
$$\mathcal{D} = [1, k_{\text{max}}] \times [0, \pi]$$

Extension to an element based EIM

Objective is to reduce online cost

RBM for Integral Equations

Picked parameter values and EIM elements (tol=1e-12):

More complex examples

2 parameters, $\boldsymbol{\mu}=(k,\theta)$ with $\mathcal{D}=[1,13]\times[0,\pi]$ $\phi=0$ fixed

Convergence:

Picked parameters:

Computing time:

2 parameters, $\boldsymbol{\mu}=(k,\theta)$ with $\mathcal{D}=[1,25]\times[0,\pi]$ $\phi=0$ fixed

2 parameters, $\boldsymbol{\mu}=(k,\theta)$ with $\mathcal{D}=[1,25]\times[0,\pi]$ $\phi=0$ fixed

Picked parameters:

2 parameters, $\mu = (k, \theta)$ with $\mathcal{D} = [1, 25] \times [0, \pi]$ $\phi = 0$ fixed

Picked parameters:

1 parameter,
$$\mu = k$$
 with $\mathcal{D} = [1, 25.5]$ $(\theta, \phi) = (\frac{\pi}{6}, 0)$ fixed

1 parameter,
$$\mu=k$$
 with $\mathcal{D}=[1,25.5]$ $(\theta,\phi)=(\frac{\pi}{6},0)$ fixed

Repartition of 23 first picked parameters:

1 parameter,
$$\mu = k$$
 with $\mathcal{D} = [1, 25.5]$
 $(\theta, \phi) = (\frac{\pi}{6}, 0)$ fixed

Repartition of 23 first picked parameters:

1 parameter, $\mu = k$ with $\mathcal{D} = [1, 25.5]$ $(\theta, \phi) = (\frac{\pi}{6}, 0)$ fixed

Repartition of 23 first picked parameters:

The non-compliant problem

Non-compliant case

A case is called non-compliant if

Compliant output: if $s(\mu) = \ell(u(\mu); \mu) = f(u(\mu); \mu)$.

Here: if $s(\mu) = \ell(u(\mu); \mu) \neq f(u(\mu); \mu)$.

In that case we must also solve the dual problem

Exact solution: for some $\mu \in \mathbb{P}$, find $\psi(\mu) \in \mathbb{V}$ such that

$$a(v, \psi(\mu); \mu) = -\ell(v; \mu), \quad \forall v \in \mathbb{V}.$$

Truth solution: for some $\mu \in \mathbb{P}$, find $\psi_{\delta}(\mu) \in \mathbb{V}_{\delta}$ such that

$$a(v_{\delta}, \psi_{\delta}(\mu); \mu) = -\ell(v_{\delta}; \mu), \quad \forall v_{\delta} \in \mathbb{V}_{\delta}.$$

Non-compliant case

The resulting RB approximation $u_{rb} \in \mathbb{V}_{pr}, \psi_{rb} \in \mathbb{V}_{du}$ solve

$$\begin{aligned} a(u_{\mathtt{rb}}(\mu), v_{\mathtt{rb}}; \mu) &= f(v_{\mathtt{rb}}), & \forall v_{\mathtt{rb}} \in \mathbb{V}_{\mathtt{pr}}, \\ a(v_{\mathtt{rb}}, \psi_{\mathtt{rb}}(\mu); \mu) &= -\ell(v_{\mathtt{rb}}), & \forall v_{\mathtt{rb}} \in \mathbb{V}_{\mathtt{du}}. \end{aligned}$$

Then, the RB output can be evaluated as

$$s_{\mathtt{rb}}(\mu) = \ell(u_{\mathtt{rb}}) - r_{\mathtt{pr}}(\psi_{\mathtt{rb}}; \mu)$$

where

$$r_{\text{pr}}(v; \mu) = f(v) - a(u_{\text{rb}}, v; \mu),$$

$$r_{\text{du}}(v; \mu) = -\ell(v) - a(v, \psi_{\text{rb}}; \mu)$$

are the primal and the dual residuals.

The output error bound takes the form

$$\eta_{\mathrm{s}}(\mu) \equiv \frac{\|r_{\mathrm{pr}}(\,\cdot\,;\mu)\|_{\mathbb{V}'}}{(\alpha_{\mathrm{LB}}(\mu))^{1/2}} \, \frac{\|r_{\mathrm{du}}(\,\cdot\,;\mu)\|_{\mathbb{V}'}}{(\alpha_{\mathrm{LB}}(\mu))^{1/2}}.$$

Including the adjoint

Note: we can allow different approximation spaces based on different parts of the problem

Primal Dual Primal-Dual

Let's consider an example

2D EM scattering off an open PEC cavity

Parameters are angles and frequency

We consider an output of interest known as the RCS

$$F(\omega, \theta, \psi) = \frac{\omega}{\sqrt{8\pi\omega}} \int_{S} \left[n_x H_y - n_y H_x + (\cos\psi n_x E_z + \sin\psi n_y E_z) \right] e^{-i\omega(x\cos\psi + y\sin\psi)} ds$$

$$s(\omega, \theta, \psi) = 10 \log_{10} \left[2\pi \frac{|F(\omega, \theta, \psi)|^2}{|E_z^{inc}(\omega, \theta)|^2} \right]$$

Treated by empirical interpolation

2D EM problems

We consider the 2D Maxwell problem

$$\begin{cases} -\epsilon\omega^2 E_x + \frac{1}{\mu} \frac{\partial}{\partial y} \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right) = i\omega J_x \\ -\epsilon\omega^2 E_y - \frac{1}{\mu} \frac{\partial}{\partial x} \left(\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right) = i\omega J_y \end{cases}$$

Parameters can be in the

- Materials
- Sources
- Frequencies
- Geometries

Problem is non-coercive and internal problems can have resonances

- ✓ Problem is affine in the frequency
- √ Non-affine in the angle(s) and output
- √ Both primal and dual problem are solved

Greedy selection of samples

Max error in primal error estimator

Primal vs dual solution

Primal problem

Dual problem

Global convergence of error estimator

The non-stationary problem

Continuous problem: For any $\mu \in \mathbb{P}$, find for any $t \in [0,T]$ the function $u(\cdot,t;\mu) \in \mathbb{V}$ such that

$$\frac{d}{dt}(u(\cdot,t;\mu),v)_{\mathbb{V}} + a(u(\cdot,t;\mu),v;\mu) = f(v,t;\mu), \qquad \forall v \in \mathbb{V},$$

$$u(x,0;\mu) = u_0(x), \qquad \forall x \in \Omega,$$

$$u(x,t;\mu) = g(x,t;\mu), \qquad \forall x \in \partial\Omega.$$

Continuous problem: For any $\mu \in \mathbb{P}$, find for any $t \in [0,T]$ the function $u(\cdot,t;\mu) \in \mathbb{V}$ such that

$$\frac{d}{dt}(u(\cdot,t;\mu),v)_{\mathbb{V}} + a(u(\cdot,t;\mu),v;\mu) = f(v,t;\mu), \qquad \forall v \in \mathbb{V},$$

$$u(x,0;\mu) = u_0(x), \qquad \forall x \in \Omega,$$

$$u(x,t;\mu) = g(x,t;\mu), \qquad \forall x \in \partial\Omega.$$

Full discretization (forward Euler scheme in time for simplicity): For any $\mu \in \mathbb{P}$, find for any $n = 1, ..., N_T$ the function $u_{\delta}^n(\cdot; \mu) \in \mathbb{V}_{\delta}$ such that

$$\frac{1}{\Delta t}(u_{\delta}^{n+1}(\mu), v_{\delta})_{\mathbb{V}} = \frac{1}{\Delta t}(u_{\delta}^{n}(\mu), v_{\delta})_{\mathbb{V}} - a(u_{\delta}^{n}(\mu), v_{\delta}; \mu) + f(v_{\delta}, t_{n}; \mu), \quad \forall v_{\delta} \in \mathbb{V}_{\delta},$$

$$u_{\delta}^{0}(x; \mu) = u_{\delta, 0}(x), \qquad \forall x \in \Omega,$$

$$u_{\delta}^{n}(x; \mu) = g_{\delta}(x, t_{n}; \mu), \qquad \forall x \in \partial\Omega,$$

with $t_n = n\Delta t$.

Suppose: A reduced basis approximation space \mathbb{V}_{rb} is given (it's construction is discussed later).

RBM approximation: For any $\mu \in \mathbb{P}$, find for any $n = 1, ..., N_T$ the function $u_{rb}^n(\mu) \in \mathbb{V}_{rb}$ such that

$$\begin{pmatrix}
\frac{1}{\Delta t}(u_{\mathbf{rb}}^{n+1}(\mu), v_{\mathbf{rb}})_{\mathbb{V}} = \frac{1}{\Delta t}(u_{\mathbf{rb}}^{n}(\mu), v_{\mathbf{rb}})_{\mathbb{V}} - a(u_{\mathbf{rb}}^{n}(\mu), v_{\mathbf{rb}}; \mu) + f(v_{\mathbf{rb}}, t_{n}; \mu), & \forall v_{\mathbf{rb}} \in \mathbb{V}_{\mathbf{rb}}, \\
u_{\mathbf{rb}}^{0}(x; \mu) = u_{\mathbf{rb}, 0}(x), & \forall x \in \Omega, \\
u_{\mathbf{rb}}^{n}(x; \mu) = g_{\mathbf{rb}}(x, t_{n}; \mu), & \forall x \in \partial\Omega.
\end{pmatrix}$$

Again: We are mimicking the truth solver but are restricting the solution space from V_{δ} to V_{rb} .

Remaining question: How to construct the reduced basis space V_{rb} ?

POD/Greedy algorithm:

Set N = 1, choose $\mu_1 \in \mathbb{P}$ arbitrarily.

- 1. Compute the time series $u_{\delta}^{n}(\mu_{N})$ for all $n = 1, ..., N_{T}$ (truth problem: computationally expensive)
- 2. Define the error trajectory $e_{rb}^n(\mu) = u_{\delta}^n(\mu_N) u_{rb}^n(\mu_N)$
- 3. Compute a POD of the error trajectory $e_{rb}^n(\mu)$ and retain the most important mode ξ_1 .
- 4. Set $V_{rb} = \operatorname{span}\{V_{rb}, \xi_1\}$
- 5. Find $\mu_{N+1} = \arg \max_{\mu \in \mathbb{P}} \eta(\mu)$
- 6. Set N := N + 1 and goto 1. while $\max_{\mu \in \mathbb{P}} \eta(\mu) > \text{Tol}$

Remaining question: How to construct the reduced basis space V_{rb} ?

POD/Greedy algorithm:

Set N = 1, choose $\mu_1 \in \mathbb{P}$ arbitrarily.

- 1. Compute the time series $u_{\delta}^{n}(\mu_{N})$ for all $n = 1, ..., N_{T}$ (truth problem: computationally expensive)
- 2. Define the error trajectory $e_{rb}^n(\mu) = u_{\delta}^n(\mu_N) u_{rb}^n(\mu_N)$
- 3. Compute a POD of the error trajectory $e_{rb}^n(\mu)$ and retain the most important mode ξ_1 .
- 4. Set $V_{rb} = \operatorname{span}\{V_{rb}, \xi_1\}$
- 5. Find $\mu_{N+1} = \arg \max_{\mu \in \mathbb{P}} \eta(\mu)$
- 6. Set N := N + 1 and goto 1. while $\max_{\mu \in \mathbb{P}} \eta(\mu) > \text{Tol}$

A posteriori estimator: $\eta(\mu) \approx ||u_{\delta}(\mu) - u_{rb}(\mu)||_{[0,T] \times \Omega}$:

- o Needs to be developed for each type of scheme/equation.
- o Sharp estimate is important for good parameter selection in greedy algorithm.
- o Is used to certify the error tolerance.

We consider time-dependent heat problem

$$a(w, v; \mu) = \sum_{p=1}^{8} \mu_{[p]} \int_{\Omega_p} \nabla w \cdot \nabla v + \int_{\Omega_9} \nabla w \cdot \nabla v,$$

$$\mu_{[p]} \in [0.1, 10] \quad \text{for } p = 1, \dots, 8.$$

$$f(v; \mu) = \mu_{[9]} \int_{\Gamma_{\text{bottom}}} v.$$

$$\mu_{[9]} \in [-1,1]$$
.

We consider time-dependent heat problem

$$a(w, v; \mu) = \sum_{p=1}^{8} \mu_{[p]} \int_{\Omega_p} \nabla w \cdot \nabla v + \int_{\Omega_9} \nabla w \cdot \nabla v,$$
$$\mu_{[p]} \in [0.1, 10] \quad \text{for } p = 1, \dots, 8.$$

$$f(v; \mu) = \mu_{[9]} \int_{\Gamma_{\text{bottom}}} v.$$

$$\mu_{[9]} \in [-1,1]$$
.

1000 E				_	
1000					
E					
100					
[~]					
<u> </u>					
10				\perp	
₽					
\					
1 - `	4			\mathbb{H}	
Ē	p-a-d				
-) Pr	_			
0.1		- B			
ŧ			•		
			and the		
0.01			75-	0	
F					
0.001	<u> </u>	<u> </u>	<u> </u>		
0.001				20	
Number of basis functions					

\overline{N}	$\eta_{ ext{en,av}}$	${\tt eff_{en,max}}$	$\mathtt{eff}_{\mathtt{en},\mathtt{av}}$
5	0.18	24.67	7.51
10	0.07	26.27	7.69
15	0.03	25.82	6.79
20	0.02	31.63	9.53

$$At T=3$$

Caution is needed

Satellite modeling by reduced basis — careful

Hamiltonian reduced model

Wave equation:

$$\begin{cases} \dot{q} = p \\ \dot{p} = c^2 q_{xx} \end{cases}$$

Hamiltonian:

$$H(q,p) = \int \left(\frac{1}{2}p^2 + \frac{1}{2}c^2q_x^2\right) dx$$

Stability by construction

- size of original system : 1000
- size of reduced system : 30
- $\Delta H = 5 \times 10^{-4}$.
- $||y y_r||_{L_2} = 5 \times 10^{-5}$

Hamiltonian reduced model

Wave equation:

$$\begin{cases} \dot{q} = p \\ \dot{p} = c^2 q_{xx} \end{cases}$$

Hamiltonian:

$$H(q,p) = \int \left(\frac{1}{2}p^2 + \frac{1}{2}c^2q_x^2\right) dx$$

Stability by construction

- size of original system : 1000
- size of reduced system : 30
- $\Delta H = 5 \times 10^{-4}$.
- $||y y_r||_{L_2} = 5 \times 10^{-5}$

The non-intrusive problem

Challenge: All approaches so far requires that we have access to the full solver and all operators

For many problems and solvers this is problematic

Challenge: All approaches so far requires that we have access to the full solver and all operators

For many problems and solvers this is problematic

Question: Can we build reduced models without having access to the solver, i.e., all we have are snapshots?

Challenge: All approaches so far requires that we have access to the full solver and all operators

For many problems and solvers this is problematic

Question: Can we build reduced models without having access to the solver, i.e., all we have are snapshots?

Answer: Yes - but...!

Simple approach: Solve problem at grid in parameter space and interpolate in parameter space

Simple approach: Solve problem at grid in parameter space and interpolate in parameter space

Problem: High cost

Simple approach: Solve problem at grid in parameter space and interpolate in parameter space

Problem: High cost

Solution: Greedy approach based on accuracy of interpolation

Simple approach: Solve problem at grid in parameter space and interpolate in parameter space

Problem: High cost

Solution: Greedy approach based on accuracy of interpolation

New Problem: Interpolation on arbitrary grid in parameter space

Simple approach: Solve problem at grid in parameter space and interpolate in parameter space

Problem: High cost

Solution: Greedy approach based on accuracy of interpolation

New Problem: Interpolation on arbitrary grid in parameter space

Improved solution: Interpolation based on radial basis functions N

$$f(x,\mu) = \sum_{i=1}^{N} f(x,\mu_i)\phi_i(\mu) \qquad \phi_i(\mu) = \phi(\|\mu - \mu_i\|)$$

Example - Driven Cavity Flow

We consider the Navier-Stokes equations in a driven cavity

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \nabla^2 u = -\nabla(\frac{p}{\rho_0}) + g$$
$$\nabla \cdot u = 0$$

First 34 samples in parameter space

Example - Driven Cavity Flow

We consider the Navier-Stokes equations in a driven cavity

$$\frac{\partial u}{\partial t} + (u \cdot \nabla)u - \nu \nabla^2 u = -\nabla(\frac{p}{\rho_0}) + g$$
$$\nabla \cdot u = 0$$

Observations:

- Works well
- Simple, in particular for non-linear problems etc

Problem:

No rigor in error control - but maybe ok?

The non-standard problems

A summary so far

We have so far discussed how to

- Solve known problems faster
- Doing so with confidence in accuracy
- Minimize off-line cost

A summary so far

We have so far discussed how to

- Solve known problems faster
- Doing so with confidence in accuracy
- Minimize off-line cost

We will now consider how to use the same ideas to solve problems for which we do NOT have a large scale solver

Multiple scattering problems

Exploring related ideas for many body scattering

- Build an RB for each scatterer
- Build an RB for the interaction operation
- Combine through Jacobi-like iteration to enable rapid modeling of complex scatterer configurations

Multiple scattering problems

Exploring related ideas for many body scattering

- Build an RB for each scatterer
- Build an RB for the interaction operation
- Combine through Jacobi-like iteration to enable rapid modeling of complex scatterer configurations

This is not a RBM is the classic sense

.. but using RB ideas allows us to solve problems that are otherwise very hard to approach

Towards multiple scattering

Endfire incidence for k=11.048

Towards multiple scattering

Multiple scattering problems

$$\phi \in [0, 2\pi]; k = 3, \theta = \pi/2$$

$$ka = 1; kd = 4$$

RB for single scatterer has 5 parameters (frequency(1), angle (2), polarization (2))

RB for interaction operator has 8 parameters (frequency(I), relative size(I), distance (2), rotation (2), polarization (2))

Full scattering result computed with iteration

Multiple scattering problems

$$\phi \in [0, 2\pi]; k = 3, \theta = \pi/2$$

$$ka = 1; kd = 4$$

0.00

RB for single scatterer has 5 parameters (frequency(1), angle (2), polarization (2))

RB for interaction operator has 8 parameters (frequency(I), relative size(I), distance (2), rotation (2), polarization (2))

Full scattering result computed with iteration

Full RCS computed in less than 3 minutes for 36 spheres

Multiple scattering problem

Multiple scattering problem

$$k = 3, \phi^{i} = 0, \theta^{i} = 0, 90$$

 $\phi^{o} = 0, \theta^{o} = 0 - 180$

In a similar spirit

A company - Akselos (CH) - is making a business of this

(a) Shiploader model.

Figures by Akselos, S.A.

(d) Parametrized crack component.

(b) Stress visualization.

In a similar spirit

Figures by Akselos, S.A.

In a similar spirit

Figure 7: A local lateral shock is applied at initial time t=0s.

Figures by Akselos, S.A.

Software

You do not have to do it all yourself

rbMIT - MATLAB based
http://augustine.mit.edu/methodology/
methodology_rbMIT_SystemPackage.htm

RBniCS - python based with FEniCS link http://mathlab.sissa.it/rbnics

pyMOR - python based with FEniCS/DUNE link http://pymor.org

Questions?

Thank you!