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10 Hardware trends: 
Uniprocessor performance
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Revolution is Happening Now

• Chip density is 
continuing increase 
~2x every 2 years
• Clock speed is not
• Number of processor 

cores may double 
instead

• There is little or no 
hidden parallelism 
(ILP) to be found

• Parallelism must be 
exposed to and 
managed by software

Source: Intel, Microsoft (Sutter) and 
Stanford (Olukotun, Hammond)

Source:  Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)

Power wall: Nuclear power plant for each 
machine
ILP wall: Automatic maximum resource 
utilization increasingly difficult
Memory wall: Processor speed improves 
faster than memory bandwidth.

P / CV 2f

- Performance can only achieved by concurrent computations as uniprocessor performance has stalled.

More performance? (2003-)
- uniprocessor performance increase only 
x2/5years(?)
- multiprocessor performance increase x2/2 
years implies increased architectural parallelism. 
Performance problem is a software problem!

Major challenges:
- Rewrite sequential code
- Expose parallelism
- Deal with communication patterns

Multicore era!

Memory wall + Power wall + ILP wall = Brick wall
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Source: Nvidia Programming Guide

“Performance Gap”
(theoretical peak)}

Double precision support in GPUs
(scientific computing)

- GPUs in every PC (massive volume and potential impact)
- TFlops vs. 100 Gflops
- In current heterogenous hardware, CPU manages GPU

Programmable

} HPC in a 
desktop!

~x2 transistors every 18 months
(moore’s law since mid 70s)
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“Memory wall”
- Processor speed 

improves faster than 
memory bandwidth

- slow off-chip 
bandwidth for GPUs  

Determining factor in application performance likely to be memory access 
patterns rather than flop count (cf. 13 dwarfs due to P. Collella & D. Patterson).

- approximately x5 difference in bandwidth capacity

“Memory Gap”}
CPU: ~x2 every 10 years
GPU: ~x2 every 3-4 years
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Paradigm shift in Scientific Computing

Inevitable paradigm shift: 

   Parallelism and heterogeneity will be future standard

- New opportunities for solving larger, more complex and new problems.

- Increased focus on cost (perf/$) and energy efficiency (perf/watt) to secure low 

maintenance cost and value for the money. 

Conclusion: We need to rethink and redesign computational strategies and adopt new 

programming models to take advantage of new multi- and many-core technologies.

Multi- and many-core hardware is new standard

Consequences and challenges

- Affects hardware from embedded systems, workstations to super computing clusters

- Compilers and libraries most often don’t hide these issues and are limited

- Traditional computing methods run slower on new hardware and/or cannot fully 

exploit architectural features.

- Performance-portability requires algorithms which can expose hardware features.

14

General-Purpose GPU Computing

Many different applications from science and engineering show-cased in Nvidia’s 
CUDA zone (mostly by HPC researchers). All applications written in the CUDA 
framework after 2007! 15

16

GPUs vs. CPUs.
- GPUs are forerunners for future many-core architectures
- Both GPUs and CPUs are fast
- CPUs are optimized for reducing latency of few individual tasks (task parallelism)
- GPUs are optimized for maximizing throughput of many similar tasks (data parallelism)
- Future: integration going to happen to compensate for memory wall on-chip.

Source:  http://en.wikipedia.org/wiki/CUDA

Potential performance bottleneck: data-transfer

- PCI-Express link bandwidth ~5GB/s
- GPU on-chip bandwidth <192GB/s

• Highly scalable stream-processing architectures optimized for high 
throughput.

•  Massively parallel (SIMT) processing devices 

• 100s of cores, 1000s of threads

• Power-efficient (high perf/W)

• Available (almost) everywhere (some affordable, <$699)
(fx mass produced commodity graphics cards)

• High on-chip bandwidth (<192GB/s)
High compute capability (<515Gflops/s, double)

• Programmable using standard languages in combination 
with new programming models CUDA and OpenCL (since 2006) and 
new extensions of existing ones, e.g. OpenACC.

• Can act as a co-processor to CPU (or alone in next GPU generation)
(off-load computational intensive tasks from the CPU to GPU)

Modern General-Purpose GPUs (GPGPUS)
17

Research and education in Graphics Processing Units in Denmark

Established in August 2008 and is a unique 
national competence center and hardware 
laboratory.

- Development of efficient algorithms
- High-performance scientific computing
- Performance profiling, auto-tuning and prediction
- Software development
- Education

Collaboration: within both academia and industry.
Research projects: several ongoing B.Sc. - Ph.D.

http://gpulab.imm.dtu.dk
With support 2010-2013 from national FTP grant 
“Desktop Computing on Consumer Graphics Cards”
PI: Prof. Per Christian Hansen
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WHAT do we mean by ‘reduced models’ ?

WHY should we care ?

WHEN could it work ?

HOW do we know ?

DOES it work ?

Understand Reduced models

WHAT’s next ?



Overall goalsPart II - Trends in Heterogenous 
Desktop Computing

10 Hardware trends: 
Uniprocessor performance

11

8/29/2007 CS194 Lecure 14

Revolution is Happening Now

• Chip density is 
continuing increase 
~2x every 2 years
• Clock speed is not
• Number of processor 

cores may double 
instead

• There is little or no 
hidden parallelism 
(ILP) to be found

• Parallelism must be 
exposed to and 
managed by software

Source: Intel, Microsoft (Sutter) and 
Stanford (Olukotun, Hammond)

Source:  Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)

Power wall: Nuclear power plant for each 
machine
ILP wall: Automatic maximum resource 
utilization increasingly difficult
Memory wall: Processor speed improves 
faster than memory bandwidth.

P / CV 2f

- Performance can only achieved by concurrent computations as uniprocessor performance has stalled.

More performance? (2003-)
- uniprocessor performance increase only 
x2/5years(?)
- multiprocessor performance increase x2/2 
years implies increased architectural parallelism. 
Performance problem is a software problem!

Major challenges:
- Rewrite sequential code
- Expose parallelism
- Deal with communication patterns

Multicore era!

Memory wall + Power wall + ILP wall = Brick wall

CPUs vs. GPUs trends!"#$%&'()*(+,%'-./0%1-,!

!

!

2( ( !345(!(6'-7'#881,7(9/1.&(:&';1-,(<*2!
!

!

=17/'&()>)*( =?-#%1,7>6-1,%(@$&'#%1-,;($&'(A&0-,.(#,.(
B&8-'C(D#,.E1.%"(F-'(%"&(!63(#,.(963(

Source: Nvidia Programming Guide

“Performance Gap”
(theoretical peak)}

Double precision support in GPUs
(scientific computing)

- GPUs in every PC (massive volume and potential impact)
- TFlops vs. 100 Gflops
- In current heterogenous hardware, CPU manages GPU

Programmable

} HPC in a 
desktop!

~x2 transistors every 18 months
(moore’s law since mid 70s)

12

CPUs vs. GPUs trends

Source: Nvidia Programming Guide

!"#$%&'()*(+,%'-./0%1-,!

!

!

2( ( !345(!(6'-7'#881,7(9/1.&(:&';1-,(<*2!
!

!

=17/'&()>)*( =?-#%1,7>6-1,%(@$&'#%1-,;($&'(A&0-,.(#,.(
B&8-'C(D#,.E1.%"(F-'(%"&(!63(#,.(963(

“Memory wall”
- Processor speed 

improves faster than 
memory bandwidth

- slow off-chip 
bandwidth for GPUs  

Determining factor in application performance likely to be memory access 
patterns rather than flop count (cf. 13 dwarfs due to P. Collella & D. Patterson).

- approximately x5 difference in bandwidth capacity

“Memory Gap”}
CPU: ~x2 every 10 years
GPU: ~x2 every 3-4 years

13

Paradigm shift in Scientific Computing

Inevitable paradigm shift: 

   Parallelism and heterogeneity will be future standard

- New opportunities for solving larger, more complex and new problems.

- Increased focus on cost (perf/$) and energy efficiency (perf/watt) to secure low 

maintenance cost and value for the money. 

Conclusion: We need to rethink and redesign computational strategies and adopt new 

programming models to take advantage of new multi- and many-core technologies.

Multi- and many-core hardware is new standard

Consequences and challenges

- Affects hardware from embedded systems, workstations to super computing clusters

- Compilers and libraries most often don’t hide these issues and are limited

- Traditional computing methods run slower on new hardware and/or cannot fully 

exploit architectural features.

- Performance-portability requires algorithms which can expose hardware features.

14

General-Purpose GPU Computing

Many different applications from science and engineering show-cased in Nvidia’s 
CUDA zone (mostly by HPC researchers). All applications written in the CUDA 
framework after 2007! 15

16

GPUs vs. CPUs.
- GPUs are forerunners for future many-core architectures
- Both GPUs and CPUs are fast
- CPUs are optimized for reducing latency of few individual tasks (task parallelism)
- GPUs are optimized for maximizing throughput of many similar tasks (data parallelism)
- Future: integration going to happen to compensate for memory wall on-chip.

Source:  http://en.wikipedia.org/wiki/CUDA

Potential performance bottleneck: data-transfer

- PCI-Express link bandwidth ~5GB/s
- GPU on-chip bandwidth <192GB/s

• Highly scalable stream-processing architectures optimized for high 
throughput.

•  Massively parallel (SIMT) processing devices 

• 100s of cores, 1000s of threads

• Power-efficient (high perf/W)

• Available (almost) everywhere (some affordable, <$699)
(fx mass produced commodity graphics cards)

• High on-chip bandwidth (<192GB/s)
High compute capability (<515Gflops/s, double)

• Programmable using standard languages in combination 
with new programming models CUDA and OpenCL (since 2006) and 
new extensions of existing ones, e.g. OpenACC.

• Can act as a co-processor to CPU (or alone in next GPU generation)
(off-load computational intensive tasks from the CPU to GPU)

Modern General-Purpose GPUs (GPGPUS)
17

Research and education in Graphics Processing Units in Denmark

Established in August 2008 and is a unique 
national competence center and hardware 
laboratory.

- Development of efficient algorithms
- High-performance scientific computing
- Performance profiling, auto-tuning and prediction
- Software development
- Education

Collaboration: within both academia and industry.
Research projects: several ongoing B.Sc. - Ph.D.

http://gpulab.imm.dtu.dk
With support 2010-2013 from national FTP grant 
“Desktop Computing on Consumer Graphics Cards”
PI: Prof. Per Christian Hansen

18

WHAT do we mean by ‘reduced models’ ?

WHY should we care ?

WHEN could it work ?

HOW do we know ?

DOES it work ?

Understand Reduced models

WHAT’s next ?



The non-affine problem



The non-affine problem

Efficiency: the affine decomposition

 Assumption:

a(w, v;µ) =
QaX

q=1

✓qa(µ) aq(w, v),

f(v;µ) =
QfX

q=1

✓qf(µ) fq(v),

`(v;µ) =
QlX

q=1

✓ql(µ) `q(v),

where

✓qa , ✓
q
f , ✓

q
l : P ! R µ� dependent functions,

aq : V⇥ V ! R µ� independent forms,

fq, `q : V ! R µ� independent forms,

The affine assumption is key to speed



The non-affine problem

In many problems, this does not hold

‣Geometric parametrization
‣Material variations
‣etc

In this case, we do not have the offline-online decomposition 
and cannot eliminate dependence on the truth problem



The non-affine problem

In many problems, this does not hold

‣Geometric parametrization
‣Material variations
‣etc

In this case, we do not have the offline-online decomposition 
and cannot eliminate dependence on the truth problem

Except if we can - somehow 
- express non-affine terms 
as an affine expansion, e.g.

Efficiency: affine parameter dependence
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x
;!
)

f(x;µ) = x�µ

f(x;µ) �
3�

m=1

�m(µ)x�µm

[Grepl et al.  2007], [Maday et al. 2007]

Let f : � � D ⇥ C such that f( · ;µ) ⇤ C0(�) for all µ ⇤ D. The EIM is a
procedure that provides {µm}M

m=1 such that

IM (f)(x;µ) =
M�

m=1

�m(µ)f(x;µm)

is a good approximation of f(x;µ) for all (x,µ) ⇤ � � D. Uses also a greedy
algorithm to pick the parameters {µm}M

m=1.



Empirical Interpolation (EIM)Leaving the framework of polynomial approximation

Here:
Given a parametrized family of functions

M = {f(·;µ) |µ 2 P} ⇢ V,

we want to leave the framework of polynomial approximations. The goal is to intro-

duce more a priori knowledge by taking the ansatz that the basis functions are of the

form

'n(x) = f(x;µn), n = 1, . . . , N,

where µn 2 P are well-chosen parameter points.

f(x, µ) ' fN (x, µ) =
NX

n=0

↵n(µ)'n(x)

We consider a general parametrized function

and seek to approximate it as

and now we seek a problem specific interpolation with

Leaving the framework of polynomial approximation

Here:
Given a parametrized family of functions

M = {f(·;µ) |µ 2 P} ⇢ V,

we want to leave the framework of polynomial approximations. The goal is to intro-

duce more a priori knowledge by taking the ansatz that the basis functions are of the

form

'n(x) = f(x;µn), n = 1, . . . , N,

where µn 2 P are well-chosen parameter points.



Empirical Interpolation (EIM)Leaving the framework of polynomial approximation

Here:
Given a parametrized family of functions

M = {f(·;µ) |µ 2 P} ⇢ V,

we want to leave the framework of polynomial approximations. The goal is to intro-

duce more a priori knowledge by taking the ansatz that the basis functions are of the

form

'n(x) = f(x;µn), n = 1, . . . , N,

where µn 2 P are well-chosen parameter points.

f(x, µ) ' fN (x, µ) =
NX

n=0

↵n(µ)'n(x)

We consider a general parametrized function

and seek to approximate it as

and now we seek a problem specific interpolation with

Leaving the framework of polynomial approximation

Here:
Given a parametrized family of functions

M = {f(·;µ) |µ 2 P} ⇢ V,

we want to leave the framework of polynomial approximations. The goal is to intro-

duce more a priori knowledge by taking the ansatz that the basis functions are of the

form

'n(x) = f(x;µn), n = 1, . . . , N,

where µn 2 P are well-chosen parameter points.

How do we find the interpolation points - greedy !



Empirical Interpolation (EIM)

Empirical interpolation method (EIM)

The definition of the interpolant is now given. But, how to construct ”good”

interpolation points x1, . . . , xM and basis functions '1, . . . ,'N?

EIM: Hierarchical construction based on a greedy algorithm.

Given a parametrised family of functions f(·;µ), µ 2 P, a set of N � 1 basis

functions '1, . . . ,'N�1 and N �1 interpolation points x1, . . . , xN�1 let us define

µN = argmax

µ2P
kf(·;µ)� IN�1f(·;µ)kL1(⌦).

) the worst approximation results if taking µN .

Thus the basis should be enriched by f(·;µN ).

Set

x

N

= argmax

x2⌦
|f(x;µ

N

)� I

N�1f(x;µN

)|,

and

'

N

(x) =

f(x;µ

N

)� I

N�1f(x;µN

)

f(x

N

;µ

N

)� I

N�1f(xN

;µ

N

)

, 8x 2 ⌦.



Empirical Interpolation (EIM)
EIM: cont’d
Thus, we construct by induction the nested set of basis functions {'1, . . . ,'N}
and set of interpolation points {x1, . . . , xN}
Step N:
Given: {'1, . . . ,'N�1}, {x1, . . . , xN�1}.
o Solve the interpolation problem: Find {↵

n

(µ)}N�1
n=1 s.t.

N�1X

n=1

'

n

(x

i

)↵

n

(µ) = f(x

i

;µ), i = 1, . . . , N � 1.

o Compute the interpolating function

I

N�1f(·;µ) =
N�1X

n=1

↵

n

(µ)'

n

�
I

N�1f(xi

;µ) = f(x

i

;µ), i = 1, . . . , N �1

�
.

o Define

µ

N

= argmax

µ2P
kf(·;µ)� I

N�1f(·;µ)k
L

1(⌦),

x

N

= argmax

x2⌦
|f(x;µ

N

)� I

N�1f(x;µN

)|,

q

N

=

f(x;µ

N

)� I

N�1f(x;µN

)

f(x

N

;µ

N

)� I

N�1f(xN

;µ

N

)



Empirical Interpolation (EIM)
EIM: cont’d
Thus, we construct by induction the nested set of basis functions {'1, . . . ,'N}
and set of interpolation points {x1, . . . , xN}
Step N:
Given: {'1, . . . ,'N�1}, {x1, . . . , xN�1}.
o Solve the interpolation problem: Find {↵

n

(µ)}N�1
n=1 s.t.

N�1X

n=1

'

n

(x

i

)↵

n

(µ) = f(x

i

;µ), i = 1, . . . , N � 1.

o Compute the interpolating function

I

N�1f(·;µ) =
N�1X

n=1

↵

n

(µ)'

n

�
I

N�1f(xi

;µ) = f(x

i

;µ), i = 1, . . . , N �1

�
.

o Define

µ

N

= argmax

µ2P
kf(·;µ)� I

N�1f(·;µ)k
L

1(⌦),

x

N

= argmax

x2⌦
|f(x;µ

N

)� I

N�1f(x;µN

)|,

q

N

=

f(x;µ

N

)� I

N�1f(x;µN

)

f(x

N

;µ

N

)� I

N�1f(xN

;µ

N

)

EIM: cont’d
Thus, we construct by induction the nested set of basis functions {'1, . . . ,'N}
and set of interpolation points {x1, . . . , xN}
Step N:
Given: {'1, . . . ,'N�1}, {x1, . . . , xN�1}.
o Solve the interpolation problem: Find {↵

n

(µ)}N�1
n=1 s.t.

N�1X

n=1

'

n

(x

i

)↵

n

(µ) = f(x

i

;µ), i = 1, . . . , N � 1.

o Compute the interpolating function

I

N�1f(·;µ) =
N�1X

n=1

↵

n

(µ)'

n

�
I

N�1f(xi

;µ) = f(x

i

;µ), i = 1, . . . , N �1

�
.

o Define

µ

N

= argmax

µ2P
kf(·;µ)� I

N�1f(·;µ)k
L

1(⌦),

x

N

= argmax

x2⌦
|f(x;µ

N

)� I

N�1f(x;µN

)|,

q

N

=

f(x;µ

N

)� I

N�1f(x;µN

)

f(x

N

;µ

N

)� I

N�1f(xN

;µ

N

)



Empirical Interpolation (EIM)
EIM: cont’d
Thus, we construct by induction the nested set of basis functions {'1, . . . ,'N}
and set of interpolation points {x1, . . . , xN}
Step N:
Given: {'1, . . . ,'N�1}, {x1, . . . , xN�1}.
o Solve the interpolation problem: Find {↵

n

(µ)}N�1
n=1 s.t.

N�1X

n=1

'

n

(x

i

)↵

n

(µ) = f(x

i

;µ), i = 1, . . . , N � 1.

o Compute the interpolating function

I

N�1f(·;µ) =
N�1X

n=1

↵

n

(µ)'

n

�
I

N�1f(xi

;µ) = f(x

i

;µ), i = 1, . . . , N �1

�
.

o Define

µ

N

= argmax

µ2P
kf(·;µ)� I

N�1f(·;µ)k
L

1(⌦),

x

N

= argmax

x2⌦
|f(x;µ

N

)� I

N�1f(x;µN

)|,

q

N

=

f(x;µ

N

)� I

N�1f(x;µN

)

f(x

N

;µ

N

)� I

N�1f(xN

;µ

N

)

EIM: cont’d
Thus, we construct by induction the nested set of basis functions {'1, . . . ,'N}
and set of interpolation points {x1, . . . , xN}
Step N:
Given: {'1, . . . ,'N�1}, {x1, . . . , xN�1}.
o Solve the interpolation problem: Find {↵

n

(µ)}N�1
n=1 s.t.

N�1X

n=1

'

n

(x

i

)↵

n

(µ) = f(x

i

;µ), i = 1, . . . , N � 1.

o Compute the interpolating function

I

N�1f(·;µ) =
N�1X

n=1

↵

n

(µ)'

n

�
I

N�1f(xi

;µ) = f(x

i

;µ), i = 1, . . . , N �1

�
.

o Define

µ

N

= argmax

µ2P
kf(·;µ)� I

N�1f(·;µ)k
L

1(⌦),

x

N

= argmax

x2⌦
|f(x;µ

N

)� I

N�1f(x;µN

)|,

q

N

=

f(x;µ

N

)� I

N�1f(x;µN

)

f(x

N

;µ

N

)� I

N�1f(xN

;µ

N

)

EIM: cont’d
Thus, we construct by induction the nested set of basis functions {'1, . . . ,'N}
and set of interpolation points {x1, . . . , xN}
Step N:
Given: {'1, . . . ,'N�1}, {x1, . . . , xN�1}.
o Solve the interpolation problem: Find {↵

n

(µ)}N�1
n=1 s.t.

N�1X

n=1

'

n

(x

i

)↵

n

(µ) = f(x

i

;µ), i = 1, . . . , N � 1.

o Compute the interpolating function

I

N�1f(·;µ) =
N�1X

n=1

↵

n

(µ)'

n

�
I

N�1f(xi

;µ) = f(x

i

;µ), i = 1, . . . , N �1

�
.

o Define

µ

N

= argmax

µ2P
kf(·;µ)� I

N�1f(·;µ)k
L

1(⌦),

x

N

= argmax

x2⌦
|f(x;µ

N

)� I

N�1f(x;µN

)|,

q

N

=

f(x;µ

N

)� I

N�1f(x;µN

)

f(x

N

;µ

N

)� I

N�1f(xN

;µ

N

)



EIM - exampleEIM: example

Consider the parametrized family of functions:

u(x;µ) = x� e
x
µ � 1

e
1
µ � 1

, for x � (0, 1), µ � [0.01, 0.5].
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Interpolation: Bad accuracy un-
til there are enough interpolation
points in the boundary layer.



EIM - errorsEIM: The Lebesque constant

The error analysis of the interpolation procedure classically involves the Lebesgue
constant �N = supx��

�N
i=1 |hN

i (x)|, where the hN
i is the associated Lagrange

basis.

A (in practice very pessimistic) upper-bound for the Lebesque constant is 2N�1.

Lemma:

For any f ⇤M, the interpolation error satisfies

⌅f � INf⌅L�(�) ⇥ (1 + �N ) inf
vN�VN

⌅f � vN⌅L�(�).

Comparison with polynomial interpolation:

Equidistant points: �N � 2N+1

eN log N

Chebychev points: �N < 2
� log(N + 1) + 1



EIM - errors

Application to polynomial interpolation
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EIM: application to polynomial interpolation

Lebesque constant Point distribution

Magic points:
o Hierarchical set of points.
o Application to any domain � as we will see in the next slides.



EIM - extensionsEIM: application to polynomial interpolation
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Figure 2: (a) Variation of Lebesgue constant, �M with n where M = 1
2 (n + 1)(n + 2), and (b) distribution

of magic points compared to [10] for ⇥tri.

n Magic Points [10] [5]
6 9.16 3.67 3.79
9 17.70 5.58 5.92
12 24.86 7.12 10.08

Table 1: Comparing the Lebesgue constants for magic points, with that from literature, for ⇥tri.

3.3 Hexagon

We define ⇥hex as a hexagon inscribed in a circle of radius 1 and an initial sample set given by WP
n (⇥hex) ⇥

{xiyj , (x, y) ⌅ ⇥hex, i + j ⇤ n}, 0 ⇤ n ⇤ nmax. Then, XM (⇥hex) = span {WP
n (⇥hex)} with M = 1

2 (n +
1)(n + 2). The growth of the Lebesgue constants with n, and the distribution of the magic points (for the
case with increasing n) are shown in Figure 3. We have not found any analysis for the best position of the
interpolation points over such a simple domain, the good behavior of the Lebesgue constant associated with
the magic points is one of the interests of the method.

3.4 Lunar Croissant

We consider now a non-convex domain of “lunar croissant” shape, ⇥cro ⇥ ⇥1
cir\⇥2

cir, where ⇥1
cir and ⇥2

cir

are two unit circles centered at (0,�0.5) and (0, 0.5), respectively. We define an initial sample set as
WP

n (⇥cro) ⇥ {xiyj , (x, y) ⌅ ⇥cro, i + j ⇤ n}, 0 ⇤ n ⇤ nmax, and XM (⇥tri) = span {WP
n (⇥tri)} with

M = (n + 1)2. We show in Figure 4 the Lebesgue constant �n as a function of n and the distribution of the
magic points for n = 12. We observe that the growth of the Lebesgue constant with n is quite similar to
those in the triangle and hexagon cases. We know of neither exact nor computed values for the optimal (or
even near optimal) point set over the domain ⇥cro.

3.5 Tetrahedron

We define ⇥tet as a three-dimensional simplex in IR3 with vertices at (0, 0, 0), (0, 0, 1), (0, 1, 0) and (1, 0, 0)
and an initial sample set given by WP

n (⇥tet) ⇥ {xiyjzk, (x, y, z) ⌅ ⇥tet, i + j + k ⇤ n}, 0 ⇤ n ⇤ nmax.
Then, XM (⇥tet) = span {WP

n (⇥tet)} with M = 1
6 (n + 1)(n + 2)(n + 3). The application of the empirical

interpolation procedure yields Lebesgue constants shown in Table 2 for n ⇤ nmax = 9. It is compared to
results from [12] and [6] obtained through optimization procedures. Again, in comparison to the best known
approximation, the empirical interpolation procedure performs reasonably well.
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n Magic Points [12] [6]
2 2.0 2.0 2.0
3 3.80 2.93 2.93
4 8.70 4.07 4.11
5 9.77 5.38 5.62
6 15.27 7.53 7.36
7 31.04 10.17 9.37
8 34.31 14.63 12.31
9 62.99 20.46 15.69

Table 2: Comparing the Lebesgue constants for magic points with that from literature, for ⇥tet.
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On a half-moon:

Remark:
o Still reasonable Lebesque constants.
o Integration points very cheap to construct!
o Applicable to any spatial domain �



A non-affine example

Let us consider problems described by integral equations

Electric field integral equation (EFIE)

REDUCED BASIS METHOD FOR THE ELECTRICAL FIELD
INTEGRAL EQUATION

Currently, we are developing, in collaboration with CERFACS (Toulouse, France),
the Reduced Basis Method for the parametrized Electrical Field Integral Equation
(EFIE), also known as the Rumsey principle. Let � be a surface on which an in-
cident plane wave is scattered obeying Maxwell’s equations. Let k be the wave
number and i the complex unity. Then, the problem consists of seeking j ⇤ V such
that

(1) ik

⇤

�⇥�
Gk(x,y)

�
j(x) · jt(y)� 1

k2 div�j(x)div�jt(y)
⇥
dxdy = F (jt)

for all jt ⇤ V and where V is some appropriate functional space. F is some linear
and continuous functional and Gk denotes the kernel function of the Helmholtz
operator and is given by

Gk(x,y) :=
eik|x�y|

|x� y| .

This problem can be discretised using the Raviart-Thomas finite element space and
is also known as the Boundary Element Method (BEM). Well-posedness of the con-
tinuous problem and a priori estimates have been established in [1, 2, 3, 4, 5]. The
reduced basis method is then further applied as a algorithmic cooperation rather
than a algorithmic competition to solve parametrised problems. The reduced basis
method is a numerical method for the approximation of partial di⇥erential equa-
tions which contain one or several parameters. Existing applications include Stokes
and Navier–Stokes equations with variable Reynolds number, heat-flux problems
with variable conductivity, problems set on regions with variable parametrized ge-
ometrical shapes, etc. A recent and thorough review can be found in [6].

Assuming that the EFIE is parametrized by the wave number, angle of inci-
dent wave or the geometry of the scattered body and that the solution has to be
computed for many di⇥erent values of the parameters (e.g. for an optimization
procedure). Blindly applying the BEM many times is computationally expensive
and unnecessary since the solution is smoothly depending on small changes of the
parameter values. In other words, the underlying solution lies on a low dimen-
sional manifold. The reduced basis method consist of choosing a few significant
parameter values and taking the corresponding solution of the BEM as (reduced
basis) basis. For a general value of the parameter, the solution is then obtained
using a Galerkin projection (which somehow can be interpreted as an interpolation
between the ”closest” basis functions). Once the (reduced basis) basis is build,
computing the approximation of a new parameter value is inexpensive due to low
dimensionality of the spanned manifold by the basis functions. Exponential conver-
gence of the di⇥erence between the ”interpolation” and the ”truth approximation”
(which consists of the BEM approximation with the exact parameter value) can
be achieved with respect to the number of di⇥erent parameter values spanning the
(reduced basis) basis. Consider a cavity problem. The modulus of the phase of a

1
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Truth approximation is a 
standard MoM solver.

CERFACS



Integral equations

After discretization we again have

Parametrized EFIE and its discretization

Boundary Element Method (BEM). In practice the code CESC is used,
CESC: CERFACS Electromagnetic Solver Code.

[Bendali 1984],[Schwab, Hiptmair 2002],[Buffa et al. 2002,2003], 
[Christiansen 2004]

Galerkin approach: replace continuous space V by the finite dimensional sub-
space Vh: For any fixed parameter µ � D, find uh(µ) � Vh such that

a(uh(µ),vh;µ) = f(vh;µ) ⇥vh � Vh. (1)

For Vh we use the lowest order (complex) Raviart-Thomas space RT0, also called
Rao-Wilton-Glisson (RWG) basis in the electromagnetic community.

Output functional is 

Output functional: Radar Cross Section (RCS)

• Describes pattern/energy of electrical field at infinity
• Functional of the current on body

where
u: current on surface
d̂: given directional unit vector
d̂0: reference unit direction

A⇥(u, d̂) =
ikZ

4�

⇤

�
d̂� (u(x)� d̂)e�ikx·d̂dx

RCS(u, d̂) = 10 log10

�
|A⇥(u, d̂)|2

|A⇥(u, d̂0)|2

⇥
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Integral equations

Incident field

Output functional: Radar Cross Section (RCS)
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Integral equations
One problem - the affine assumption fails

 Assumption:

Efficiency: Affine assumption

a(w,v;µ) =
M�

m=1

�m(µ) am(w,v),

f(v;µ) =
M�

m=1

�m
f (µ) fm(v),

where for m = 1, . . . ,M

�m,�m
f : D ⇤ C µ� dependent functions,

am : Vh ⇥ Vh ⇤ C µ� independent forms,
fm : Vh ⇤ C µ� independent forms,

Caution: This is not feasible in the framework of the EFIE!  

a(uh,vh;µ) = ikZ

�

�

�

�

eik|x�y|

|x�y|

⇥
uh(x) · vh(y)� 1

k2 div�,xuh(x) · div�,yvh(y)
⇤

dx dy

f(vh;µ) = n⇥(p⇥n)
�

�
eikx·ŝ(�,⇥) · vh(x) dx
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eikx·ŝ(�,⇥) · vh(x) dx

Solution - empirical interpolation method (EIM)

Seek             such that 

Efficiency: affine parameter dependence
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For the EFIE formulation this results in
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k (r) ��M

m=1 �m(k)Gns
km

(r)

1) Split the kernel function into the singular part and non-singular part
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Numerical results for EIM
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Results for EIM
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Extension to an element based EIM• Schematic illustration (2d parameter domain):

D

Efficiency: Elementwise EIM/hp-Interpolant

• Problems with large parameter domains, the expansion becomes too large and this can 
become that severe that the computing time of the RB solution (only online time) is in 
the order of a direct computation.

• As solution, the parameter domain can adaptively be split into subelements on which 
the function is approximated by a different Magic point expansion.

• Refinement until on each subdomain at certain tolerance is reached
• Parameter space only is refined
• Generalization to any dimension of parameter possible

Numerical results for magic point elements

Surface ! given by:
f(x;µ) = eikŝ(�,⇥)·x, x ⇥ �,µ ⇥ D,

µ = (k, �), ⇤ fixed,

D = [1, 25]� [0,⇥]
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Conclusion: A reduction of M implies a algebraic increase of number of elements (and dofs) needed. 
In this case:

But it reduces the online computing time (at the cost of a longer Offline procedure and more memory)

#elements � CM�3.7

Objective is  
to reduce  
online cost
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Scattering example
Numerical results: test 1
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Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)

where µ = (k, �,⇥,p) ⇥ D � R7 is a vector of parameters:
1) k: wave number
2) ŝ(�, ⇥): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to ŝ(�, ⇥))

� = R3\�i

� = �⇥i

n

(perfect conductor)

�

�
�i�R3
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Figure 11. Accuracy of the Reduced Basis Method for test case
i) (left) and ii) (right) for different values of the wave number k.
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Figure 12. Accuracy of the Reduced Basis Method for test case
iii) (left) and iv) (right) and comparison to the optimal accuracy
given by the singular values.

For scatterers with volumes we are aware of the fact that spurious modes may
interfere since we are using the EFIE. However, excluding them from the training
sample Ξ avoids that the algorithm is at any point not well posed. We justify the use
of the EFIE by the sake of its simplicity in the beginning of this project. However,
there is no reason why the combination of the Reduced Basis Method combined
with any other standard solver for the parametrized scattering problem should not
work. In particular, we will work on the Combined Field Integral Equation (CFIE)
in near future.
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More complex scatterer and parallelization

• 12620 complex double unknowns
• BEM matrix has 160 Mio complex double entries
• Used 160 processors with distributed memory for computations
• Solving linear system: Cyclic distribution by Scalapack: parallel LU-factorization
• Matrix-matrix, matrix-vector multiplication: Blockwise computations using blacs/blas

x
y

z

Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)
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Figure 13. Speed-up for three different versions of the online pro-
cedure of the Reduced Basis Method with respect to the computing
time using the Boundary Element Method in function of the di-
mension of the Reduced basis. Test example iv) is considered.
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Figure 14. The time of the subtasks of the online procedure of
three different versions of the Reduced Basis Method for different
dimensions of the Reduced Basis. The time (measured in seconds)
corresponds to the average computing time of the RCS-signal for
a parameter value for the test example iv).

The use of a posteriori estimates is important in the greedy algorithm to assemble
the reduced basis. Therefore the quality of the estimate has a direct influence on
the approximation properties of the reduced basis. It is ongoing work to develop
mathematically rigorous efficient and reliable a posteriori estimates for the EFIE.
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The non-compliant problem



Non-compliant case
A case is called non-compliant ifNon-compliant problems

Compliant output: if s(µ) = `(u(µ);µ) = f(u(µ);µ).

Here: if s(µ) = `(u(µ);µ) 6= f(u(µ);µ).

The dual problem

Truth solution: for some µ 2 P, find  �(µ) 2 V� such that

a(v�, �(µ);µ) = �`(v�;µ), 8v� 2 V�.

Exact solution: for some µ 2 P, find  (µ) 2 V such that

a(v, (µ);µ) = �`(v;µ), 8v 2 V.

Let a primal and dual reduced basis space be given

Vpr = span{u(µn
pr), 1  n  Npr},

Vdu = span{ (µn
du), 1  n  Ndu}.

Theses spaces can be constructed using a weak greedy algorithm in combination

with a posteriori error estimations as in the “primal-only” case.

In that case we must also solve the dual problem



The RB-approximations

Then, the RB output can be evaluated as

srb(µ) = `(urb)� rpr( rb;µ)

where

rpr(v;µ) = f(v)� a(urb, v;µ),

rdu(v;µ) = �`(v)� a(v, rb;µ)

are the primal and the dual residuals.

The output error bound takes the form

⌘s(µ) ⌘
krpr( · ;µ)kV0

(↵LB(µ))1/2
krdu( · ;µ)kV0

(↵LB(µ))1/2
.

The resulting RB approximation urb 2 Vpr, rb 2 Vdu solve

a(urb(µ), vrb;µ) = f(vrb), 8vrb 2 Vpr,

a(vrb, rb(µ);µ) = �`(vrb), 8vrb 2 Vdu.

Non-compliant case



Including the adjoint

Note: we can allow different approximation spaces based 
on different parts of the problem
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Fig. 6.2. The three grids used in the computational example, defining Xp, Xd, and Xpd,
respectively

Fig. 6.3. Example of truth solutions. In the top row is shown the imaginary parts of the primal
solution, with the bottom row shows the real parts of the dual solutions. This essential di�erences
highlights the value of having di�erent approximations for the primal and dual problems.

Primal Dual Primal-Dual



Let’s consider an example

�(Ez) ⇥ =
�

4

2D EM scattering off
an open PEC cavity

Parameters are angles  
and frequency

F (⌅, �,⇤) =
⌅⇥
8⇥⌅

�

S
[nxHy � nyHx + (cos ⇤nxEz + sin⇤nyEz)] e�i⇥(x cos �+y sin �) ds

We consider an output of interest known as the RCS

s(⌅, �,⇤) = 10 log10

�
2⇥

|F (⌅, �,⇤)|2

|Einc
z (⌅, �)|2

⇥ Treated by empirical
 interpolation 



2D EM problems

We consider the 2D Maxwell problem

3. Numerical results

It is relatively easy to find the coercivity constant for the coercive problems. The available methods, see
[10], [12] and the references therein, are more challenging when it comes to non-coercive problems. There
is an urgent need for efficient methods especially when the inf-sup number may go to zero, as it is the case,
for example, around resonances in electromagnetics. The motivation for the preceding analysis comes from
the problem we want to approximate with reduced basis method that is a challenging electromagnetic
cavity problem where resonances do occur.

3.1. Problem setup

We are looking for the frequency-domain solution of the two-dimensional Maxwell’s equations in nor-
malized differential form in Ω,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−ϵω2Ex +
1

µ

∂

∂y

(

∂Ey

∂x
−

∂Ex

∂y

)

= iωJx

−ϵω2Ey −
1

µ

∂

∂x

(

∂Ey

∂x
−

∂Ex

∂y

)

= iωJy

(10)

with boundary condition Ex n̂y − Ey n̂x = 0 on ∂Ω, (n̂x, n̂y) being the unit outward normal of ∂Ω,
X = H(curl).

Figure 1. The Electromagnetic Cavity Problem.

0 0.25 0.5 10

0.3

0.7

1
Ω1 Ω2

Γi

Here, see Figure 1, Ω = Ω1
⋃

Ω2 with Ω1 = [0, 0.5] × [0, 1], Ω2 = [0.5, 1] × [0, 1], ϵ|Ωi= ϵi, µ|Ωi= µi

for i = 1, 2 with the range of ϵi, µi to be specified later. We set Jx = 0, Jy = cos(ω(y − 1
2 ))δΓi with

Γi = 0.25 × [0.3, 0.7].

Given a triangulation of Ω, ΩN =
⋃D

d=1 Td, we set XN = {v ∈ L2(ΩN ) | v ∈ ⊕D
d=1P

4(Td).

8

Parameters can be in the 
‣ Materials
‣ Sources
‣ Frequencies
‣ Geometries

Problem is non-coercive and internal problems  
can have resonances



2D Scattering example

✓ Problem is affine in the frequency

✓ Non-affine in the angle(s) and output

✓ Both primal and dual problem are solved
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Primal vs dual solution
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Global convergence of  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The non-stationary problem



Problem formulation

Continuous problem: For any µ 2 P, find for any t 2 [0, T ] the function

u(·, t;µ) 2 V such that

d
dt (u(·, t;µ), v)V + a(u(·, t;µ), v;µ) = f(v, t;µ), 8v 2 V,

u(x, 0;µ) = u0(x), 8x 2 ⌦,

u(x, t;µ) = g(x, t;µ), 8x 2 @⌦.

Full discretization (forward Euler scheme in time for simplicity): For

any µ 2 P, find for any n = 1, . . . , NT the function u

n
� (·;µ) 2 V� such that

1
�t (u

n+1
� (µ), v�)V =

1
�t (u

n
� (µ), v�)V � a(u

n
� (µ), v�;µ) + f(v�, tn;µ), 8v� 2 V�,

u

0
�(x;µ) = u�,0(x), 8x 2 ⌦,

u

n
� (x;µ) = g�(x, tn;µ), 8x 2 @⌦,

with tn = n�t.

Time-dependent problems



Problem formulation
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Time-dependent problems
Problem formulation
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u(·, t;µ) 2 V such that

d
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Full discretization (forward Euler scheme in time for simplicity): For

any µ 2 P, find for any n = 1, . . . , NT the function u

n
� (·;µ) 2 V� such that

1
�t (u

n+1
� (µ), v�)V =

1
�t (u

n
� (µ), v�)V � a(u

n
� (µ), v�;µ) + f(v�, tn;µ), 8v� 2 V�,

u

0
�(x;µ) = u�,0(x), 8x 2 ⌦,

u

n
� (x;µ) = g�(x, tn;µ), 8x 2 @⌦,

with tn = n�t.



Time-dependent problems
Reduced basis approximation
Suppose: A reduced basis approximation space Vrb is given (it’s construction

is discussed later).

RBM approximation: For any µ 2 P, find for any n = 1, . . . , NT the function

u

n
rb(µ) 2 Vrb such that

1
�t (u

n+1
rb (µ), vrb)V =

1
�t (u

n
rb(µ), vrb)V � a(u

n
rb(µ), vrb;µ) + f(vrb, tn;µ), 8vrb 2 Vrb,

u

0
rb(x;µ) = urb,0(x), 8x 2 ⌦,

u

n
rb(x;µ) = grb(x, tn;µ), 8x 2 @⌦.

Again: We are mimicking the truth solver but are restricting the solution space

from V� to Vrb.



Time-dependent problemsPOD/Greedy sampling

Remaining question: How to construct the reduced basis space Vrb?

POD/Greedy algorithm:

Set N = 1, choose µ1 2 P arbitrarily.

1. Compute the time series un
� (µN ) for all n = 1, . . . , NT

(truth problem: computationally expensive)

2. Define the error trajectory enrb(µ) = un
� (µN )� un

rb(µN )

3. Compute a POD of the error trajectory enrb(µ) and retain the most
important mode ⇠1.

4. Set Vrb = span{Vrb, ⇠1}

5. Find µN+1 = argmaxµ2P ⌘(µ)

6. Set N := N + 1 and goto 1. while maxµ2P ⌘(µ) > Tol
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A posteriori estimator: ⌘(µ) ⇡ ku�(µ)� urb(µ)k[0,T ]⇥⌦:

o Needs to be developed for each type of scheme/equation.

o Sharp estimate is important for good parameter selection in greedy algorithm.

o Is used to certify the error tolerance.
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Fig. 6.1: Geometric set-up (left) and the convergence of the POD-greedy algorithm (right) for the
time-dependent thermal block heat conductivity problem.

6.1.4 Illustrative Example 3: Time-Dependent Heat Conduction

In this example we solve a time-dependent heat transfer problem in the two-dimensional domain
shown in Figure 6.1, using the POD-greedy approach.

The bilinear form for the problem (6.1) is given as

a(w, v;µ) =
8

X

p=1

µ
[p]

Z

⌦p

rw ·rv +

Z

⌦
9

rw ·rv,

where µ
[p] is the ratio between the conductivity of the ⌦p and ⌦

9

subdomains, respectively, and

µ
[p] 2 [0.1, 10] for p = 1, . . . , 8.

Homogeneous Dirichlet boundaries conditions have been applied on �
top

and thus

w = 0 on �
top

.

Inhomogeneous parametrized Neumann boundary conditions, corresponding to heat fluxes, are im-
posed on the bottom boundary �

bottom

and result in the following right-hand side:

f(v;µ) = µ
[9]

Z

�
bottom

v.

where
µ

[9]

2 [�1, 1] .

Finally, homogeneous Neumann boundary conditions are applied on the remaining part of the
boundary, i.e. on the left �

left

and the right �
right

of the square.
In Figure 6.1 the convergence of the POD-greedy algorithm is illustrated confirming exponential

convergence also in this time-dependent case (Tf = 3s, �t = 0.05s). The algorithm was performed
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N ⌘en,av effen,max effen,av

5 0.18 24.67 7.51
10 0.07 26.27 7.69
15 0.03 25.82 6.79
20 0.02 31.63 9.53

Table 6.1: Error bounds and e↵ectivity metrics for the field variable urb(µ) with respect to the
number of reduced basis functions N for the thermal block time-dependent problem.

on a training set Ph of cardinality 5’000. Table 6.1 shows the averaged a posteriori error estimate
over the validation set Pv

h of cardinality 3’000 as well as the maximum and average e↵ectivities of
the estimator confirming the quality of the estimator.

Finally, we show in Figures 6.2–6.4 the truth solution as well as the reduced basis approximation
and the pointwise errors for three di↵erent parameter values.

6.2 Geometric Parametrization

Reduced basis methods can be applied in many problems of industrial interest: material sciences
and linear elasticity [107, 31, 64, 66], heat and mass transfer [35, 148, 143, 46], acoustics [150],
potential flows [141], micro-fluid dynamics [145], electro-magnetism [27]. In many such problems,
there are physical or engineering parameters which characterize the problem, but often also geo-
metric parameters to consider. This combination is quite typical for many industrial devices, e.g,
biomedical devices or complex aerodynamic shapes [104, 102, 83, 146].

Let us consider a scalar field in d space dimension. We define an original problem, denoted by
subscript o, posed over the parameter-dependent physical domain ⌦o = ⌦o(µ). We denote by Vo(µ)
a suitable Hilbert space defined on ⌦

o

(µ) and consider an elliptic problem of the following form:
Given µ 2 P, evaluate

so(µ) = `o(uo(µ);µ), (6.10)

where uo(µ) 2 Vo(µ) satisfies

ao(uo(µ), v;µ) = fo(v;µ), 8v 2 Vo(µ). (6.11)

The reduced basis framework requires a reference (µ-independent) domain ⌦ to compare and com-
bine discrete solutions that otherwise are computed on di↵erent domains and grids. Hence, we
map ⌦o(µ) to a reference domain ⌦ = ⌦o(µ̄), µ̄ 2 P to recover a transformed problem of the
form (2.1)–(2.2), which is the point of departure of the reduced basis approach. The reference do-
main ⌦ is related to the original domain ⌦o(µ) through a parametric mapping T ( · ;µ), such that
⌦o(µ) = T (⌦;µ) and T ( · ; µ̄) becomes the identity. It remains to place some restrictions on both
the geometry (i.e. on ⌦o(µ)) and the operators (i.e. ao, fo, `o) such that the transformed problem
satisfies the basic hypotheses introduced above, in particular, the a�ne assumptions (3.11)–(3.13).
For many problems, a domain decomposition may be useful [144] as we shall demonstrate shortly.

Let us first consider a simple class of admissible geometries. To build a parametric mapping
related to geometrical properties, we introduce a conforming domain partition of ⌦o(µ),

⌦o(µ) =
L⌦
[

l=1

⌦l
o(µ), (6.12)

We consider time-dependent heat problem
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(a) (b) (c)

Fig. 6.2: Comparison between the truth model (a), the reduced basis approximation (b) for µ =
(1.0, 10.0, 10.0, 1.0, 10.0, 1.0, 10.0, 1.0, 10.0,�1.0) at the final time Tf = 3s. The pointwise error
between the two solutions is reported in (c).

(a) (b) (c)

Fig. 6.3: Comparison between the truth model (a), the reduced basis approximation (b) for
µ = (5.24, 1.34, 8.52, 5.25, 1.38, 7.98, 0.94, 2.54, 0.98) at the final time Tf = 3s. The pointwise er-
ror between the two solutions is reported in (c).

(a) (b) (c)

Fig. 6.4: Comparison between the truth model (a), the reduced basis approximation (b) for µ =
(6.96, 4.79, 5.33, 9.42, 6.09, 1.87, 8.04, 9.22,�0.94) at the final time Tf = 3s. The pointwise error
between the two solutions is reported in (c).

At T=3
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Hamiltonian reduced model
Non-Linear Case

Wave equation:
(
q̇ = p

ṗ = c2qxx
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Stability by construction
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Non-intrusive approach

Challenge: All approaches so far requires that we have 
access to the full solver and all operators

For many problems and solvers this is problematic

Question: Can we build reduced models without having 
access to the solver, i.e., all we have are snapshots ?

Answer: Yes - but… !
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Non-intrusive approach

Simple approach: Solve problem at grid in parameter 
space and interpolate in parameter space

Problem: High cost 

Solution: Greedy approach based on accuracy of 
interpolation

New Problem: Interpolation on 
arbitrary grid in parameter space 

Improved solution: Interpolation based on radial basis 
functions

�i(µ) = �(kµ� µik)f(x, µ) =
NX

i=1

f(x, µi)�i(µ)



Example - Driven Cavity Flow

Figure 10: Schematic diagram of computational domain

The computational domain is shown in Figure 10. ✓1 denotes the velocity of the top
boundary, and ✓2 refers to the height of the cavity such that the computational domain
is [0, 1] ⇥ [0, ✓2]. The initial velocities are 0 everywhere at the boundary except at the
top boundary. In numerical simulation, the Reynolds number equals to 100, T=5.0s and
time-step t = 0.01s. We use a second order finite di↵erence scheme with a uniform spatial
grid made of 41 ⇥ 41 points. In addition, a coarser spatial mesh of 11 ⇥ 11 points is
generated to extract temporal snapshots and a uniform N

t

= 51 point set in [0,T] is used
to generate spatial snapshots.
We assume that ✓1, ✓2 2 [1, 2]. It is worth noting that as the flow field characteristics

and accuracy requirements of the di↵erent variables are di↵erent, di↵erent constants are
set in our approximation system: "1 to compute temporal and spatial modes are set
{10�5

, 10�5
, 10�9} for u, v, p; "2 for the temporal modes are given by{0.03, 0.05, 10�3},

while "2 for the spatial modes are set {10�4
, 10�4

, 10�5}; µ in (11) for u, v, and p are given
by {10�9

, 10�6
, 10�9}, respectively, and in the reduced basis we use � = {0.02, 0.02, 1} for

the 3 variables.
The basis build is initiated from four points (✓1, ✓2) = {(1, 1), (1, 2), (2, 1), (2, 2)}. After

35 iterations the locations for the snapshots are shown in Figure 11.

Figure 11: Final parameter points after 34 iterations
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4.2 Lid-driven cavity flow

As a more complex problem in fluid dynamics, let us consider a two-dimensional driven
cavity flow withtwo parameters ✓1 and ✓2. For this, we consider the incompressible Navier-
Stokes equations

@u

@t

+ (u ·r)u� ⌫r2
u = �r(

p

⇢0
) + g (36)

where ⇢0 denotes the uniform density. Unlike the di↵usion problems, there are now three
variables: the velocity in x direction(u), the velocity in y direction(v), and the pressure
(p).
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We select 11 ⇥ 11 points uniformly distributed in the parameter space [1, 2] ⇥ [1, 2] as
test samples. Figure 12 shows the trend of the three design variables’ errors defined in
(30)-(32) for the samples between the reduced order solution and by the numerical solver.
As the iteration increasing, errors of the three target variables all gradually decrease and
the variation turn flat after 35 iterations, after which the errors are less than 10�2 for the
velocity components, while p errors are less than 10�3.

(a) u (b) v (c) p
Figure 12: Errors the reduced order model and the full solutions at uniformly distributed test
points

Table 3: Errors between the POD-Greedy and directly computed reduced model

Maximal error Mean error at T � t � 0 Mean error at t=1s
u v p u v p u v p

POD-Greedy -1.848 -2.068 -2.975 -2.310 -2.2289 -3.557 -2.359 -2.258 -3.671
Direct ROM -1.246 -1.370 -2.251 -1.264 -1.434 -2.521 -1.241 -1.394 -2.586

Considering the directly computed reduced order model with 37 candidates spread uni-
formly in the parameter space we compare in Table (3) lists the errors at test points for
the two di↵erent approaches. For the same variable, the errors of POD-Greedy system are
substantially smaller than those directly computed by reduced order model showing that
in this case, the snapshots determined by POD-Greedy system has a notable advantage
over the simpler direct approach.

19



Non-intrusive approach

Direct solver

Reduced order model
(a)✓1 = 1 (b)✓1 = 1.3 (c)✓1 = 1.6 (d)✓1 = 2.0

Figure 18: X-velocity contour when ✓1 di↵ers and ✓2 = 1

Direct solution

Reduced order model
(a)✓1 = 1 (b)✓1 = 1.3 (c)✓1 = 1.6 (d)✓1 = 2.0

Figure 19: Y-velocity contour when ✓1 di↵ers and ✓2 = 1

To further confirm the accuracy of the POD-Greedy approach, flow fields, contours and
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To further confirm the accuracy of the POD-Greedy approach, flow fields, contours and
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Direct solver

Reduced order model

(a)✓2 = 1 (b)✓2 = 1.3 (c)✓2 = 1.6 (d)✓2 = 2.0

Figure 16: Y-velocity contour when ✓2 di↵ers and ✓1 = 1

Direct solver

Reduced order model
(a)✓1 = 1 (b)✓1 = 1.3 (c)✓1 = 1.6 (d)✓1 = 2.0

Figure 17: Streamtraces and p contour when ✓1 di↵ers and ✓2 = 1
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Non-intrusive approach
Observations: 

‣Works well
‣Simple, in particular for non-linear problems etc

Problem: 

‣No rigor in error control - but maybe ok ?
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A summary so far
We have so far discussed how to  

‣ Solve known problems faster

‣ Doing so with confidence in accuracy

‣ Minimize off-line cost



A summary so far
We have so far discussed how to  

‣ Solve known problems faster

‣ Doing so with confidence in accuracy

‣ Minimize off-line cost

We will now consider how to use the same ideas to solve 
problems  for which we do NOT have a large scale solver



Multiple scattering problems

Exploring related ideas for many body scattering

‣ Build an RB for each scatterer 

‣ Build an RB for the interaction operation  

‣ Combine through Jacobi-like iteration to enable 
rapid modeling of complex scatterer configurations 



Multiple scattering problems

Exploring related ideas for many body scattering

‣ Build an RB for each scatterer 

‣ Build an RB for the interaction operation  

‣ Combine through Jacobi-like iteration to enable 
rapid modeling of complex scatterer configurations 

This is not a RBM is the classic sense

.. but using RB ideas allows us to solve problems 
that are otherwise very hard to approach
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Multiple scattering problems

Parametrized Electromagnetic Scattering
(time-harmonic ansatz)

Ei(x;µ) = �p eikx·ŝ(�,⇥)

where µ = (k, �,⇥,p) ⇥ D � R7 is a vector of parameters:
1) k: wave number
2) ŝ(�, ⇥): wave direction in spherical coordinates
3) p: polarization (is complex and lies in the plane perpendicular to ŝ(�, ⇥))

� = R3\�i

� = �⇥i

n

(perfect conductor)

�

�
�i�R3⇤ � [0, 2⇥]; k = 3, � = ⇥/2

ka = 1; kd = 4
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In a similar spirit

Figure 2: Here we show an assembled model of a shiploader’s shuttle, and the
individual components that are connected together to form the model.

2 Key to Success: Combining RB with a
Component-Based Approach

2.1 Basic principles of component-based approaches

Several FEA vendors (e.g. MSC, ANSYS, Simulia) provide component-based solvers.
In the context of static problems, these approaches are typically referred to as “sub-
structuring” or “superelements,” and for dynamic problems they are referred to as the
Craig-Bampton method or Component Mode Synthesis (CMS). These approaches in-
volve subdivision of models into simpler components in order to facilitate the design,
meshing, and solution steps. This type of subdivision is illustrated in Figure 2.

Component-based approaches provide the following benefits:

• Division of labor: di↵erent substructures are taken care of by di↵erent design
teams, which can work independently and in parallel as long as the interfaces
between substructures remain compatible.

• Taking advantage of repetition: many structures are built of many similar compo-
nents, in which case it is only necessary to deal with each archetypal component
once.

• Modularity makes it easier to modify systems: global systems can be changed by
modifying or replacing individual components.

• Solve time acceleration by pre-computing data for component interiors.
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(a) Shiploader model. (b) Stress visualization.

(c) Some shiploader components. (d) Parametrized crack component.

Figure 5: The figures show the model and the result for the structural analysis
of a shiploader from Section 4.1.

where clamping boundary conditions have been imposed. Figures 6 (b) and (c) show
the first and fifth eigenmodes respectively. Please see [12] for details.

Speed up vs. FEA 700
Maximum error vs. FEA 1%

4.3 Example: Transient analysis of a shiploader shuttle

Here we consider the same shuttle structure as above, but we introduce a small mod-
ification: we removed the diagonal trusses in order to decrease the lateral sti↵ness of
the structure. This modification of the geometry doesn’t require remeshing
since we only need to remove a few components in the model. This illustrates one of
the advantages of Akselos component-based models, namely the ability to modify the
topology of simulation models without the need to remesh.

We then perform a transient analysis of the structure after a lateral shock on the
end of the structure (normal load applied at t=0s), with the same clamping boundary
conditions as in Figure 6 (a) in the previous page. Figures 7 (a) to (d) show the
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In a similar spirit

(a) Shuttle model with clamp-
ing locations. (b) First mode. (c) Fifth mode.

Figure 6: Model and exemplary eigenmodes of the shiploader shuttle.

evolution of the displacement with respect to time, where we observe the structure
oscillating around its resting position. The transient analysis is computed using modal
superposition, hence the speed up obtained with respect to FEA is the same as the one
obtained for modal analysis.

Speed up vs. FEA 700
Maximum error vs. FEA 1%

5 Summary

In this report we outlined the mathematical background of Akselos’s RB-FEA simula-
tion technology. The main ingredients are the Reduced Basis Method in combination
with a component-based approach. This allows engineers to easily construct large, com-
plex, parametrized models, and perform extremely fast simulations. We also discussed
Akselos’s hybrid solver which enables nonlinear analysis by tightly coupling RB-FEA
and conventional FEA within a single global model.

The capabilities provided by Akselos’s solvers reduces or eliminates the key com-
putational bottlenecks in the analysis of large-scale engineering models, and therefore
opens up many new possibilities, including:

• Design optimization. An optimization algorithm can be used with Akselos’s
solvers to e�ciently identify an optimal configuration of a parameterized model.

• Parameter fitting. Identify model parameters such that an RB-FEA model
matches sensor data from a physical asset. This requires many iterations to find
a good fit, and hence is fast with RB-FEA and often unfeasible with conventional
FEA.

• Statistical analysis. Monte Carlo analysis of a system involves performing many
solves for many di↵erent parameter values. This enables uncertainty quantification
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In a similar spirit

(a) t=0.1s (b) t=0.3s

(c) t=0.6s (d) t=1s

Figure 7: A local lateral shock is applied at initial time t=0s.

or sensitivity analysis of complex systems, which in turn provide critical insights
into maintenance and operation of real-world engineering systems.
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Software

You do not have to do it all yourself

rbMIT - MATLAB based
http://augustine.mit.edu/methodology/
methodology_rbMIT_SystemPackage.htm

RBniCS - python based with FEniCS link
http://mathlab.sissa.it/rbnics

pyMOR - python based with FEniCS/DUNE link
http://pymor.org

http://augustine.mit.edu/methodology/methodology_rbMIT_SystemPackage.htm
http://mathlab.sissa.it/rbnics
http://pymor.org


Questions ?

Thank you !


