
Jan S Hesthaven
EPFL-SB-MATHICSE-MCSS
jan.Hesthaven@epfl.ch

Reduced order models for parameterized
problems: Lecture Two

DTU 2016

w/ assistance from B. Stamm (Aachen, D) and G. Rozza (SISSA, IT)

mailto:jan.Hesthaven@epfl.ch

Overview of the lectures

Lecture 1: Introduction, motivation, basics

Lecture 2: Certified reduced methods

Lecture 3: The ‘ non’s ’ etc

Free: https://infoscience.epfl.ch/record/213266?ln=en

Hesthaven, Rozza, Stamm
Certified Reduced Basis Methods for Parametrized
Partial Differential Equations
Springer Briefs in Mathematics, 2015

http://infoscience.epfl.ch/record/213266?ln=en

Overall goals

Understand Reduced models

Overall goalsPart II - Trends in Heterogenous
Desktop Computing

10 Hardware trends:
Uniprocessor performance

11

8/29/2007 CS194 Lecure 14

Revolution is Happening Now

• Chip density is
continuing increase
~2x every 2 years
• Clock speed is not
• Number of processor

cores may double
instead

• There is little or no
hidden parallelism
(ILP) to be found

• Parallelism must be
exposed to and
managed by software

Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond)

Source: Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)

Power wall: Nuclear power plant for each
machine
ILP wall: Automatic maximum resource
utilization increasingly difficult
Memory wall: Processor speed improves
faster than memory bandwidth.

P / CV 2f

- Performance can only achieved by concurrent computations as uniprocessor performance has stalled.

More performance? (2003-)
- uniprocessor performance increase only
x2/5years(?)
- multiprocessor performance increase x2/2
years implies increased architectural parallelism.
Performance problem is a software problem!

Major challenges:
- Rewrite sequential code
- Expose parallelism
- Deal with communication patterns

Multicore era!

Memory wall + Power wall + ILP wall = Brick wall

CPUs vs. GPUs trends!"#$%&'()*(+,%'-./0%1-,!

!

!

2((!345(!(6'-7'#881,7(9/1.&(:&';1-,(<*2!
!

!

=17/'&()>)*(=?-#%1,7>6-1,%(@$&'#%1-,;($&'(A&0-,.(#,.(
B&8-'C(D#,.E1.%"(F-'(%"&(!63(#,.(963(

Source: Nvidia Programming Guide

“Performance Gap”
(theoretical peak)}

Double precision support in GPUs
(scientific computing)

- GPUs in every PC (massive volume and potential impact)
- TFlops vs. 100 Gflops
- In current heterogenous hardware, CPU manages GPU

Programmable

} HPC in a
desktop!

~x2 transistors every 18 months
(moore’s law since mid 70s)

12

CPUs vs. GPUs trends

Source: Nvidia Programming Guide

!"#$%&'()*(+,%'-./0%1-,!

!

!

2((!345(!(6'-7'#881,7(9/1.&(:&';1-,(<*2!
!

!

=17/'&()>)*(=?-#%1,7>6-1,%(@$&'#%1-,;($&'(A&0-,.(#,.(
B&8-'C(D#,.E1.%"(F-'(%"&(!63(#,.(963(

“Memory wall”
- Processor speed

improves faster than
memory bandwidth

- slow off-chip
bandwidth for GPUs

Determining factor in application performance likely to be memory access
patterns rather than flop count (cf. 13 dwarfs due to P. Collella & D. Patterson).

- approximately x5 difference in bandwidth capacity

“Memory Gap”}
CPU: ~x2 every 10 years
GPU: ~x2 every 3-4 years

13

Paradigm shift in Scientific Computing

Inevitable paradigm shift:

 Parallelism and heterogeneity will be future standard

- New opportunities for solving larger, more complex and new problems.

- Increased focus on cost (perf/$) and energy efficiency (perf/watt) to secure low

maintenance cost and value for the money.

Conclusion: We need to rethink and redesign computational strategies and adopt new

programming models to take advantage of new multi- and many-core technologies.

Multi- and many-core hardware is new standard

Consequences and challenges

- Affects hardware from embedded systems, workstations to super computing clusters

- Compilers and libraries most often don’t hide these issues and are limited

- Traditional computing methods run slower on new hardware and/or cannot fully

exploit architectural features.

- Performance-portability requires algorithms which can expose hardware features.

14

General-Purpose GPU Computing

Many different applications from science and engineering show-cased in Nvidia’s
CUDA zone (mostly by HPC researchers). All applications written in the CUDA
framework after 2007! 15

16

GPUs vs. CPUs.
- GPUs are forerunners for future many-core architectures
- Both GPUs and CPUs are fast
- CPUs are optimized for reducing latency of few individual tasks (task parallelism)
- GPUs are optimized for maximizing throughput of many similar tasks (data parallelism)
- Future: integration going to happen to compensate for memory wall on-chip.

Source: http://en.wikipedia.org/wiki/CUDA

Potential performance bottleneck: data-transfer

- PCI-Express link bandwidth ~5GB/s
- GPU on-chip bandwidth <192GB/s

• Highly scalable stream-processing architectures optimized for high
throughput.

• Massively parallel (SIMT) processing devices

• 100s of cores, 1000s of threads

• Power-efficient (high perf/W)

• Available (almost) everywhere (some affordable, <$699)
(fx mass produced commodity graphics cards)

• High on-chip bandwidth (<192GB/s)
High compute capability (<515Gflops/s, double)

• Programmable using standard languages in combination
with new programming models CUDA and OpenCL (since 2006) and
new extensions of existing ones, e.g. OpenACC.

• Can act as a co-processor to CPU (or alone in next GPU generation)
(off-load computational intensive tasks from the CPU to GPU)

Modern General-Purpose GPUs (GPGPUS)
17

Research and education in Graphics Processing Units in Denmark

Established in August 2008 and is a unique
national competence center and hardware
laboratory.

- Development of efficient algorithms
- High-performance scientific computing
- Performance profiling, auto-tuning and prediction
- Software development
- Education

Collaboration: within both academia and industry.
Research projects: several ongoing B.Sc. - Ph.D.

http://gpulab.imm.dtu.dk
With support 2010-2013 from national FTP grant
“Desktop Computing on Consumer Graphics Cards”
PI: Prof. Per Christian Hansen

18

WHAT do we mean by ‘reduced models’ ?

WHY should we care ?

WHEN could it work ?

HOW do we know ?

DOES it work ?

Understand Reduced models

WHAT’s next ?

Starting point

x � �
x � ��

We consider physical systems of the form

where the solutions are implicitly parameterized by

L(x, µ)u(x, µ) = f(x, µ)

u(x, µ) = g(x, µ)

µ ⇥ D � RM

Starting point

x � �
x � ��

‣ How do we find the basis.

‣ How do we ensure accuracy under parameter
variation ?

‣ How do we ensure efficiency ?

We consider physical systems of the form

where the solutions are implicitly parameterized by

L(x, µ)u(x, µ) = f(x, µ)

u(x, µ) = g(x, µ)

µ ⇥ D � RM

The truth
Let us define:

The exact solution: Find such that u(µ) � X

a(u, µ, v) = f(µ, v), �v � X

The truth
Let us define:

The exact solution: Find such that

The truth solution: Find such that

u(µ) � X

a(u, µ, v) = f(µ, v), �v � X

ah(uh, µ, vh) = fh(µ, vh), �vh � Xh

uh(µ) � Xh

dim(Xh) = N

The truth
Let us define:

The exact solution: Find such that

The truth solution: Find such that

u(µ) � X

a(u, µ, v) = f(µ, v), �v � X

ah(uh, µ, vh) = fh(µ, vh), �vh � Xh

uh(µ) � Xh

dim(Xh) = N

The RB solution: Find such that
dim(XN) = N

uRB(µ) � XN

ah(uRB , µ, vN) = fh(µ, vN),�vN � XN

The truth
Let us define:

The exact solution: Find such that

The truth solution: Find such that

u(µ) � X

a(u, µ, v) = f(µ, v), �v � X

ah(uh, µ, vh) = fh(µ, vh), �vh � Xh

uh(µ) � Xh

dim(Xh) = N

The RB solution: Find such that
dim(XN) = N

uRB(µ) � XN

N � N

ah(uRB , µ, vN) = fh(µ, vN),�vN � XN

We always assume that

The truth and errors
Solving for the truth is expensive - but we need to
be able to trust the RB solution

�u(µ)� uRB(µ)� � �u(µ)� uh(µ)�+ �uh(µ)� uRB(µ)�

The truth and errors
Solving for the truth is expensive - but we need to
be able to trust the RB solution

�u(µ)� uRB(µ)� � �u(µ)� uh(µ)�+ �uh(µ)� uRB(µ)�

We assume that

�u(µ)� uh(µ)� � �

This is your favorite solver and it is assumed it can  
be as accurate as you desire - the truth

The truth and errors
Solving for the truth is expensive - but we need to
be able to trust the RB solution

�u(µ)� uRB(µ)� � �u(µ)� uh(µ)�+ �uh(µ)� uRB(µ)�

We assume that

�u(µ)� uh(µ)� � �

This is your favorite solver and it is assumed it can  
be as accurate as you desire - the truth

Bounding we achieve two things 

‣Ability to build a basis at minimal cost
‣Certify the quality of the model

Greedy samplingDomain and parameter space

Spatial domain �Parameter space P

x 2 ⌦
µ 2 P

Solution of PDE u(µ) 2 V. That is u(µ) : ⌦ ! R.

Spatial domain �

µ1

u(µ1)

Notation: a function v(·;µ) : ⌦ ! R is often denoted as v(µ).

Greedy samplingDomain and parameter space

Spatial domain �Parameter space P

x 2 ⌦
µ 2 P

Solution of PDE u(µ) 2 V. That is u(µ) : ⌦ ! R.

Spatial domain �

µ1

u(µ1)

Spatial domain �

µ2

u(µ2)

Notation: a function v(·;µ) : ⌦ ! R is often denoted as v(µ).

Greedy samplingDomain and parameter space

Spatial domain �Parameter space P

x 2 ⌦
µ 2 P

Solution of PDE u(µ) 2 V. That is u(µ) : ⌦ ! R.

Spatial domain �

µ1

u(µ1)

Spatial domain �

µ2

u(µ2)

Notation: a function v(·;µ) : ⌦ ! R is often denoted as v(µ).

Reduced Basis Generation

Example:

Reduced Basis Ansatz:

Vrb = span{u�(µ1), . . . , u�(µN)}

for some well-chosen sample points µ1, . . . , µN .

u(µ1) u(µ2) u(µ3) u(µ4) u(µ5)

Question: How to find the sample points µ1, . . . , µN such that

Vrb ⇡ M� = {u�(µ) : 8µ 2 P},

i.e. such that

E(M�,Vrb) = sup
u�(µ)2M�

inf
vrb2Vrb

ku�(µ)� vrbkV < tol

for N as little as possible?

Di↵erent snapshots for the thermal block problem illustrated

Example:

1 parameter: wavenumber k
Di�erent snapshots illustrated

Greedy samplingGreedy algorithm

Greedy algorithm:

Set N = 1, choose µ1 2 P arbitrarily.

1. Compute u�(µN) 2 V� (truth problem: computationally expensive)

2. Set Vrb = span{Vrb, u�(µN)}

3. Find µN+1 = argmaxµ2P ku�(µ)� urb(µ)kV
4. Set N := N + 1 and goto 1. while maxµ2P ku�(µ)� urb(µ)kV > Tol

Goal: Selection of sample points µ1, . . . , µN such that

Vrb = span{u�(µ1), . . . , u�(µN)} ⇡ M�

Remarks:

• In order to compute ku�(µ)� urb(µ)kV, the truth solution u�(µ) needs to
be computed.

• A sequence of hierarchical spaces is generated (which is not the case for

the sequence of the best approximation spaces in the sens of Kolmogorov).

Greedy samplingGreedy algorithm

Greedy algorithm:

Set N = 1, choose µ1 2 P arbitrarily.

1. Compute u�(µN) 2 V� (truth problem: computationally expensive)

2. Set Vrb = span{Vrb, u�(µN)}

3. Find µN+1 = argmaxµ2P ku�(µ)� urb(µ)kV
4. Set N := N + 1 and goto 1. while maxµ2P ku�(µ)� urb(µ)kV > Tol

Goal: Selection of sample points µ1, . . . , µN such that

Vrb = span{u�(µ1), . . . , u�(µN)} ⇡ M�

Remarks:

• In order to compute ku�(µ)� urb(µ)kV, the truth solution u�(µ) needs to
be computed.

• A sequence of hierarchical spaces is generated (which is not the case for

the sequence of the best approximation spaces in the sens of Kolmogorov).

Greedy algorithm

Greedy algorithm:

Set N = 1, choose µ1 2 P arbitrarily.

1. Compute u�(µN) 2 V� (truth problem: computationally expensive)

2. Set Vrb = span{Vrb, u�(µN)}

3. Find µN+1 = argmaxµ2P ku�(µ)� urb(µ)kV
4. Set N := N + 1 and goto 1. while maxµ2P ku�(µ)� urb(µ)kV > Tol

Goal: Selection of sample points µ1, . . . , µN such that

Vrb = span{u�(µ1), . . . , u�(µN)} ⇡ M�

Remarks:

• In order to compute ku�(µ)� urb(µ)kV, the truth solution u�(µ) needs to
be computed.

• A sequence of hierarchical spaces is generated (which is not the case for

the sequence of the best approximation spaces in the sens of Kolmogorov).

Greedy samplingWeak greedy algorithm

The Galerkin framework allow for a residual-based a posteriori estimators without

computing u�(µ). This will be discussed at a later stage.

Key ingredient: (estimated) error feedback: Consider the mapping

µ 7! ⌘(µ),

where ⌘(µ) is an error estimation for kurb(µ)� u�(µ)kV.
Recall that u�(µ) the truth approximation defined by: find u�(µ) 2 V� such that

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�,

and urb(µ) the reduced basis solution defined by: find urb(µ) 2 Vrb such that

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb.

Greedy samplingWeak greedy algorithm

The Galerkin framework allow for a residual-based a posteriori estimators without

computing u�(µ). This will be discussed at a later stage.

Key ingredient: (estimated) error feedback: Consider the mapping

µ 7! ⌘(µ),

where ⌘(µ) is an error estimation for kurb(µ)� u�(µ)kV.
Recall that u�(µ) the truth approximation defined by: find u�(µ) 2 V� such that

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�,

and urb(µ) the reduced basis solution defined by: find urb(µ) 2 Vrb such that

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb.

Weak greedy algorithm

The Galerkin framework allow for a residual-based a posteriori estimators without

computing u�(µ). This will be discussed at a later stage.

Key ingredient: (estimated) error feedback: Consider the mapping

µ 7! ⌘(µ),

where ⌘(µ) is an error estimation for kurb(µ)� u�(µ)kV.
Recall that u�(µ) the truth approximation defined by: find u�(µ) 2 V� such that

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�,

and urb(µ) the reduced basis solution defined by: find urb(µ) 2 Vrb such that

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb.

Greedy samplingWeak greedy algorithm

Greedy algorithm:

Set N = 1, choose µ1 2 P arbitrarily.

1. Compute u�(µN) 2 V� (truth problem: computationally expensive)

2. Set Vrb = span{Vrb, u�(µN)}

3. Find µN+1 = argmaxµ2P ⌘(µ)

4. Set N := N + 1 and goto 1. while maxµ2P ⌘(µ) > tol

Remarks:

• Only N truth approximations need to be computed (compared to the
POD-approach).

• A sequence of hierarchical spaces is generated (which is not the case for
the sequence of the best approximation spaces in the sens of Kolmogorov).

• We call it certified reduced basis if the error estimator satisfies

ku�(µ)� urb(µ)kV  ⌘(µ).

That is, the error estimator is a guaranteed upper bound and the real
error can only be smaller.

Greedy samplingWeak greedy algorithm

Greedy algorithm:

Set N = 1, choose µ1 2 P arbitrarily.

1. Compute u�(µN) 2 V� (truth problem: computationally expensive)

2. Set Vrb = span{Vrb, u�(µN)}

3. Find µN+1 = argmaxµ2P ⌘(µ)

4. Set N := N + 1 and goto 1. while maxµ2P ⌘(µ) > tol

Remarks:

• Only N truth approximations need to be computed (compared to the
POD-approach).

• A sequence of hierarchical spaces is generated (which is not the case for
the sequence of the best approximation spaces in the sens of Kolmogorov).

• We call it certified reduced basis if the error estimator satisfies

ku�(µ)� urb(µ)kV  ⌘(µ).

That is, the error estimator is a guaranteed upper bound and the real
error can only be smaller.

uRM (µ) =
N�

i=1

ui
N (µ)�i

Greedy samplingWeak greedy algorithm

Greedy algorithm:

Set N = 1, choose µ1 2 P arbitrarily.

1. Compute u�(µN) 2 V� (truth problem: computationally expensive)

2. Set Vrb = span{Vrb, u�(µN)}

3. Find µN+1 = argmaxµ2P ⌘(µ)

4. Set N := N + 1 and goto 1. while maxµ2P ⌘(µ) > tol

Remarks:

• Only N truth approximations need to be computed (compared to the
POD-approach).

• A sequence of hierarchical spaces is generated (which is not the case for
the sequence of the best approximation spaces in the sens of Kolmogorov).

• We call it certified reduced basis if the error estimator satisfies

ku�(µ)� urb(µ)kV  ⌘(µ).

That is, the error estimator is a guaranteed upper bound and the real
error can only be smaller.

REDUCED BASIS METHOD FOR THE EFIE 25

     






























    






























Figure 11. Accuracy of the Reduced Basis Method for test case
i) (left) and ii) (right) for different values of the wave number k.

     



























      





















Figure 12. Accuracy of the Reduced Basis Method for test case
iii) (left) and iv) (right) and comparison to the optimal accuracy
given by the singular values.

For scatterers with volumes we are aware of the fact that spurious modes may
interfere since we are using the EFIE. However, excluding them from the training
sample Ξ avoids that the algorithm is at any point not well posed. We justify the use
of the EFIE by the sake of its simplicity in the beginning of this project. However,
there is no reason why the combination of the Reduced Basis Method combined
with any other standard solver for the parametrized scattering problem should not
work. In particular, we will work on the Combined Field Integral Equation (CFIE)
in near future.

uRM (µ) =
N�

i=1

ui
N (µ)�i

Greedy sampling - example

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Greedy sampling - example

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Greedy sampling - example

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Greedy sampling - example

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1
Er

ro
r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1
Er

ro
r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

Er
ro

r
Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1
Er

ro
r

Error estimate
True error

One-dimensional parameter space

Greedy sampling - example

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1

Er
ro

r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

Er
ro

r

Error estimate
True error

One-dimensional parameter space

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1
Er

ro
r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1
Er

ro
r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

Er
ro

r
Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1
Er

ro
r

Error estimate
True error

One-dimensional parameter space

Weak greedy algorithm: illustration

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1
Er

ro
r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1
Er

ro
r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1
Er

ro
r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1
Er

ro
r

Error estimate
True error

10 12 14 16 18 20
k

1x10-8

1x10-7

1x10-6

0.00001

0.0001

0.001

0.01

0.1

1
Er

ro
r

Error estimate
True error

One-dimensional parameter space

Greedy sampling - theory
Greedy algorithm: theoretical aspects

Convergence: Is the convergence of the greedy algorithm comparable with the

decay of the Kolmogorov N -width? Recall that the Kolmogorov N -width is the

error using the best possible N -dimensional space (which is unknown in practise).

Theorem: Assume that the set of all solutions M has an exponentially small

Kolmogorov N -width

dN (M)  ce�aN ,

for an a > log

�
1 +

p �
↵

�
, then the reduced basis approximation converges expo-

nentially fast in the sense that there exists a � > 0 such that

8µ 2 P : ku�(µ)� urb(µ)kV  Ce��N .

Another result exists which says that if the Kolmogorov N -width decays with

an algebraic rate, then so does the reduced basis approximation based on the

greedy-algorithm. The rates are however di↵erent.

Open problem:
Parametrized problem � Decay of Kolmogorov width

Need for speed
Efficiency
How to solve the problem: For µ 2 P, find the solution urb(µ) 2 Vrb of

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb

fastly?

It consists of a linear problem with N degrees of freedom, thus results in a N -

dimensional linear system

Aµ
rb u

µ
rb = f

µ
rb,

which, once assembled, can be solved in O(N3
) operations, thus independent of

N� = dim(V�). If N ⌧ N�, which easily the case if the Kolmogorov N -width is

decaying exponentially, the resolution is very fast. In practise N ⇡ 10� 200 for

suitable problems and N� can be several thousands.

However: Let the reduced basis space be given by Vrb = span{⇠1, . . . , ⇠N},
then the N -dimensional matrix

(Aµ
rb)ij = a(⇠j , ⇠i;µ), 1  i, j  N,

needs to be reassembled for each new parameter value µ 2 P and the assembly

process depends on N� = dim(V�): A
µ
rb = BTAµ

�B.

Need for speed
Efficiency
How to solve the problem: For µ 2 P, find the solution urb(µ) 2 Vrb of

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb

fastly?

It consists of a linear problem with N degrees of freedom, thus results in a N -

dimensional linear system

Aµ
rb u

µ
rb = f

µ
rb,

which, once assembled, can be solved in O(N3
) operations, thus independent of

N� = dim(V�). If N ⌧ N�, which easily the case if the Kolmogorov N -width is

decaying exponentially, the resolution is very fast. In practise N ⇡ 10� 200 for

suitable problems and N� can be several thousands.

However: Let the reduced basis space be given by Vrb = span{⇠1, . . . , ⇠N},
then the N -dimensional matrix

(Aµ
rb)ij = a(⇠j , ⇠i;µ), 1  i, j  N,

needs to be reassembled for each new parameter value µ 2 P and the assembly

process depends on N� = dim(V�): A
µ
rb = BTAµ

�B.

Efficiency
How to solve the problem: For µ 2 P, find the solution urb(µ) 2 Vrb of

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb

fastly?

It consists of a linear problem with N degrees of freedom, thus results in a N -

dimensional linear system

Aµ
rb u

µ
rb = f

µ
rb,

which, once assembled, can be solved in O(N3
) operations, thus independent of

N� = dim(V�). If N ⌧ N�, which easily the case if the Kolmogorov N -width is

decaying exponentially, the resolution is very fast. In practise N ⇡ 10� 200 for

suitable problems and N� can be several thousands.

However: Let the reduced basis space be given by Vrb = span{⇠1, . . . , ⇠N},
then the N -dimensional matrix

(Aµ
rb)ij = a(⇠j , ⇠i;µ), 1  i, j  N,

needs to be reassembled for each new parameter value µ 2 P and the assembly

process depends on N� = dim(V�): A
µ
rb = BTAµ

�B.

Need for speed
Efficiency
How to solve the problem: For µ 2 P, find the solution urb(µ) 2 Vrb of

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb

fastly?

It consists of a linear problem with N degrees of freedom, thus results in a N -

dimensional linear system

Aµ
rb u

µ
rb = f

µ
rb,

which, once assembled, can be solved in O(N3
) operations, thus independent of

N� = dim(V�). If N ⌧ N�, which easily the case if the Kolmogorov N -width is

decaying exponentially, the resolution is very fast. In practise N ⇡ 10� 200 for

suitable problems and N� can be several thousands.

However: Let the reduced basis space be given by Vrb = span{⇠1, . . . , ⇠N},
then the N -dimensional matrix

(Aµ
rb)ij = a(⇠j , ⇠i;µ), 1  i, j  N,

needs to be reassembled for each new parameter value µ 2 P and the assembly

process depends on N� = dim(V�): A
µ
rb = BTAµ

�B.

Efficiency
How to solve the problem: For µ 2 P, find the solution urb(µ) 2 Vrb of

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb

fastly?

It consists of a linear problem with N degrees of freedom, thus results in a N -

dimensional linear system

Aµ
rb u

µ
rb = f

µ
rb,

which, once assembled, can be solved in O(N3
) operations, thus independent of

N� = dim(V�). If N ⌧ N�, which easily the case if the Kolmogorov N -width is

decaying exponentially, the resolution is very fast. In practise N ⇡ 10� 200 for

suitable problems and N� can be several thousands.

However: Let the reduced basis space be given by Vrb = span{⇠1, . . . , ⇠N},
then the N -dimensional matrix

(Aµ
rb)ij = a(⇠j , ⇠i;µ), 1  i, j  N,

needs to be reassembled for each new parameter value µ 2 P and the assembly

process depends on N� = dim(V�): A
µ
rb = BTAµ

�B.

Efficiency
How to solve the problem: For µ 2 P, find the solution urb(µ) 2 Vrb of

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb

fastly?

It consists of a linear problem with N degrees of freedom, thus results in a N -

dimensional linear system

Aµ
rb u

µ
rb = f

µ
rb,

which, once assembled, can be solved in O(N3
) operations, thus independent of

N� = dim(V�). If N ⌧ N�, which easily the case if the Kolmogorov N -width is

decaying exponentially, the resolution is very fast. In practise N ⇡ 10� 200 for

suitable problems and N� can be several thousands.

However: Let the reduced basis space be given by Vrb = span{⇠1, . . . , ⇠N},
then the N -dimensional matrix

(Aµ
rb)ij = a(⇠j , ⇠i;µ), 1  i, j  N,

needs to be reassembled for each new parameter value µ 2 P and the assembly

process depends on N� = dim(V�): A
µ
rb = BTAµ

�B.

Need for speed

Efficiency: the affine decomposition

 Assumption:

a(w, v;µ) =
QaX

q=1

✓qa(µ) aq(w, v),

f(v;µ) =
QfX

q=1

✓qf(µ) fq(v),

`(v;µ) =
QlX

q=1

✓ql(µ) `q(v),

where

✓qa , ✓
q
f , ✓

q
l : P ! R µ� dependent functions,

aq : V⇥ V ! R µ� independent forms,

fq, `q : V ! R µ� independent forms,

The affine assumption

Need for speedEfficiency: example

Example: Convection-di�usion

a(u, v; ") = "

Z 1

0
u

0(x)v0(x) dx+

Z 1

0
u

0(x)v(x) dx,

a1(u, v; ") =

Z 1

0
u

0(x)v0(x) dx, ✓

1
a(") = ",

a2(u, v; ") =

Z 1

0
u

0(x)v(x) dx, ✓

2
a(") = 1,

Example: Heat conduction on thermal blocks

a(w, v;µ) =
15X

i=1

µi

Z

Ri

rw ·rv +

Z

RP+1

rw ·rv,

ai(w, v;µ) =

Z

Ri

rw ·rv, ✓ia(µ) = µi, i = 1, . . . , 15,

a16(w, v;µ) =

Z

R16

rw ·rv, ✓16a (µ) = 1,

Need for speed

Off-line:

Affine assumption: Off-line/on-line

Given Vrb = span{⇠1, . . . , ⇠N} precompute

(Aq
rb)ij = aq(⇠j , ⇠i), 8 1  i, j  N,

(f

q
rb)i = fq(⇠i), 8 1  i  N,

(l

q
rb)i = `q(⇠i), 8 1  i  N.

Rem. Size of Aq
rb and f

q
rb, l

q
rb is N ⇥N resp. N .

Rem. The assembling depends on N� = dim(V�). Indeed:

Aq
rb = BTAq

� B, f

q
rb = BT

f

q
� , l

q
rb = BT

l

q
�,

where (Aq
�)ij = aq('j ,'i), (f

q
�)j = fq('j) and (l

q
�)j = `q('j) for 1  i, j  N�.

Need for speed

Off-line:

Affine assumption: Off-line/on-line

Given Vrb = span{⇠1, . . . , ⇠N} precompute

(Aq
rb)ij = aq(⇠j , ⇠i), 8 1  i, j  N,

(f

q
rb)i = fq(⇠i), 8 1  i  N,

(l

q
rb)i = `q(⇠i), 8 1  i  N.

Rem. Size of Aq
rb and f

q
rb, l

q
rb is N ⇥N resp. N .

Rem. The assembling depends on N� = dim(V�). Indeed:

Aq
rb = BTAq

� B, f

q
rb = BT

f

q
� , l

q
rb = BT

l

q
�,

where (Aq
�)ij = aq('j ,'i), (f

q
�)j = fq('j) and (l

q
�)j = `q('j) for 1  i, j  N�.

Off-line:

Affine assumption: Off-line/on-line

Given Vrb = span{⇠1, . . . , ⇠N} precompute

(Aq
rb)ij = aq(⇠j , ⇠i), 8 1  i, j  N,

(f

q
rb)i = fq(⇠i), 8 1  i  N,

(l

q
rb)i = `q(⇠i), 8 1  i  N.

Rem. Size of Aq
rb and f

q
rb, l

q
rb is N ⇥N resp. N .

Rem. The assembling depends on N� = dim(V�). Indeed:

Aq
rb = BTAq

� B, f

q
rb = BT

f

q
� , l

q
rb = BT

l

q
�,

where (Aq
�)ij = aq('j ,'i), (f

q
�)j = fq('j) and (l

q
�)j = `q('j) for 1  i, j  N�.

Need for speed

On-line:

Affine assumption: Off-line/on-line tasks

For each new parameter value µ 2 P

1. Assemble (depending on Qa, Qf and N , i.e. ⇠ QaN2
resp. ⇠ QfN)

Aµ
rb =

QaX

q=1

✓qa(µ)A
q
rb f

µ
rb =

QfX

q=1

✓qf(µ) f
q
rb

2. Solve Aµ
rbu

µ
rb = f

µ
rb. (depending on N , i.e ⇠ N3

for LU factorization)

3. Compute

srb(µ) = `(urb(µ);µ) =
QlX

q=1

✓ml (µ) (uµrb)
T
l

q
rb.

Independent of N�!

Need for speed

On-line:

Affine assumption: Off-line/on-line tasks

For each new parameter value µ 2 P

1. Assemble (depending on Qa, Qf and N , i.e. ⇠ QaN2
resp. ⇠ QfN)

Aµ
rb =

QaX

q=1

✓qa(µ)A
q
rb f

µ
rb =

QfX

q=1

✓qf(µ) f
q
rb

2. Solve Aµ
rbu

µ
rb = f

µ
rb. (depending on N , i.e ⇠ N3

for LU factorization)

3. Compute

srb(µ) = `(urb(µ);µ) =
QlX

q=1

✓ml (µ) (uµrb)
T
l

q
rb.

Independent of N�!

This is independent on N !

Need for speedOff-line/On-line procedure: Is it worth?

Computational costs:

o O�-line procedure: Toff.
o One on-line evaluation: Ton.
o One truth solve: Ttr � Ton.

Evaluation for M parameter values:
1. Brute force approach: M · Ttr.
2. Reduced basis method: Toff + M · Ton.

Theoretical considerations:

o The parameter space P is a continuous space (not discrete): M is potentially
arbitrarily high.

o Whenever the number M of parameter evaluations is high enough, the
reduced basis method is always cheaper.

Need for speed
Off-line/On-line procedure: Is it worth?

Computational costs:

o O�-line procedure: Toff.
o One on-line evaluation: Ton.
o One truth solve: Ttr � Ton.

Evaluation for M parameter values:
1. Brute force approach: M · Ttr.
2. Reduced basis method: Toff + M · Ton.

Theoretical considerations:

o The parameter space P is a continuous space (not discrete): M is potentially
arbitrarily high.

o Whenever the number M of parameter evaluations is high enough, the
reduced basis method is always cheaper.

Off-line/On-line procedure: Is it worth?

Computational costs:

o O�-line procedure: Toff.
o One on-line evaluation: Ton.
o One truth solve: Ttr � Ton.

Evaluation for M parameter values:
1. Brute force approach: M · Ttr.
2. Reduced basis method: Toff + M · Ton.

Theoretical considerations:

o The parameter space P is a continuous space (not discrete): M is potentially
arbitrarily high.

o Whenever the number M of parameter evaluations is high enough, the
reduced basis method is always cheaper.

Need for speed
Off-line/On-line procedure: Is it worth?

Computational costs:

o O�-line procedure: Toff.
o One on-line evaluation: Ton.
o One truth solve: Ttr � Ton.

Evaluation for M parameter values:
1. Brute force approach: M · Ttr.
2. Reduced basis method: Toff + M · Ton.

Theoretical considerations:

o The parameter space P is a continuous space (not discrete): M is potentially
arbitrarily high.

o Whenever the number M of parameter evaluations is high enough, the
reduced basis method is always cheaper.

Off-line/On-line procedure: Is it worth?

Computational costs:

o O�-line procedure: Toff.
o One on-line evaluation: Ton.
o One truth solve: Ttr � Ton.

Evaluation for M parameter values:
1. Brute force approach: M · Ttr.
2. Reduced basis method: Toff + M · Ton.

Theoretical considerations:

o The parameter space P is a continuous space (not discrete): M is potentially
arbitrarily high.

o Whenever the number M of parameter evaluations is high enough, the
reduced basis method is always cheaper.

Off-line/On-line procedure: Is it worth?

Computational costs:

o O�-line procedure: Toff.
o One on-line evaluation: Ton.
o One truth solve: Ttr � Ton.

Evaluation for M parameter values:
1. Brute force approach: M · Ttr.
2. Reduced basis method: Toff + M · Ton.

1x103 1x104 1x105 1x106

Number of parameter evaluations: M

0

20

40

60

80

100
Sp

ee
d-

up

Realistic example:

o Ton = 1.
o Ttr = 102 (realistic speed-up).
o Toff = 104 (N = 100).

Brute force: M · Ttr = M · 102

RBM: Toff + M · Ton = 104 + M

The method - so farSchematic overview of Reduced Basis Method (so far)

O✏ine procedure:

1. Construct the reduced basis space Vrb empirically based on the weak

greedy algorithm using an a posteriori estimator ⌘(µ)

2. Precompute the µ-independent matrices Aq
rb and the vectors f

q
rb, l

q
rb.

Schematic overview of Reduced Basis Method (so far)

O✏ine procedure:

1. Construct the reduced basis space Vrb empirically based on the weak

greedy algorithm using an a posteriori estimator ⌘(µ)

2. Precompute the µ-independent matrices Aq
rb and the vectors f

q
rb, l

q
rb.

Online procedure:

µ �! solve for: urb(µ) �! srb(µ) = `(urb(µ);µ)

which consists of

1. Assemble

Aµ
rb =

QaX

q=1

✓qa(µ)A
q
rb f

µ
rb =

QfX

q=1

✓qf(µ) f
q
rb

2. Solve Aµ
rbu

µ
rb = f

µ
rb (N -dimensional linear system, N ⌧ N�)

3. Compute srb(µ) = `(urb(µ);µ)

4. Compute the a posteriori error estimator ⌘(µ) to certify the accuracy

ku�(µ)� urb(µ)kV  ⌘(µ).

Characteristics: Independent of N� = dim(V�): cheap. Feasible in a many-

query context.

The method - so farSchematic overview of Reduced Basis Method (so far)

O✏ine procedure:

1. Construct the reduced basis space Vrb empirically based on the weak

greedy algorithm using an a posteriori estimator ⌘(µ)

2. Precompute the µ-independent matrices Aq
rb and the vectors f

q
rb, l

q
rb.

Schematic overview of Reduced Basis Method (so far)

O✏ine procedure:

1. Construct the reduced basis space Vrb empirically based on the weak

greedy algorithm using an a posteriori estimator ⌘(µ)

2. Precompute the µ-independent matrices Aq
rb and the vectors f

q
rb, l

q
rb.

Online procedure:

µ �! solve for: urb(µ) �! srb(µ) = `(urb(µ);µ)

which consists of

1. Assemble

Aµ
rb =

QaX

q=1

✓qa(µ)A
q
rb f

µ
rb =

QfX

q=1

✓qf(µ) f
q
rb

2. Solve Aµ
rbu

µ
rb = f

µ
rb (N -dimensional linear system, N ⌧ N�)

3. Compute srb(µ) = `(urb(µ);µ)

4. Compute the a posteriori error estimator ⌘(µ) to certify the accuracy

ku�(µ)� urb(µ)kV  ⌘(µ).

Characteristics: Independent of N� = dim(V�): cheap. Feasible in a many-

query context.

The a posteriori estimatorA posteriori estimation process

So far we assumed the existence of the a posteriori estimation process:

µ �! solve: a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb �! ⌘(µ)

where ⌘(µ) is an a posteriori estimation for kurb(µ)� u�(µ)kV� .

o Estimates the discrete error ku�(µ)� urb(µ)kV by ⌘(µ): error with respect
to the truth approximation u�(µ).

o Ideal scenario:

ku�(µ)� urb(µ)kV  ⌘(µ), 8µ 2 P.

Certifies the model order reduction error with a computable bound.

o Crucial for selection process in weak greedy algorithm. (O↵-line)

o Should be cheap, i.e., independent on N� = dim(V�). (O↵- and On-line)

Need for speedError splitting

Given by the
approximation
space V�

Needs to be estimated

Why only ku�(µ)� urb(µ)kV?

Error of truth
approximation

Error of model
order reduction

ku(µ)� urb(µ)kV  ku(µ)� u�(µ)kV| {z } + ku�(µ)� urb(µ)kV| {z }

Depends on the

reduced basis

space Vrb

Assumption:

sup

µ2P
ku(µ)� u�(µ)kV  tol

by the choice of � in V�.

The error estimate
Consider the discrete truth problem

A(µ)uh(µ) = fh(µ)

The error estimate
Consider the discrete truth problem

Express the solution as

A(µ)uh(µ) = fh(µ)

uh = uN + u�
uh � Xh

uN � XN

The error estimate
Consider the discrete truth problem

A1,1uRB = fRB

Express the solution as

This results in the truth problem

as well as the reduced problem

A(µ)uh(µ) = fh(µ)

uh = uN + u�
uh � Xh

uN � XN

�
A1,1 A1,2

A2,1 A2,2

� �
uN

u�

�
=

�
fRB

f�

�

The error estimate
This yields the estimate for the error

�
A1,1 A1,2

A2,1 A2,2

� �
uN � uRB

u�

�
=

�
0

f� �A2,1uRB

�

The error estimate
This yields the estimate for the error

�
A1,1 A1,2

A2,1 A2,2

� �
uN � uRB

u�

�
=

�
0

f� �A2,1uRB

�

�
0

f� �A2,1uRB

�
=

�
fRB �A1,1uRB

f� �A2,1uRB

�
= fh �AuRB = R(µ)

We can recognize the right hand side as

and we recover

�uh(µ)� uRB(µ)� � �A�1(µ)��R(µ)�

So with the residual and an estimate of the norm of
the inverse of A we can bound the error

Error estimationThe error equation
Truth solution: Find u�(µ) 2 V� such that

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

RB solution: Find urb(µ) 2 Vrb such that

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb.

Since Vrb ⇢ V�, there holds that

a(u�(µ)� urb(µ), v�;µ) = f(v�;µ)� a(urb(µ), v�;µ), 8v� 2 V�.

Define the error function e(µ) 2 V� and the residual r(·;µ) 2 V0
� by

e(µ) = u�(µ)� urb(µ) 2 V�,

r(v�;µ) = f(v�;µ)� a(urb(µ), v�;µ), 8v� 2 V�.

This establishes the following error equation

a(e(µ), v�;µ) = r(v�;µ), 8v� 2 V�.

Error estimationThe error equation
Truth solution: Find u�(µ) 2 V� such that

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

RB solution: Find urb(µ) 2 Vrb such that

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb.

Since Vrb ⇢ V�, there holds that

a(u�(µ)� urb(µ), v�;µ) = f(v�;µ)� a(urb(µ), v�;µ), 8v� 2 V�.

Define the error function e(µ) 2 V� and the residual r(·;µ) 2 V0
� by

e(µ) = u�(µ)� urb(µ) 2 V�,

r(v�;µ) = f(v�;µ)� a(urb(µ), v�;µ), 8v� 2 V�.

This establishes the following error equation

a(e(µ), v�;µ) = r(v�;µ), 8v� 2 V�.

The error equation
Truth solution: Find u�(µ) 2 V� such that

a(u�(µ), v�;µ) = f(v�;µ), 8v� 2 V�.

RB solution: Find urb(µ) 2 Vrb such that

a(urb(µ), vrb;µ) = f(vrb;µ), 8vrb 2 Vrb.

Since Vrb ⇢ V�, there holds that

a(u�(µ)� urb(µ), v�;µ) = f(v�;µ)� a(urb(µ), v�;µ), 8v� 2 V�.

Define the error function e(µ) 2 V� and the residual r(·;µ) 2 V0
� by

e(µ) = u�(µ)� urb(µ) 2 V�,

r(v�;µ) = f(v�;µ)� a(urb(µ), v�;µ), 8v� 2 V�.

This establishes the following error equation

a(e(µ), v�;µ) = r(v�;µ), 8v� 2 V�.

Error estimationEstimation for coercive problems

For coercive problems:

↵�(µ) kv�k2V  a(v�, v�;µ),

with ↵�(µ) � ↵� > 0.

In consequence

ku�(µ)� urb(µ)| {z }
=e(µ)

k2V  1

↵�(µ)
a(e(µ), e(µ);µ) =

1

↵�(µ)
r(e(µ);µ)

=

1

↵�(µ)
(r̂�(µ), e(µ))V  1

↵�(µ)
kr̂�(µ)kV ke(µ)kV

Thus

ku�(µ)� urb(µ)kV  kr̂�(µ)kV
↵�(µ)

Error estimationEstimation for coercive problems

For coercive problems:

↵�(µ) kv�k2V  a(v�, v�;µ),

with ↵�(µ) � ↵� > 0.

In consequence

ku�(µ)� urb(µ)| {z }
=e(µ)

k2V  1

↵�(µ)
a(e(µ), e(µ);µ) =

1

↵�(µ)
r(e(µ);µ)

=

1

↵�(µ)
(r̂�(µ), e(µ))V  1

↵�(µ)
kr̂�(µ)kV ke(µ)kV

Thus

ku�(µ)� urb(µ)kV  kr̂�(µ)kV
↵�(µ)

Computing the stability constantComputation of the discrete stability constant
In the coercive case ↵�(µ) is defined by

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V
= inf

v�2V�

a(v�, v�;µ)

(v�, v�)V
.

Thus ↵�(µ) is the smallest eigenvalue of: find (�, w�) 2 R+ ⇥ V� such that

a(w�, v�;µ) = � (w�, v�)V, 8v� 2 V�.

Computing the stability constantComputation of the discrete stability constant
In the coercive case ↵�(µ) is defined by

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V
= inf

v�2V�

a(v�, v�;µ)

(v�, v�)V
.

Thus ↵�(µ) is the smallest eigenvalue of: find (�, w�) 2 R+ ⇥ V� such that

a(w�, v�;µ) = � (w�, v�)V, 8v� 2 V�.

Computation of the discrete stability constant
In the coercive case ↵�(µ) is defined by

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V
= inf

v�2V�

a(v�, v�;µ)

(v�, v�)V
.

Thus ↵�(µ) is the smallest eigenvalue of: find (�, w�) 2 R+ ⇥ V� such that

a(w�, v�;µ) = � (w�, v�)V, 8v� 2 V�.

This can be translated to find the smallest eigenvalue of the generalised eigenvalue

problem

Aµ
� v� = � M�v�,

where (Aµ
�)ij = a('j ,'i;µ), (M�)ij = ('j ,'i)V and recall that {'i}N�

i=1 is a basis

of V�.

Depends on N

Computing the stability constantComputation of the norm of the residual

How to compute kr̂�(µ)kV?

Let

r

µ
� = f

µ
� �Aµ

� B u

µ
rb 2 RN� ,

be the residual vector of the N�-dimensional linear system

Aµ
� u

µ
� = f

µ
�

for the truth solution for a particular µ. The quantity B u

µ
rb is the representation

of urb(µ) in the basis {'i}N�
i=1.

Then

kr̂�(µ)kV =
q
(rµ�)

T M�1
� rµ� .

The quantity kr̂�(µ)kV can thus be computed but the costs depends on N�.

Computing the stability constantComputation of the norm of the residual

How to compute kr̂�(µ)kV?

Let

r

µ
� = f

µ
� �Aµ

� B u

µ
rb 2 RN� ,

be the residual vector of the N�-dimensional linear system

Aµ
� u

µ
� = f

µ
�

for the truth solution for a particular µ. The quantity B u

µ
rb is the representation

of urb(µ) in the basis {'i}N�
i=1.

Then

kr̂�(µ)kV =
q
(rµ�)

T M�1
� rµ� .

The quantity kr̂�(µ)kV can thus be computed but the costs depends on N�.

Computation of the norm of the residual

How to compute kr̂�(µ)kV?

Let

r

µ
� = f

µ
� �Aµ

� B u

µ
rb 2 RN� ,

be the residual vector of the N�-dimensional linear system

Aµ
� u

µ
� = f

µ
�

for the truth solution for a particular µ. The quantity B u

µ
rb is the representation

of urb(µ) in the basis {'i}N�
i=1.

Then

kr̂�(µ)kV =
q
(rµ�)

T M�1
� rµ� .

The quantity kr̂�(µ)kV can thus be computed but the costs depends on N�.

Strategy: Use the a�ne decomposition in combination with pre-computations

that are µ-independent.

Computing the stability constantError certification
Let us thus define

⌘(µ) =
kr̂�(µ)kV
↵LB(µ)

Theorem: We just proved that there holds

ku�(µ)� urb(µ)kV  ⌘(µ).

Theorem: The estimator is e�cient

⌘(µ)  ��(µ)

↵LB(µ)
ku�(µ)� urb(µ)kV.

Computing the stability constantError certification
Let us thus define

⌘(µ) =
kr̂�(µ)kV
↵LB(µ)

Theorem: We just proved that there holds

ku�(µ)� urb(µ)kV  ⌘(µ).

Theorem: The estimator is e�cient

⌘(µ)  ��(µ)

↵LB(µ)
ku�(µ)� urb(µ)kV.

Output functional: the compliant case
Assuming that a(·, ·;µ) is coercive, let us introduce the parameter-dependent

energy-norm

kvkµ =

p
a(v, v;µ).

Proposition. In the compliant case, i.e. `(·;µ) = f(·;µ) and a symmetric, there

holds that

s�(µ)� srb(µ) = ku�(µ)� urb(µ)k2µ,

for all µ 2 P.

Computing the stability constantDiscrete coercivity constant
Recall:

↵�(µ) := inf
v�2V�

a(v�, v�;µ)

kv�k2V
.

Goal: Design an o↵-line/on-line procedure where the on-line part consists of

µ ! ↵LB(µ)

such that 0 < ↵LB(µ)  ↵�(µ) and in a fashion that is independent of N�.

Discrete coercivity constant
Recall:

↵�(µ) := inf
v�2V�

a(v�, v�;µ)

kv�k2V
.

Goal: Design an o↵-line/on-line procedure where the on-line part consists of

µ ! ↵LB(µ)

such that 0 < ↵LB(µ)  ↵�(µ) and in a fashion that is independent of N�.

↵�(µ) is the smallest eigenvalue of: find (�, w�) 2 R+ ⇥ V� such that

a(w�, v�;µ) = � (w�, v�)V, 8v� 2 V�.

which can be translated to find the smallest eigenvalue of the generalised eigen-

value problem

Aµ
� v� = � M�v�,

where (Aµ
�)ij = a('j ,'i;µ), (M�)ij = ('j ,'i)V and recall that {'i}N�

i=1 is a basis

of V�.

Computing the stability constantMin-Θ approach
Special case: If the decomposition

a(w, v;µ) =
QaX

q=1

✓qa(µ) aq(w, v)

is such that

✓qa(µ) > 0, 8µ 2 P, q = 1, . . . , Qa,

aq(v�, v�) � 0, 8v� 2 V�, q = 1, . . . , Qa.

we call the bilinear form a(·, ·;µ) to be parametrically coercive.

Example: Heat conduction on thermal blocks

a(w, v;µ) =
15X

q=1

µq

Z

Rq

rw ·rv +

Z

R16

rw ·rv,

aq(w, v;µ) =

Z

Rq

rw ·rv, ✓qa(µ) = µq, q = 1, . . . , 15,

a16(w, v;µ) =

Z

R16

rw ·rv, ✓16a (µ) = 1,

Computing the stability constantMin-Θ approach

Then

↵LB(µ) := ↵�(µ
0) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0)| {z }
2(0,1)

 ↵�(µ).

Develop

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)

✓qa(µ0
)

✓ma (µ0
)

aq(v�, v�)

kv�k2V

� inf

v�2V�

min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2

= min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

inf

v�2V�

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2V

= ↵�(µ
0
) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

:= ↵LB(µ).

Computing the stability constant

Min-Θ approach

Then

↵LB(µ) := ↵�(µ
0) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0)| {z }
2(0,1)

 ↵�(µ).

Develop

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)

✓qa(µ0
)

✓ma (µ0
)

aq(v�, v�)

kv�k2V

� inf

v�2V�

min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2

= min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

inf

v�2V�

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2V

= ↵�(µ
0
) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

:= ↵LB(µ).Min- approach Min-Θ approach

Then

↵LB(µ) := ↵�(µ
0) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0)| {z }
2(0,1)

 ↵�(µ).

Develop

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)

✓qa(µ0
)

✓ma (µ0
)

aq(v�, v�)

kv�k2V

� inf

v�2V�

min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2

= min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

inf

v�2V�

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2V

= ↵�(µ
0
) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

:= ↵LB(µ).

Computing the stability constant

Min-Θ approach

Then

↵LB(µ) := ↵�(µ
0) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0)| {z }
2(0,1)

 ↵�(µ).

Develop

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)

✓qa(µ0
)

✓ma (µ0
)

aq(v�, v�)

kv�k2V

� inf

v�2V�

min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2

= min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

inf

v�2V�

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2V

= ↵�(µ
0
) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

:= ↵LB(µ).Min- approach Min-Θ approach

Then

↵LB(µ) := ↵�(µ
0) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0)| {z }
2(0,1)

 ↵�(µ).

Develop

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)

✓qa(µ0
)

✓ma (µ0
)

aq(v�, v�)

kv�k2V

� inf

v�2V�

min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2

= min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

inf

v�2V�

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2V

= ↵�(µ
0
) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

:= ↵LB(µ).

Min-Θ approach
The previous development can be done for several anchor points µ1, . . . , µK ,

then choose

↵LB(µ) = max

k=1,...,K

✓
↵�(µk) min

q=1,...,Qa

✓qa(µ)

✓qa(µk)

◆
.

Taking the largest constant c satisfying 0 < c  ↵�(µ) is necessarily the sharpest

constant.

Multiple anchor points

Computing the stability constant

Min-Θ approach

Then

↵LB(µ) := ↵�(µ
0) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0)| {z }
2(0,1)

 ↵�(µ).

Develop

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)

✓qa(µ0
)

✓ma (µ0
)

aq(v�, v�)

kv�k2V

� inf

v�2V�

min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2

= min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

inf

v�2V�

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2V

= ↵�(µ
0
) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

:= ↵LB(µ).Min- approach Min-Θ approach

Then

↵LB(µ) := ↵�(µ
0) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0)| {z }
2(0,1)

 ↵�(µ).

Develop

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)

✓qa(µ0
)

✓ma (µ0
)

aq(v�, v�)

kv�k2V

� inf

v�2V�

min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2

= min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

inf

v�2V�

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2V

= ↵�(µ
0
) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

:= ↵LB(µ).

Min-Θ approach
The previous development can be done for several anchor points µ1, . . . , µK ,

then choose

↵LB(µ) = max

k=1,...,K

✓
↵�(µk) min

q=1,...,Qa

✓qa(µ)

✓qa(µk)

◆
.

Taking the largest constant c satisfying 0 < c  ↵�(µ) is necessarily the sharpest

constant.

Multiple anchor points

44 4 Certified Error Control

0.1 1 10
0

0.2

0.4

0.6

0.8

1

µ1

Exact coercivity constant

Min-✓
Multi-parameter Min-✓

Fig. 4.1: Illustration of the Min-✓ and the multi-parameter Min-✓-approach for the Illustrative
Example 1.

O✏ine procedure of SCM

We recall that the coercivity constant can be written as

↵�(µ) = inf
v�2V�

Qa
X

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V
, (4.25)

using the a�ne decomposition. The key idea of the SCM is to express the right hand side of (4.25)
as a minimization problem of the functional

S : P⇥ RQa �! R

(µ, y) 7�! S(µ, y) =
Qa
X

q=1

✓qa(µ) yq

over the set of admissible solutions

Y =

⇢

y = (y
1

, . . . , yQa
) 2 RQa

�

�

�

�

9 v� 2 V� s.t. yq =
aq(v�, v�)

kv�k2V
, 1  q  Qa

�

.

Then, we can equivalently write
↵�(µ) = min

y2Y
S(µ, y)

and a lower and upper bound can be found by enlarging or restricting the admissible set of solution
vectors y. This is done by introducing YUB ⇢ Y ⇢ YLB and defining

↵LB(µ) = min
y2YLB

S(µ, y), and ↵UB(µ) = min
y2YUB

S(µ, y).

The remaining question is how to e�ciently design the spaces YUB and YLB to ensure that any
target accuracy for the error quantity

Computing the stability constant

Min-Θ approach

Then

↵LB(µ) := ↵�(µ
0) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0)| {z }
2(0,1)

 ↵�(µ).

Develop

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)

✓qa(µ0
)

✓ma (µ0
)

aq(v�, v�)

kv�k2V

� inf

v�2V�

min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2

= min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

inf

v�2V�

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2V

= ↵�(µ
0
) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

:= ↵LB(µ).Min- approach Min-Θ approach

Then

↵LB(µ) := ↵�(µ
0) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0)| {z }
2(0,1)

 ↵�(µ).

Develop

↵�(µ) = inf

v�2V�

a(v�, v�;µ)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V

= inf

v�2V�

QaX

q=1

✓qa(µ)

✓qa(µ0
)

✓ma (µ0
)

aq(v�, v�)

kv�k2V

� inf

v�2V�

min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2

= min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

inf

v�2V�

QaX

q=1

✓qa(µ
0
)

aq(v�, v�)

kv�k2V

= ↵�(µ
0
) min

q=1,...,Qa

✓qa(µ)

✓qa(µ0
)

:= ↵LB(µ).

Min-Θ approach
The previous development can be done for several anchor points µ1, . . . , µK ,

then choose

↵LB(µ) = max

k=1,...,K

✓
↵�(µk) min

q=1,...,Qa

✓qa(µ)

✓qa(µk)

◆
.

Taking the largest constant c satisfying 0 < c  ↵�(µ) is necessarily the sharpest

constant.

Multiple anchor points

Limited and not very accurate

44 4 Certified Error Control

0.1 1 10
0

0.2

0.4

0.6

0.8

1

µ1

Exact coercivity constant

Min-✓
Multi-parameter Min-✓

Fig. 4.1: Illustration of the Min-✓ and the multi-parameter Min-✓-approach for the Illustrative
Example 1.

O✏ine procedure of SCM

We recall that the coercivity constant can be written as

↵�(µ) = inf
v�2V�

Qa
X

q=1

✓qa(µ)
aq(v�, v�)

kv�k2V
, (4.25)

using the a�ne decomposition. The key idea of the SCM is to express the right hand side of (4.25)
as a minimization problem of the functional

S : P⇥ RQa �! R

(µ, y) 7�! S(µ, y) =
Qa
X

q=1

✓qa(µ) yq

over the set of admissible solutions

Y =

⇢

y = (y
1

, . . . , yQa
) 2 RQa

�

�

�

�

9 v� 2 V� s.t. yq =
aq(v�, v�)

kv�k2V
, 1  q  Qa

�

.

Then, we can equivalently write
↵�(µ) = min

y2Y
S(µ, y)

and a lower and upper bound can be found by enlarging or restricting the admissible set of solution
vectors y. This is done by introducing YUB ⇢ Y ⇢ YLB and defining

↵LB(µ) = min
y2YLB

S(µ, y), and ↵UB(µ) = min
y2YUB

S(µ, y).

The remaining question is how to e�ciently design the spaces YUB and YLB to ensure that any
target accuracy for the error quantity

Computing the stability constant (SCM)
Consider the coercive case (for simplicity)

�(µ) = inf
vh�Xh

ah(vh, µ, vh)
�vh�2

= inf
vh�Xh

Qa�

k=1

�a
k(µ)

ak(vh, vh)
�vh�2

Y =
�

y � RQa |⇥wh � Xh; yk =
ak(wh, wh)
⇤wh⇤2

�
and define

Computing the stability constant (SCM)
Consider the coercive case (for simplicity)

�(µ) = inf
vh�Xh

ah(vh, µ, vh)
�vh�2

= inf
vh�Xh

Qa�

k=1

�a
k(µ)

ak(vh, vh)
�vh�2

Y =
�

y � RQa |⇥wh � Xh; yk =
ak(wh, wh)
⇤wh⇤2

�

J : RQa �D ⇥ R J (y, µ) =
Qa�

k=1

Qa
k(µ)yk

�(µ) = min
y�Y

J (y, µ)

and define

If we have

then

Computing the stability constant (SCM)

Strategy: Find upper and lower bounds such thatStrategy: Find YUB and YLB such that

YUB � Y � YLB

and define

�UB(µ) = min
y�YUB

I(µ;u), and �LB(µ) = min
y�YLB

I(µ;u)

Successive Constraint Method
Constructing upper and lower bounds

Strategy: Find YUB and YLB such that

YUB � Y � YLB

and define

�UB(µ) = min
y�YUB

I(µ;u), and �LB(µ) = min
y�YLB

I(µ;u)

Successive Constraint Method
Constructing upper and lower bounds

Strategy: Find YUB and YLB such that

YUB � Y � YLB

and define

�UB(µ) = min
y�YUB

I(µ;u), and �LB(µ) = min
y�YLB

I(µ;u)

Successive Constraint Method
Constructing upper and lower bounds

and define

Computing the stability constant (SCM)

Strategy: Find upper and lower bounds such thatStrategy: Find YUB and YLB such that

YUB � Y � YLB

and define

�UB(µ) = min
y�YUB

I(µ;u), and �LB(µ) = min
y�YLB

I(µ;u)

Successive Constraint Method
Constructing upper and lower bounds

Strategy: Find YUB and YLB such that

YUB � Y � YLB

and define

�UB(µ) = min
y�YUB

I(µ;u), and �LB(µ) = min
y�YLB

I(µ;u)

Successive Constraint Method
Constructing upper and lower bounds

Strategy: Find YUB and YLB such that

YUB � Y � YLB

and define

�UB(µ) = min
y�YUB

I(µ;u), and �LB(µ) = min
y�YLB

I(µ;u)

Successive Constraint Method
Constructing upper and lower bounds

and define

��k = inf
vh�Xh

ak(vh, vh)
�vh�2

�+
k = sup

vh�Xh

ak(vh, vh)
�vh�2

1 � k � Qa

Introduce

Computing the stability constant (SCM)

Strategy: Find upper and lower bounds such thatStrategy: Find YUB and YLB such that

YUB � Y � YLB

and define

�UB(µ) = min
y�YUB

I(µ;u), and �LB(µ) = min
y�YLB

I(µ;u)

Successive Constraint Method
Constructing upper and lower bounds

Strategy: Find YUB and YLB such that

YUB � Y � YLB

and define

�UB(µ) = min
y�YUB

I(µ;u), and �LB(µ) = min
y�YLB

I(µ;u)

Successive Constraint Method
Constructing upper and lower bounds

Strategy: Find YUB and YLB such that

YUB � Y � YLB

and define

�UB(µ) = min
y�YUB

I(µ;u), and �LB(µ) = min
y�YLB

I(µ;u)

Successive Constraint Method
Constructing upper and lower bounds

and define

��k = inf
vh�Xh

ak(vh, vh)
�vh�2

�+
k = sup

vh�Xh

ak(vh, vh)
�vh�2

1 � k � Qa

B =
Qa�

k=1

[��k ,�+
k]

Strategy: Find YUB and YLB such that

YUB � Y � YLB

and define

�UB(µ) = min
y�YUB

I(µ;u), and �LB(µ) = min
y�YLB

I(µ;u)

YLB

YUB

Let

��m = inf
wh�Vh

am(wh, wh)
�wh�2V

,

�+
m = sup

wh�Vh

am(wh, wh)
�wh�2V

,

for all 1 � m � M . Set

BM =
M�

m=1

[��m,�+
m] � RM

Y

BM

Successive Constraint Method
Constructing upper and lower bounds

Introduce

Computing the stability constant (SCM)46 4 Certified Error Control

Algorithm: O✏ine-procedure of the SCM

Input: An error tolerance Tol, some initial set C1 = {µ1} and n = 1

Output: The sample points C
N

= {µ1, . . . , µN

}, the corresponding coercivity constants ↵

�

(µ
n

)
and vectors yn, n = 1, . . . , N , as well as the lower bounds ↵

N

LB(µ) for all µ 2 ⌅a.

1. For each µ 2 ⌅a:
a. Compute the upper bound ↵

n

UB(µ) = miny2Yn
UB
S(µ, y).

b. Compute the lower bound ↵

n

LB(µ) = miny2Yn
LB(µ)

S(µ, y).

c. Define the error estimate ⌘(µ;C
n

) = 1� ↵

n
LB(µ)

↵

n
UB(µ)

.

2. Select µ
n+1 = argmax

µ2P⌘(µ;Cn

) and set C
n+1 = C

n

[{µ
n+1}.

3. If max
µ2P ⌘(µ;Cn

)  Tol, terminate.

4. Solve the generalized eigenvalue problem (4.26) associated with µ

n+1, store ↵

�

(µ
n+1), y

n+1.

5. Set n := n+ 1 and goto 1.

2. Constraints based on the previous lower bounds ↵n�1

LB for some neighbor parameter values.

Observe that, in contrast to YUB, the space YLB will change with variation of the parameter µ as
the constraints change with µ, reflected by the notation YLB(µ) in the following.

Next, we introduce the function that provides close parameter values

PM (µ;E) =

⇢

M closest points to µ in E if card(E) > M,
E if card(E)  M,

for either E = Cn or E = ⌅a. For some Me and Mp, we define

Yn
LB(µ) =

n

y 2 B
�

�

�

S(µ0, y) � ↵�(µ
0), 8µ0 2 PMe

(µ;Cn),

S(µ0, y) � ↵n�1

LB (µ0), 8µ0 2 PMp
(µ;⌅a\Cn)

o

.

It can be shown that Yn
UB ⇢ Y ⇢ Yn

LB(µ) (see [67] for the proof). Consequently, Yn
UB, Y and Yn

LB(µ)
are nested as

Y1

UB ⇢ Y2

UB ⇢ . . . ⇢ Yn
UB ⇢ . . . ⇢ Y ⇢ . . . ⇢ Yn

LB(µ) ⇢ . . . ⇢ Y2

LB(µ) ⇢ Y1

LB(µ).

Note that finding ↵n
LB(µ) = miny2Yn

LB(µ)
S(µ,y) corresponds to a linear programming problem of Qa

design variables and 2Qa+Me+Mp conditions. The complexity of the linear programming problem
is thus independent of N�.

Having defined the two sets Yn
LB(µ) and Yn

UB, we can define a greedy selection to enrich the space
Cn and build Cn+1

at all stages of n. The algorithm is outlined in the algorithm box O✏ine-procedure
of the SCM.

Online procedure of SCM

Once the o✏ine-procedure is completed, we denote Yn
LB(µ) by YLB(µ) and Yn

UB by YUB.

4.3 The stability constant 47

For an arbitrary parameter value µ 2 P, we can compute a lower bound ↵LB(µ) by only retaining
the information about ↵�(µ) for all µ 2 Cn and ↵LB(µ) for all µ 2 ⌅a: For any new µ 2 P, find the
solution of

↵LB(µ) = min
y2YLB(µ)

S(µ, y),

which consists again of a linear program with Qa design variables and 2Qa +Me +Mp constraints.
Note that we now consider, during the online stage, any parameter µ 2 P not necessarily contained
in ⌅a. This implies that we must add the additional constraint that S(µ, y) � 0. Further, note

that 1 � ↵LB(µ)
↵UB(µ)

still provides an indicator of the sharpness of the bounds that can be evaluated a
posteriori.

Numerical results

We refer to Sections 6.3.1 and 6.5 in Chapter 6 where we employ the SCM with complete numerical
examples. Within these examples, we illustrate the convergence of the SCM-greedy algorithm with
respect to the number of solved eigenvalue problems.

4.3.5 A comparitive discussion

In this section we compare the lower bounds obtained by the Min-✓-approach and the multi-
parameter Min-✓-approach with the ones obtained by the SCM in the parametrically coercive case.
We assume throughout this section that the problem is parametrically coercive.

For a given µ 2 Pa, denote by q̂ the (or an) index such that

✓q̂a(µ)

✓q̂a(µ0)
= min

q=1,...,Qa

✓qa(µ)

✓qa(µ0)
,

and observe that the lower bound provided by the Min-✓-approach is provided by

↵✓
LB(µ) = ↵�(µ

0)
✓q̂a(µ)

✓q̂a(µ0)
.

On the other hand, consider the SCM with C
1

= {µ0}, Mp = 0 and denote the corresponding
minimization space used for the lower bound as

Yµ0

LB(µ) =
n

y 2 B
�

�

�

S(µ0, y) � ↵�(µ
0)
o

.

Then, the following lemma holds.

Lemma 4.6. For parametrically coercive problems, consider the Min-✓-approach based upon the

computation of ↵�(µ0) and the lower bound of the SCM based upon Yµ0

LB(µ). Then, the Min-✓ lower
bound ↵✓

LB(µ) is at most as sharp as the lower bound provided by this SCM, i.e.,

min
y2Yµ0

LB (µ)

S(µ, y) � ↵✓
LB(µ).

Online part

Computing the stability constant (SCM)

The upper bound

Assumption: We know the coercivity constant for a
given point set

�(�i)
CK = {�1, . . . ,�K}

YUB(CK) = {y�(�k)|1 � k � K}, y�(µ) = arg inf
y⇥Y

I(µ, y)

Then define

4.3 The stability constant 45

1� ↵LB(µ)

↵UB(µ)
,

can be achieved.
Denote by Pa the restriction of P to the set of actively varying parameters of the bilinear form

a(· , · ; ·). The o✏ine part of the SCM is based on an greedy approach where the n-th iteration of
the o✏ine procedure is initiated by assuming that

1. We know the coercivity constants ↵�(µj), 1  j  n, for some parameter values Cn =
{µ

1

, . . . , µn} ⇢ Pa.
2. Let ⌅a ⇢ Pa be a representative finite point-set discretization of Pa. For each µ 2 ⌅a, we have

some lower bound ↵n�1

LB (µ) � 0 of ↵�(µ) from the previous iteration. For n = 1, set ↵0

LB(µ) = 0
for all µ 2 ⌅a.

The eigensolutions (↵�(µj), w
j
�) 2 R+ ⇥ V� are solutions to the generalized eigenvalue problem

a(wj
� , v�;µj) = ↵�(µj)(w

j
� , v�)V, 8v� 2 V�, (4.26)

where ↵�(µj) is the smallest eigenvalues for each j and wj
� the corresponding eigenfunction. The

collection of eigenfunctions {wj
�}nj=1

provide the corresponding vectors {yj}nj=1

by

(yj)q =
aq(w

j
� , w

j
�)

kwj
�k2V

, 1  q  Qa, 1  j  n,

where (yj)q denotes the q-th coe�cient of yj 2 RQa . We set

Yn
UB =

�

yj
�

� 1  j  n

,

which is clearly a subset of Y . For Yn
UB we therefore use this finite set of precomputed vectors yj .

Indeed, computing ↵n
UB(µ) = min

y2Yn
UB
S(µ,y) consists of forming the functional

S(µ, yj) =
Qa
X

q=1

✓qa(µ) (y
j)q

for the di↵erent vectors yj and then choosing the smallest value of the functional. This is clearly
independent of N� once the vectors yj have been built.

For YLB we define first a rectangular box B =
QQa

q=1

[��
q ,�

+

q] ⇢ RQa containing Y by setting

��
q = inf

v�2V�

aq(v�, v�)

kv�k2V
and �+

q = sup
v�2V�

aq(v�, v�)

kv�k2V
.

This corresponds to computing the smallest and the largest eigenvalues of a generalized eigenvalue
problem for each aq(· , ·) and can be computed once at the beginning of the SCM algorithm. To
ensure that the set YLB is as small as possible while containing Y , we impose some additional
restrictions, which result in sharper lower bounds. These constraints depend on the value of the
actual parameter µ and we distinguish between two types:

1. Constraints based on the exact eigenvalues for some close parameter values among the set Cn.

Greedy by

Computing the stability constant (SCM)

The upper bound

Assumption: We know the coercivity constant for a
given point set

�(�i)
CK = {�1, . . . ,�K}

YUB(CK) = {y�(�k)|1 � k � K}, y�(µ) = arg inf
y⇥Y

I(µ, y)

Then define

D

Lower bound: Let � � D be a fine point-set discretization.

�

PM (µ;E) =

�
�

�

M closest points to µ in E if card(E) > M and M �= 0,
E if card(E) � M,
� if M = 0,

for E = �, CK .
CK

µ

Successive Constraint Method
Lower bound

4.3 The stability constant 45

1� ↵LB(µ)

↵UB(µ)
,

can be achieved.
Denote by Pa the restriction of P to the set of actively varying parameters of the bilinear form

a(· , · ; ·). The o✏ine part of the SCM is based on an greedy approach where the n-th iteration of
the o✏ine procedure is initiated by assuming that

1. We know the coercivity constants ↵�(µj), 1  j  n, for some parameter values Cn =
{µ

1

, . . . , µn} ⇢ Pa.
2. Let ⌅a ⇢ Pa be a representative finite point-set discretization of Pa. For each µ 2 ⌅a, we have

some lower bound ↵n�1

LB (µ) � 0 of ↵�(µ) from the previous iteration. For n = 1, set ↵0

LB(µ) = 0
for all µ 2 ⌅a.

The eigensolutions (↵�(µj), w
j
�) 2 R+ ⇥ V� are solutions to the generalized eigenvalue problem

a(wj
� , v�;µj) = ↵�(µj)(w

j
� , v�)V, 8v� 2 V�, (4.26)

where ↵�(µj) is the smallest eigenvalues for each j and wj
� the corresponding eigenfunction. The

collection of eigenfunctions {wj
�}nj=1

provide the corresponding vectors {yj}nj=1

by

(yj)q =
aq(w

j
� , w

j
�)

kwj
�k2V

, 1  q  Qa, 1  j  n,

where (yj)q denotes the q-th coe�cient of yj 2 RQa . We set

Yn
UB =

�

yj
�

� 1  j  n

,

which is clearly a subset of Y . For Yn
UB we therefore use this finite set of precomputed vectors yj .

Indeed, computing ↵n
UB(µ) = min

y2Yn
UB
S(µ,y) consists of forming the functional

S(µ, yj) =
Qa
X

q=1

✓qa(µ) (y
j)q

for the di↵erent vectors yj and then choosing the smallest value of the functional. This is clearly
independent of N� once the vectors yj have been built.

For YLB we define first a rectangular box B =
QQa

q=1

[��
q ,�

+

q] ⇢ RQa containing Y by setting

��
q = inf

v�2V�

aq(v�, v�)

kv�k2V
and �+

q = sup
v�2V�

aq(v�, v�)

kv�k2V
.

This corresponds to computing the smallest and the largest eigenvalues of a generalized eigenvalue
problem for each aq(· , ·) and can be computed once at the beginning of the SCM algorithm. To
ensure that the set YLB is as small as possible while containing Y , we impose some additional
restrictions, which result in sharper lower bounds. These constraints depend on the value of the
actual parameter µ and we distinguish between two types:

1. Constraints based on the exact eigenvalues for some close parameter values among the set Cn.

Greedy by

Computing the stability constant (SCM)

Specification: We are looking for YUB � Y � YLB(µ).

D�CK

YLB

YUB

Y

BM

YLB(µ; CK) =

�
y � BM

�����

M�

m=1

�m(µ�) ym � �h(µ�), �µ� � PM�(µ; CK)

M�

m=1

�m(µ�) ym � 0, �µ� � PM+(µ;⇥)

�

Successive Constraint Method
Lower bound

The lower bound is found though
Specification: We are looking for YUB � Y � YLB(µ).

D�CK

YLB

YUB

Y

BM

YLB(µ; CK) =

�
y � BM

�����

M�

m=1

�m(µ�) ym � �h(µ�), �µ� � PM�(µ; CK)

M�

m=1

�m(µ�) ym � 0, �µ� � PM+(µ;⇥)

�

Successive Constraint Method
Lower bound

Computing the stability constant (SCM)

The upper and lower bound computation requires

✓ Local minimization to compute upper bound 

✓ Linear programming problem to compute lower bound

Computing the stability constant (SCM)

The upper and lower bound computation requires

✓ Local minimization to compute upper bound 

✓ Linear programming problem to compute lower bound

Complexity is independent of N

Computing the stability constant (SCM)

The upper and lower bound computation requires

✓ Local minimization to compute upper bound 

✓ Linear programming problem to compute lower bound

Complexity is independent of N

Set is computed through greedy approach by minimizing
difference between upper and lower bound estimate

Successive Constraint Method
Constructing the sample space

Algorithm: Given M�,M+ � N, � and a tolerance Tol� � (0, 1], the algorithm
reads:

(1) Set K=1, and choose C1 = {�1} arbitrarily.

(2) Find ⇥K+1 = arg maxµ��
�UB(µ;CK)��LB(µ;CK)

�UB(µ;CK) .

(3) Update CK+1 = CK ⇥ �K+1

(4) Repeat (2) and (3) until arg maxµ��
�UB(µ;CK)��LB(µ;CK)

�UB(µ;CK) < Tol�

CK

Lets see if it works
In the first examples, the lower bound on the
stability does not play an essential role.

Lets see if it works
In the first examples, the lower bound on the
stability does not play an essential role.

3.1. Problem setup

The motivation for the preceding analysis comes from the problem we want to approximate with
reduced basis method. We are looking for the frequency-domain solution of the two-dimensional Maxwell’s
equations in normalized differential form in Ω,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−ϵω2Ex +
1

µ

∂

∂y

(

∂Ey

∂x
−

∂Ex

∂y

)

= iωJx

−ϵω2Ey −
1

µ

∂

∂x

(

∂Ey

∂x
−

∂Ex

∂y

)

= iωJy

(10)

with boundary condition Ex n̂y − Ey n̂x = 0 on ∂Ω, (n̂x, n̂y) being the unit outward normal of ∂Ω,
X = H(curl).

Figure 1. The Electromagnetic Cavity Problem.

0 0.25 0.5 10

0.3

0.7

1
Ω1 Ω2

Γi

Here, see Figure 1, Ω = Ω1
⋃

Ω2 with Ω1 = [0, 0.5] × [0, 1], Ω2 = [0.5, 1] × [0, 1], ϵ|Ωi= ϵi, µ|Ωi= µi

for i = 1, 2 with the range of ϵi, µi to be specified later. We set Jx = 0, Jy = cos(ω(y − 1
2))δΓi with

Γi = 0.25 × [0.3, 0.7].
Given a triangulation of Ω, ΩN =

⋃D
d=1 Td, we set XN = {v ∈ L2(ΩN) | v ∈ ⊕D

d=1P
k(Td).

We identify 1
iω

(

∂Ex

∂y
− ∂Ey

∂x

)

as Hz and apply the discontinuous Galerkin method, see [6], and the weak

formulation is: find (Ex, Ey, Hz) ∈ (XN)3 such that
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

iϵω(Ex, φx)Td
+

1

µ

[

(Hz ,
∂φx

∂y
)Td

− < Ĥzn̂y, φx >∂Td

]

= (Jx, φx)Td

iϵω(Ey, φy)Td
−

1

µ

[

(Hz ,
∂φy

∂x
)Td

− < Ĥzn̂x, φy >∂Td

]

= (Jy, φy)Td

iω(Hz, φz)Td
+ (Ex,

∂φz

∂y
)Td

− (Ey ,
∂φz

∂x
)Td

+ < Êyn̂x − Êxn̂y, φz >∂Td
= 0

(11)

9

Figure 10. Sample solutions at (ϵ, µ) = (2.0, 1.0): the truth (first row) and reduced basis approximations with 10 (second),
20(third), and 30 (last) bases. Error denotes the H(curl) difference from the truth approximation; Time means the relative
on-line computation time.

ℑEx ℑEy
Error
Time

x0 0.2 0.4 0.6 0.8 1

y

0
0.2

0.4
0.6

0.8
1 Im

Ex

-1

0

1

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x
0 0.2 0.4 0.6 0.8 1

y
0

0.5

1 Im
Ey

-2

0

2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0
1

x0 0.2 0.4 0.6 0.8 1
y

0
0.2

0.4
0.6

0.8
1 Im

Ex

-1

0

1

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x
0 0.2 0.4 0.6 0.8 1

y

0

0.5

1 Im
Ey

-2

0

2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

9.5e-1
2.1e-4

x0 0.2 0.4 0.6 0.8 1

y

0
0.2

0.4
0.6

0.8
1 Im

Ex

-1

0

1

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x
0 0.2 0.4 0.6 0.8 1

y

0

0.5

1 Im
Ey

-2

0

2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

3.2e-2
4.2e-4

x0 0.2 0.4 0.6 0.8 1

y

0
0.2

0.4
0.6

0.8
1 Im

Ex

-1

0

1

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

x
0 0.2 0.4 0.6 0.8 1

y

0

0.5

1 Im
Ey

-2

0

2

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

2.6e-5
6.4e-4

16

2D EM problem

Parameters are material  
properties in right half

s =
�

�2

Ex + Ey dx

Lets see if it works

This is in fact a hard problem

ε2 : ω = 5π/2

is a resonance

1.5434

1.6357

1.8532

2.2456

2.5569

2.6983

3.8615

4.0033

(a) Resonances.

1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

(b) βpd(µ).

Figure 2: (a) Values of ε2 for which ω = 5π/2 is a resonance. (b) βpd(µ).

discretized the equations are solved with the library UMFPACK [1]. In figure
4 we can see the imaginary part of the primal true approximation for ε2 = 1.
The singularities on the y component of the electric field are well captured with
the locally refined mesh. On figure 5 we show the real part of the dual true
approximation for ε2 = 1. Again we can see that the singular behavior on the
y component is well approched.

Remark 8 The use of different meshes for the true approximation of the primal
and the dual problems is in progress.

• The mesh T p that could be used for the discretization of the primal problem
is plotted on figure 3.(a). Note that this mesh is only locally refined at the
tips of the antenna.

• The mesh T d used for the computation of the adjoint state has to be locally
refined at the points (0.5, 0) and (0.5, 1) where the dual solution is singular
(we present on figure 3.(b) this mesh). We point out that there is a strong
link between the meshes T p and T d.

• Finally, we have a third mesh (displayed on figure 3.(c)) that we would use
for the computation of the term in (10) involving the operator apd(·, ·; µ)
for the adjoint correction of the reduced basis output.

The dimension of the spaces Xm, m ∈ {p, d} based on the meshes T m, m ∈
{p, d} is much smaller that the dimension of the space Xpd based on the mesh
T pd.

For the construction of the reduced basis space we have followed the algorithm
in section 5.1. The maximal dimension of both basis (the primal and the dual)

18

N = 11884, 4th order, 282 elements

Lets see if it works

This is in fact a hard problem

ε2 : ω = 5π/2

is a resonance

1.5434

1.6357

1.8532

2.2456

2.5569

2.6983

3.8615

4.0033

(a) Resonances.

1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

(b) βpd(µ).

Figure 2: (a) Values of ε2 for which ω = 5π/2 is a resonance. (b) βpd(µ).

discretized the equations are solved with the library UMFPACK [1]. In figure
4 we can see the imaginary part of the primal true approximation for ε2 = 1.
The singularities on the y component of the electric field are well captured with
the locally refined mesh. On figure 5 we show the real part of the dual true
approximation for ε2 = 1. Again we can see that the singular behavior on the
y component is well approched.

Remark 8 The use of different meshes for the true approximation of the primal
and the dual problems is in progress.

• The mesh T p that could be used for the discretization of the primal problem
is plotted on figure 3.(a). Note that this mesh is only locally refined at the
tips of the antenna.

• The mesh T d used for the computation of the adjoint state has to be locally
refined at the points (0.5, 0) and (0.5, 1) where the dual solution is singular
(we present on figure 3.(b) this mesh). We point out that there is a strong
link between the meshes T p and T d.

• Finally, we have a third mesh (displayed on figure 3.(c)) that we would use
for the computation of the term in (10) involving the operator apd(·, ·; µ)
for the adjoint correction of the reduced basis output.

The dimension of the spaces Xm, m ∈ {p, d} based on the meshes T m, m ∈
{p, d} is much smaller that the dimension of the space Xpd based on the mesh
T pd.

For the construction of the reduced basis space we have followed the algorithm
in section 5.1. The maximal dimension of both basis (the primal and the dual)

18

N = 11884, 4th order, 282 elements

In this case the stability constant is important

Lets see if it works
Point sets computed for lower-bound computation

Figure 3. Two-dimensional case: The points selected by the new SCM and plot of αUB−αLB
αUB

in the greedy algorithm.

2 3 4 5 6
1
1.1
1.2

ε

µ

0 2000 4855

0.8

1

To see the quality of our lower bounds and upper bounds to approximate the true value, i.e., the square
of the Inf-Sup constant, we compute the exact Inf-Sup constants along the line µ2 = 1.1. The results are
plotted in Figure 6 where we observe that the bounds are, in fact, effective and sharp.

3.3. Results with three parameters

Here, we show numerical results for three parameters, ℜϵ2 ∈ [2, 6], ℑϵ2 ∈ [0, 0.05], µ2 ∈ [1.0, 1.2]. We
set ϵ1 = 1, µ1 = 1, ω = 5 π

2 , Mα = 30, M+ = 9, C1 = {(2.0, 0.0, 1.0)}, ϵα = 0.8 and Ξ is a uniform
Cartesian grid of 513 × 9 × 33. We run the SCM and obtain 36363 points in the parameter space. The
points selected on the face ℑϵ2 = 0 are plotted in Figure 7. Not surprisingly, the set is very similar to
that in the case of two parameters. Plotted in Figure 8 is the contour plot of the lower bound. We point
out, again, that the contour on the face ℑϵ2 = 0 is almost the same as that for the two-parameter case.

3.4. Application to error estimate for the reduced basis method

Having obtained the lower bound of the inf-sup number, we can apply it to the a posteriori error
estimate (2) which is essential to build the reduced basis space. One algorithm for the construction of the
reduced basis spaces are outlined as follows, see [2], [5], [11], [13], [14], [16] for details:
– Choose, arbitrarily, ν1 ∈ Ξ as the first parameter.
– Compute uN (ν1).
– Initialize the reduced basis space W 1 = span{uN (ν1)}.
– For j = 2 . . . N :

· Choose the next parameter as νj = argmaxν∈Ξ
∥r(·,ν)∥(XN)′

βLB(ν) .

11

Lets see if it works
Point sets computed for lower-bound computation

Figure 3. Two-dimensional case: The points selected by the new SCM and plot of αUB−αLB
αUB

in the greedy algorithm.

2 3 4 5 6
1
1.1
1.2

ε

µ

0 2000 4855

0.8

1

To see the quality of our lower bounds and upper bounds to approximate the true value, i.e., the square
of the Inf-Sup constant, we compute the exact Inf-Sup constants along the line µ2 = 1.1. The results are
plotted in Figure 6 where we observe that the bounds are, in fact, effective and sharp.

3.3. Results with three parameters

Here, we show numerical results for three parameters, ℜϵ2 ∈ [2, 6], ℑϵ2 ∈ [0, 0.05], µ2 ∈ [1.0, 1.2]. We
set ϵ1 = 1, µ1 = 1, ω = 5 π

2 , Mα = 30, M+ = 9, C1 = {(2.0, 0.0, 1.0)}, ϵα = 0.8 and Ξ is a uniform
Cartesian grid of 513 × 9 × 33. We run the SCM and obtain 36363 points in the parameter space. The
points selected on the face ℑϵ2 = 0 are plotted in Figure 7. Not surprisingly, the set is very similar to
that in the case of two parameters. Plotted in Figure 8 is the contour plot of the lower bound. We point
out, again, that the contour on the face ℑϵ2 = 0 is almost the same as that for the two-parameter case.

3.4. Application to error estimate for the reduced basis method

Having obtained the lower bound of the inf-sup number, we can apply it to the a posteriori error
estimate (2) which is essential to build the reduced basis space. One algorithm for the construction of the
reduced basis spaces are outlined as follows, see [2], [5], [11], [13], [14], [16] for details:
– Choose, arbitrarily, ν1 ∈ Ξ as the first parameter.
– Compute uN (ν1).
– Initialize the reduced basis space W 1 = span{uN (ν1)}.
– For j = 2 . . . N :

· Choose the next parameter as νj = argmaxν∈Ξ
∥r(·,ν)∥(XN)′

βLB(ν) .

11

Lower bound  
approximation

Figure 5. Upper bound of the square of the inf-sup constant computed by the new SCM in two-dimensional case: the first
is in linear scale, the second in logarithmic scale and the third being the contour plot of the logarithm.

ε

µ

2 3 4 5 61

1.1

1.2 v: -10.5 -10 -9.5 -9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

Figure 6. The lower bound (LB), square of Inf-Sup (I-S) constant and upper bound (UB) on the line with µ2 = 1.1 in the
two-dimensional case: (a) is for the three quantities and (b) is for the two ratios.

(a)

2 3 4 5 6
10−8
10−5
10−2

ε

LB
I_S
UB

(b)

2 3 4 5 6−0.8
−0.4
0
0.2

ε

LB- I S
I S

UB- I S
UB

14

Lets see if it works
Point sets computed for lower-bound computation

Figure 3. Two-dimensional case: The points selected by the new SCM and plot of αUB−αLB
αUB

in the greedy algorithm.

2 3 4 5 6
1
1.1
1.2

ε

µ

0 2000 4855

0.8

1

To see the quality of our lower bounds and upper bounds to approximate the true value, i.e., the square
of the Inf-Sup constant, we compute the exact Inf-Sup constants along the line µ2 = 1.1. The results are
plotted in Figure 6 where we observe that the bounds are, in fact, effective and sharp.

3.3. Results with three parameters

Here, we show numerical results for three parameters, ℜϵ2 ∈ [2, 6], ℑϵ2 ∈ [0, 0.05], µ2 ∈ [1.0, 1.2]. We
set ϵ1 = 1, µ1 = 1, ω = 5 π

2 , Mα = 30, M+ = 9, C1 = {(2.0, 0.0, 1.0)}, ϵα = 0.8 and Ξ is a uniform
Cartesian grid of 513 × 9 × 33. We run the SCM and obtain 36363 points in the parameter space. The
points selected on the face ℑϵ2 = 0 are plotted in Figure 7. Not surprisingly, the set is very similar to
that in the case of two parameters. Plotted in Figure 8 is the contour plot of the lower bound. We point
out, again, that the contour on the face ℑϵ2 = 0 is almost the same as that for the two-parameter case.

3.4. Application to error estimate for the reduced basis method

Having obtained the lower bound of the inf-sup number, we can apply it to the a posteriori error
estimate (2) which is essential to build the reduced basis space. One algorithm for the construction of the
reduced basis spaces are outlined as follows, see [2], [5], [11], [13], [14], [16] for details:
– Choose, arbitrarily, ν1 ∈ Ξ as the first parameter.
– Compute uN (ν1).
– Initialize the reduced basis space W 1 = span{uN (ν1)}.
– For j = 2 . . . N :

· Choose the next parameter as νj = argmaxν∈Ξ
∥r(·,ν)∥(XN)′

βLB(ν) .

11

Lower bound  
approximation

Figure 5. Upper bound of the square of the inf-sup constant computed by the new SCM in two-dimensional case: the first
is in linear scale, the second in logarithmic scale and the third being the contour plot of the logarithm.

ε

µ

2 3 4 5 61

1.1

1.2 v: -10.5 -10 -9.5 -9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

Figure 6. The lower bound (LB), square of Inf-Sup (I-S) constant and upper bound (UB) on the line with µ2 = 1.1 in the
two-dimensional case: (a) is for the three quantities and (b) is for the two ratios.

(a)

2 3 4 5 6
10−8
10−5
10−2

ε

LB
I_S
UB

(b)

2 3 4 5 6−0.8
−0.4
0
0.2

ε

LB- I S
I S

UB- I S
UB

14

Accuracy

An EM cavity example

Figure 3. Two-dimensional case: The points selected by the new SCM and plot of αUB−αLB
αUB

in the greedy algorithm.

2 3 4 5 6
1
1.1
1.2

ε

µ

0 2000 4855

0.8

1

To see the quality of our lower bounds and upper bounds to approximate the true value, i.e., the square
of the Inf-Sup constant, we compute the exact Inf-Sup constants along the line µ2 = 1.1. The results are
plotted in Figure 6 where we observe that the bounds are, in fact, effective and sharp.

3.3. Results with three parameters

Here, we show numerical results for three parameters, ℜϵ2 ∈ [2, 6], ℑϵ2 ∈ [0, 0.05], µ2 ∈ [1.0, 1.2]. We
set ϵ1 = 1, µ1 = 1, ω = 5 π

2 , Mα = 30, M+ = 9, C1 = {(2.0, 0.0, 1.0)}, ϵα = 0.8 and Ξ is a uniform
Cartesian grid of 513 × 9 × 33. We run the SCM and obtain 36363 points in the parameter space. The
points selected on the face ℑϵ2 = 0 are plotted in Figure 7. Not surprisingly, the set is very similar to
that in the case of two parameters. Plotted in Figure 8 is the contour plot of the lower bound. We point
out, again, that the contour on the face ℑϵ2 = 0 is almost the same as that for the two-parameter case.

3.4. Application to error estimate for the reduced basis method

Having obtained the lower bound of the inf-sup number, we can apply it to the a posteriori error
estimate (2) which is essential to build the reduced basis space. One algorithm for the construction of the
reduced basis spaces are outlined as follows, see [2], [5], [11], [13], [14], [16] for details:
– Choose, arbitrarily, ν1 ∈ Ξ as the first parameter.
– Compute uN (ν1).
– Initialize the reduced basis space W 1 = span{uN (ν1)}.
– For j = 2 . . . N :

· Choose the next parameter as νj = argmaxν∈Ξ
∥r(·,ν)∥(XN)′

βLB(ν) .

11

Point sets computed for lower-bound computation
Figure 5. Upper bound of the square of the inf-sup constant computed by the new SCM in two-dimensional case: the first
is in linear scale, the second in logarithmic scale and the third being the contour plot of the logarithm.

ε

µ

2 3 4 5 61

1.1

1.2 v: -10.5 -10 -9.5 -9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

Figure 6. The lower bound (LB), square of Inf-Sup (I-S) constant and upper bound (UB) on the line with µ2 = 1.1 in the
two-dimensional case: (a) is for the three quantities and (b) is for the two ratios.

(a)

2 3 4 5 6
10−8
10−5
10−2

ε

LB
I_S
UB

(b)

2 3 4 5 6−0.8
−0.4
0
0.2

ε

LB- I S
I S

UB- I S
UB

14

Figure 5. Upper bound of the square of the inf-sup constant computed by the new SCM in two-dimensional case: the first
is in linear scale, the second in logarithmic scale and the third being the contour plot of the logarithm.

ε

µ

2 3 4 5 61

1.1

1.2 v: -10.5 -10 -9.5 -9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2

Figure 6. The lower bound (LB), square of Inf-Sup (I-S) constant and upper bound (UB) on the line with µ2 = 1.1 in the
two-dimensional case: (a) is for the three quantities and (b) is for the two ratios.

(a)

2 3 4 5 6
10−8
10−5
10−2

ε

LB
I_S
UB

(b)

2 3 4 5 6−0.8
−0.4
0
0.2

ε

LB- I S
I S

UB- I S
UB

14

Lower bound
approximation

Accuracy

Lets see if it works

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=10)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.10

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=12)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.11

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=15)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.12

N=10

N=12

N=15

Lets see if it works

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=10)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.10

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=12)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.11

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=15)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.12

N=10

N=12

N=15

500 sec

Lets see if it works

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=10)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.10

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=12)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.11

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=15)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.12

N=10

N=12

N=15

0.25 sec

500 sec

Lets see if it works

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=10)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.10

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=12)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.11

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=15)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.12

N=10

N=12

N=15

0.25 sec

0.28 sec

500 sec

Lets see if it works

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=10)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.10

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=12)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.11

Maxwell Example

Convergence of error-bounds with increasing number of
modes (n=15)

1 1.5 2 2.5 3 3.5 4
−1

−0.5

0

0.5

1
Imaginary part of the Reduced Basis Output. Confidence region

1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1
Imaginary part of the Reduced Basis Output. Confidence region

WPAFB, Nov 2006 – p.12

N=10

N=12

N=15

0.25 sec

0.28 sec

0.35 sec

500 sec

An acoustic horn problem

3

Horn Problem Setup

L

b2b1

in
N

b

1/3 L 1/3 L 1/3 L
2a

R

3

Horn Problem Setup

L

b2b1

in
N

b

1/3 L 1/3 L 1/3 L
2a

R

3

Horn Problem Setup

L

b2b1

in
N

b

1/3 L 1/3 L 1/3 L
2a

R

Horn solutions
Reference geometry, RB model with N=150

By A. Patera and K. Willcox

An acoustic horn problem
Horn solutions
Reference geometry, RB model with N=150 RB accuracy with varying wavenumber

N = 60

N = 90

N = 70

RB accuracy with varying wavenumber

N = 60

N = 90

N = 70

Wavenumber is parameter. N=150

2D Pacman problem

Scattering by 2D PEC Pacman

Backscatter depends very sensitively on
cutout angle and frequency.

0 1 2 3 4 5 6
−20

−10

0

10

20

30
Cylinder
WedgeAngle = 18.5 Deg
WedgeAngle = 21.5 Deg

Fig. 1.1. Radar cross sections for the Pacman with wave number 10 π. Three cases with different wedge angles are
plotted.

1. TM Case.

1

TM polarization

Difference in scattering is clear in fields

2D Pacman problem

3.4. The Resulting Reduced Basis Method. We are now ready to apply reduced basis method
to this problem. Here, we set the parameter domain for θW to be [8.5, 28.5].

See Figure 3.5 for the 29 parameter instances the reduced basis method picks. Note that the first
point, 18.5 is hand-picked to start the greedy algorithm.

13.45 18.5 23.55

9.6 11.6 14.3 18.5 21.5
−15

−10

−5

0

5

10

15

Fig. 3.5. The 29 θW ’s the greedy algorithm of the RBM picks to build the RB space. Top: the higher the vertical
line, the earlier that point was picked. Bottom: the points scattered on the monostatic scattering curve (θi = θr = 0), the
larger the marker, the earlier it is selected.

We plot, in Figure 3.6, the history of convergence of the RB solutions for the worst of the 120
randomly selected parameter values. Exponential convergence is clearly observed. Moreover, the error
estimate decreases exponentially. Thus, the effectivity index is roughly constant comparing with the
many magnitudes of decrease in the RBM error. With only 20 bases, we can obtain an accuracy at the
level of 10−5. Using the underlying mesh of our numerical experiment, instead of solving systems of
dimension above 200, 000× 200, 000, we only need to solve ones of dimension 60 × 60.

We also plot the monostatic scattering as a function of the wedge angle, see Figure 3.7 for the curve
computed by the truth approximations.

If we use the reduced basis approximations with merely 11 bases, we can obtain a curve that is
“roughly identical” to naked eyes. See Figure 3.8.

See the two .avi files for movies of the electric field and RCS plots. They contain 129 RBM evaluations
(20 bases) with the corresponding parameter values uniformly distributed on the parameter domain.

Next, we will study the nonlinearity of this problem in the bilinear form and linear forms (both the
right hand side f(·) and the output functional ℓ(·)). Once an appropriate magic point interpolation is

9

5 10 15 20 25 30

10−5

100

Number of Bases
Er

ro
r/E

rro
r E

st
im

at
e

Worst Case RBM Error
Worst Case Error Estimate

Fig. 3.6. The worst case convergence history and the corresponding error estimate of the RBM for 120 randomly
selected parameter values.

9.6 11.6 14.3 18.5 21.5 28.5
−15

−10

−5

0

5

10

15

Fig. 3.7. The plot of the monostatic scattering (θi = θr = 0) respect to the wedge angle θW .

9.6 11.6 14.3 18.5 21.5
−15

−10

−5

0

5

10

15

Truth
RB with 9 Bases
RB with 11 Bases

Fig. 3.8. Using only 11 bases, we can obtain a very accurate plot of the monostatic scattering (θi = θr = 0) respect
to the wedge angle θW .

10

Greedy approach selects critical  
angles early in the selection process

Convergence of output with  
O(10) basis elements

3.4. The Resulting Reduced Basis Method. We are now ready to apply reduced basis method
to this problem. Here, we set the parameter domain for θW to be [8.5, 28.5].

See Figure 3.5 for the 29 parameter instances the reduced basis method picks. Note that the first
point, 18.5 is hand-picked to start the greedy algorithm.

13.45 18.5 23.55

9.6 11.6 14.3 18.5 21.5
−15

−10

−5

0

5

10

15

Fig. 3.5. The 29 θW ’s the greedy algorithm of the RBM picks to build the RB space. Top: the higher the
vertical line, the earlier that point was picked. Bottom: the points scattered on the monostatic scattering curve
10log10(RCS(10π, θW , 0, 0)), the larger the marker, the earlier it is selected.

We plot, in Figure 3.6, the history of convergence of the RB solutions for the worst of the 120
randomly selected parameter values. Exponential convergence is clearly observed. Moreover, the error
estimate decreases exponentially. Thus, the effectivity index is roughly constant comparing with the
many magnitudes of decrease in the RBM error. With only 20 bases, we can obtain an accuracy at the
level of 10−5. Using the underlying mesh of our numerical experiment, instead of solving systems of
dimension above 200, 000× 200, 000, we only need to solve ones of dimension 60 × 60.

We also plot the monostatic scattering as a function of the wedge angle, that is 10log10(RCS(10π, θW , 0, 0)),
see Figure 3.7 for the curve computed by the truth approximations.

If we use the reduced basis approximations with merely 11 bases, we can obtain a curve that is
“roughly identical” to naked eyes. See Figure 3.8.

3.4.1. Output Error Bounds and Uncertainty Quantification. The error estimate provides
an upper bound and a lower bound for the output computed by the RBM. In Figure 3.9, we plot the
RBM output together with the error bounds for three different numbers of bases. We see that RB output

9

2D Pacman problemwith just 17 bases is already very trustworthy.

9.6 11.6 14.3 18.5 21.5
−40

−20

0

20

40

RB output with 13 bases
Output + error estimate
Output − error estimate

9.6 11.6 14.3 18.5 21.5
−2

0

2

4

6

8

10

12
RB output with 15 bases
Output + error estimate
Output − error estimate

9.6 11.6 14.3 18.5 21.5
0

2

4

6

8

10

12
RB output with 17 bases
Output + error estimate
Output − error estimate

Fig. 3.9. Error bounds of the RB output, RCS(10π, θW , 0, 0), for three different number of bases.

Next, we assume there is a normally-distributed 5% error in the manufacturing of the wedge angle.
The goal is to find out how this will affect the monoscattering output by running a Monte Carlo simulation
with a 29-basis RB solver. The mean, and the one(two)-standard-deviation interval are plotted in Figure
3.10.

11

with just 17 bases is already very trustworthy.

9.6 11.6 14.3 18.5 21.5
−40

−20

0

20

40

RB output with 13 bases
Output + error estimate
Output − error estimate

9.6 11.6 14.3 18.5 21.5
−2

0

2

4

6

8

10

12
RB output with 15 bases
Output + error estimate
Output − error estimate

9.6 11.6 14.3 18.5 21.5
0

2

4

6

8

10

12
RB output with 17 bases
Output + error estimate
Output − error estimate

Fig. 3.9. Error bounds of the RB output, RCS(10π, θW , 0, 0), for three different number of bases.

Next, we assume there is a normally-distributed 5% error in the manufacturing of the wedge angle.
The goal is to find out how this will affect the monoscattering output by running a Monte Carlo simulation
with a 29-basis RB solver. The mean, and the one(two)-standard-deviation interval are plotted in Figure
3.10.

11

with just 17 bases is already very trustworthy.

9.6 11.6 14.3 18.5 21.5
−40

−20

0

20

40

RB output with 13 bases
Output + error estimate
Output − error estimate

9.6 11.6 14.3 18.5 21.5
−2

0

2

4

6

8

10

12
RB output with 15 bases
Output + error estimate
Output − error estimate

9.6 11.6 14.3 18.5 21.5
0

2

4

6

8

10

12
RB output with 17 bases
Output + error estimate
Output − error estimate

Fig. 3.9. Error bounds of the RB output, RCS(10π, θW , 0, 0), for three different number of bases.

Next, we assume there is a normally-distributed 5% error in the manufacturing of the wedge angle.
The goal is to find out how this will affect the monoscattering output by running a Monte Carlo simulation
with a 29-basis RB solver. The mean, and the one(two)-standard-deviation interval are plotted in Figure
3.10.

11

Convergence of error bounds over
full parameter range

Note: Linear scale, not db scale

5 10 15 20 25 30

10−5

100

Number of Bases
Er

ro
r/E

rro
r E

st
im

at
e

Worst Case RBM Error
Worst Case Error Estimate

Fig. 3.6. The worst case convergence history and the corresponding error estimate of the RBM for 120 randomly
selected parameter values.

9.6 11.6 14.3 18.5 21.5 28.5
−15

−10

−5

0

5

10

15

Fig. 3.7. The plot of the monostatic scattering (θi = θr = 0) respect to the wedge angle θW .

9.6 11.6 14.3 18.5 21.5
−15

−10

−5

0

5

10

15

Truth
RB with 9 Bases
RB with 11 Bases

Fig. 3.8. Using only 11 bases, we can obtain a very accurate plot of the monostatic scattering (θi = θr = 0) respect
to the wedge angle θW .

10

Exponential convergence of
predicted error estimator and  
real error over large training set

2D Pacman prototype for UQ

Fast evaluation over parameter space allows for rapid
uncertainty quantification

THE PACMAN SCATTERING PROBLEM

1. Problem description. We consider the scattering of TM-polarized electromagnetic waves by
a perfectly conducting 2D cylinder with a cut-out wedge. The basic problem is illustrated in Figure 1.1.
θW denotes the angle of the wedge, θi direction of the incidence wave, and θr the observation angle.
The integrating contour for the RCS is the red circle just outside of the scatterer. Curvilinear PML is
applied sufficiently far away.

θ i

θ r

θw

P

M

L

P

M

L

Fig. 1.1. The configuration of the pacman scattering problem.

1

9.6 11.6 14.3 18.5 21.5
−30

−20

−10

0

10

20

Mean Output
Mean + S.D.
Mean − S.D.

9.6 11.6 14.3 18.5 21.5
−40

−30

−20

−10

0

10

20

Mean Output
Mean + 2 S.D.
Mean − 2 S.D.

Fig. 3.10. Results of a Monte Carlo simulation with a 5% error in θW that is normally distributed. Plotted are
10log10 value of the mean of RCS(10π, θW , 0, 0), that of “mean of RCS(10π, θW , 0, 0) ± i standard deviation”. i = 1 for
the top and i = 2 for the bottom (cut below −40).

3.4.2. Others. See the two .avi files for movies of the electric field and RCS plots. They contain
129 RBM evaluations (20 bases) with the corresponding parameter values uniformly distributed on the
parameter domain.

Next, we will study the nonlinearity of this problem in the bilinear form and linear forms (both the
right hand side f(·) and the output functional ℓ(·)). Once an appropriate magic point interpolation is
incorporated, we will appreciate the tremendous speedup of the full reduced basis method with complete
offline-online decomposition.

12

9.6 11.6 14.3 18.5 21.5−30

−20

−10

0

10

20

Mean Output
Mean + S.D.
Mean − S.D.

9.6 11.6 14.3 18.5 21.5−40

−30

−20

−10

0

10

20

Mean Output
Mean + 2 S.D.
Mean − 2 S.D.

Fig. 3.10. Results of a Monte Carlo simulation with a 5% error in θW that is normally distributed. Plotted are

10log10 value of the mean of RCS(10π, θW , 0, 0), that of “mean of RCS(10π, θW , 0, 0) ± i standard deviation”. i = 1 for

the top and i = 2 for the bottom (cut below −40).

3.4.2. Others. See the two .avi files for movies of the electric field and RCS plots. They contain

129 RBM evaluations (20 bases) with the corresponding parameter values uniformly distributed on the

parameter domain.
Next, we will study the nonlinearity of this problem in the bilinear form and linear forms (both the

right hand side f(·) and the output functional ℓ(·)). Once an appropriate magic point interpolation is

incorporated, we will appreciate the tremendous speedup of the full reduced basis method with complete

offline-online decomposition.

12

Uniformly distributed  
5% randomness in  

gap angle

One last example
6.2 Geometric Parametrization 81

(a) (b)

0 5 10 15 20
Number of basis functions

0.001

0.01

0.1

1

10

100

(c)

Fig. 6.9: The subdomain division (a), the finite element mesh used for the truth solver (b) and
the maximum error over Ph of the greedy-algorithm with respect to the number of basis functions
employed (c) for the thermal fin problem with a geometric parametrization.

exposed to flowing air, depicted in red, Fig. 6.9(b). The heat transfer from the fin to the air is taken
into account with the Biot number, which is the first parameter µ

[1]

. The second parameter is the
relative length of the fin with respect to the spreader, and is labeled as µ

[2]

. The third parameter µ
[3]

is the ratio between the thermal conductivity of the spreader and the fin. The parameters ranges
are

µ
[1]

2 [0.1, 1.0], µ
[2]

2 [0.5, 10.0], µ
[3]

2 [1.0, 10.0].

A uniform heat flux is applied at the base of the spreader, denoted here by �
bottom

, and Robin
boundary conditions are imposed on the vertical faces of the fin, denoted here by �

side

. Homogeneous
Neumann conditions are imposed at all other surfaces. The bilinear and linear forms of this problem
are given as

ao(w, v;µ) = µ
[3]

Z

⌦1

o

rw ·rv +

Z

⌦2

o (µ)

rw ·rv + µ
[1]

Z

�
1

w v,

fo(v) =

Z

�
bottom

v,

and the output of interest so(µ) is computed as

so(µ) = fo(u(µ)), (6.17)

i.e., it is a compliant output. The finite element method, employing first order elements, is used
as the truth model. In Fig. 6.9(b) the mesh of the reference domain is reported, featuring 22’979
elements.

The basis functions have been obtained by orthogonalization, through a Gram-Schimdt pro-
cedure, of snapshots computed by a greedy approach to select parameters Ph with cardinality of

Thermal fin optimization

Three parameters

6.2 Geometric Parametrization 81

(a) (b)

0 5 10 15 20
Number of basis functions

0.001

0.01

0.1

1

10

100

(c)

Fig. 6.9: The subdomain division (a), the finite element mesh used for the truth solver (b) and
the maximum error over Ph of the greedy-algorithm with respect to the number of basis functions
employed (c) for the thermal fin problem with a geometric parametrization.

exposed to flowing air, depicted in red, Fig. 6.9(b). The heat transfer from the fin to the air is taken
into account with the Biot number, which is the first parameter µ

[1]

. The second parameter is the
relative length of the fin with respect to the spreader, and is labeled as µ

[2]

. The third parameter µ
[3]

is the ratio between the thermal conductivity of the spreader and the fin. The parameters ranges
are

µ
[1]

2 [0.1, 1.0], µ
[2]

2 [0.5, 10.0], µ
[3]

2 [1.0, 10.0].

A uniform heat flux is applied at the base of the spreader, denoted here by �
bottom

, and Robin
boundary conditions are imposed on the vertical faces of the fin, denoted here by �

side

. Homogeneous
Neumann conditions are imposed at all other surfaces. The bilinear and linear forms of this problem
are given as

ao(w, v;µ) = µ
[3]

Z

⌦1

o

rw ·rv +

Z

⌦2

o (µ)

rw ·rv + µ
[1]

Z

�
1

w v,

fo(v) =

Z

�
bottom

v,

and the output of interest so(µ) is computed as

so(µ) = fo(u(µ)), (6.17)

i.e., it is a compliant output. The finite element method, employing first order elements, is used
as the truth model. In Fig. 6.9(b) the mesh of the reference domain is reported, featuring 22’979
elements.

The basis functions have been obtained by orthogonalization, through a Gram-Schimdt pro-
cedure, of snapshots computed by a greedy approach to select parameters Ph with cardinality of

6.2 Geometric Parametrization 81

(a) (b)

0 5 10 15 20
Number of basis functions

0.001

0.01

0.1

1

10

100

(c)

Fig. 6.9: The subdomain division (a), the finite element mesh used for the truth solver (b) and
the maximum error over Ph of the greedy-algorithm with respect to the number of basis functions
employed (c) for the thermal fin problem with a geometric parametrization.

exposed to flowing air, depicted in red, Fig. 6.9(b). The heat transfer from the fin to the air is taken
into account with the Biot number, which is the first parameter µ

[1]

. The second parameter is the
relative length of the fin with respect to the spreader, and is labeled as µ

[2]

. The third parameter µ
[3]

is the ratio between the thermal conductivity of the spreader and the fin. The parameters ranges
are

µ
[1]

2 [0.1, 1.0], µ
[2]

2 [0.5, 10.0], µ
[3]

2 [1.0, 10.0].

A uniform heat flux is applied at the base of the spreader, denoted here by �
bottom

, and Robin
boundary conditions are imposed on the vertical faces of the fin, denoted here by �

side

. Homogeneous
Neumann conditions are imposed at all other surfaces. The bilinear and linear forms of this problem
are given as

ao(w, v;µ) = µ
[3]

Z

⌦1

o

rw ·rv +

Z

⌦2

o (µ)

rw ·rv + µ
[1]

Z

�
1

w v,

fo(v) =

Z

�
bottom

v,

and the output of interest so(µ) is computed as

so(µ) = fo(u(µ)), (6.17)

i.e., it is a compliant output. The finite element method, employing first order elements, is used
as the truth model. In Fig. 6.9(b) the mesh of the reference domain is reported, featuring 22’979
elements.

The basis functions have been obtained by orthogonalization, through a Gram-Schimdt pro-
cedure, of snapshots computed by a greedy approach to select parameters Ph with cardinality of

6.2 Geometric Parametrization 81

(a) (b)

0 5 10 15 20
Number of basis functions

0.001

0.01

0.1

1

10

100

(c)

Fig. 6.9: The subdomain division (a), the finite element mesh used for the truth solver (b) and
the maximum error over Ph of the greedy-algorithm with respect to the number of basis functions
employed (c) for the thermal fin problem with a geometric parametrization.

exposed to flowing air, depicted in red, Fig. 6.9(b). The heat transfer from the fin to the air is taken
into account with the Biot number, which is the first parameter µ

[1]

. The second parameter is the
relative length of the fin with respect to the spreader, and is labeled as µ

[2]

. The third parameter µ
[3]

is the ratio between the thermal conductivity of the spreader and the fin. The parameters ranges
are

µ
[1]

2 [0.1, 1.0], µ
[2]

2 [0.5, 10.0], µ
[3]

2 [1.0, 10.0].

A uniform heat flux is applied at the base of the spreader, denoted here by �
bottom

, and Robin
boundary conditions are imposed on the vertical faces of the fin, denoted here by �

side

. Homogeneous
Neumann conditions are imposed at all other surfaces. The bilinear and linear forms of this problem
are given as

ao(w, v;µ) = µ
[3]

Z

⌦1

o

rw ·rv +

Z

⌦2

o (µ)

rw ·rv + µ
[1]

Z

�
1

w v,

fo(v) =

Z

�
bottom

v,

and the output of interest so(µ) is computed as

so(µ) = fo(u(µ)), (6.17)

i.e., it is a compliant output. The finite element method, employing first order elements, is used
as the truth model. In Fig. 6.9(b) the mesh of the reference domain is reported, featuring 22’979
elements.

The basis functions have been obtained by orthogonalization, through a Gram-Schimdt pro-
cedure, of snapshots computed by a greedy approach to select parameters Ph with cardinality of

One last example

82 6 Beyond the basics

Fig. 6.10: First four basis functions for the thermal fin problem with a geometric parametrization.

(a) (b) (c)

Fig. 6.11: Comparison between the truth approximation (a) and the reduced basis approximation
(b) for µ = (1.176, 0.761, 0.530). The di↵erence between the two solutions is reported in (c).

3’000. In Fig. 6.9(c) the graph showing the maximum error with respect to the number of basis
functions employed is reported.

In Fig. 6.10, the first four snapshots, corresponding to u�(µ1

), . . . , u�(µ4

), are depicted and
in Fig. 6.11, the outcomes provided by the truth model and the reduced method, for a randomly
chosen µ = (6.94, 1.36, 2.53) and N = 20, are compared. The pointwise di↵erence between the two
approximations is plotted as well, illustrating the excellent error behavior.

6.3 Non-compliant output

For the sake of simplicity, we addressed in Chapter 3 the reduced basis approximation of a�nely
parametrized coercive problems in the compliant case. Let us now consider the more general non-
compliant elliptic truth problem: given µ 2 P, find

s�(µ) = `(u�(µ);µ),

where u�(µ) 2 V� satisfies

82 6 Beyond the basics

Fig. 6.10: First four basis functions for the thermal fin problem with a geometric parametrization.

(a) (b) (c)

Fig. 6.11: Comparison between the truth approximation (a) and the reduced basis approximation
(b) for µ = (1.176, 0.761, 0.530). The di↵erence between the two solutions is reported in (c).

3’000. In Fig. 6.9(c) the graph showing the maximum error with respect to the number of basis
functions employed is reported.

In Fig. 6.10, the first four snapshots, corresponding to u�(µ1

), . . . , u�(µ4

), are depicted and
in Fig. 6.11, the outcomes provided by the truth model and the reduced method, for a randomly
chosen µ = (6.94, 1.36, 2.53) and N = 20, are compared. The pointwise di↵erence between the two
approximations is plotted as well, illustrating the excellent error behavior.

6.3 Non-compliant output

For the sake of simplicity, we addressed in Chapter 3 the reduced basis approximation of a�nely
parametrized coercive problems in the compliant case. Let us now consider the more general non-
compliant elliptic truth problem: given µ 2 P, find

s�(µ) = `(u�(µ);µ),

where u�(µ) 2 V� satisfies

Basis functions

Verification

Where are we now ?

‣Method works and efficient though greedy
‣Performance depends on N
‣Error is certified

So far we have established

Still to consider the ‘non’s’

‣Non-affine problems
‣Non-compliant problems
‣Non-intrusive problems
‣Non-stationary problems
‣Non-standard problems

Lecture 3

Questions ?

