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Understand Reduced models

WHAT do we mean by ‘reduced models’ ?

WHY should we care ?

WHEN could it work ?

HOW do we know ?
DOES it work ?

WHAT’s next ?
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What we seek o ronECHNIOU:

What we need is an accurate way to evaluate the
solution at new parameter values at reduced
complexity.




Wil
What we seek o ronECHNIOU:

What we need is an accurate way to evaluate the
solution at new parameter values at reduced
complexity.

[input: parameter value u € D ]

Lpn(up(p);p) =0

[ PDE solver]

_output: s, () = L(un(p)ip)
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Reduced models ? (”_

We do not consider reduced physics -

High-frequency vs low-frequency EM

VXV XE+WE=fF VS _V2E = f

Viscous vs inviscid fluid flows

ou
8u'u-Vu:—Vp+VV2u Fu-Vu=-Vp

ot
V-u=90 Vs
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Reduced models ? (”_

We do not consider reduced physics -

High-frequency vs low-frequency EM

VXV XE+WE=fF VS _V2E = f

Viscous vs inviscid fluid flows

ou
U - Vu=_Vp+ V20 >

ot
V-u=90 Vs

Fu-Vu=-Vp

V-u=0

.. but reduced representations of the full problem
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Assume we are interested in

—V2u(x, ) = f(x, ) x € 2

and wish to solve it accurately for many values of
‘'some’ parameter [/




.. but WHY ?

Assume we are interested in
—V2u(x, ) = f(x, ) x € 2

and wish to solve it accurately for many values of
‘'some’ parameter [/

We can use our favorite numerical method

Apup(x, 1) = fr(x, 1) dim(up) =N > 1

For many parameter values, this is expensive
- and slow !

(gl
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. but WHY (con’t) il

Assume we (somehow) know
up(x, ) ~ urp(x,pu) = Va(p) V'V =

dim(a) = N dim(V) =N x N



)
. but WHY (con’t) il

Assume we (somehow) know
up(x, 1) ~ urs(x, ) = Va(p) V'V =I

dim(a) = N dim(V) =N x N

Then we can recover a solution for a new
parameter as little cost

(VEALV)V up(p) = V', ()
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. but WHY (con’t) il

Assume we (somehow) know
up(x, 1) ~ urs(x, ) = Va(p) V'V =I

dim(a) = N dim(V) =N x N

Then we can recover a solution for a new
parameter as little cost

l , l \ ~ .. if this behaves !

N X N N N
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. but WHY (con’t) il

So IF

»..we know the orthonormal basis - V
»..and it allows an accurate representation - ugrpg(u)

»..and we can evaluate RHS ‘fast’- O(N)

we can evaluate new solutions at cost - (O(V)
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. but WHY (con’t) -

So IF

»..we know the orthonormal basis - V

»..and it allows an accurate representation - uppg (,u)

SREE

8
7

»..and we can evaluate RHS ‘fast’-

we can evaluate new solutions at cost -

So WHY ? - a promise to
do more with less

%5
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When is that relevant ? (”_

Examples in many application domains
» Optimization/inversion/control problems
» Simulation based data bases
» Uncertainty quantification
» Sub-scale models in multi-scale modeling

» In-situ/deployed modeling
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When is that relevant ? .(”_

Examples in many application domains

» Optimization/inver

NENEESGLES
channel flow

@

Two-layer
conduction

Acoustic Download from
impedance server

D. Knezevic et al, 2010
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Before we continue coie ottt

We consider projection based techniques, i.e.

unp(x, 1) =~ urB(X, 1) = Va(u)

There is a substantial literature for linear systems

Cx(t)+ Gx(t) = Bu(t), <;\> C.zt)+G,z(t) =B, u(t),
y()=L"x(), y(@)=L,z(),

Typically seeks to approximate the transfer function
H(s)=L"(G+sC)"'B. <& Hu(s)=L,(G,+5C,)"'B,.

» Pade approximations
» Krylov subspace methods Non-linear problems ?
» Balanced truncation



Parametrized problems - Ex | T

Convection-diffusion problem

e +4' =1,  in (0,1), |
u(0) = u(1) = 0. 0'6:'

Variational setting

V — H(])- (Oj 1)7 0 ..;':'5:::::-----

a(u,v;e) = 5/01 u' (z)v'(x) de + /01 u' (z)v(x) dz,

f(v) = /O 1 v(z) da.
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Parametrized problems - Ex | il

Convection-diffusion problem

e +4' =1,  in (0,1), |
u(0) = u(1) = 0. 0'6:_

Variational setting

V = Hy(0,1), R

0 0.2 0.4 0.6 0.8 1

a(u,v;e) = 5/01 u' (z)v'(x) de + /01 u' (z)v(x) dz,
f(v) = /01 v(x) dx.

Parametrized problem: Given ¢ € [0.01,0.5], find u(e) € V such that

[ a(u(e),v;e) = f(v), Vv € V]

Then, compute s(e) = u(0.5;¢).




Parametrized problems - Ex 2
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Physics:
constant temp.
H13 | H1a | M5 | 1
Ho | K10 | M11 | M12
< 5
2 5
= E
= | U5 | M6 | U7 | U8 | 2
k= =
p1 | M2 | B3 | U4
inflow flux

1; € R: conductivity of block R;

Find u € H'(Q) such that:

p
V- -uVu=0, in €,
Vu-n=1, onlYy,
Vu-n=0, only Iy,
u=0, onlsjs.

Mathematics:

I's
()
I's
I'y
Rs
n
R1 Ro
I’y
t: €2 — R such that pulr, =

Output of interest is the average temperature
over 1'y:
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Parametrized problems - Ex 2 it
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Parametrized problem setting:

Let = (1, po, ..., p15) € P = [u_, ny]'®. Then, for any p € P, compute s(u(u)).

Solutions u(u) for different values of y € IP:




Parametrized problems - Ex 2

Variational setting: Define

-

N
V= {ve H(Q)] vlr,,, = 0},
15
a(w,v;,u):z,ui/ Vw-Vv—l—/ Vw - Vo,
i—1 R Rpt1
flv) =4L(v) = / v.
I )

(gl
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Parametrized problem setting:

For any p € P, find u(u) € V s.t.

)
=N
=
=
<
=

]
—

Vv € V. j

Then, compute s(pu) = £(u(p)) = [ u(p).
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Parametrized problems - Ex 3 -
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—— WedgeAngle = 18.5
—— WedgeAngle = 21.5Deg

Difference in scattering is clear in fields

1 2 3 4 5 6
TM polarization
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Parametrized problems - Ex 3 il

Assume that €2 is a homogenous media with magnetic permeability rg and elec-
trical permittivity .

Then, the electric field E(u) = E*(u) + E%(u) € H(curl, Q) satisfies

4 )
curl curl E(p) — k*E(u) =0 in €2, Maxwell

E(p) xn=0 on I, boundary condition
curl B%(x; u) % EI ik E°(x; ,u)| =0 (i) as |x| — co. Silver-Miiller radiation cond.

z| |z]

- /

Boundary condition is equivalent to v; E(u) = 0 where ~+; denotes the tangential
trace operator on surface I', 7 E(u) =n x (E(u) X n).

k = wy/lupep is wave number and w the angular frequency of the time-harmonic

ansatz ) |
E(z,t;p) = e” " E(x; p).
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Parametrized problems - Ex 3 il

Fast evaluation over parameter space allows for rapid
uncertainty quantification

20
10+
ok
~10f
Mean Output
-20 Mean + S.D. |7
Mean - S.D.
—30— ' ' ' |
9.6 11.6 14.3 18.5 21.5
20
10
ol
ol Uniformly distributed
20} oan Ouput | 5% randomness in
Mean + 2 S.D.|
-30 Mean - 2 S.D. gap angl e
-40

1 1 |
9.6 11.6 14.3 18.5 21.5



Parametrized problems

The parameters can describe

» Materials

»Sources

» Geometries

» Parameterized uncertainty
» Time

» etc




)
Parametrized problems -

The parameters can describe

» Materials

»Sources

» Geometries

» Parameterized uncertainty

» Time ‘LA‘ .
y

»etc

Does this always work;, i.e., does a reduced
model always exist ?

Probably not - we need to understand
when and how to check



The solution manifold

Consider the “exact” and “discrete” solution manifolds

-

-

M = {u(p); Vu e P} CV,

~

J

-~

-

Ms = {us(p); Yu € P} C Vs,

~

J

(gl
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B ——

where, for each p© € P, u(u) and us(p) denote the solution of the underlying
exact and discrete problems respectively.




The solution manifold

The key question is how well can the solution manifold
M be approximated by M s using an N-dimensional
linear space ?

—
t—_-

Clearly, if the solution space is (locally) smooth we
have a good chance.

EEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEE



The solution manifold

The key question is how well can the solution manifold
M be approximated by M s using an N-dimensional
linear space ?

—
e

Clearly, if the solution space is (locally) smooth we
have a good chance.

Highly sensitive/chaotic systems will be problematic as
they have no structure

EEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEE
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The solution manifold M(”_Q

For any N-dimensional space we define

fu/(u) EM VUrb EVrb

{E(M,Vrb): sup  inf ||u(,u)—vrb||V.J
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The solution manifold M(”_Q

For any N-dimensional space we define

fu/(u) EM VUrb EVrb

[E(M,Vrb): sup  inf ||u(u)—vrb||VJ

The Kolmogorov N-width is defined as

d = inf B(M, Vyp,) = inf inf — Uy v,
{ N(M) = inf E(M, Vi) gvl'ibu(il)lgMUierbHU(u) Vrp||v J
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The solution manifold fcoue ronTichNIoL:

For any N-dimensional space we define

U(H)EM vrb Vrb

{ E(M,Vy)= sup inf |u(p) — v|v. J

The Kolmogorov N-width is defined as

{dN(./\/l) inf E(M, V) =inf sup inf ||u(p) — vel|v, J

Vb Vbu(M)GMUbEVb

If this decays rapidly with N, we are in good shape

|dentifying the optimal linear space by the Kolmogorov
N-width is not practical — cost exponential in N
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Solution manifold .(”_

The behavior of the Kolmogorov N-width is non-trivial

M = {U(w,u) = |z —p|”® | pz € (0, 1)}.

Singularity at varying location.

: u(0.5)

- u(0.75)




Solution manifold
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The behavior of the Kolmogorov N-width is non-trivial

0

08|

a

orF

0B |

0

04+

0

02k

0.

AF

AL

1]

1 1 1 1 1 1 1 1 1
a 0 0z 03 04 a5 06 oF 08 s 1

M = {U(fﬂ,u) = |z —p|”® | pz € (0, 1)}.

Singularity at varying location.

2

: u(0.5)

- u(0.75)

Error measure dy(M).

100 =

10 |~

log(error)

0 20 40 60 80 100
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Solution manifold l(lfl!

M = {u(x,,u) — |z — 054105 | 1z € (0, 1)}.

Singularity at fixed location
with varying width.




Solution manifold
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08

M = {u(x,ﬂ) — |z — 054105 | 1z € (0, 1)}.

Singularity at fixed location

with varying width.

u(0)

u(0.75)

10

]

0.1

0.01

0.001

— 0.0001
S

£ 0.00001
L

D 1x10°
e

1x107

1x10°®

1x107®

1x1071°

1x107"

1x10712

Error measure dy(M).

60 80 100
N

Morale:We need to check if a reduced space exists

before going ahead
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Solution manifold .(”_

We can get a good sense by a feasibility study

o Define a point-set P, = {u1,...,upm} C P.
o Compute for each u; the truth solution u(u;) using a simplified model.
o Store the degrees of freedom row-wise in a matrix A.

02 F
0.15

0.05 F

H1 2 3

This samples the solution manifold
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Solution manifold .(”_

Angle @ in [0, 27 Q)@Q’
Wavenumber = 27 &
3D EM scattering with the angle
varying 0-360 deg. RCS is

computed every 2 deg.

Computing the SVD of the 180
solutions shows that less than 60
samples would suffice -- and likely
much less for applications

Computation by CERFACS
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3D EM scattering with the angle
varying 0-360 deg. RCS is
computed every 2 deg.

Computing the SVD of the 180
solutions shows that less than 60
samples would suffice -- and likely
much less for applications

Computation by CERFACS

%
Angle 6 in [0, 27| &
&

Wavenumber = 27

—11 'ﬂ&

—15 S e e e E—
O 20 40 60 80 100 120 140 160




Solution manifold
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Computing the SVD of the solution matrix gives a
measure of the decay of the Kolmogorov N-width

Example of the scattering problem: two dimensional parameterization with po-
lar angle and frequency: (k,6) € [1,25] x [0, 7], ¢ is fixed

0.1

= 0.01
E 0.001
0.0001

52 0.00001
1x10°®
1x107
1x10°8
1x107
1x1071°
1x10™"
1x10712
1x10713
1x107"
1x1071°
1x1071
1x1077

Error measure dpy

—I

0

500 1000 1500 2000 2500 3000
singular values

Geometry:

V4

A

/ |

ﬂy

precision of 1e-3!

With <100 basis functions you can reach a




Solution manifold
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Computing the SVD of the solution matrix gives a
measure of the decay of the Kolmogorov N-width

Example of the scattering problem: two dimensional parameterization with po-
lar angle and frequency: (k,6) € [1,25] x [0, 7], ¢ is fixed f

Geometry:
0.1 y

_*_ 0.0

z 0.001
0.0001

~0.00001 Z

A

1x10°®
1x107
1x10°8
1x107
1x1071°
1x10™"
1x10712
1x10713

%y

1x10714
1x1071°
1x10716 '
1X10-17_I:::IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Error measure dpy

precision of 1e-3!

With <100 basis functions you can reach a

0 500 1000 1500 2000 2500 3000
singular values

Rigorous results are sparse for this - but there are
some of the nature
dN(./\/l) < Ce N
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Basic setting -

We consider physical systems of the form

L(x, p)u(x, p) = f(x, 1) x € ()
u(x, 1) = g(x, p) x € 0f)

where the solutions are implicitly parameterized by

neDeRY




Basic setting

We consider physical systems of the form

L(x, p)u(x, p) = f(x, 1) x € ()
u(x, 1) = g(x, p) x € 0f)

where the solutions are implicitly parameterized by

neDeRY

» How do we find the basis.

» How do we ensure accuracy under
parameter variation !

» What about speed !

(i

EEEEEEEEEEEEEEE QUE

EEEEEEEEEEEEEEEEE
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Solutions and their behavior o rorEcNIOU:

Exact solution: For some parameter value u € P, find u(u) € V such that

[ a(u(p),vip) = flv;p), Vo€V, }

Then, compute the value of the output functional s(u) = £(u(w); ).

In practise, the exact PDE cannot be solved. A popular discretisation technique
is the Galerkin approach: Replace the “continuous” space V by the finite
dimensional subspace Vs such that

[ lim inf |jv— vs|lyv =0, Vv e V. }
0—0vsEVs

(zalerkin solution: For some parameter y € P, find us(u) € Vs such that

[ a(us(p), vs; 1) = flus;p)  Vos € Vs. }

Then, compute the value of the output functional ss(u) = £(us(w); ).

Abl = £ s = ()T B



- - (al
Convergence and stability T

For coercive problems: Since V5 C V, there holds that the discrete
coerclvity constant

: a(vs, vs; )
— inf
as(u) = inf [vs |2

is uniformly bounded from below:

[ O<a§oz5(,u),J

since

0 < a<alp) = inf LACICIYD) NP ICE I )

veV  lollg T wsevs  luslly




- - (al
Convergence and stability T

For coercive problems: Since V5 C V, there holds that the discrete
coerclvity constant

: @(05, V§; M)
Q — Inf
{ sl = i [vs |2 }

is uniformly bounded from below:

[ O<a§oz5(,u),J

since
{ O<a< Oz(lu) — inf CL(U,U,M) < inf CL(U(S,U(S,M) }

veV  lollg T wsevs  luslly

Then

[HU(M)—W(M)HV < % Ju(p) — vsl|v, WaGVa}
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Let us construct our first model .(”_

Ultimative goal: a fast input-output computation: u+— s(u).

That is, for each u € P, evaluate s(u) = €(u(u); n) where u(p) is the solution of
the parametrised weak problem: Find u(u) € V s.t.

[ a(u(p), v p) = f(vsp), Vv eV. }
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Let us construct our first model .(”_

Ultimative goal: a fast input-output computation: u+— s(u).

That is, for each u € P, evaluate s(u) = €(u(u); n) where u(p) is the solution of
the parametrised weak problem: Find u(u) € V s.t.

[ a(u(p), v p) = f(vsp), Vv eV. }

In practise, the truth approximation is considered (instead of the exact solution):
for u € P, evaluate ss(u) = £(us(p); ) where ugs(p) is solution of: Find us(u) €
Vs s.t.

[a(u(s(,u),v(g;,u) = flus;p), Vs EV(S-}
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Let us construct our first model coie ottt

Ultimative goal: a fast input-output computation: u+— s(u).

That is, for each u € P, evaluate s(u) = €(u(u); n) where u(p) is the solution of
the parametrised weak problem: Find u(u) € V s.t.

[ a(u(p), v p) = f(vsp), Vv eV. }

In practise, the truth approximation is considered (instead of the exact solution):
for u € P, evaluate ss(u) = £(us(p); ) where ugs(p) is solution of: Find us(u) €
Vs s.t.

[a(u(s(,u),v(g;,u) = flus;p), Vs EV(S-}

Poor man’s approach or brute force approach: For each new p € P, solve
the above discrete problem to obtain us(u) and compute the output ss(u).
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Let us construct our first model coie ottt

Ultimative goal: a fast input-output computation: u+— s(u).

That is, for each u € P, evaluate s(u) = €(u(u); n) where u(p) is the solution of
the parametrised weak problem: Find u(u) € V s.t.

[ a(u(p), v p) = f(vsp), Vv eV. }

In practise, the truth approximation is considered (instead of the exact solution):
for u € P, evaluate ss(u) = £(us(p); ) where ugs(p) is solution of: Find us(u) €
Vs s.t.

{a(u(S(M)av(s;#) = flus;p), Vs EV(S-}

Poor man’s approach or brute force approach: For each new p € P, solve
the above discrete problem to obt&n us(p) and compute the output ss(u).

Too expensive



Basis by POD approach -
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Seeking wu(x,t) ~ us(x,t) ~ Vuyy

Let P, be a finite set of M points in P that are sampled “finely”.

Introduce the error measure

f — 2
X i ol

ME h
= Average error of best approximation in V., over Py,.

The POD-space Vpgp i1s the N-dimensional sub-space of Vs that minimises the
above error measure.



Basis by POD approach -

FEDERALE DE LAUSANNE

Seeking wu(x,t) ~ us(x,t) ~ Vuyy

Let P, be a finite set of M points in P that are sampled “finely”.

Introduce the error measure

f — 2
X i ol

ME h
= Average error of best approximation in V., over Py,.

The POD-space Vpgp i1s the N-dimensional sub-space of Vs that minimises the
above error measure.

Remark: The corresponding discrete Kolmogorov space would be the one that
minimises the error measure

sup inf |lu(p) — vpplly.
[ supinf, () — | J

Thus, this is question of L™ vs. L? over the parameter space Pp,.
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Basis by POD approach -

Proper Orthogonal Projection (POD):

1. Compute the solution ugs(u) for all u € P, and define the correlation matrix

Cy = () ulp)s 0= Lo M

2. Find the eigen-pairs (\,,v,) solution to Cv, = \,v, for the N largest
eigenvalues.

3. Define basis functions as

M . .
B Z(U ) () — Basis functions are
G — ) S ) linear combinations of
—

snapshots.
4. Set Vpgp = span{yq,...,on}.



)
Basis by POD approach -

Proper Orthogonal Projection (POD):

1. Compute the solution ugs(u) for all u € P, and define the correlation matrix

[Cz'j = (u(ps), wlpi))v, 4,5 =1,.. -,M-]

2. Find the eigen-pairs (\,,v,) solution to Cv, = \,v, for the N largest
eigenvalues.

3. Define basis functions as

B g: () w5) = Basis functions are
i = — " Hi linear combinations of
= snapshots.
4. Set Vpgp = span{yq,...,on}.
Result: . N
— inf ||u — V|l = A,
Z Jnf Jlu(u) = olf} = nzNjﬂ
N J

In practise: replace u(u;) by a truth approximation us(u;).-



: gl
BaSIS b)’ POD approach GO POIVTICHNIOD:

H1 2 M3

Find eigen-decomposition of C



. (P
BaSIS b)’ POD approach GO POIVTICHNIOD:

The reduced model is now obtained as
Apus = frn =
(VIAVIWV us =V VIV =1

or
Arburb — frb



Basis by POD approach

(i

EEEEEEEEEEEEEEE QUE

EEEEEEEEEEEEEEEEE

The reduced model is now obtained as
Apus = fn, =
(VEARZV)V us = V7 fy

or
Arburb — frb

and the output of interest is

s(u) ~ s(ug) ~ s(Vup)

ViV =1



. (P
BaSIS b)’ POD approach GO POIVTICHNIOD:

The reduced model is now obtained as
Apus = frn =
(VIAVIWV us =V VIV =1

or
Arburb — frb

and the output of interest is

s(u) ~ s(ug) ~ s(Vup)

Since N < N we have the potential for speed



POD example - Ex |

(gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE
B ———

o Nodal values of exact solutions used instead of FE-approximations.
o Py : 491 equidistant points in P = [0.01, 0.5].

Eigenvalues:

0.1
0.01
0.001
0.0001
0.00001
1x107°
1x1077
1x10°8
1x107®
1x10710
1x10™"
1x10712
1x10713
1x10714
1x10718
1x10716
1x10™"

Tt

eu +u' =1, in (0,1),
u(0) = u(l) =
5 first basis functions:

X

— Precision of ~ 10~° with 5 basis functions.



Wil
POD methods o rorEcNIOU:

Method has several names -

» Karhunen-Loeve expansions
» Proper orthogonal expansions
» Empirical eigenfunctions

Properties -

»Simple and straightforward for linear systems

» Offline cost can be high

» Accuracy ! — did we sample carefully enough ?
»What about online cost for nonlinear problem

Viu(z, i) = flu, ) = A (pum(z, 1) = VT F(Vag, p)

Depends on N/



)
What’s next .(”_

We need to develop methods that address these shortcomings

» Compute what we need - nothing more
» Control the error to certify results

» Ensure efficiency

» Deal with non-linear problems

This will be the main topics of Lecture 2

Questions ?



