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FBP RECONSTRUCTION IN LIMITED ANGLE TOMOGRAPHY

In limited angle tomography, the projectios gθ = Rθ f are known only for certain directions
θ ∈ S 1

Φ
( S 1, for other directions θ the projections gθ are unknown. In other words, in limited angle

tomography we are given truncated data
gΦ(θ, s) = χS 1

Φ
×R · R f (θ, s).

FBP inversion formula applied to limited angle data

R†gΦ(x) =
1

4π

∫
S 1

Φ

[ψ ∗ gθ](x · θ) dθ = ???

What do we reconstruct?

Original FBP Lambda

Reconstructions for an angular range [0◦ , 100◦]
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CHALLENGES IN LIMITED VIEW TOMOGRAPHY

Observations at a first glance:
. Only certain singularities of the original object can be reconstructed

. Artifacts (new singularities) are generated

Goal: Use microlocal analysis to
. Characterize singularities that can be reliably reconstructed,

. Develop strategy to reduce artifacts.
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WHICH OF THE ORIGINAL SINGULARITIES ARE RELIABLY RECONSTRUCTED?

Original FBP Lambda

Reconstructions for an angular range [0◦ , 100◦]
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Original FBP Lambda

Reconstructions for an angular range [0◦ , 140◦]
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TODAY

. A formula for limited angle FBP reconstructions

. Characterization of visible and invisible singularities

. Severe ill-posedness of limited angle tomography

. Characterization & reduction of artifacts
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NOTATION

We study the restricted or limited angle Radon transform

RΦ f (θ, s) = χS 1
Φ
×R · R f (θ, s),

where 0 < Φ < π/2 and
S 1

Φ =
{
θ ∈ S 1 : θ = ±(cosϕ, sinϕ), |ϕ| < Φ

}
.

Moreover, we define the polar wedge

WΦ = R · S 1
Φ =

{
rθ : r ∈ R, θ ∈ S 1

Φ

}
.

Φ

WΦ
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FILTERED BACKPROJECTION AT A LIMITED ANGULAR RANGE

Theorem (F., Quinto (2013))

Let f ∈ S(R2). Then, the FBP reconstruction formula R†
Φ

g = 1
4π R

∗
Φ

Λg and the Lambda

reconstruction formula LΦg = 1
4πR

∗
Φ

(
− d2

ds2 g
)

satisfy

PΦ f = R
†

Φ
(R f ) and PΦ(Λ f ) = Λ(PΦ f ) = L(RΦ f ),

where PΦ f = F −1
(
χWΦ

f̂
)
. This formula is also valid for f ∈ E′(R2). Furthermore, the maps R†

Φ
R

and L†
Φ
R are weakly continuous from E′(R2) to S′(R2).

Φ

WΦ
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REMARKS

. The theorem shows that a perfect reconstruction of a function f is only possible if

supp f̂ ⊂ WΦ

. The theorem charachterizes the kernel of RΦ:

RΦ f ≡ 0 for any f with supp f̂ ⊂ R2 \WΦ
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supp f̂ ⊂ WΦ

. The theorem charachterizes the kernel of RΦ:

RΦ f ≡ 0 for any f with supp f̂ ⊂ R2 \WΦ

f̂ f RΦ f

Reconstructions for an angular range [−80◦ , 80◦] (Φ = 80◦)
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FIRST MICROLOCAL CHARACTERIZATION

Corollary (Quinto (1993); F., Quinto (2013))

Let f ∈ E′(R2). Then
WF(Λ(PΦ f )) = WF(PΦ f ) ⊂ R2 ×WΦ.
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Reconstruction at the angular range [−45◦, 45◦]

f fFBP = PΦ f



FIRST MICROLOCAL CHARACTERIZATION

Corollary (Quinto (1993); F., Quinto (2013))

Let f ∈ E′(R2). Then
WF(Λ(PΦ f )) = WF(PΦ f ) ⊂ R2 ×WΦ.

We can only expect to reconstruct singularities (x, ξ) where ξ ∈ WΦ
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Visible singularities (red) at the angular range [−45◦, 45◦]

f fFBP = PΦ f



VISIBLE SINGULARITIES

Visible singularities

WFΦ( f ) := {(x, ξ) ∈WF( f ) : ξ ∈ WΦ}
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VISIBLE SINGULARITIES

Visible singularities

WFΦ( f ) := {(x, ξ) ∈WF( f ) : ξ ∈ WΦ}

Invisible singularities, (x, ξ) with ξ ∈ R2 \WΦ, are smeared or distorted
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Visible singularities (red) at the angular range [−45◦, 45◦]

f fFBP = PΦ f



INVISIBLE SINGULARITIES
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Original Sinogram for [0◦, 70◦] Sinogram for [0◦, 120◦]

FBP for [0◦, 70◦] FBP for [0◦, 120◦]



REMARKS ABOUT ILL-POSEDNESS

Recall: In case of full data we have the Sobolev-space estimates

c ‖ f ‖Hα
0
≤ ‖R f ‖Hα+1/2 ≤ C ‖ f ‖Hα

0

That is, the tomography problem is mildly ill-posed (of order 1/2)

Can such an estimate hold for the limited angle Radon transform?

. NO, such Sobolev space cannot hold (for any α ∈ R,) for the limited angle Radon transform RΦ!
Therefore, the limited angle tomography is severely ill-posed!

. On the previous slide we have seen that for Φ < π/2 we can always construct a function f that is
discontinuous, i.e., ‖ f ‖Hα = ∞ ( f < Hα) for α > 1, for which however RΦ f is smooth, i.e.,
‖RΦ f ‖Hα < ∞ for all α > 1. Similar constructions can be made for all α. Therefore, the
left-hand-side Sobolev-space estimate cannot hold.

. We don’t have control over the Fourier region outside of WΦ! Here, anything can happen and
that’s where the severe instabilities come from.

. The existence of invisible singularities makes the problem severely (or exponentially) ill-posed

. If one would use supp f̂ ⊂ WΦ or WF( f ) ⊂ R2 ×WΦ as a-priori information, then we could get the
same stability as in the case of full data, i.e., we can show that

c ‖PΦ f ‖Hα
0
≤ ‖RΦ f ‖Hα+1/2
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CHARACTERIZATION OF VISIBLE AND ADDED SINGULARITIES

Theorem (F., Quinto (2013); Katsevich (1997))

Let Φ ∈ [0, π/2) and let f ∈ E′(R2). Let R† be the FBP reconstruction operator. Then

WFΦ( f ) ⊂WF
(
R†(RΦ f )

)
⊂WFΦ̄( f ) ∪AΦ( f ),

where
AΦ =

{
(x + rθ(ϕ)⊥, αθ(ϕ)) : (x, θ(ϕ)) ∈WF( f ), r, α ∈ R \ {0} , ϕ = ±Φ

}
is the set of added singularities. Here θ(ϕ) = (cosϕ, sinϕ) for ϕ ∈ [−π, π).

Artifacts are located on straight lines with normal directions θ(±Φ)
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CHARACTERIZATION OF VISIBLE AND ADDED SINGULARITIES

Added singularities

AΦ =
{
(x + rθ(ϕ)⊥, αθ(ϕ)) : (x, θ(ϕ)) ∈WF( f ), r, α ∈ R∗, ϕ = ±Φ

}
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OUTLINE OF THE PROOF

. First note that
R†(RΦ f ) = PΦ f = F −1(χWΦ

· f̂ ) =
1

2π
ǔΦ ∗ f ,

where
ǔΦ = F −1(χWΦ

).
Therefore

WF(R†(RΦ f )) = WF(ǔΦ ∗ f )

. Then, use the following general result from microlocal analysis: If either f or g or both have
compact support (as distributions) then

WF( f ∗ g) ⊂
{
(x + y, ξ) ∈ R2 × (R2 \ 0) : (x, ξ) ∈WF( f ), (y, ξ) ∈WF(g)

}
. Applied to our situation, we get

WF(R†RΦ f ) ⊂
{
(x + y, ξ) ∈ R2 × (R2 \ 0) : (x, ξ) ∈WF( f ), (y, ξ) ∈WF(ǔΦ)

}
. Need to calculate WF(ǔΦ): To that end, note that ǔΦ is a homogeneous distribution as the

(inverse) Fourier transform of the homogeneous distribution uΦ = χWΦ
. Then, we can use the

following general result for homogeneous distributions u:

(x, ξ) ∈WF(u) ⇔ (ξ,−x) ∈WF(û) for x , 0, ξ , 0
(0, ξ) ∈WF(u) ⇔ ξ ∈ sing supp(û)

. To calculate WF(ǔΦ) we therefore first calculate

WF(χWΦ
) =

{
(αθ(ϕ), rθ⊥(ϕ)) ∈ R2 × (R2 \ 0) : α, r ∈ R \ 0, ϕ = ±Φ

}
∪ ({0} ×WΦ)
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. Then, we can use the
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OUTLINE OF THE PROOF

. To calculate WF(ǔΦ) we first observe that outside of the origin (x , 0) we have

(αθ(ϕ), rθ⊥(ϕ)) ∈WF(χWΦ
) for α, r ∈ R \ 0, ϕ = ±Φ

. Therefore, by previous result we have

WF(ǔΦ) =
{
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. We now apply the result about the wavefront set of convolutions (see previous slide) and obtain
the assertion

WF(R†RΦ f ) ⊂
{
(x + y, ξ) ∈ R2 × (R2 \ 0) : (x, ξ) ∈WF( f ), (y, ξ) ∈WF(ǔΦ)

}
⊂

{
(x + rθ⊥(ϕ), αθ(ϕ)) ∈ R2 × (R2 \ 0) : α, r ∈ R \ 0, (x, αθ(ϕ)) ∈WF( f ) ϕ = ±Φ

}
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{
(x, ξ) ∈ R2 × (R2 \ 0) : (x, ξ) ∈WF( f ), ξ ∈ WΦ

}
= AΦ ∪WF

Φ
( f )
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WF(ǔΦ) =
{
(rθ⊥(ϕ), αθ(ϕ)) ∈ R2 × (R2 \ 0) : α, r ∈ R \ 0, ϕ = ±Φ

}
∪ ({0} ×WΦ)

=: WF1 ∪WF2

. We now apply the result about the wavefront set of convolutions (see previous slide) and obtain
the assertion

WF(R†RΦ f ) ⊂
{
(x + y, ξ) ∈ R2 × (R2 \ 0) : (x, ξ) ∈WF( f ), (y, ξ) ∈WF(ǔΦ)
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WHAT IS THE CAUSE OF ARTIFACTS?

. First observe that if we had

AΦ =
{
(x + y, ξ) ∈ R2 × (R2 \ 0) : (x, ξ) ∈WF( f ), (y, ξ) ∈WF(ǔΦ), y , 0

}
,

. Therefore AΦ = ∅ only if sing supp ǔΦ = {0}

. To avoid the generation of additional artifacts, the idea is to develop an FBP type reconstruction
formula

R∗PR f =
1

4π
f ∗ κ̌Φ,

such that κ̌Φ is a homogeneous distribution with a smooth Fourier transform away from origin
(then sing supp κ̌Φ = {0}).

. Alternatively, since we know that pseudodifferential operators do not increase wavefront sets, we
could formulate the artifact reduction strategy in a more abstract way as follows: Design an FBP
reconstruction operator R∗P such that R∗PR is a standard pseudodifferential operator, then
WF(R∗PR f ) ⊂WF( f ).
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ARTIFACT REDUCTION

Theorem (F., Quinto (2013))

Let κ : S 1 → R be a smooth function with supp(κ) ⊂ cl(S 1
Φ

) and assume κ = 1 on S 1
Φ′

for some
Φ′ ∈ (0,Φ). Let K be the operator that multiplies by κ

Kg(θ, s) = κ(θ)g(θ, s) .

Then, the operator
R†KRΦ

is a standard pseudodifferential operator and for f ∈ E′(R2),

WFΦ′ ( f ) ⊂WF(R†K(RΦ f ) ) ⊂WFΦ( f ).

The reconstruction formula R†K(RΦ) does not produce additional artifacts!
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REMARKS

R†KRΦ f =
1

4π
R∗I−1KRΦ f

. Preprocessing of limited angle data data gΦ = RΦ f :

ḡΦ(θ, s) = κΦ(θ) · gΦ(θ, s)

. Modification of the FBP filter in the Fourier domain:

ψ̂(θ, r) = |r| 7→ ψ̂Φ(θ, r) = κΦ(θ) |r|

. Preconditioner for the limited angle Radon transform:

RΦ 7→ KRΦ
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NUMERICAL EXAMPLES

Original FBP artifact reduced FBP

21 Mathematics of computerized tomography Jürgen Frikel (DTU Compute) 18.11.2015



NUMERICAL EXAMPLES

Original FBP artifact reduced FBP
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NUMERICAL EXAMPLES

FBP artifact reduced FBP Difference
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NUMERICAL EXAMPLES

Lambda artifact reduced Lambda Difference
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Thanks!

25 Mathematics of computerized tomography Jürgen Frikel (DTU Compute) 18.11.2015


