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4 LECTURES

1 Today: Introduction to the mathematics of computerized tomography

2 Nov. 18: Introduction to the basic concepts of microlocal analysis

3 Nov. 25: Microlocal analysis of limited angle reconstructions in tomography I

4 Dec. 02: Microlocal analysis of limited angle reconstructions in tomography I

References:

F. Natterer, The mathematics of computerized tomography. Stuttgart: B. G. Teubner, 1986.

JF and E. T. Quinto, Characterization and reduction of artifacts in limited angle tomography,
Inverse Problems 29(12):125007, December 2013.
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ORIGINS OF TOMOGRAPHY

Johan Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte Längs gewisser
Manningsfaltigkeiten, Berichte Sächsische Akadamie der Wissenschaften, Leipzig, Math.-Phys.
Kl., 69, pp. 262- 277, 1917
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Image taken from www.wikipedia.org



ORIGINS OF TOMOGRAPHY

Allan Cormack Godfrey Hounsfield

The Nobel Prize in Physiology or Medicine 1979 was awarded jointly to Allan M. Cormack and
Godfrey N. Hounsfield for the development of computer assisted tomography
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ORIGINS OF TOMOGRAPHY

First scanner, ≈ $300 Modern scanner, > $1 million
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ORIGINS OF TOMOGRAPHY

First clinical scan 1971 Modern scan∗

∗Case courtesy of Dr Maxime St-Amant, Radiopaedia.org
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TODAY

Analytical approach to computerized tomography

. Principle of tomography

. Radon transform - a mathematical model of tomography

. Reconstruction via backprojection

. Fourier slice theorem

. Inversion formulas & Filtered backprojection

. Ill-posedness & regularization
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PRINCIPLE OF COMPUTED TOMOGRAPHY
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Beer Lambert law

X-rays are attenuated when traveling through object according to
dI
dt

= − f (γ(t)) · I(t) for t ∈ R

I(0) = I0

f = attenuation coefficient, γ = x-ray path

γ(t) = s · θ + t · θ⊥ = line with direction θ⊥ starting at xdetector = sθ

Source

Detector

f

I0

I(θ, p)
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Solution of the initial value problem is given by

I(θ, s) = I0 · exp
{
−

∫ tdetector

0
f (s · θ + t · θ⊥) dt

}

= I0 · exp
{
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∫
L(θ,s)

f (x) dx
}
.
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∫ tdetector

0
f (s · θ + t · θ⊥) dt
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{
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∫
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Mathematical model of the measurement process

R f (θ, s) =

∫
L(θ,s)

f (x) dx = ln
(

I0

I(θ, s)

)



RECONSTRUCTION PROBLEM
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Data / Sinogram

???
−−−−−−−−−−−−−→

Sought image

Mathematical problem

Solve the integral equation y = R f
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Data / Sinogram

???
−−−−−−−−−−−−−→

Sought image

Mathematical problem

Solve the integral equation y = R f

I. Algebraic reconstruction

. Fully discretize formulation of the
problem

{ Linear system of equations Rx = y

This is an algebraic problem!

Examples: ART, SART, SIRT, statistical
reconstruction methods such as ML-EM,
variational methods, etc.
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. Derivation of inversion formulas

. Discretization of analytic reconstruction
formulas

Examples: Filtered backprojection (FBP),
Fourier inversion, etc.
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RADON TRANSFORM IN Rn

Definition

Let f : Rn → R be a suitably chosen function. The Radon transform of f , denoted by R f , is defined
as

(1) R f (θ, s) =

∫
H(θ,s)

f (x) dσ(x), (θ, s) ∈ S n−1 × R,

where
H(θ, s) =

{
x ∈ Rn : 〈x, θ〉 = s

}
is the hyperplane with normal vector θ and the signed distance from the origin s.

Notation: Rθ f (s) = R f (θ, s). This function called projections along direction θ.

• Radon transform maps functions to its hyperplane itegrals,

• Radon transform is an even function R f (−θ,−s) = R f (θ, s){ Measurment only w.r.t. half-sphere

• Continuity of the Radon transform = Stability of the measurement process

R is continuous on many standard function spaces, such as L1(Rn), L2(Ω), S(Rn) and many
distributional spaces.
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RADON TRANSFORM OF RADIAL FUNCTIONS

f : R2 → R is radial if the value f (x) only depends on ‖x‖, i.e., if there is a function ϕ : [0,∞)→ R
such that f (x) = ϕ(‖x‖).

In this case we have

R f (θ, s) =

∫
R

f (sθ + tθ⊥) dt

=

∫ ∞

−∞

ϕ(
√

s2 + t2) dt

= 2
∫ ∞

0
ϕ(

√
s2 + t2) dt

substitution r2 = s2 + t2 gives 2r dr = 2t dt, and hence

= 2
∫ ∞

s

ϕ(r)r
√

r2 − s2
dr

The Radon transform of radial functions is independent of θ!

{ 1 Projection enough to reconstruct a radial function
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RADON TRANSFORM OF RADIAL FUNCTIONS

Example: f (x) = χB(0,1)(x) = χ[0,1](‖x‖):

R f (θ, s) = 2
∫ ∞

s

χ[0,1](r)r
√

r2 − s2
dr
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s > 1 : R f (θ, s) = 0

s < 1 : R f (θ, s) = 2
∫ 1

s

r
√

r2 − s2
dr = 2

[
r1/2

]1−s2

0
= 2

√
1 − s2

So

R f (θ, s) =

2
√

1 − s2, |s| < 1

0, otherwise

s

Rθ f (s)
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BACKPROJECTION OPERATOR

Definition

Let g be a (sinogram) function on S n−1 × R. Given a projection along the direction θ, we define the
backprojection operators along direction θ via

R∗θg(x) = g(θ, x · θ).

The backprojection operator R∗ as follows:

R∗g(x) =

∫
S n−1
R∗θg(x) dσ(θ) =

∫
S n−1

g(θ, x · θ) dσ(θ).

• The value R∗g(x) is an average of all measurements g = R f (θ, s) which correspond to
hyperplanes passing through the point x ∈ Rn.

• The operator R∗ is the L2 Hilbert space adjoint of the Radon transform R, i.e., for f ∈ L2(Ω) and
g ∈ L2(S n−1 × R) ∫

S n−1

∫
R
R f (θ, s)g(θ, s) dθ ds =

∫
Rn

f (x)R∗g(x) dx.

• As an adjoint operator, R∗ is continuous whenever R is
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• The value R∗g(x) is an average of all measurements g = R f (θ, s) which correspond to
hyperplanes passing through the point x ∈ Rn.

• The operator R∗ is the L2 Hilbert space adjoint of the Radon transform R, i.e., for f ∈ L2(Ω) and
g ∈ L2(S n−1 × R) ∫

S n−1

∫
R
R f (θ, s)g(θ, s) dθ ds =

∫
Rn

f (x)R∗g(x) dx.

• As an adjoint operator, R∗ is continuous whenever R is
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RECONSTRUCTION VIA BACKPROJECTION

Theorem

For f ∈ S(Rn) we have

R∗R f (x) =
∣∣∣S n−2

∣∣∣ · ( f ∗
1
‖ · ‖

)
(x)
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• Backprojection reconstruction produces a function that is smoother than the original function (by
1 order): high frequencies are damped

• Since R∗ is a continuous operator, the backprojection reconstruction is stable

• To reconstruct the original function f , we need to restore (amplify) high frequencies
→ filtering (sharpening) step

• Using the above theorem, the normal equation R∗R f = R∗g (up to a constant) reads

f ∗
1
‖ · ‖

= R∗g, for data g = R f

→ tomographic reconstruction can be interpreted as a deconvolution problem
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FOURIER TRANSFORM

Fourier transform turns out to be a very useful tool for studying the Radon transform.

Definition (Fourier transform and its inverse)

Let f ∈ L1(Rn). The Fourier transform of f is defined via

F f (ξ) B f̂ (ξ) = (2π)−n/2
∫
Rn

f (x)e−ix·ξ dx.

Let g ∈ L1(Rn). The inverse Fourier transform of f is defined via

F −1g(x) B ǧ(x) = (2π)−n/2
∫
Rn

f (ξ)eix·ξ dξ.

Sometimes it’s useful to calculate the 1D Fourier transform of the projection function
g(θ, s) = R f (θ, s) with respect to the second variable s. To make that clear, we will write

Fsg(θ, σ) = (2π)−1/2
∫
R

g(θ, s)e−is·σ ds

for the Fourier transform of g(θ, s) with respect to the variable s (here θ is considered to be a fixed
parameter). Whenever we write R̂ f (θ, σ) the Fourier transform of R f has to be understood in that
sense. Same holds for the inverse Fourier transform.
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RELATION TO THE FOURIER TRANSFORM

Theorem (Fourier slice theorem)

Let f ∈ S(Rn). Then, for σ ∈ R,
FsR f (θ, σ) = (2π)(n−1)/2 f̂ (σθ).
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RELATION TO THE FOURIER TRANSFORM

Theorem (Fourier slice theorem)

Let f ∈ S(Rn). Then, for σ ∈ R,
FsR f (θ, σ) = (2π)(n−1)/2 f̂ (σθ).

1D Fourier transform θ

f̂f

Rθ f

This theorem can be used derive a reconstruction procedure{ Fourier reconstructions
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INJECTIVITY OF THE RADON TRANSFORM

Many proprities of the Radon transform can be derived from the properties of the Fourier
transform.

Theorem

The Radon transform R : L1(Rn)→ L1(S n−1 × R) is an injective operator.

• Are there explicit expressions for R−1?

• Is R−1 continuous?
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Many proprities of the Radon transform can be derived from the properties of the Fourier
transform.

Theorem

The Radon transform R : L1(Rn)→ L1(S n−1 × R) is an injective operator.

Proof.

Suppose R f ≡ 0 for f ∈ L1(Rn). Then, the Fourier slice theorem implies

f̂ (σθ) = (2π)(1−n)/2FsR f (θ, σ) = 0

for all (θ, σ) ∈ S n−1 × R. Hence,
f̂ ≡ 0

and the injectivity of the Fourier transform implies that f ≡ 0. �

• Are there explicit expressions for R−1?

• Is R−1 continuous?
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Many proprities of the Radon transform can be derived from the properties of the Fourier
transform.

Theorem

The Radon transform R : L1(Rn)→ L1(S n−1 × R) is an injective operator.

So far: There is a unique solution to the reconstruction problem R f = y, formally given as

f = R−1y.

• Are there explicit expressions for R−1?

• Is R−1 continuous?
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INJECTIVITY OF THE RADON TRANSFORM

Many proprities of the Radon transform can be derived from the properties of the Fourier
transform.

Theorem

The Radon transform R : L1(Rn)→ L1(S n−1 × R) is an injective operator.

So far: There is a unique solution to the reconstruction problem R f = y, formally given as

f = R−1y.

• Are there explicit expressions for R−1?

YES! We will derive them in a minitute.

• Is R−1 continuous?

Unfortuntely, NO. It can be shown that R−1 is not a continuous operator and, hence, that the
reconstruction problem R f = y is ill-posed. However, the ill-posedness is mild (maybe later).
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INVERSION FORMULAS

For f ∈ S(Rn) and α < n we define the Riesz potential (which is a linear operator) via

Iα f = (−∆)−α/2 f = F −1
(
|ξ|−α f̂ (ξ)

)
.

For g ∈ §(S n−1 × R) we analogously define the Riesz-potential with respect to the second variable

Iαs g(θ, s) =
(
−∂2

s

)−α/2
R f (θ, s) = F −1

s

(
|σ|−α Fsg(θ, σ)

)
.

Theorem

Lef f ∈ S(Rn). Then, for any α < n, the following inversion formulas hold:

f =
1
2

(2π)1−nI−αR∗Iα−n+1
s R f .
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VARIATIONS OF INVERSION FORMULAS

n = 3 and α = 2: f = −
1

8π2 · ∆R
∗R f

n = 3 and α = 0: f =
1

8π2 R
∗I−2

s R f = −
1

8π2 · R
∗(−∂2

s )R f

n = 2 and α = 0: f =
1

4π
R∗I−1

s R f =
1

4π
· R∗(−∂2

s )1/2R f

Structure: Filter & Backproject

17 Mathematics of computerized tomography Jürgen Frikel (DTU Compute) 11.11.2015



VARIATIONS OF INVERSION FORMULAS

n = 3 and α = 2: f = −
1

8π2 · ∆R
∗R f

n = 3 and α = 0: f =
1

8π2 R
∗I−2

s R f = −
1

8π2 · R
∗(−∂2

s )R f

n = 2 and α = 0: f =
1

4π
R∗I−1

s R f =
1

4π
· R∗(−∂2

s )1/2R f

Structure: Filter & Backproject

17 Mathematics of computerized tomography Jürgen Frikel (DTU Compute) 11.11.2015



VARIATIONS OF INVERSION FORMULAS

n = 3 and α = 2: f = −
1

8π2 · ∆R
∗R f

n = 3 and α = 0: f =
1

8π2 R
∗I−2

s R f = −
1

8π2 · R
∗(−∂2

s )R f

n = 2 and α = 0: f =
1

4π
R∗I−1

s R f =
1

4π
· R∗(−∂2

s )1/2R f

Structure: Filter & Backproject

17 Mathematics of computerized tomography Jürgen Frikel (DTU Compute) 11.11.2015



VARIATIONS OF INVERSION FORMULAS

n = 3 and α = 2: f = −
1

8π2 · ∆R
∗R f

n = 3 and α = 0: f =
1

8π2 R
∗I−2

s R f = −
1

8π2 · R
∗(−∂2

s )R f

n = 2 and α = 0: f =
1

4π
R∗I−1

s R f =
1

4π
· R∗(−∂2

s )1/2R f

Structure: Filter & Backproject

17 Mathematics of computerized tomography Jürgen Frikel (DTU Compute) 11.11.2015



VARIATIONS OF INVERSION FORMULAS

n = 3 and α = 2: f = −
1

8π2 · ∆R
∗R f

n = 3 and α = 0: f =
1

8π2 R
∗I−2

s R f = −
1

8π2 · R
∗(−∂2

s )R f

n = 2 and α = 0: f =
1

4π
R∗I−1

s R f =
1

4π
· R∗(−∂2

s )1/2R f

Structure: Filter & Backproject

Sinogram Filtered sinogram
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INVERSION FORMULAS IN EVEN AND ODD DIMENSIONS

For α = 0 we obtain a classical filtered backprojection form

f =
1
2

(2π)1−nR∗I1−n
s R f ,

where the operator I1−n
s acts as a filter on the data g = R f .

Fs[I1−n
s Rθ f ](σ) = |σ|n−1 FsRθ(σ)

= (sgn(σ) · σ)n−1 FsRθ(σ)

= (sgn(σ))n−1σn−1 FsRθ(σ)

= (sgn(σ))n−1i−(n−1) · in−1σn−1 FsRθ(σ)

= (−i sgn(σ))n−1 · (iσ)n−1 FsRθ(σ)

because Fs[∂n
sg](σ) = (iσ)nĝ(σ) we have

= (−i sgn(σ))n−1 · Fs[∂n−1
s Rθ](σ)

= Fs[Hn−1∂n−1
s Rθ](σ),

where H is defined in the Fourier domain via

Ĥg(σ) = −i sgn(σ) · ĝ(σ).
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= (−i sgn(σ))n−1 · Fs[∂n−1
s Rθ](σ)

= Fs[Hn−1∂n−1
s Rθ](σ),

where H is defined in the Fourier domain via
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INVERSION FORMULAS IN EVEN AND ODD DIMENSIONS

Now observe that for n ≥ 2 we have

(−i sgn(σ))n−1 =

(−1)(n−2)/2 · (−i sgn(σ)), for n even

(−1)(n−1)/2, for n odd

Therefore

f =
1
2

(2π)1−nR∗ ·

(−1)(n−2)/2 · H ∂n−1
s R f (θ, x · θ), for n even

(−1)(n−1)/2 · ∂n−1
s R f (θ, x · θ), for n odd

• If n is odd, the filter is a differential operator and, hence, a local operator. As a result, the
inversion formula is local, i.e., the inversion formula can be evaluated at point x if the data
R f (θ, y · θ) is known for all θ ∈ S n−1 and for y in a neighbourhood of x.

• If n is even, the inversion formula is not local, since H is an integral operator

Hg(s) =
1
π

∫
R

g(t)
s − t

dt

H is the so-called Hilbert transform.
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LAMBDA RECONSTRUCTION

To make the reconstruction formula local for n = 2, the strategy is to have filter which is local
(differential operator).

Choosing n = 2 and α = 1 gives

I1 f =
1

4π
R∗I−2

s R f =
1

4π
R∗(−∂2

s )R f

• Instead of reconstructing f we reconstruct Λ f := I1 f .

• This formula is local and of filtered backprojection type.

• In the implementation, the standard FBP filter |σ| has to be replaces by |σ|2
→ high frequecies are amplified even more, low frequencies are damped.

• Instead of values f (x), it reconstructs the singularities of f .

Original FBP Lambda
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ILL-POSEDNESS OF COMPUTED TOMOGRAPHY

Reconstruction is mildly ill-posed (of order (n-1)/2)

c ‖ f ‖Hα
0
≤ ‖R f ‖Hα+(n−1)/2 ≤ C ‖ f ‖Hα

0

What causes instabilities in the reconstruction???

• We know R and R∗ continuous (stable) operations.

• Given the inversion formula f = 1/2(2π)1−nR∗I1−n
s R f the instabilities must come from filtering:

Fs[I1−n
s R f ](θ, σ) = |σ|n−1 · FsR f (θ, σ) = (2π)(n−1)/2 |σ|n−1 f̂ (σθ)

• High frequencies are amplified!

• This causes instabilities since noise is a high frequency phenomenon.

• Regularizationation by replacing the filtered with a band-limited version:

|σ|n−1 7→ w(σ) · |σ|n−1
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REGULARIZED FBP

For α > 0, let ωα : (−1/α, 1/α)→ [0,∞) be smooth such that ωα(σ)→ σ as α→ 0 (∀σ), and set

ψα(σ) := F −1(ωα(σ) · |σ|).

Stabilized FBP inversion

Rα(g)(x) :=
1

4π

∫
S 1

(gθ ∗ ψα)(x · θ) dσ(θ)

Remark

fα = Rα(g) is a “low-pass filtered version of f ”
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Plot of ψ̂α = ωα(σ) · |σ|



See you next week!
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