Tikhonov Regularization in General Form §8.1

To introduce a more general formulation, let us return to the continuous formulation of the first-kind Fredholm integral equation.

In this setting, the residual norm for the generic problem is

$$
R(f)=\left\|\int_{0}^{1} K(s, t) f(t) d t-g(s)\right\|_{2} .
$$

In the same setting, we can introduce a smoothing norm $S(f)$ that measures the regularity of the solution f. Common choices of $S(f)$ belong to the family given by

$$
S(f)=\left\|f^{(d)}\right\|_{2}=\left(\int_{0}^{1}\left(f^{(d)}(t)\right)^{2} d t\right)^{1 / 2}, \quad d=0,1,2, \ldots,
$$

where $f^{(d)}$ denotes the d th derivative of f.

General Form Contd.

Then we can write the Tikhonov regularization problem for f in the form

$$
\begin{equation*}
\min \left\{R(f)^{2}+\lambda^{2} S(f)^{2}\right\} \tag{1}
\end{equation*}
$$

where λ plays the same role as in the discrete setting.
The previous discrete Tikhonov formulation is merely a special version of this general Tikhonov problem with $S(f)=\|f\|_{2}$.

We obtain a general version by replacing the norm $\|x\|_{2}$ with a discretization of the smoothing norm $S(f)$, of the form $\|L x\|_{2}$, where L is a discrete approximation of a derivative operator.

The Tikhonov regularization problem in general form is thus

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\lambda^{2}\|L x\|_{2}^{2}\right\} .
$$

The matrix L is $p \times n$ with no restrictions on the dimension p.

A Transformation to Standard Form

If L is invertible, such that L^{-1} exists, then the solution can be written as

$$
x_{L, \lambda}=L^{-1} \bar{x}_{\lambda}
$$

where \bar{x}_{λ} solves the standard-form Tikhonov problem

$$
\min _{\bar{x}}\left\{\left\|\left(A L^{-1}\right) \bar{x}-b\right\|_{2}^{2}+\lambda^{2}\|\bar{x}\|_{2}^{2}\right\} .
$$

The multiplication with L^{-1} in the back-transformation $x_{\lambda}=L^{-1} \bar{x}_{\lambda}$ represents integration, which yields additional smoothness in the Tikhonov solution, compared to $L=I$.

The same is also true for more general rectangular and non-invertible smoothing matrices L.

More About L

Similar to the standard-form problem obtained for $L=I$, the general-form Tikhonov solution $x_{L, \lambda}$ is the solution to a linear least-squares problem:

$$
\min _{x}\left\|\binom{A}{\lambda L} x-\binom{b}{0}\right\|_{2}
$$

The solution $x_{L, \lambda}$ is unique when the coefficient matrix has full rank, i.e., when the null spaces of A and L intersect trivially:

$$
\mathcal{N}(A) \cap \mathcal{N}(L)=\emptyset
$$

Since multiplication with A represents a smoothing operation, it is unlikely that a smooth null vector of L (if L is rank deficient) is also a null vector of A.

Various choices of the matrix L are discussed in $\S 8.2$.

Common L's

Two common choices of L are the rectangular matrices

$$
\begin{aligned}
& L_{1}=\left(\begin{array}{ccccc}
-1 & 1 & & \\
& \ddots & \ddots & \\
& & -1 & 1
\end{array}\right) \in \mathbb{R}^{(n-1) \times n} \\
& L_{2}=\left(\begin{array}{ccccc}
1 & -2 & 1 & & \\
& \ddots & \ddots & \ddots & \\
& & 1 & -2 & 1
\end{array}\right) \in \mathbb{R}^{(n-2) \times n}
\end{aligned}
$$

which represent the first and second derivative operators. In Reg. Tools use get_l $(\mathrm{n}, 1)$ and get_l $(\mathrm{n}, 2)$ to compute these matrices.

Thus, the discrete smoothing norm $\|L x\|_{2}$, with L given by either I, L_{1} or L_{2}, represents the continuous smoothing norms $S(f)=\|f\|_{2},\left\|f^{\prime}\right\|_{2}$, and $\left\|f^{\prime \prime}\right\|_{2}$, respectively.

Illustration

To illustrate the improved performance of the general-form formulation, consider a simple ill-posed problem with missing data.
Let x be given as samples of a function, and let the right-hand side be given by a subset of these samples, e.g.,

$$
b=A x, \quad A=\left(\begin{array}{ccc}
l_{\text {left }} & 0 & 0 \\
0 & 0 & l_{\text {right }}
\end{array}\right)
$$

where $I_{\text {left }}$ and $I_{\text {right }}$ are two identity matrices.
The figure next page shows the solution x (consisting of samples of the sine function), as well as three reconstructions obtained with the three discrete smoothing norms $\|x\|_{2},\left\|L_{1} x\right\|_{2}$ and $\left\|L_{2} x\right\|_{2}$.
The first choice is bad: the missing data are set to zero, in order to minimize the 2 -norm of the solution. The choice $\left\|L_{1} x\right\|_{2}$ produces a linear interpolation in the interval with missing data, while the choice $\left\|L_{2} x\right\|_{2}$ produces a quadratic interpolation here.

Illustration

The model

Reconstr., $L=L_{1}$

Reconstr., L = I

Reconstr., $\mathrm{L}=\mathrm{L}_{2}$

Moving Away From the 2-Norm §8.6

Tikhonov is based on penalizing the 2-norm of the solution:

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\alpha^{2}\|x\|_{2}^{2}\right\} .
$$

The same is true for TSVD, which can also be formulated as

$$
\min \|x\|_{2} \quad \text { subject to } \quad\left\|A_{k} x-b\right\|_{2}=\min , \quad A_{k}=\sum_{i=1}^{k} u_{i} \sigma_{i} v_{i}^{\top} .
$$

It is the 2-norm penalization, together with the spectral properties of the SVD basis vectors, that cause a bad reconstruction of the edges $=$ discontinuities.

It turns our that it is a better idea to involve the derivative of the solution and another norm!
So what is a good smoothing norm $S(f)$?

An Example Using a Continuous Function

$$
y=f(x)
$$

Consider the piecewise linear function

$$
f(t)= \begin{cases}0, & 0 \leq t<\frac{1}{2}(1-h) \\ \frac{t}{h}-\frac{1-h}{2 h}, & \frac{1}{2}(1-h) \leq t \leq \frac{1}{2}(1+h) \\ 1, & \frac{1}{2}(1+h)<t \leq 1\end{cases}
$$

which increases linearly from 0 to 1 in $\left[\frac{1}{2}(1-h), \frac{1}{2}(1+h)\right]$.

Norms of the First Derivative

It is easy to show that the 1- and 2-norms of $f^{\prime}(t)$ satisfy

$$
\begin{aligned}
& \left\|f^{\prime}\right\|_{1}=\int_{0}^{1}\left|f^{\prime}(t)\right| d t=\int_{0}^{h} \frac{1}{h} d t=1 \\
& \left\|f^{\prime}\right\|_{2}^{2}=\int_{0}^{1} f^{\prime}(t)^{2} d t=\int_{0}^{h} \frac{1}{h^{2}} d t=\frac{1}{h}
\end{aligned}
$$

Note that $\left\|f^{\prime}\right\|_{1}$ is independent of the slope of the middle part of $f(t)$, while $\left\|f^{\prime}\right\|_{2}$ penalizes steep gradients (when h is small).

- The 2-norm of $f^{\prime}(t)$ will not allow any steep gradients and therefore it produces a smooth solution.
- The 1-norm, on the other hand, allows some steep gradients - but not too many - and it is therefore able to produce a less smooth solution, and even a discontinuous solution.

Total Variation (TV) Regularization

The example motivates us to replace Tikhonov's 2-norm with the 1-norm of the first derivative, which is known as the total variation.

In the discrete setting:

$$
\min _{x}\left\{\|A x-b\|_{2}^{2}+\alpha^{2}\|L x\|_{1}\right\}
$$

where

$$
L=\left(\begin{array}{cccc}
-1 & 1 & & \\
& \ddots & \ddots & \\
& & -1 & 1
\end{array}\right) \in \mathbb{R}^{(n-1) \times n}
$$

such that $\|L x\|_{1}$ approximates the total variation $\left\|f^{\prime}\right\|_{1}$.
The figure on the next page shows a good TV reconstruction to the barcode problem.

Illustration

The barcode intensity $f(t)$ (blue) and the point spread function (red)

TV in 2 D

In two dimensions, given a function $f(\mathbf{t})$ with $\mathbf{t}=\left(t_{1}, t_{2}\right)$, we use the gradient magnitude define as

$$
|\nabla f|=\left(\left(\frac{\partial f}{\partial t_{1}}\right)^{2}+\left(\frac{\partial f}{\partial t_{2}}\right)^{2}\right)^{\frac{1}{2}}
$$

to obtain the 2D version of the total variation $\||\nabla f|\|_{1}$. The relevant norms of $f(\mathbf{t})$ are now

$$
\begin{aligned}
& \||\nabla f|\|_{1}=\int_{0}^{1} \int_{0}^{1}|\nabla f| d t_{1} d t_{2}=\int_{0}^{1} \int_{0}^{1}\left(\left(\frac{\partial f}{\partial t_{1}}\right)^{2}+\left(\frac{\partial f}{\partial t_{2}}\right)^{2}\right)^{\frac{1}{2}} d t_{1} d t_{2} \\
& \||\nabla f|\|_{2}^{2}=\int_{0}^{1} \int_{0}^{1}|\nabla f|^{2} d t_{1} d t_{2}=\int_{0}^{1} \int_{0}^{1}\left(\frac{\partial f}{\partial t_{1}}\right)^{2}+\left(\frac{\partial f}{\partial t_{2}}\right)^{2} d t_{1} d t_{2}
\end{aligned}
$$

An Example in 2D

To illustrate the difference between these two norms, consider a function $f(\mathbf{t})$ with the polar representation

$$
f(r, \theta)= \begin{cases}1, & 0 \leq r<R \\ 1+\frac{R}{h}-\frac{r}{h}, & R \leq r \leq R+h \\ 0, & R+h<r\end{cases}
$$

2D Example Continued

The function f is 1 inside the disk with radius $r=R$, zero outside the disk with radius $r=R+h$, and it has a linear radial slope between 0 and 1 . In the area between these two disks the gradient magnitude is $|\nabla f|=1 / h$, and elsewhere it is zero.

$$
\begin{aligned}
& \|\mid \nabla f\|_{1}=\int_{0}^{2 \pi} \int_{R}^{R+h} \frac{1}{h} r d r d \theta=2 \pi R+\pi h \\
& \|\mid \nabla f\|_{2}^{2}=\int_{0}^{2 \pi} \int_{R}^{R+h} \frac{1}{h^{2}} r d r d \theta=\frac{2 \pi R}{h}+\pi
\end{aligned}
$$

Similar to the one-dimensional example, we see that the total variation smoothing norm is almost independent of the size of the gradient, while the 2 -norm penalizes steep gradients.
In fact, as $h \rightarrow 0$ we see that $\||\nabla f|\|_{1}$ converges to the circumference $2 \pi R$.

Total Variation Image Deblurring Example

Original image

TV deblurred image

This example is from the paper:
J. Dahl, P. C. Hansen, S. H. Jensen, and T. L. Jensen, Algorithms and software for total variation image reconstruction via first-order methods, Numerical Algorithms, 53 (2010), pp. 67-92.

Total Variation Image Inpainting

Noisy and corrupted image

TV inpainted image, $\tau=0.85$

The computational problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{m-1} \sum_{j=1}^{n-1}\left\|\binom{X_{i+1, j}-X_{i j}}{X_{i, j+1}-X_{i j}}\right\|_{2} \\
\text { subject to } & \left\|(X-B)_{\mathcal{I}}\right\|_{2} \leq \delta,
\end{array}
$$

where \mathcal{I} denotes the index set of corrupted pixels.

Total Variation Image Denoising $(A=I)$

Original clean image

TV denoised image, $\tau=0.85$

Noisy image

TV denoised image, $\tau=1.2$

