
Chapter 7: Regularization Methods at Work
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Checklist for designing, implementing, and testing a WRA.
1 Focus on a single application, or a specific/narrow class of applica-

tions; no WRA is guaranteed to work for a broad class of problems.
2 When implementing the WRA, focus on modularity and clarity of the

computer code; it is guaranteed that you need to go back and
modify/expand the software at some point in time.

3 Make sure you understand the performance of the implementation,
including computing times, storage requirements, etc.

4 When testing the WRA, make sure to generate test problems that
reflect as many aspects as possible of real, measured data.

5 When testing, also make sure to model the noise as realistically as
possible, and use realistic noise levels.

6 Be aware of the concept of inverse crime:
1 As a “proof-of-concept” first use tests that commit inverse crime; if the

WRA does not work under such circumstances it can never work.
2 Next, in order to check the robustness to model errors, test the WRA

without committing inverse crime.
7 Carefully evaluate the regularized solutions; consider which

characteristics are important, and use the appropriate measure of the
error (the 2-norm between the exact and regularized solutions is not
always the optimal measure).

8 Using the same exact data, create many realizations of the noise and
perform a systematic study the robustness of the WRA. Use
histograms or other tools to investigate if the distribution of the errors
has an undesired tail.
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Barcode Reading

The blurring model (approximate, good for illustration):∫ 1

0
exp
(
−(s − t)2

ς2

)
f (t) dt = g(s), 0 ≤ s ≤ 1,

where the s-axis represents the one-dimensional photo conductor inside the
scanner.

Special instance of the Fredholm integral equation with the kernel given by

K (s, t) = exp
(
−(s − t)2

ς2

)
, s, t ∈ [0, 1].

The parameter ς controls the amount of blurring. The larger the ς the
narrower the Gaussian peak and thus the less blurring.

Intro to Inverse Problems Chapter 7 Reg. Methods at Work 3 / 28



Convolution and Deconvolution

A convolution kernel depends only on the difference s − t.

The measured signal g(s) is computed as the convolution∫ 1

0
h(s − t) f (t) dt = g(s), 0 ≤ s ≤ 1

between the exact signal f (t) and the point spread function h(t), in this
case given by

h(t) = exp(−t2/ς2), t ∈ R.

Point spread functions typically peak at t = 0 and decay away from this
peak such that we can think of h(t) as located near the peak.

For obvious reasons, the process of computing the function f (t), given the
measured signal g(s) and the point spread function h(t), is called
deconvolution.
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Barcode Deconvolution

We used TSVD to solve the discretized barcode problem.

Intro to Inverse Problems Chapter 7 Reg. Methods at Work 5 / 28



Discrete Deconvolution

Advantageous to discretize deconvolution problems by means of the
midpoint quadrature rule with n quadrature and collocation points:

si = (i − 1
2)/n, tj = (j − 1

2)/n, i , j = 1, . . . , n.

Then the elements of the matrix A are:

aij = K (si , tj) = exp
(
−(i − j)2

ς2 n2

)
, i , j = 1, . . . , n.

If we define hi−j = aij , then we can write the system in the form

n∑
j=1

hi−j xj = bi , i = 1, . . . , n,

where hi−j are allowed to have zero and negative indices. We refer to this
problem as discrete convolution.
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Structured Matrices: Toeplitz

When discrete convolution equations are written in the matrix form
Ax = b, then we note that the matrix elements aij = hi−j are always a
function of the difference i − j only, i.e.,

aij = ai+`,j+` for all relevant integers i , j , and `.

Such a matrix A, which has constant values along all its diagonals, is called
a Toeplitz matrix . Example:

A =


5 4 3 2 1 0
4 5 4 3 2 1
3 4 5 4 3 2
2 3 4 5 4 3
1 2 3 4 5 4
0 1 2 3 4 5

 .

Barcode matrix: toeplitz(-((0:n-1)/(sigma*n)).^2).
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Structured Matrices: Circulant
In some problems, the function h is periodic with period 1,

h(t) = h(t + p), t ∈ R, p = N.

In the discrete case this corresponds to the condition that

hi−j = h(i−j) mod n, i , j ∈ N.

The matrix elements satisfy aij = a(i+`) mod n,(j+`) mod n.

A Toeplitz matrix, where the elements also “wrap around” the borders, is
called a circulant matrix . Example:

A =


5 0 1 2 3 4
4 5 0 1 2 3
3 4 5 0 1 2
2 3 4 5 0 1
1 2 3 4 5 0
0 1 2 3 4 5


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Computations with Structured Matrices

Discrete deconvolution problems are thus special instances of discrete
inverse problems with Toeplitz or circulant matrices.

They can be solved very efficiently by means of methods that take into
account the structure of the matrix, such as FFT-based og DCT-based
methods of complexity O(n log n).

P. C. Hansen, Deconvolution and regularization with Toeplitz
matrices, Numerical Algorithms, 29 (2002), pp. 323–378.
P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring Images:
Matrices, Spectra, and Filtering, SIAM, Philadelphia, 2006 (130
pages). Korean translation, Jin Publishing Co., 2007.
P. A. Jansson (Ed.), Deconvolution of Images and Spectra, 2. Edition,
Academic Press, San Diego, 1997.
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Data/Model Mismatch

The integral equation model∫ 1

0
K (s, t) f (t) dt = g(s), 0 ≤ s ≤ 1

assumes that the data g(s) is solely due to contributions from t(t) in the
interval [0, 1].

But what if the observed g(t) actually has contributions from sources f (t)
outside the interval [0.1]?

Example next page: g(s) is produced by a source f (t) that is nonzero for
t ∈ [−0.5, 1.5].

If we solve with the wrong assumption that f (t) is zero outside [0, 1], then
we get severe artifacts at the boundaries.
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Illustration
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Inverse Crime

This refers to a perfect agreement between the model and the data in the
discretized inverse problem. It arises when the same model is used to
generate the test data and to compute the reconstruction.

No WRA is useful if it cannot solve such as inverse problem.

But real data are obviously not generated by a computer model, but come
from a physical (or some other) phenomenon.

The term “inverse crime” is used to signal the danger of testing a working
regularization algorithm using only data generated with the same model as
that used in the inversion.

A rigorous testing of a working regularization algorithm must reveal how
sensitive the algorithm is to model/data mismatch.
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Boundary Conditions

A convenient mechanism for avoiding the severe effects of model/data
mismatch.

Must be considered whenever the measured data come from a function
g(s) that can be influenced by values of the source function f (t) outside
the integration interval.

Not needed if f (t) is zero outside the integration interval.

Here we consider reflexive boundary conditions:
the underlying assumption is that the behavior of the function f (t) outside
[0, 1] is a “reflection” of its behavior inside the interval.

Intro to Inverse Problems Chapter 7 Reg. Methods at Work 13 / 28



More BC
Define the extended function fBC in the interval [−1, 2] as follows:

fBC(t) =


f (−t), −1 < t < 0

f (t), 0 ≤ t ≤ 1

f (2 − t), 1 < t < 2

and consider data gBC(s) generated by the extended model

gBC(s) =

∫ 2

−1
K(s, t) fBC(t) dt

=

∫ 0

−1
K(s, t) fBC(t) dt +

∫ 1

0
K(s, t) fBC(t) dt +

∫ 2

1
K(s, t) fBC(t) dt

=

∫ 1

0
K(s,−t) f (t) dt +

∫ 1

0
K(s, t) f (t) dt +

∫ 1

0
K(s, 2 − t) f (t) dt

=

∫ 1

0

(
K(s,−t) + K(s, t) + K(s, 2 − t)

)
f (t) dt.

Reflexive BC correspond to working with a modified integral equation
where K (s, t) is replaced by the extended kernel

KBC(s, t) = K (s,−t) + K (s, t) + K (s, 2− t).
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Use of Reflexive BC

The use of reflexive BC improves the solution:

When we discretize the modified integral equation, then we obtain a
modified coefficient matrix ABC that is the sum of the original matrix A
plus correction terms coming from discretization of the terms K (s,−t) and
K (s, 2− t) in KBC(s, t).
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More Matrix Structure

Incorporation of the reflexive BC in the barcode problem means that the
must add correction terms Al and Ar for the left and right boundary
conditions, respectively.

The elements of these two matrices are, for i , j = 1, . . . , n,

al
ij = K (si ,−tj) = exp

(
− (si + tj)

2

ς2

)
= exp

(
− (i + j − 1)2

ς2 n2

)
and

ar
ij = K (si , 2− tj) = exp

(
− (si + tj − 2)2

ς2

)
= exp

(
− (i + j − 2n − 1)2

ς2 n2

)
(again we ignored the factor n−1). Note that aij is a function of i + j , such
that aij = ai+`,j−` for all relevant integers i , j , and `.

A matrix with this structure, where the elements are constant along all the
anti-diagonals, is called a Hankel matrix .
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Hankel Structure
The elements of the two Hankel matrices Al and Ar can be expressed in
terms of the elements of the Toeplitz matrix A:

al
i1 = exp

(
−((i + 1)− 1)2

ς2 n2

)
= ai+1,1, i = 1, 2, . . . , n − 1,

ar
nj = exp

(
−(1− (2 + n − j))2

ς2 n2

)
= a1,2+n−j , i = 2, 3, . . . , n.

The remaining elements are undetermined.

But the point spread function h(t) can be considered as zero away from
the peak, and thus we can safely define these remaining elements of Al and
Ar to be zero.

No overlap between the nonzero elements of Al and Ar.
The matrix Al + Ar is also Hankel:

hankel([A(2:n,1);0],[0,A(1,n:-1:2)]).
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Symmetric Toeplitz Plus Hankel Structure

The matrix ABC = A + Al + Ar is a symmetric Toeplitz plus Hankel matrix,
with the Hankel part derived from the Toeplitz part:

A =


3 2 1 0 0
2 3 2 1 0
1 2 3 2 1
0 1 2 3 2
0 0 1 2 3

⇒ Al + Ar =


2 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 1 2



ABC =


5 3 1 0 0
3 3 2 1 0
1 2 3 2 1
0 1 2 3 3
0 0 1 3 5

 .

We refer to a matrix with this particular structure as a symmetric
Toeplitz-plus-Hankel matrix, or STH matrix.
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STH Matrices and the DCT
Let Wn = (w1, . . . ,wn) denote the n × n “DCT matrix” such that
dct(x) = W T

n x is the discrete cosine transform (DCT) of x .

Any STH matrix has the eigenvalue decomposition

ABC = Wn DW T
n , D = diag(d1, . . . , dn),

where the eigenvalues di are given by

di = [dct(ABC( : , 1))]i / [dct(e1)]i , i = 1, . . . , n,

in which e1 = (1, 0, . . . , 0)T and [ · ]i denotes the ith component.
The alternative relation

dj = a11 + 2
n∑

i=2

ai ,1 cos((j − 1)(k − 1)π/n),

requires O(n2) flops. Nice but too expensive.
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SVD and DCT

The good news is that the SVD of ABC is very closely related to its
eigenvalue decomposition, since we have

ABC = (Wn Ω) diag(|d1|, . . . , |dn|) W T
n ,

in which the diagonal matrix Ω = diag(sign(d1), . . . , sign(dn)) holds the
signs of the eigenvalues, such that

Wn Ω = ( sign(d1)w1 , sign(d2)w2 , . . . ).

Almost the SVD of ABC, except that the singular values in
diag(|d1|, . . . , |dn|) not guaranteed to appear in decreasing order.

Since large singular values are typically associated with low- frequency
singular vectors, the eigenvalues di tend to appear in order of decreasing
magnitude.
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Efficient Implementation
Now it follows immediately that the Tikhonov solution to a discrete inverse
problem with an STH matrix takes the form

xλ = Wn Φ[λ]D−1W T
n b

and similarly for other regularized solutions, with the Tikhonov filter matrix
Φ[λ] replaced by the appropriate filter matrix.
Since the multiplications with Wn and W T

n represent the DCT and its
inverse, it follows immediately that we can compute the Tikhonov
regularized solution in O(n log n) complexity:

d = dct(Abc(:,1)) ./ dct(eye(n,1));
q = d ./ (d.^2 + lambda^2);
x_reg = idct( q .* dct(b) );

No need to store the full A and ABC matrices, since the first column of
each matrix suffice for the computations we need to carry out.
For TSVD, use q = [1./d(1:k);zeros(n-k,1)].
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PIXE Depth Profiling

PIXE = Particle-Induced X-ray Emission spectroscopy.

Reconstruction of hidden layers of paint in an image via solving an inverse
problem that involves X-ray measurements.

At a specific position, an X-ray source sends a beam at an angle s into the
material, and the energy penetrates to a depth of d cos(s), where d
depends on the energy in the beam.

The beam that penetrates the material is partially reflected according to
the material parameter f (t), where t denotes the depth into the material,
with 0 ≤ t ≤ d .

A detector located perpendicular to the surface records the reflected signal
g(s), which depends on the incidence angle s and the material parameter
f (t).
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The PIXE Model
The pixe model:

g(s) =

∫ d cos(s)

0
exp(−µ t) f (t) dt, 0 ≤ s ≤ 1

2π.

Reconstruction of f (t) is an inverse problem given by the first-kind
Fredholm integral equation with kernel

K (s, t) =

{
exp(−µ t) , 0 ≤ t ≤ d cos(s)

0 , d cos(s) ≤ t ≤ d

with s and t in the intervals s ∈ [0, 1
2π] and t ∈ [0, d ].

We use d = 1, µ = 8, and an artificial solution which models three layers
of paint at depths t = 0.25, 0.5, and 0.75:

f (t) = exp
(
−30(t − 0.25)2)+ 0.4 exp

(
−30(t − 0.5)2)+ 0.5 exp

(
−50(t − 0.75)2)
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Discretization Issues

Discretization by the midpoint quadrature rule with equidistant abscissas
tj , and with equidistant sampling points si for g(s):

aij =

{
n−1 exp(−µ tj), tj ≤ cos(si )

0 else.

This matrix has a large cluster of singular values at or below the machine
precision. Unfortunate since the integral operator has only the trivial null
space.

Use the variable transformation t = sin(τ):

g(s) =

∫ arcsin(d cos(s))

0
exp
(
−µ sin(τ)

)
cos(τ) f (τ) dτ, 0 ≤ s ≤ 1

2π.
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Be Careful
Using again the midpoint quadrature rule, this time with equidistant
τj ∈ [0, 1

2π], we obtain a new coefficient matrix:

aij =

{
(π/2n) exp

(
−µ sin(τj)

)
cos(τj), sin(τj) ≤ si

0 else.

The singular values of this matrix show a much more satisfactory behavior
free from rounding error artifacts.

Conclusion: be careful with the discretization!
Intro to Inverse Problems Chapter 7 Reg. Methods at Work 25 / 28



TSVD Solutions
Selected TSVD solutions for two different noise levels:
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Depth Resolution

As k increases we obtain information about deeper structures, until the
noise starts to dominate the reconstruction.

With a lower noise level (where the noise starts to dominate for a larger k)
the deep part of the reconstruction is more reliable.

Only with a small noise level do we have a reliable reconstruction of the
bottom layer of paint.

Depth resolution: to which depth can we, for a given problem and with a
given noise level, reliably resolve details in the solution?

It is no surprise that the smaller the noise level, the deeper we can “look
into” the material in this problem.
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Depth Resolution Studies via Singular Vectors

Selected right singular vectors plotted versus the depth t:

Each singular vector carries information about the solution in a certain
depth interval only, starting from the smallest depths.

When we include the first k SVD components in a regularized solution,
then we can recover details in those depth ranges for which the singular
vectors v1, . . . , vk carry information.
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