Large-Scale Problems

Small-scale problems:

- "anything goes,"
- no problem to use SVD or other factorizations/decompositions.

Large-scale problems:

- factorizations are not possible in general,
- if possible, use matrix structure (Toeplitz, Kronecker, ...),
- storage and computing time set the limitations,
- solving, say, the Tikhonov problem for a range of reg. parameters can be a formidable task.

But Wait - There's More

Let us consider the optimization framework for the least-squares problem:

$$
\min _{x} F(x), \quad F(x)=1 / 2\|A x-b\|_{2}^{2}, \quad \nabla F(x)=A^{T}(A x-b) .
$$

Steepest descent algorithm:

$$
x^{[k+1]}=x^{[k]}-\omega_{k} \nabla F\left(x^{[k]}\right)=x^{[k]}+\omega_{k} A^{T}\left(b-A x^{[k]}\right) .
$$

CGLS - conjugate gradient algorithm applied to $A^{T} A x=A^{T} b$:

$$
\begin{gathered}
x^{[k+1]}=x^{[k]}-\alpha_{k} d^{[k]}, d^{[k]}=\text { search direction } \\
\left(d^{[k]}\right)^{T} A^{T} A d^{[j]}=0, \quad j=1,2, \ldots, k-1 .
\end{gathered}
$$

Advantages of Iterative Methods

We typically think of iterative methods as necessary for solving nonlinear problems. But we can also use them for large, linear problems.

Iterative methods produce a sequence $x^{[0]} \rightarrow x^{[1]} \rightarrow x^{[2]} \rightarrow \cdots$ of iterates that (hopefully) converge to the desired solution, solely through the use of matrix-vector multiplications.

- The matrix A is never altered, only "touched" via matrix-vector multiplications $A x$ and $A^{T} y$.
- The matrix A is not explicitly required - we only need a "black box" that computes the action of A or the underlying operator.
- Atomic operations of iterative methods (mat-vec product, saxpy, norm) suited for high-performance computing.
- Often produce a natural sequence of regularized solutions; stop when the solution is "satisfactory" (parameter choice).

Two Types of Iterative Methods

(1) Iterative solution of a regularized problem, such as Tikhonov

$$
\left(A^{T} A+\lambda^{2} I\right) x=A^{T} b \quad \Leftrightarrow \quad \min _{x} \frac{1}{2}\left\|\binom{A}{\lambda I} x-\binom{b}{0}\right\|_{2}^{2} .
$$

Challenges: solve for many λ and needs a good preconditioner!
(2) Iterate on the un-regularized system, e.g., on

$$
A x=b \quad \text { or } \quad A^{T} A x=A^{T} b
$$

and use the iteration number as the regularization parameter.
The latter approach relies on semi-convergence:

- initial convergence towards the desired $x^{\text {exact }}$,
- followed by (slow) convergence to unwanted $A^{-1} b$.

Must stop at the end of the first stage!

Illustration of Semi-Convergence

Landweber Iteration

A classical stationary iterative method:

$$
x^{[k]}=x^{[k-1]}+\omega A^{T}\left(b-A x^{[k-1]}\right), \quad k=0,1,2, \ldots
$$

where $0<\omega<2\left\|A^{T} A\right\|_{2}^{-1}=2 \sigma_{1}^{-2}$.
Where does this come from? Consider the function

$$
\phi(x)=\frac{1}{2}\|b-A x\|_{2}^{2}
$$

associated with the least squares problem $\min _{x} \phi(x)$. It is straightforward (but perhaps a bit tedious) to show that the gradient of ϕ is

$$
\nabla \phi(x)=-A^{T}(b-A x)
$$

Thus, each step in Landweber's method is a step in the direction of steepest descent. See next slide for an example of iterations.

The Geometry of Landweber Iterations

Towards Convergence Analysis

With an arbitrary starting vector $x^{[0]}$, the k th Landweber iterate is:

$$
\begin{aligned}
x^{[k]}= & x^{[k-1]}+\omega A^{T}\left(b-A x^{(k-1)}\right) \\
= & \left(I-\omega A^{T} A\right) x^{[k-1]}+\omega A^{T} b \\
= & \left(I-\omega A^{T} A\right)\left[\left(I-\omega A^{T} A\right) x^{[k-2]}+\omega A^{T} b\right]+\omega A^{T} b \\
= & \left(I-\omega A^{T} A\right)^{2} x^{[k-2]}+\left(\left(I-\omega A^{T} A\right)+I\right) \omega A^{T} b \\
= & \left(I-\omega A^{T} A\right)^{3} x^{[k-3]}+\left(\left(I-\omega A^{T} A\right)^{2}+\left(I-\omega A^{T} A\right)+I\right) \omega A^{T} b \\
= & \cdots \\
= & \left(I-\omega A^{T} A\right)^{k} x^{[0]}+ \\
& \quad\left[\left(I-\omega A^{T} A\right)^{k-1}+\left(I-\omega A^{T} A\right)^{k-2}+\cdots+I\right] \omega A^{T} b \\
= & \left(I-\omega A^{T} A\right)^{k} x^{(0)}+\sum_{j=0}^{k-1}\left(I-\omega A^{T} A\right)^{j} \omega A^{T} b .
\end{aligned}
$$

SVD Analysis

For simplicity we now assume that $x^{[0]}=0$. We insert the SVD of the matrix $A=U \Sigma V^{\top}$ and use $I=V V^{\top}$:

$$
x^{[k]}=V \sum_{j=0}^{k-1}\left(I-\omega \Sigma^{2}\right)^{j} \omega \Sigma U^{T} b=V \Phi^{(k)} \Sigma^{-1} U^{T} b,
$$

where we introduced the $n \times n$ diagonal matrix

$$
\Phi^{(k)}=\sum_{j=0}^{k-1}\left(I-\omega \Sigma^{2}\right)^{j} \omega \Sigma^{2}=\omega \Sigma^{2} \sum_{j=0}^{k-1}\left(I-\omega \Sigma^{2}\right)^{j}=\left(\begin{array}{ccc}
\phi_{1}^{(k)} & & \\
& \phi_{2}^{(k)} & \\
& & \ddots
\end{array}\right)
$$

with diagonal elements

$$
\phi_{i}^{(k)}=\omega \sigma_{i}^{2} \sum_{j=0}^{k-1}\left(1-\omega \sigma_{i}^{2}\right)^{j}, \quad i=1,2, \ldots, n .
$$

The Filter Factors

The sum $\sum_{j=0}^{k-1}\left(1-\omega \sigma_{i}^{2}\right)^{j}$ is a geometric series,

$$
\sum_{j=0}^{k-1} z^{j}=\left(1-z^{k}\right) /(1-z)
$$

and thus for $i=1,2, \ldots, n$ we have

$$
\phi_{i}^{(k)}=\omega \sigma_{i}^{2} \sum_{j=0}^{k-1}\left(1-\omega \sigma_{i}^{2}\right)^{j}=\omega \sigma_{i}^{2} \frac{1-\left(1-\omega \sigma_{i}^{2}\right)^{k}}{1-\left(1-\omega \sigma_{i}^{2}\right)}=1-\left(1-\omega \sigma_{i}^{2}\right)^{k} .
$$

Let $\sigma_{\text {break }}^{(k)}$ denote the value of σ_{i} for which $\phi_{i}^{(k)}=0.5$. Then

$$
\frac{\sigma_{\text {break }}^{(k)}}{\sigma_{\text {break }}^{(2 k)}}=\sqrt{1+\left(\frac{1}{2}\right)^{\frac{1}{2 k}}} \rightarrow \sqrt{2} \text { for } k \rightarrow \infty
$$

Hence, as k increases, the breakpoint tends to be reduced by a factor $\sqrt{2} \approx 1.4$ each time the number of iterations k is doubled.

Landweber Filter Factors

$\phi_{i}^{(k)}=1-\left(1-\omega \sigma_{i}^{2}\right)^{k} \quad \omega=1$

Cimmino Iteration

Cimmino's method is a variant of Landweber's method, with a diagonal scaling:

$$
x^{[k]}=x^{[k-1]}+\omega A^{T} D\left(b-A x^{[k-1]}\right), \quad k=1,2, \ldots
$$

in which $D=\operatorname{diag}\left(d_{i}\right)$ is a diagonal matrix whose elements are defined in terms of the rows $a_{i}^{T}=A(i,:)$ of A as

$$
d_{i}= \begin{cases}\frac{1}{m} \frac{1}{\left\|a_{i}\right\|_{2}^{2}}, & a_{i} \neq 0 \\ 0, & a_{i}=0\end{cases}
$$

Cimmino's method may often converge faster than Landweber.

Kaczmarz's method $=$ algebraic reconstruction technique (ART).
Let $a_{i}^{T}=A(i,:)=i$ th row of A, and $b_{i}=i$ th component b.
Each iteration of ART involves the following "sweep" over all rows:

$$
\begin{aligned}
& z^{(0)}=x^{[k-1]} \\
& \text { for } i=1, \ldots, m \\
& \quad z^{(i)}=z^{(i-1)}+\frac{b_{i}-a_{i}^{T} z^{(i-1)}}{\left\|a_{i}\right\|_{2}^{2}} a_{i} \\
& \text { end } \\
& x^{[k]}=z^{(m)}
\end{aligned}
$$

This method is not "simultaneous" because each row must be processed sequentially.
In general: fast initial convergence, then slow. See next slides.

The Geometry of ART Iterations

Slow Convergence of SIRT and ART Methods

The test problem is shaw.

Projection Methods

As an important step towards the faster Krylov subspace methods, we consider projection methods.

Assume the columns of $W_{k}=\left(w_{1}, \ldots, w_{k}\right) \in \mathbb{R}^{n \times k}$ form a "good basis" for an approximate regularized solution, obtained by solving

$$
\min _{x}\|A x-b\|_{2} \quad \text { s.t. } \quad x \in \mathcal{W}_{k}=\operatorname{span}\left\{w_{1}, \ldots, w_{k}\right\}
$$

This solution takes the form

$$
x^{(k)}=W_{k} y^{(k)}, \quad y^{(k)}=\operatorname{argmin}_{y}\left\|\left(A W_{k}\right) y-b\right\|_{2}
$$

and we refer to the least squares problem $\left\|\left(A W_{k}\right) y-b\right\|_{2}$ as the projected problem, because it is obtained by projecting the original problem onto the k-dimensional subspace $\operatorname{span}\left(w_{1}, \ldots, w_{k}\right)$.
If $W_{k}=V_{k}$ then we obtain the TSVD method, and $x^{(k)}=x_{k}$
But we want to work with computationally simpler basis vectors.

Computations with DCT Basis

Note that

$$
\widehat{A}_{k}=A W_{k}=\left(W_{k}^{T} A^{T}\right)^{T}=\left[\left(W^{T} A^{T}\right)^{T}\right]_{:, 1: k}
$$

In the case of the discrete cosine basis, multiplication with W^{T} is equivalent to a DCT. The algorithm takes the form:

```
Akhat = dct(A')';
Akhat = Akhat(:,1:k);
y = Akhat\b;
xk = idct([y;zeros(n-k,1)]);
```

Next page:

- Top: solutions $x^{(k)}$ for $k=1, \ldots, 10$.
- Bottom: cosine basis $w_{i}, i=1, \ldots, 10$.

Example Using Discrete Cosine Basis (shaw)

The Krylov Subspace

The Krylov subspace, defined as

$$
\mathcal{K}_{k} \equiv \operatorname{span}\left\{A^{T} b, A^{T} A A^{T} b,\left(A^{T} A\right)^{2} A^{T} b, \ldots,\left(A^{T} A\right)^{k-1} A^{T} b\right\}
$$

always adapts itself to the problem at hand! But the "naive" basis $q_{i}=\left(A^{T} A\right)^{i-1} A^{T} b$ is NOT useful due to scaling issues.
The normalized, "naive" basis

$$
p_{i}=\left(A^{T} A\right)^{i-1} A^{T} b /\left\|\left(A^{T} A\right)^{i-1} A^{T} b\right\|_{2}, \quad i=1,2, \ldots
$$

is NOT useful either: $p_{i} \rightarrow v_{1}$ as $i \rightarrow \infty$. See the next slide.
Moreover, the condition numbers of the matrices $\left[q_{1}, \ldots, q_{k}\right.$] and [p_{1}, \ldots, p_{k}] increases dramatically with k Use modified Gram-Schmidt for which cond $\left(\left[w_{1}, \ldots, w_{k}\right]\right)=1$:

$$
\begin{array}{ll}
w_{1} \leftarrow A^{T} b ; & w_{1} \leftarrow w_{1} /\left\|w_{1}\right\|_{2} \\
w_{2} \leftarrow A^{T} A w_{1} ; & w_{2} \leftarrow w_{2}-w_{1}^{T} w_{2} w_{1} ;
\end{array} \quad w_{2} \leftarrow w_{2} /\left\|w_{2}\right\|_{2}
$$

Comparison of basis vectors p_{i} (blue) and w_{i} (red)

Conditioning of the bases

This figure shows the condition numbers of the three matrices of basis vectors $\left[q_{1}, \ldots, q_{k}\right]$ and $\left[p_{1}, \ldots, p_{k}\right]$ and $\left[w_{1}, \ldots, w_{k}\right]$ for increasing k.

Can We Compute $x^{(k)}$ Without Storing W_{k} ?
Yes: the CGLS algorithm - see next slide - computes iterates given by

$$
x^{(k)}=\operatorname{argmin}_{x}\|A x-b\|_{2} \quad \text { s.t. } \quad x \in \mathcal{K}_{k} .
$$

The algorithm eventually converges to the least squares solution.
But since \mathcal{K}_{k} is a good subspace for approximate regularized solutions, CGLS exhibits semi-convergence.

CGLS = Conjugate Gradients for Least Squares

The CGLS algorithm for solving $\min _{x}\|A x-b\|_{2}$ takes the following form:

$$
\begin{aligned}
& x^{(0)}=\text { starting vector (e.g., zero) } \\
& r^{(0)}=b-A x^{(0)} \\
& d^{(0)}=A^{T} r^{(0)}
\end{aligned}
$$

$$
\text { for } k=1,2, \ldots
$$

$$
\begin{aligned}
& \bar{\alpha}_{k}=\left\|A^{T} r^{(k-1)}\right\|_{2}^{2} /\left\|A d^{(k-1)}\right\|_{2}^{2} \\
& x^{(k)}=x^{(k-1)}+\bar{\alpha}_{k} d^{(k-1)} \\
& r^{(k)}=r^{(k-1)}-\bar{\alpha}_{k} A d^{(k-1)} \\
& \bar{\beta}_{k}=\left\|A^{T} r^{(k)}\right\|_{2}^{2} /\left\|A^{T} r^{(k-1)}\right\|_{2}^{2} \\
& d^{(k)}=A^{T} r^{(k)}+\bar{\beta}_{k} d^{(k-1)}
\end{aligned}
$$

end
For Tikhonov, just replace A and b with $\binom{A}{\lambda I}$ and $\binom{b}{0}$.

Comparison of CGLS With the Previous Methods

SVD Analysis - Outside the Scope of This Course
It is pretty hairy, but we can perform an SVD analysis along these lines:

$$
\begin{gathered}
\phi_{i}^{(k)}=1-\prod_{j=1}^{k} \frac{\theta_{j}^{(k)}-\sigma_{i}^{2}}{\theta_{j}^{(k)}}=\text { filter factors } \\
\theta_{k}^{(k)}=\text { eigenvalalues of } A^{T} A \text { projected on } \mathcal{K}_{k} \\
\mathcal{K}_{k}=\operatorname{span}\left\{A^{T} b,\left(A^{T} A\right) A^{T} b, \ldots,\left(A^{T} A\right)^{k-1} A^{T} b\right\}=\text { Krylov subspace } \\
10^{0} \underbrace{10^{-5}}_{10^{0}}
\end{gathered}
$$

Other Iterations - GMRES and RRGMRES

Sometimes difficult or inconvenient to write a matrix-free black-box function for multiplication with A^{T}. Can we avoid this?

The GMRES method for square nonsymmetric matrices is based on the Krylov subspace

$$
\mathcal{K}_{k}=\operatorname{span}\left\{b, A b, A^{2} b, \ldots, A^{k-1} b\right\} .
$$

The presence of the noisy data $b=b^{\text {exact }}+e$ in this subspace is unfortunate: the solutions include the noise component e !

A better subspace, underlying the RRGMRES method:

$$
\overrightarrow{\mathcal{K}}_{k}=\operatorname{span}\left\{A b, A^{2} b, \ldots, A^{k} b\right\}
$$

Now the noise vector is multiplied with A (smoothing) at least once. Symmetric matrices: use MR-II (a simplified variant).

