
Large-Scale Problems

Small-scale problems:
“anything goes,”
no problem to use SVD or other factorizations/decompositions.

Large-scale problems:
factorizations are not possible in general,
if possible, use matrix structure (Toeplitz, Kronecker, . . . ),
storage and computing time set the limitations,
solving, say, the Tikhonov problem for a range of reg. parameters can
be a formidable task.
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But Wait – There’s More
Let us consider the optimization framework for the least-squares problem:

min
x

F (x) , F (x) = 1/2‖Ax − b‖22 , ∇F (x) = AT (Ax − b) .

Steepest descent algorithm:

x [k+1] = x [k] − ωk ∇F (x [k]) = x [k] + ωk A
T (b − Ax [k]) .

CGLS – conjugate gradient algorithm applied to ATAx = ATb:

x [k+1] = x [k] − αk d
[k] , d [k] = search direction(

d [k]
)T

ATAd [j] = 0 , j = 1, 2, . . . , k−1 .
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Advantages of Iterative Methods

We typically think of iterative methods as necessary for solving nonlinear
problems. But we can also use them for large, linear problems.

Iterative methods produce a sequence x [0] → x [1] → x [2] → · · · of iterates
that (hopefully) converge to the desired solution, solely through the use of
matrix-vector multiplications.

The matrix A is never altered, only “touched” via matrix-vector
multiplications Ax and AT y .
The matrix A is not explicitly required – we only need a “black box”
that computes the action of A or the underlying operator.
Atomic operations of iterative methods (mat-vec product, saxpy,
norm) suited for high-performance computing.
Often produce a natural sequence of regularized solutions;
stop when the solution is “satisfactory” (parameter choice).
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Two Types of Iterative Methods

1 Iterative solution of a regularized problem, such as Tikhonov(
ATA + λ2I

)
x = ATb ⇔ min

x

1
2

∥∥∥∥(A
λI

)
x −

(
b
0

)∥∥∥∥2

2
.

Challenges: solve for many λ and needs a good preconditioner!
2 Iterate on the un-regularized system, e.g., on

Ax = b or ATAx = ATb

and use the iteration number as the regularization parameter.
The latter approach relies on semi-convergence:

initial convergence towards the desired xexact,
followed by (slow) convergence to unwanted A−1b.

Must stop at the end of the first stage!
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Illustration of Semi-Convergence
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Landweber Iteration

A classical stationary iterative method:

x [k] = x [k−1] + ω AT (b − Ax [k−1]) , k = 0, 1, 2, . . .

where 0 < ω < 2 ‖ATA‖−1
2 = 2σ−2

1 .

Where does this come from? Consider the function

φ(x) = 1
2‖b − Ax‖22

associated with the least squares problem minx φ(x). It is straightforward
(but perhaps a bit tedious) to show that the gradient of φ is

∇φ(x) = −AT (b − Ax).

Thus, each step in Landweber’s method is a step in the direction of
steepest descent. See next slide for an example of iterations.
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The Geometry of Landweber Iterations
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Towards Convergence Analysis
With an arbitrary starting vector x [0], the kth Landweber iterate is:

x [k] = x [k−1] + ω AT
(
b − Ax (k−1))

= (I − ω ATA) x [k−1] + ω ATb

= (I − ω ATA)
[
(I − ω ATA) x [k−2] + ω ATb

]
+ ω ATb

= (I − ω ATA)2 x [k−2] +
(
(I − ω ATA) + I

)
ω ATb

= (I − ω ATA)3 x [k−3] +
(
(I − ω ATA)2 + (I − ω ATA) + I

)
ω ATb

= · · ·
= (I − ω ATA)kx [0] +[

(I − ω ATA)k−1 + (I − ω ATA)k−2 + · · ·+ I
]
ω ATb

= (I − ω ATA)kx (0) +
k−1∑
j=0

(I − ω ATA) j ω ATb.
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SVD Analysis
For simplicity we now assume that x [0] = 0. We insert the SVD of the
matrix A = U ΣV T and use I = V V T :

x [k] = V
k−1∑
j=0

(I − ωΣ2)j ωΣUTb = V Φ(k) Σ−1UTb,

where we introduced the n × n diagonal matrix

Φ(k) =
k−1∑
j=0

(I − ωΣ2)j ωΣ2 = ωΣ2
k−1∑
j=0

(I − ωΣ2)j =

φ
(k)
1

φ
(k)
2

. . .


with diagonal elements

φ
(k)
i = ω σ2

i

k−1∑
j=0

(1− ω σ2
i )j , i = 1, 2, . . . , n.
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The Filter Factors
The sum

∑k−1
j=0 (1− ω σ2

i )j is a geometric series,

k−1∑
j=0

z j = (1− zk)/(1− z) ,

and thus for i = 1, 2, . . . , n we have

φ
(k)
i = ω σ2

i

k−1∑
j=0

(1− ω σ2
i )j = ω σ2

i

1− (1− ω σ2
i )k

1− (1− ω σ2
i )

= 1− (1− ω σ2
i )k .

Let σ(k)break denote the value of σi for which φ
(k)
i = 0.5. Then

σ
(k)
break

σ
(2k)
break

=

√
1 + (1

2)
1
2k →

√
2 for k →∞.

Hence, as k increases, the breakpoint tends to be reduced by a factor√
2 ≈ 1.4 each time the number of iterations k is doubled.
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Landweber Filter Factors
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Cimmino Iteration

Cimmino’s method is a variant of Landweber’s method, with a diagonal
scaling:

x [k] = x [k−1] + ω ATD (b − Ax [k−1]), k = 1, 2, . . .

in which D = diag(di ) is a diagonal matrix whose elements are defined in
terms of the rows aTi = A(i , : ) of A as

di =


1
m

1
‖ai‖22

, ai 6= 0

0, ai = 0.

Cimmino’s method may often converge faster than Landweber.
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. . . and the prize for best acronym goes to “ART”

Kaczmarz’s method = algebraic reconstruction technique (ART).

Let aTi = A(i , :) = ith row of A, and bi = ith component b.
Each iteration of ART involves the following “sweep” over all rows:

z(0) = x [k−1]

for i = 1, . . . ,m

z(i) = z(i−1) +
bi − aTi z

(i−1)

‖ai‖22
ai

end
x [k] = z(m)

This method is not “simultaneous” because each row must be processed
sequentially.
In general: fast initial convergence, then slow. See next slides.
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The Geometry of ART Iterations
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Slow Convergence of SIRT and ART Methods

The test problem is shaw.
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Projection Methods
As an important step towards the faster Krylov subspace methods, we
consider projection methods.

Assume the columns of Wk = (w1, . . . ,wk) ∈ Rn×k form a “good basis” for
an approximate regularized solution, obtained by solving

min
x
‖Ax − b‖2 s.t. x ∈ Wk = span{w1, . . . ,wk}.

This solution takes the form

x (k) = Wk y
(k), y (k) = argminy ‖(AWk) y − b‖2,

and we refer to the least squares problem ‖(AWk) y − b‖2 as the projected
problem, because it is obtained by projecting the original problem onto the
k-dimensional subspace span(w1, . . . ,wk).

If Wk = Vk then we obtain the TSVD method, and x (k) = xk

But we want to work with computationally simpler basis vectors.
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Computations with DCT Basis

Note that

Âk = AWk = (W T
k AT )T =

[
(W TAT )T

]
:,1:k

.

In the case of the discrete cosine basis, multiplication with W T is
equivalent to a DCT. The algorithm takes the form:

Akhat = dct(A’)’;
Akhat = Akhat(:,1:k);
y = Akhat\b;
xk = idct([y;zeros(n-k,1)]);

Next page:
Top: solutions x (k) for k = 1, . . . , 10.
Bottom: cosine basis wi , i = 1, . . . , 10.
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Example Using Discrete Cosine Basis (shaw)
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The Krylov Subspace
The Krylov subspace, defined as

Kk ≡ span{ATb,ATAATb, (ATA)2ATb, . . . , (ATA)k−1ATb},
always adapts itself to the problem at hand! But the “naive” basis
qi = (ATA)i−1ATb is NOT useful due to scaling issues.
The normalized, “naive” basis

pi = (ATA)i−1ATb / ‖(ATA)i−1ATb‖2, i = 1, 2, . . .

is NOT useful either: pi → v1 as i →∞. See the next slide.
Moreover, the condition numbers of the matrices [q1, . . . , qk ] and
[p1, . . . , pk ] increases dramatically with k

Use modified Gram-Schmidt for which cond([w1, . . . ,wk ]) = 1:

w1 ← ATb; w1 ← w1/‖w1‖2
w2 ← ATAw1; w2 ← w2 − wT

1 w2 w1; w2 ← w2/‖w2‖2
w3 ← ATAw2; w3 ← w3 − wT

1 w3 w1;

w3 ← w3 − wT
2 w3 w2; w3 ← w3/‖w3‖2
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Comparison of basis vectors pi (blue) and wi (red)
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Conditioning of the bases
This figure shows the condition numbers of the three matrices of basis
vectors [q1, . . . , qk ] and [p1, . . . , pk ] and [w1, . . . ,wk ] for increasing k .
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Can We Compute x (k) Without Storing Wk?
Yes: the CGLS algorithm – see next slide – computes iterates given by

x (k) = argminx ‖Ax − b‖2 s.t. x ∈ Kk .

The algorithm eventually converges to the least squares solution.

But since Kk is a good subspace for approximate regularized solutions,
CGLS exhibits semi-convergence.
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CGLS = Conjugate Gradients for Least Squares
The CGLS algorithm for solving minx ‖Ax − b‖2 takes the following form:

x (0) = starting vector (e.g., zero)

r (0) = b − Ax (0)

d (0) = AT r (0)

for k = 1, 2, . . .

ᾱk = ‖AT r (k−1)‖22/‖Ad (k−1)‖22
x (k) = x (k−1) + ᾱk d

(k−1)

r (k) = r (k−1) − ᾱk Ad (k−1)

β̄k = ‖AT r (k)‖22/‖AT r (k−1)‖22
d (k) = AT r (k) + β̄k d

(k−1)

end

For Tikhonov, just replace A and b with
(
A
λI

)
and

(
b
0

)
.
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Comparison of CGLS With the Previous Methods
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SVD Analysis – Outside the Scope of This Course
It is pretty hairy, but we can perform an SVD analysis along these lines:

φ
(k)
i = 1−

k∏
j=1

θ
(k)
j − σ2

i

θ
(k)
j

= filter factors

θ
(k)
k = eigenvalalues of ATA projected on Kk

Kk = span{ATb, (ATA )ATb, . . . , (ATA)k−1ATb} = Krylov subspace

Intro to Inverse Problems Chapter 6 Iterative Methods 25 / 26



Other Iterations – GMRES and RRGMRES

Sometimes difficult or inconvenient to write a matrix-free black-box
function for multiplication with AT . Can we avoid this?

The GMRES method for square nonsymmetric matrices is based on the
Krylov subspace

Kk = span{b,Ab,A2b, . . . ,Ak−1b}.

The presence of the noisy data b = bexact + e in this subspace is
unfortunate: the solutions include the noise component e!

A better subspace, underlying the RRGMRES method:

~Kk = span{Ab,A2 b, . . . ,Ak b}.

Now the noise vector is multiplied with A (smoothing) at least once.

Symmetric matrices: use MR-II (a simplified variant).

Intro to Inverse Problems Chapter 6 Iterative Methods 26 / 26


