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Large-Scale Problems

i

Small-scale problems:
@ “anything goes,”

@ no problem to use SVD or other factorizations/decompositions.

Large-scale problems:
e factorizations are not possible in general,
o if possible, use matrix structure (Toeplitz, Kronecker, ...),
@ storage and computing time set the limitations,

@ solving, say, the Tikhonov problem for a range of reg. parameters can
be a formidable task.
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But Wait — There's More

Let us consider the optimization framework for the least-squares problem:

i

min F(x),  F(x)=12]Ax - b3, VF(xx)=AT(Ax—b).
Steepest descent algorithm:
xUF =y K — ) V(M) = x4 ) AT (b — AxIH
CGLS - conjugate gradient algorithm applied to ATAx = AT b:
sl = K ) gllk] ,d[k] = search direction

(d[k])TATAdU]:m j=1,2,... k-1,
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Advantages of Iterative Methods

i

We typically think of iterative methods as necessary for solving nonlinear
problems. But we can also use them for large, linear problems.

lterative methods produce a sequence x[9 — x[1 — x[2 — ... of iterates

that (hopefully) converge to the desired solution, solely through the use of
matrix-vector multiplications.

@ The matrix A is never altered, only “touched” via matrix-vector
multiplications Ax and ATy.

@ The matrix A is not explicitly required — we only need a “black box”
that computes the action of A or the underlying operator.

@ Atomic operations of iterative methods (mat-vec product, saxpy,
norm) suited for high-performance computing.

@ Often produce a natural sequence of regularized solutions;
stop when the solution is “satisfactory” (parameter choice).

Intro to Inverse Problems Chapter 6 Iterative Methods 3/26



=
—
=

Two Types of Iterative Methods

i

@ lterative solution of a regularized problem, such as Tikhonov

T 2\ _ AT b
(A A+/\/>X_Ab & minZ H(A/> (0

Challenges: solve for many A and needs a good preconditioner!

2

2

@ lterate on the un-regularized system, e.g., on
Ax=b or ATAx=ATb

and use the iteration number as the regularization parameter.
The latter approach relies on semi-convergence:
@ initial convergence towards the desired x®2°t,
o followed by (slow) convergence to unwanted A=1b.

Must stop at the end of the first stage!
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[llustration of Semi-Convergence
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Landweber lteration

i

A classical stationary iterative method:
W =yl AT(b— AxI-TY | k=0,1,2,...
where 0 < w < 2||ATA|;t = 2072
Where does this come from? Consider the function
¢(x) = 3lb— Ax|3

associated with the least squares problem miny ¢(x). It is straightforward
(but perhaps a bit tedious) to show that the gradient of ¢ is

Vo(x) = —AT(b— Ax).

Thus, each step in Landweber's method is a step in the direction of
steepest descent. See next slide for an example of iterations.
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The Geometry of Landweber Iterations

— 1. equation
—— 2. equation
— 30 iterations
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Towards Convergence Analysis

i

With an arbitrary starting vector x[%, the kth Landweber iterate is:

xK = xlk=1] —l—wAT(b— Ax(k_l))
= (I—wATA) XU 4, ATh
— (I —wATA) [(/ wATA)x[k’2]+wATb]+wATb
= (I —wATA? X2 1 (1 —wATA) + 1) wAT b
= (I —wATARXS L (1 —wATAR + (1 —wATA) + NwATb

(I —w AT AYRXO 4
[(/ CWATAR L (1 —wAT A2 /} wATh

k—1
= (I-wATAXO + 3 (1 —wATA) wATb.
j=0
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SVD Analysis

For simplicity we now assume that x[% = 0. We insert the SVD of the

matrix A= UX VT anduse | = V VT

Pyl
[ary

XM=V (1 —ws?YwsUTh= Vo g-1yTy,
J

I
o

where we introduced the n x n diagonal matrix

K
k—1 . k—1 _ o1
oW =S (1w W = w2 S (1w = =X
j=0 Jj=0

with diagonal elements
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The Filter Factors

The sum Zj-‘fol(l —wo?Y is a geometric series,
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i

k=1
J=(1-2)/(1-2),
j=0
and thus for i = 1,2,...,n we have
k—1
1—(1—wo?)k
qﬁl(-k) *wa,z (1 —wa,?)f *wa,z ( wg’2) 1-(1 —wa,-)k.
= 1-(1-woy)

Let aﬁfe)ak denote the value of o; for which d)gk) =0.5. Then

(k)

U?;eka)k — 1+ (%)i — \/§ for k — oc.

Obreak

Hence, as k increases, the breakpoint tends to be reduced by a factor
V2 ~ 1.4 each time the number of iterations k is doubled.

Intro to Inverse Problems Chapter 6 Iterative Methods

10 /26



=
—
=

Landweber Filter Factors

i

¢Z(k):1_(1_w02)k w=1

i

10°F '
L
10" 1
=
aSS
1072} k=10 |1
—k =20
k=40
——k =80
—k = 160
—k = 320
103 !
1072 107 10°

g
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Cimmino lteration

i

Cimmino’s method is a variant of Landweber’'s method, with a diagonal
scaling:

M =Xk G ATD (b — AxEY, k=12,

in which D = diag(d;) is a diagonal matrix whose elements are defined in
terms of the rows a] = A(i,: ) of A as

1 1

— o & £0
di = mHai”z

0, a,-:O.

Cimmino's method may often converge faster than Landweber.
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and the prize for best acronym goes to “ART"

Kaczmarz's method = algebraic reconstruction technique (ART).

Let a] = A(i,:) = ith row of A, and b; = ith component b.

Each iteration of ART involves the following “sweep” over all rows:

2(0) — x[k=1]
fori=1,...,m
AT (i-1
A0 — Hi-1) 4 ba—z;) 2
laill2
end
Xkl = z(m)

This method is not “simultaneous”’ because each row must be processed

sequentially.

In general: fast initial convergence, then slow. See next slides.
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The Geometry of ART lterations

25 T T
—— 1. equation
——2. equation
2r —VY f
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—— 15 iterations
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Slow Convergence of SIRT and ART Methods

Relative errors || x®@t. x I, /11 x &)

0

2

10

——Landweber
——Cimmino

—e—Kaczmarz (ART)

The test problem is shaw.
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Projection Methods

>
>
>
As an important step towards the faster Krylov subspace methods, we
consider projection methods.
Assume the columns of Wy = (wy, ..., wy) € R™¥ form a “good basis” for

an approximate regularized solution, obtained by solving
mXin |Ax — b||2 s.t. x € Wy = span{wi, ..., wg}.
This solution takes the form
xK) = W y (k) y(k) = argmin,, [|(A W)y — b2,

and we refer to the least squares problem ||(A Wx)y — bl|2 as the projected
problem, because it is obtained by projecting the original problem onto the
k-dimensional subspace span(wx, ..., w).

If Wi = Vj then we obtain the TSVD method, and x(k) = x,

But we want to work with computationally simpler basis vectors.
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Computations with DCT Basis

i

Note that

Ay =AW, = (WTAT)T = [(WTAT)T] -
51

In the case of the discrete cosine basis, multiplication with W7 is

equivalent to a DCT. The algorithm takes the form:

Akhat = dct(A’)’;

Akhat = Akhat(:,1:k);

y = Akhat\b;

xk = idct([y;zeros(n-k,1)]1);

Next page:
e Top: solutions x(k) for k =1,...,10.
@ Bottom: cosine basis w;, i =1,...,10.
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Example Using Discrete Cosine Basis (shaw)

Projected solutions

2lk=1  * 2lk=2  * =5~
15 " Vs I
1 LI
T \
05| ¢ \| 05 \
< /
0 0
0 50 100 0 50 100 0o 50 100 0 50 100
2l k=6 2l k=7 2l k=8 21 k=9 21 k=10
15 15 15 15 15 \
1 1 1 1 1
05 05 05 05 05
0 0 0 0 0
0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
02 02 02 02 02
W1 W2 W3 W4 W5
01 01 01 01 01
0 0 0 0 0
-0.1 -01 -01 -01 -01
-02 -02 -02 -02 -02
50 100 0 50 100 0 5 100 0o 50 100 50 100
02 02 02 02 02
We W7 Wy Yo W1io
01 01 01 01 01
0 0 0 0 0
-01 -01 -01 -01 -0
-02 -02 -02 -02 -02
50 100 0 50 100 0 50 100 0o 50 100 50 100
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The Krylov Subspace
The Krylov subspace, defined as

Ky =span{ATb, ATAATb, (ATA?ATb, ... (ATAKLAT b},

always adapts itself to the problem at hand! But the “naive” basis
qi = (ATAY~LAT b is NOT useful due to scaling issues.

The normalized, “naive” basis
pi=(ATAY AT /|(ATA) AT b|l,, i=1,2,...

is NOT useful either: p; — vy as i — oco. See the next slide.

i

Moreover, the condition numbers of the matrices [q1, ..., gx] and
[p1, ..., pk| increases dramatically with k

Use modified Gram-Schmidt for which cond([wa, ..., wk]) = 1:

wyp < ATb; w1 < W1/||W1H2
wy < AT Awy; Wo ¢— W2—W1TW2 " wy < wa/[|wa|2
w3 AT A Wo; w3 < w3 — WlTW3 Wi,

W3 <& W3 — W2TW3 wo; w3 < ws/||ws|2
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Comparison of basis vectors p; (blue) and w; (red)

0.1 /\ 0.1/\ 0.1 /\ 0.1/\ 0.1/\

0 0 0 0 0
01 [P 101 |P2 to.1 [Ps 0.1 (P4 to.1 |Ps

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
10° v, |10° Ve, [10° VT, |10° o, |10° Vi g
10% 10 10° 10° 10°
10* 10* 107 10* 10

o 5 10 0 5 10 0 5 1 0 5 10 0 5 A0
0.1 0.1 0.1 0.1 0.1

0 0 0 0 0
01 ™ to.1 {2 to.1 |™s 0.1 " to1 s

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
10° X \/‘Tw1 10° A 10° \/‘Tw3 10° \J‘Tw‘1 10° \4"Tw5
10”? 107 107 107 107?
10* 10* 107 10* 10*

0o 5 110 0 5 1 0 5 1 0 5 10 0 5 10
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Conditioning of the bases o=
. .. . - hand
This figure shows the condition numbers of the three matrices of basis
vectors [q1,...,qk] and [p1, ..., pk] and [wi, ..., wg] for increasing k.
20 Condition numbers
10 ' '
Power basis
Normalized power basis
15 MGS power basis
1071 ]
1010+ |
10°| 1
10° : ' ' ‘
0 2 4 6 8 10
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Can We Compute x(k) Without Storing W?
Yes: the CGLS algorithm — see next slide — computes iterates given by
x) = argmin, [[Ax — bl| s.t. x € K.

The algorithm eventually converges to the least squares solution.

But since Ky is a good subspace for approximate regularized solutions,
CGLS exhibits semi-convergence.

CGLS solutions

21 k=1 " 2lk=2 ,\ 21k=3 ,\ 21k=4 21k=5 2lk=6
1 1
(] /]
1 1 1 1 1 1
/N ’ /\/\ /\/\
0 0 0 0 v 0 0

0 50 100 0 50 100 0 50 100 0 5 100 0 50 100 0 50 100

2(k=7 2/k=8 2rk=9 21k=10 21 k=11 2lk=12
1 1 1 1 1 1
0 0 0 0 0 0

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 0 50 100
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CGLS = Conjugate Gradients for Least Squares
The CGLS algorithm for solving miny ||[Ax — b||2 takes the following form:

i

x(0) = starting vector (e.g., zero)
r® =p— AxO
d0) — AT (0)
for k=1,2,...
ax = |ATrED3/||AdED3
x(K) = x(k=1) 4 &5, d(k-1)
r(k) = p(k=1) _ 5, Ad(k=1)
Bic = | AT W3/ AT rE=D) 3
dK) = AT (k) 1 B, g(k—1)
end

For Tikhonov, just replace A and b with (;\4/) and (8)
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Comparison of CGLS With the Previous Methods

Relative errors || x &t x[KI AR S|
T T

10° \ : \ . 2
+ Landweber
=¥— Cimmino
—©— Kaczmarz (ART)
—8— CGLS

107 F

10-2 I L 1 L I L I

0 5 10 15 20 25 30 35 40
Kk
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SVD Analysis — Outside the Scope of This Course

It is pretty hairy, but we can perform an SVD analysis along these lines:

(k) o) — of .
¢ =1— H JT = filter factors
=Y

i

Hl((k) = eigenvalalues of AT A projected on

Ky = span{ATb,(ATA)ATb,...,(ATA)*"LAT b} = Krylov subspace

10°

1070
10 10
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Other lterations — GMRES and RRGMRES

Sometimes difficult or inconvenient to write a matrix-free black-box
function for multiplication with AT. Can we avoid this?

The GMRES method for square nonsymmetric matrices is based on the
Krylov subspace

Ky = span{b, Ab, A%b, ... ,Ak_lb}.

The presence of the noisy data b = b¥@ + ¢ in this subspace is
unfortunate: the solutions include the noise component e!

A better subspace, underlying the RRGMRES method:
Ky = span{Ab,A%b,... Ak b}.

Now the noise vector is multiplied with A (smoothing) at least once.

Symmetric matrices: use MR-1l (a simplified variant).
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