
Matrix Problems
From now on, the coefficient matrix A is allowed to have more rows than
columns, i.e.,

A ∈ Rm×n with m ≥ n.

For m > n it is natural to consider the least squares problem

min
x
‖Ax − b‖2.

When we say “naive solution” we either mean the solution A−1b (when
m = n) or the least squares solution (when m > n).
We emphasize the convenient fact that the naive solution has precisely the
same SVD expansion in both cases:

xnaive =
n∑

i=1

uTi b

σi
vi .
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Naive Solutions are Useless

Exact solutions (blue smooth lines) together with the naive solutions
(jagged green lines) to two test problems.

Left: deriv2 with n = 64.
Middle and right: gravity with n = 32 and n = 53.

Due to the large condition numbers (especially for gravity) the small
perturbations lead to useless naive solutions.
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Need For Regularization

Discrete ill-posed problems are characterized by having coefficient matrices
with a very large condition number.

The naive solution is very sensitive to any perturbation of the right-hand
side, representing the errors in the data.

Specifically, assume that the exact and perturbed solutions xexact and x
satisfy

Axexact = bexact, Ax = b = bexact + e,

where e denotes the perturbation. Then classical perturbation theory leads
to the bound

‖xexact − x‖2
‖xexact‖2

≤ cond(A)
‖e‖2
‖bexact‖2

.

Since cond(A) = σ1/σn is large, this implies that x can be very far from
xexact.
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Illustration of Ill Conditioning and Regularization

Rn = span{v1, . . . , vn} Rm = span{u1, . . . , um}

•
Exact sol.: xexact

•
bexact = Axexact

-

◦ b = bexact + e
@@R
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�+◦Naive sol.: xnaive

?
xk (TSVD)

∗ xλ (Tikhonov)
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Regularization Methods → Spectral Filtering

Almost all the regularization methods treated in this course produce
solutions which can be expressed as a filtered SVD expansion of the form

xreg =
n∑

i=1

ϕi
uTi b

σi
vi ,

where ϕi are the filter factors associated with the method.

These methods are called spectral filtering methods because the SVD basis
can be considered as a spectral basis.
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Truncated SVD
A simple way to reduce the influence of the noise is to discard the SVD
coefficients corresponding to the smallest singular values.
We can define the truncated SVD (TSVD) solution as

xk =
k∑

i=1

uTi b

σi
vi , k < n.

Regularization Tools: tsvd.

Alternatively we can define xk as the solution of the problem

min
x
‖x‖2 s.t. ‖Ak x − b‖2 = min,

where we introduce the rank-k matrix

Ak = U ΣkV
T =

k∑
i=1

σiuiv
T
i , Σk = diag(σi , . . . , σk , 0, . . . , 0).
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The Truncation Parameter

Note: the truncation parameter k in

xk =
k∑

i=1

uTi b

σi
vi

is dictated by the coefficients uTi b, not the singular values!

Basically we should choose k as the index i where |uTi b| start to “level off”
due to the noise.
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More About the Truncated SVD
Can show that if Cov(b) = η2I then

Cov(xk) = η2
k∑

i=1

1
σ2
i

vi v
T
i

and thus we can expect that

‖xk‖2 � ‖xnaive‖2 and ‖Cov(xk)‖2 � ‖Cov(xnaive)‖2.

The prize we pay for smaller covariance is bias: E(xk) 6= E(xnaive).

Advantes of TSVD:
Intuitive.
Easy to compute if we have the SVD.

Drawback of TSVD:
For large-scale problems it is infeasible to compute the SVD.
The abrupt cut-off of SVD components may introduce artifacts.
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Selective SVD

Consider a problem in which, say, every second SVD component is zero
(vT2 xexact = vT4 xexact = vT6 xexact = . . . = 0). There is no need to include
these SVD components.

A variant of the TSVD method called selective SVD (SSVD) includes, or
selects, only those SVD components which make significant contributions
to the regularized solution:

xτ ≡
∑
|uTi b|>τ

uTi b

σi
vi .

Thus, the filter factors for the SSVD method are

ϕ
[τ ]
i =

{
1, |uTi b| ≥ τ
0, otherwise.
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SSVD Example

Only the filled diamonds contribute to the SSVD solution.
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Regularization – A General Approach

Regularization = stabilization: how to deal with (and filter) solution
components corresponding to the small singular values.

Most approaches involve the residual norm

ρ(f ) =

∥∥∥∥∫ 1

0
K (s, t) f (t) dt − g(s)

∥∥∥∥
2
,

and a smoothing norm ω(f ) that measure the “size” of the solution f .
Examples of common choices:

ω(f )2 = ‖f ‖22 =

∫ 1

0
|f (t)|2 dt or ω(f )2 = ‖f (p)‖22 =

∫ 1

0
|f (p)(t)|2 dt

The underlying principle is that if we control the norm of the solution, or
its derivative, then we should be able to suppress some/most of the large
noise components.
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Discrete Tikhonov Regularization

Replace the continuous problem with a linear algebra problem.

Minimization of the residual ρ is replaced by

min
x
‖Ax − b‖2 , A ∈ Rm×n ,

where A and b are obtained by discretization of the integral equation.

Must also discretize the smoothing norm

Ω(x) ≈ ω(f ).

We focus on a common choice: Ω(x) = ‖x‖2.
The resulting discrete version of Tikhonov regulariztion is thus

minx
{
‖Ax − b‖22 + λ2 ‖x‖22

}
.

Regularization Tools: tikhonov.
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More About Tikhonov Regularization

The standard-form Tikhonov problem:

min
x

{
‖Ax − b‖22 + λ2 ‖x‖22

}
.

‖Ax − b‖22 is the residual term (data-fitting term, data-fidelity term),
‖x‖22 is the regularization term,
λ is a parameter that balances these two terms.
Large λ → strong regularization, over-smoothing of solution.
Small λ → good fit but solution is dominated by noise.
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Tikhonov Solutions
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Other Smoothing Norms → Chapter 8

Another common choice:
Ω(x) = ‖L x‖2,

where L approximates a derivative operator.

Examples of the 1. and 2. derivative operator on a regular mesh

L1 =

1 −1
. . . . . .

1 −1

 ∈ R(n−1)×n

L2 =

1 −2 1
. . . . . . . . .

1 −2 1

 ∈ R(n−2)×n.

Regularization Tools: get_l.
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Efficient Implementation

The original formulation

min
x

{
‖Ax − b‖22 + λ2 ‖x‖22

}
.

Two alternative formulations

(ATA + λ2I ) x = ATb

min
x

∥∥∥∥( A
λ I

)
x −

(
b
0

)∥∥∥∥
2

The first shows that we have a linear problem. The second shows how to
solve it stably:

treat it as a least squares problem,
utilize any sparsity or structure.
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SVD and Tikhonov Regularization

We can write the discrete Tikhonov solution xλ in terms of the SVD of A as

xλ =
n∑

i=1

σ2
i

σ2
i + λ2

uTi b

σi
vi =

n∑
i=1

φ
[λ]
i

uTi b

σi
vi .

The filter factors are given by

φ
[λ]
i =

σ2
i

σ2
i + λ2 ,

and their purpose is to dampen the components in the solution
corresponding to small σi .
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Tikhonov Filter Factors

φ
[λ]
i =

σ2
i

σ2
i + λ2 ≈

{
1 , σi � λ

σ2
i /λ

2 , σi � λ.
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TSVD and Tikhonov Regularization

TSVD and Tikhonov solutions are both filtered SVD expansions.

The regularization parameter is either k or λ.

For each k , there exists a λ such that xλ ≈ xk .
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Wiener Filtering

In certain applications, e.g., in image deblurring, the SVD basis vectors ui
and vi can be replaced by the discrete Fourier vectors (that underly the
discrete Fourier transform).

In these applications, Tikhonov regularization is known as Wiener filtering.
It is typically derived in a stochastic setting.

Here, λ−2 is the signal-to-noise power, i.e., the power of the exact solution
divided by the power of the noise in the right-hand side.

Available in MATLAB’s Image Processing Toolbox as deconvwnr.
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Other Spectral Filtering Methods

A few spectral filtering methods not mentioned in the book.

Damped SVD:
ϕ
[λ]
i =

σi
σi + λ

, λ ≥ 0.

Exponential filtering:

ϕ
[β]
i = 1− exp(−β σ2

i ), β ≥ 0.

Regularization Tools: fil_fac computers filter factors for DSVD, TSVD,
Tikhonov, and TTLS (not covered here).
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TSVD Perturbation Bound

Theorem.
Let b = bexact + e and let xk and xexact

k denote the TSVD solutions
computed with the same k .
Then

‖xexact
k − xk‖2
‖xk‖2

≤ σ1

σk

‖e‖2
‖Axk‖2

.

We see that the perturbation bound for the TSVD solution is controlled by
the factor

κk =
σ1

σk

which can be much smaller than cond(A) = σ1/σn.
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Tikhonov Perturbation Bound

Theorem.
Let b = bexact + e and let xexact

λ and xλ denote the solutions to

min
x

{
‖Ax − bexact‖22 + λ2‖x‖22

}
and min

x

{
‖Ax − b‖22 + λ2‖x‖22

}
computed with the same λ.
Then

‖xexact
λ − xλ‖2
‖xλ‖2

≤ ‖A‖2
λ

‖e‖2
‖Axλ‖2

and hence the perturbation bound for the Tikhonov solution is controlled
by the factor

κλ =
‖A‖2
λ

=
σ1

λ
.

Again it can be much smaller than cond(A) = σ1/σn.
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Illustration of Sensitivity

Red dots: xλ for 25 random perturbations of b.
Black crosses: unperturbed xλ – note the bias.
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Monotonic Behavior of the Norms
The TSVD solution and residual norms vary monotonically with k

‖xk‖22 =
k∑

i=1

(
uTi b

σi

)2

≤ ‖xk+1‖22 (we assume m = n),

‖Axk − b‖22 =
n∑

i=k+1

(uTi b)2 ≥ ‖Axk+1 − b‖22.

The Tikhonov solution and residual norms also vary monotonically with λ:

‖xλ‖22 =
n∑

i=1

(
φ
[λ]
i

uTi b

σi

)2

,

‖Axλ − b‖22 =
n∑

i=1

(
1− φ[λ]i ) uTi b

)2
.

Intro to Inverse Problems Chapter 4 Regularization Methods 25 / 29



The L-Curve for Tikhonov Regularization
Plot of ‖xλ‖2 versus ‖Axλ − b‖2 in log-log scale.
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Properties of the L-Curve

The norm ‖xλ‖2 is a monotonically decreasing convex function of the norm
‖Axλ − b‖2. Define the “inconsistency”

δ20 =
m∑

i=n+1

(uTi b)2 (= 0 when m = n.)

Then
δ0 ≤ ‖Axλ − b‖2 ≤ ‖b‖2
0 ≤ ‖xλ‖2 ≤ ‖xnaive‖2 .

Any point (δ, η) on the L-curve is a solution to the following two
inequality-constrained least squares problems:

δ = minx ‖Ax − b‖2 subject to ‖x‖2 ≤ η

η = minx ‖x‖2 subject to ‖Ax − b‖2 ≤ δ .
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More Properties

For small values of λ, many SVD components are included in the Tikhonov
solution, and hence it is dominated by the perturbation errors coming from
the inverted noise – the solution is under-smoothed, and we have

‖xλ‖2 increases with λ−1 and ‖Axλ − b‖2 ≈ ‖e‖2 (a constant).

When λ gets larger (but not very large), then xλ is dominated by SVD
coefficients whose main contribution is from the exact right-hand side
bexact – and the solution becomes over-smoothed.

A careful analysis shows that for such values of λ we have

‖xλ‖2 ≈ ‖xexact‖2 (a constant), ‖Axλ − b‖2 increases with λ.

As λ→∞ we have ‖xλ‖2 → 0 and ‖Axλ − b‖2 → ‖b‖2.

Thus the L-curve has two distinctly different parts: a part that is
approximately horizontal, and a part that is approximately vertical.
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Log-Log Scale Separates Over- and Under-Smoothing

The features become more pronounced (and easier to inspect) when the
L-curve is plotted in double-logarithmic scale:

( log ‖Axλ − b‖2 , log ‖xλ‖2 )

The “corner” that separates these horizontal and vertical parts is located
roughly at the point

( log ‖e‖2 , log ‖xexact‖2 ) .

Towards the right, for λ→∞, the L-curve starts to bend down as the
increasing amount of regularization forces the solution norm towards zero.
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