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Matrix Problems

i

From now on, the coefficient matrix A is allowed to have more rows than
columns, i.e.,
A e R™*" with m > n.

For m > n it is natural to consider the least squares problem
min ||Ax — b||».
X

When we say “naive solution” we either mean the solution A=1b (when
m = n) or the least squares solution (when m > n).

We emphasize the convenient fact that the naive solution has precisely the
same SVD expansion in both cases:

noT
: Z u' b
Xnalve — 1 V,'.
" o
i=1
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Naive Solutions are Useless

cond(A) = 4979, |le]|, = 5e-5 cond(A) = 3.4e9, ||¢]|, = 1e-7 cond(4) = 2.5¢16, | el|, = 0

Exact solutions (blue smooth lines) together with the naive solutions
(jagged green lines) to two test problems.

Left: deriv2 with n = 64.
Middle and right: gravity with n = 32 and n = 53.

Due to the large condition numbers (especially for gravity) the small
perturbations lead to useless naive solutions.
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Need For Regularization

i

Discrete ill-posed problems are characterized by having coefficient matrices
with a very large condition number.

The naive solution is very sensitive to any perturbation of the right-hand
side, representing the errors in the data.

exact and X

Specifically, assume that the exact and perturbed solutions x
satisfy

AXexact — bexact7 AX — b — bexact + e,

where e denotes the perturbation. Then classical perturbation theory leads
to the bound

exact ||e||2

Hbexact”z'

X2 — x|l

HXexact ”2

< cond(A)

Since cond(A) = o1/0, is large, this implies that x can be very far from

Xexact .
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[llustration of Ill Conditioning and Regularization

R™ = span{vy,...,vn}
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i

R™ = span{ui,...,Un}

bexact — AXexact

Exact sol.; x®act
[ ]
. *xx (Tikhonov)
x (TSVD)

Naive sol.; xnaive
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Regularization Methods — Spectral Filtering

i

Almost all the regularization methods treated in this course produce
solutions which can be expressed as a filtered SVD expansion of the form

n ul'b
1
Xreg = E Pi o Vi,
i=1 !

where @; are the filter factors associated with the method.

These methods are called spectral filtering methods because the SVD basis
can be considered as a spectral basis.
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Truncated SVD

A simple way to reduce the influence of the noise is to discard the SVD
coefficients corresponding to the smallest singular values.
We can define the truncated SVD (TSVD) solution as

k T
u' b
xkzg (’7' Vi, k < n.

i=1 !

Regularization Tools: tsvd.

Alternatively we can define xx as the solution of the problem
min ||x|l2 s.t.  ||Axx — b|l2 = min,
X

where we introduce the rank-k matrix
k
Ak = UZkVT = ZO’,‘U,‘VI-T7 Zk = diag(a,-,...,ak,O,...,O).
i=1
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The Truncation Parameter

i

Note: the truncation parameter k in

is dictated by the coefficients u; b, not the singular values!

Basically we should choose k as the index i where |u[ b| start to “level off”
due to the noise.
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More About the Truncated SVD
Can show that if Cov(b) = n?/ then

i

k
1
Cov(xx) = Z —2

and thus we can expect that
Ixellz < X"l and  [|Cov(xk)]l2 < [[Cov(x"")|l2.
The prize we pay for smaller covariance is bias: £(xx) # £(x"Ve).

e Advantes of TSVD:

e Intuitive.
o Easy to compute if we have the SVD.

o Drawback of TSVD:

o For large-scale problems it is infeasible to compute the SVD.
e The abrupt cut-off of SVD components may introduce artifacts.
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Selective SVD

>
>
>
Consider a problem in which, say, every second SVD component is zero
(v) x>t =y x®act — yTyexact — | = 0). There is no need to include

these SVD components.

A variant of the TSVD method called selective SVD (SSVD) includes, or
selects, only those SVD components which make significant contributions
to the regularized solution:

u,-Tb
Xr = E V.
gj

lu] b|>T

Thus, the filter factors for the SSVD method are

SO[T] _ 1, ’UI-Tb‘ >T
! 0, otherwise.
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SSVD Example

Only the filled diamonds contribute to the SSVD solution.
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Regularization — A General Approach

i

Regularization = stabilization: how to deal with (and filter) solution
components corresponding to the small singular values.

Most approaches involve the residual norm

J

2

1
p(f)z\ [ K070 e —g(s)

and a smoothing norm w(f) that measure the “size” of the solution f.
Examples of common choices:

1 1

w(FP = I1FI = [ VP de o w(rP = IFP = [ )P ar
0 0

The underlying principle is that if we control the norm of the solution, or

its derivative, then we should be able to suppress some/most of the large

noise components.
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Discrete Tikhonov Regularization

i

Replace the continuous problem with a linear algebra problem.

Minimization of the residual p is replaced by
min [[Ax — b||2 , AeR™"
X

where A and b are obtained by discretization of the integral equation.

Must also discretize the smoothing norm
Q(x) =~ w(f).

We focus on a common choice: Q(x) = ||x]|2.
The resulting discrete version of Tikhonov regulariztion is thus

min, {[|[Ax — bl|3 + X2 ||x[|3}.

Regularization Tools: tikhonov.
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More About Tikhonov Regularization

i

The standard-form Tikhonov problem:

min {|Ax — bll3 + X% |Ix[3} .

o ||Ax — b||3 is the residual term (data-fitting term, data-fidelity term),
o ||x||3 is the regularization term,

@ )\ is a parameter that balances these two terms.

@ Large A — strong regularization, over-smoothing of solution.

@ Small A — good fit but solution is dominated by noise.
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Tikhonov Solutions

r=10 A =2.6827 A =0.71969
1 1 1
0.5 0.5 0.5
/_\-
o] 0 0
0 32 64 0 32 64 0 32 64
A =0.19307 A =0.051795 A =0.013895
1 1 1
0.5 0.5 0.5
0 0 0
0 32 64 0 32 64 0 32 64
. =0.0037276 =0.001 Exact solution
1 1 1
0.5 0.5 0.5
0 0 A l 0
0 32 64 0 32 64 0 32 64
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Other Smoothing Norms — Chapter 8

i

Another common choice:
Q(x) = L x]2,

where L approximates a derivative operator.

Examples of the 1. and 2. derivative operator on a regular mesh

1 -1
Ll — c R(n—1)><n
1 -1
1 -2 1
L2 — c R(n—2)><n.
1 -2 1

Regularization Tools: get_1.
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Efficient Implementation

i

The original formulation
min {IlIAx = blj5 + X [|x])3} -
Two alternative formulations

(ATA+ X)) x=ATb

(5) (o)

The first shows that we have a linear problem. The second shows how to
solve it stably:

min
X

2

@ treat it as a least squares problem,

@ utilize any sparsity or structure.
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SVD and Tikhonov Regularization

i

We can write the discrete Tikhonov solution x, in terms of the SVD of A as

n 2 T n T
lox u' b A\ Ul b
M= a2 v
i=1 i

——;
(o i1 (o

The filter factors are given by
oM T
! o2+ X2

and their purpose is to dampen the components in the solution
corresponding to small o;.
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Tikhonov Filter Factors
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TSVD and Tikhonov Regularization

i

TSVD and Tikhonov solutions are both filtered SVD expansions.

The regularization parameter is either k or \.

Tikhonov solutions TSVD solutions

For each k, there exists a A such that x, =~ x.
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Wiener Filtering

i

In certain applications, e.g., in image deblurring, the SVD basis vectors u;
and v; can be replaced by the discrete Fourier vectors (that underly the
discrete Fourier transform).

In these applications, Tikhonov regularization is known as Wiener filtering.
It is typically derived in a stochastic setting.

Here, A72 is the signal-to-noise power, i.e., the power of the exact solution
divided by the power of the noise in the right-hand side.

Available in MATLAB's Image Processing Toolbox as deconvwnr.
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Other Spectral Filtering Methods

i

A few spectral filtering methods not mentioned in the book.

@ Damped SVD:

D9 x>0
Pi BTSN = L.
e Exponential filtering:
M =1-ep(-8o}), B0

Regularization Tools: fil_fac computers filter factors for DSVD, TSVD,
Tikhonov, and TTLS (not covered here).
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TSVD Perturbation Bound

i

Theorem.
Let b = b 4 e and let x, and x§*** denote the TSVD solutions
computed with the same k.

Then

X2 = xill2 _ o1 _|lell2

xcll2 ok [Axcl2’

We see that the perturbation bound for the TSVD solution is controlled by
the factor
o1
Ry = —
Ok

which can be much smaller than cond(A) = o1/0,.
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Tikhonov Perturbation Bound

i

Theorem.
Let b = b¥* 4 e and let x{*** and x, denote the solutions to

min {[|[Ax — b3+ N%|x|3} and  min {|Ax — b3+ N[|x]3}

computed with the same .
Then exact
X —xall2 1Al _[lell2

[ESYP A [Ax2

and hence the perturbation bound for the Tikhonov solution is controlled

by the factor
Al _ o1

A A
Again it can be much smaller than cond(A) = o1 /0.
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[llustration of Sensitivity
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Red dots: x, for 25 random perturbations of b.
Black crosses: unperturbed x) — note the bias.
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Monotonic Behavior of the Norms

The TSVD solution and residual norms vary monotonically with k

k UTb 2
[Ixk||3 = Z < ;_ ) < ||xks1ll3  (we assume m = n),
i=1 !

n

IAXe = bl = D (u] b)* > [|Axksr — b3
i=k+1

o
—
=

i

The Tikhonov solution and residual norms also vary monotonically with A:

n T 2
2 oy b
g =3 (o 42)

i=1

n

A~ b3 =" (1-al)yulb)’

i=1
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The L-Curve for Tikhonov Regularization

Plot of ||xy||2 versus ||Ax\ — bl in log-log scale.
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Properties of the L-Curve P

>
>

The norm ||x)||2 is a monotonically decreasing convex function of the norm
||Axy — b||2. Define the “inconsistency”

m

63 = Z (u] b)? (=0 when m=n.)
i=n+1

Then
do < [|Axn — bll2 < [|b]|2

0 < [xall2 < [Ix""|l2 .

Any point (d,71) on the L-curve is a solution to the following two
inequality-constrained least squares problems:

d = miny ||Ax — bl|2 subject to Ixll2 < n
n = miny || x||2 subject to |Ax —b|2 <4 .
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More Properties

i

For small values of A\, many SVD components are included in the Tikhonov
solution, and hence it is dominated by the perturbation errors coming from
the inverted noise — the solution is under-smoothed, and we have

[|xx]|2 increases with A~1 and IAxyx — b|l2 =~ |le||2 (a constant).

When X gets larger (but not very large), then x, is dominated by SVD
coefficients whose main contribution is from the exact right-hand side
b®@<t — and the solution becomes over-smoothed.

A careful analysis shows that for such values of A we have

exact ||2

Ixall2 = || x (a constant), IAxyx — b||2 increases with A.

As A — oo we have |[x\||2 — 0 and ||[Axy — b||2 — [|b]|2.

Thus the L-curve has two distinctly different parts: a part that is
approximately horizontal, and a part that is approximately vertical.
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Log-Log Scale Separates Over- and Under-Smoothing

i

The features become more pronounced (and easier to inspect) when the
L-curve is plotted in double-logarithmic scale:

(log [Axx = bll2, loglxx[|2)

The “corner” that separates these horizontal and vertical parts is located
roughly at the point

(log lell2, log [[x®*||2) -

Towards the right, for A — oo, the L-curve starts to bend down as the
increasing amount of regularization forces the solution norm towards zero.
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