Discretization Methods

Must replace the problem of computing the unknown function f with a
discrete problem that we can solve on a computer.

Linear integral equation = system of linear algebraic equations.
Quadrature Methods.

Compute approximations f; = f(t;) to the solution f
at the abscissas tq, to, ..., ts.

Expansions Methods.
Compute an approximation of the form

(1) =D ¢e(t),
j=1

where ¢1(t), ..., ¢n(t) are expansion/basis functions.
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Quadrature Discretization
Recall the quadrature rule

1 n
/ (1) dt =S wyp(t) + E
0 =

where E, is the quadrature error, and
w; = weights , t; = abscissas , j=1...,n.

Now apply this rule formally to the integral,

\I!(s):/OK(st)f t)dt = ZWJ (s,t;) f(t;) + En(s) -
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Quadrature Discretization + Collocation

i

Now enforce the collocation requirement that W equals the right-hand side
g at n selected points:

V(si) =g(si) , i=1,...,n,
where g(s;) are sampled/measured values of the function g.

Must neglect the error term E,(s), and thus replace f(t;) by f;

ZWJK(S,,t,;g g(s), i=1,....n.

Could use m > n collocation points — overdetermined system.
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The Discrete Problem in Matrix Form

i

Write out the last equation to obtain

wiK(si,t1) waK(si ) oo woK(si 1)\ [h g(s1)
W1K(52,t1) W2K(52,t2) W,,K(Sg,tn) f2 g(Sz)
wiK(sp, t1) woK(sp, t2) -+ woaK(sp, tn) £ g(sn)
or simply
Ax=b

where A is n X n with

aif:W.iK(Si’tJ')
x; = f(t)) ij=1,...,n.
bi = g(si)
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Discretization: the Galerkin Method

Select two sets of functions ¢; and ¢;, and write

F(t) = F) + Ef(t), F((t) € span{o1,...,dn}
g(s) = g(s)+Eg(s), g\ (s) €span{vn,...,vUn} .

Write (") as the expansion

(1) =D ¢ei(t)
j=1

and define the function

W(s) = /OlK(st Zgj/ (s, t) ¢;(t) dt

= 9U)(s) + Eg(s) ﬁ(>espan{w1,...,¢n}.

Note that, in general, ¥ does not lie in the same subspace as g(”).
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Computation of the Galerkin Solution
The best we can do is to require that 9(")(s) = g(")(s) for s € [0,1].

This is equivalent to requiring that the residual g(s) — ¥(s) is orthogonal
to span{#1,...,%¥n}, which is enforced by

1
Wi, g) = (W, V) = <¢,-, / K(s,t)f(”)(t)dt>, i=1,...,n.
0
Inserting the expansion for (") we obtain the n x n system

aj = //1/), K(s,t) ¢j(t) dsdt
b = /0 Ui(s) g(s) ds

Intro to Inverse Problems Chapter 3
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The Singular Value Decomposition

Assume that A is m x n and, for simplicity, also that m > n:
n
A=UXVT =) ojujv]  (reall the SVE)
i=1

Here, ¥ is a diagonal matrix with the singular values, satisfying
Y = diag(o1,...,0n) , oL>00>-->0,>0.
The matrices U and V consist of singular vectors
U= (u1,...,upn), V= (vi,...,vp)

and both matrices have orthonormal columns: UTU = VTV = I,.
Then [|All2 = o1, [A7 2 = [|[VELUT |2 = 0,1, and

cond(A) = |All2 [|A |2 = o1/
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SVD Software for Dense Matrices

Software package  Subroutine
ACM TOMS HYBSVD
EISPACK SVD

IMSL LSVRR
LAPACK _GESVD
LINPACK _SvVDC
NAG FO2WEF
Numerical Recipes SVDCMP
Matlab svd, ssvd

Complexity of SVD algorithms: O(m n?).

Intro to Inverse Problems

Chapter 3

Discretization; SVD

o
—
=

i

8 /23



Important SVD Relations
Relations similar to the SVE

AV,':O‘;U,', HAV,'HQZO‘,', i:1,...,n.
Also, if A is nonsingular, then
-1 -1 -1 -1 .
AU =0 v, |A uillo =077, i=1,...,n
These equations are related to the (least squares) solution:
n
X = g (v x) v;
i=1
n n
Ax = E oi (v X)ui, b= Z(u,-Tb) uj
i=1 i=1

noT
Alp = Z“"_bv,-.
i=1 !
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What the SVD Looks Like ﬂ

>

The following figures show the SVD of the 64 x 64 matrix A, computed by
means of csvd from Regularization Tools:

>> help csvd
CSVD Compact singular value decomposition.

s = csvd(A)
[U,s,V] = csvd(A)
[U,s,V] = csvd(A,’full?’)

Computes the compact form of the SVD of A:
A = Uxdiag(s)*V’,
where
U is m-by-min(m,n)
s is min(m,n)-by-1
V is n-by-min(m,n).

If a second argument is present, the full U and V are returned.
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The Singular Values

Singular values
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The Left and Right Singular Vectors
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Some Observations

The singular values decay gradually to zero.
No gap in the singular value spectrum.

Condition number cond(A) = "“o0.

Singular vectors have more oscillations as i increases.

In this problem, # sign changes = i — 1.

The following pages: Picard plots with increasing noise.
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The Discrete Picard Plot

i
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Discrete Picard Plot with Noise

©000 % ‘
x O O
o e o A
10" Rk 1
X o
. ogggooo%‘)
4 %, %%
10 r *, °o°° 1
x, %%
xxX Dox XX x,  x xx XXX k% xxx
8 x* eoQOOx *y x » x
= (o) x
10" °°°o _
%,
o O. %%,
12 ! 0o,
1070 1d7p| |
]
T
6| o |ub|/o °
10 | / | owoq)qooo 1
0 20 40 60

Intro to Inverse Problems Chapter 3

Discretization; SVD

o
—
=

i

15 / 23



Discrete Picard Plot — More Noise
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The Ursell Problem

Picard plot
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The Discrete Picard Condition

i

The relative decay of the singular values o; and the right-hand side’s SVD
coefficients u; b plays a major role!

The Discrete Picard Condition is satisfied if the coefficients |u] b,

on the average, decay to zero faster than the corresponding singular
values o;.
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Computation of the SVE
Based on the Galerkin method with orthonormal ¢; and ;.

i

@ Discretize K to obtain n x n matrix A, and compute its SVD.
@ Then Jj(") — j as n — oo.
© Define the functions

n

u(s) = Y ugui(s),  j=1,....n
i=1
vj(n)(t) = Zv,-j¢,-(t), j=1,...,n.

i=1

Then u}")(s) — uj(s) and vj(")

@ Finally, the right-hand side coefficients satisfy

(t) = vj(t) as n = oo.

ul b= <u}"),g(”)) — (uj,g) as n— oo.
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More Precise Results

Let Lo
IKI = /0 /0 K(s,0)Pdsdt,  62= KB — A3 .

Then fori=1,...,n
Ogﬂi_o',(n)g(sn
o < ol <

Also it can be shown that

1/2
() () 20n )

max 4 |lug — u ;v — v <|[— .
{llox = ™2, I = v "[l2} (ul—uz

Similar, but more complicated, results hold for the remaining singular
functions.
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Noisy Problems

Real problems have noisy data! Recall that we consider problems

or ‘minx||Ax— b||2‘

with a very ill-conditioned coefficient matrix A,

cond(A) > 1.

Noise model:
b — bexact + e’ Whel’e bexact — Axexact .

The ingredients:

Py Xexa ct

is the exact (and unknown) solution,
@ b™@< is the exact data, and

@ the vector e represents the noise in the data.
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A Few Statistical Issues

Let Cov(b) be the covariance for the right-hand side.
Then the covariance matrix for the (least squares) solution is

Cov(x) = A~1 Cov(b) A~ T,
Cov(xis) = (ATA)TAT Cov(b) A(ATA)L.

Unless otherwise stated, we assume for simplicity that b2t and e are
uncorrelated, and that

Cov(b) = Cov(e) = n?l,

then
Cov(x) = Cov(xs) = n*(ATA) .

cond(A) > 1 =
Cov(x) and Cov(xis) are likely to have very large elements.
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Need for Stabilization = Noise Reduction

Recall that the (least squares) solution is given by

n

Must get rid of the “noisy” SVD components. Note that

U,-Tb — uinexact + u,-Te ~ {

]

Hence, due to the DPC:

e “noisy” SVD components are those for which |u] b3t is small,

UiT bexact7 |UiT bexact| > |u,.Te|

ule, lul bt < |uTlel.

@ and therefore they correspond to the smaller singular values o;.
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