Discretization Methods

Must replace the problem of computing the unknown function f with a discrete problem that we can solve on a computer.

Linear integral equation \Rightarrow system of linear algebraic equations.

Quadrature Methods.

Compute approximations $\tilde{f}_j = \tilde{f}(t_j)$ to the solution f at the abscissas t_1, t_2, \ldots, t_n .

Expansions Methods.

Compute an approximation of the form

$$f^{(n)}(t) = \sum_{j=1}^n \zeta_j \, \phi_j(t),$$

where $\phi_1(t), \ldots, \phi_n(t)$ are expansion/basis functions.

Quadrature Discretization

Recall the quadrature rule

$$\int_0^1 \varphi(t) dt = \sum_{j=1}^n w_j \varphi(t_j) + E_n ,$$

where E_n is the quadrature error, and

$$w_j = \text{weights} , \quad t_j = \text{abscissas} , \qquad j = 1, \dots, n .$$

Now apply this rule formally to the integral,

$$\Psi(s) = \int_0^1 K(s,t) f(t) dt = \sum_{j=1}^n w_j K(s,t_j) f(t_j) + E_n(s) .$$

Now enforce the collocation requirement that Ψ equals the right-hand side g at n selected points:

$$\Psi(s_i) = g(s_i) , \qquad i = 1, \ldots, n ,$$

where $g(s_i)$ are sampled/measured values of the function g.

Must neglect the error term $E_n(s)$, and thus replace $f(t_j)$ by \tilde{f}_j :

$$\sum_{j=1}^n w_j K(s_i, t_j) \tilde{f}_j = g(s_i), \quad i = 1, \ldots, n.$$

Could use m > n collocation points \rightarrow overdetermined system.

The Discrete Problem in Matrix Form

Write out the last equation to obtain

$$\begin{pmatrix} w_1 K(s_1, t_1) & w_2 K(s_1, t_2) & \cdots & w_n K(s_1, t_n) \\ w_1 K(s_2, t_1) & w_2 K(s_2, t_2) & \cdots & w_n K(s_2, t_n) \\ \vdots & \vdots & & \vdots & & \vdots \\ w_1 K(s_n, t_1) & w_2 K(s_n, t_2) & \cdots & w_n K(s_n, t_n) \end{pmatrix} \begin{pmatrix} \tilde{f}_1 \\ \tilde{f}_2 \\ \vdots \\ \tilde{f}_n \end{pmatrix} = \begin{pmatrix} g(s_1) \\ g(s_2) \\ \vdots \\ g(s_n) \end{pmatrix}$$

or simply

$$Ax = b$$

where A is $n \times n$ with

$$\left. \begin{array}{l} a_{ij} = w_j \, K(s_i, t_j) \\ x_j = \tilde{f}(t_j) \\ b_i = g(s_i) \end{array} \right\} \qquad i, j = 1, \dots, n \; .$$

Discretization: the Galerkin Method

DTU

Select two sets of functions ϕ_i and ψ_i , and write

$$\begin{array}{lcl} f(t) & = & f^{(n)}(t) + E_f(t), & & f^{(n)}(t) \in \operatorname{span}\{\phi_1, \dots, \phi_n\} \\ g(s) & = & g^{(n)}(s) + E_g(s), & & g^{(n)}(s) \in \operatorname{span}\{\psi_1, \dots, \psi_n\} \end{array}.$$

Write $f^{(n)}$ as the expansion

$$f^{(n)}(t) = \sum_{j=1}^n \zeta_j \, \phi_j(t)$$

and define the function

$$\vartheta(s) = \int_0^1 K(s,t) f^{(n)}(t) dt = \sum_{j=1}^n \zeta_j \int_0^1 K(s,t) \phi_j(t) dt$$
$$= \vartheta^{(n)}(s) + E_{\vartheta}(s) , \qquad \vartheta^{(n)} \in \operatorname{span}\{\psi_1, \dots, \psi_n\} .$$

Note that, in general, ϑ does not lie in the same subspace as $g^{(n)}$.

Computation of the Galerkin Solution

DTU

The best we can do is to require that $\vartheta^{(n)}(s) = g^{(n)}(s)$ for $s \in [0,1]$.

This is equivalent to requiring that the residual $g(s) - \vartheta(s)$ is orthogonal to span $\{\psi_1, \dots, \psi_n\}$, which is enforced by

$$\langle \psi_i, g \rangle = \langle \psi_i, \vartheta \rangle = \left\langle \psi_i, \int_0^1 K(s, t) f^{(n)}(t) dt \right\rangle, \quad i = 1, \ldots, n.$$

Inserting the expansion for $f^{(n)}$, we obtain the $n \times n$ system

$$Ax = b$$

with $x_i = \zeta_i$ and

$$a_{ij} = \int_0^1 \int_0^1 \psi_i(s) K(s,t) \phi_j(t) ds dt$$
$$b_i = \int_0^1 \psi_i(s) g(s) ds.$$

The Singular Value Decomposition

Assume that A is $m \times n$ and, for simplicity, also that $m \ge n$:

$$A = U \Sigma V^{T} = \sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T} \qquad \text{(reall the SVE.)}$$

Here, Σ is a diagonal matrix with the *singular values*, satisfying

$$\Sigma = \text{diag}(\sigma_1, \dots, \sigma_n) \ , \qquad \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_n \ge 0 \ .$$

The matrices U and V consist of singular vectors

$$U=(u_1,\ldots,u_n), \qquad V=(v_1,\ldots,v_n)$$

and both matrices have orthonormal columns: $U^T U = V^T V = I_n$.

Then
$$||A||_2 = \sigma_1$$
, $||A^{-1}||_2 = ||V \Sigma^{-1} U^T||_2 = \sigma_n^{-1}$, and

$$cond(A) = ||A||_2 ||A^{-1}||_2 = \sigma_1/\sigma_n.$$

Software package	Subroutine
ACM TOMS	HYBSVD
EISPACK	SVD
IMSL	LSVRR
LAPACK	_GESVD
LINPACK	_SVDC
NAG	F02WEF
Numerical Recipes	SVDCMP
Matlab	svd, ssvd

Complexity of SVD algorithms: $\mathcal{O}(m n^2)$.

Important SVD Relations

DTU

Relations similar to the SVE

$$A v_i = \sigma_i u_i, \qquad ||A v_i||_2 = \sigma_i, \qquad i = 1, \ldots, n.$$

Also, if A is nonsingular, then

$$A^{-1}u_i = \sigma_i^{-1} v_i, \qquad ||A^{-1}u_i||_2 = \sigma_i^{-1}, \qquad i = 1, \dots, n.$$

These equations are related to the (least squares) solution:

$$x = \sum_{i=1}^{n} (v_i^T x) v_i$$

$$Ax = \sum_{i=1}^{n} \sigma_i (v_i^T x) u_i , \quad b = \sum_{i=1}^{n} (u_i^T b) u_i$$

$$A^{-1}b = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i .$$

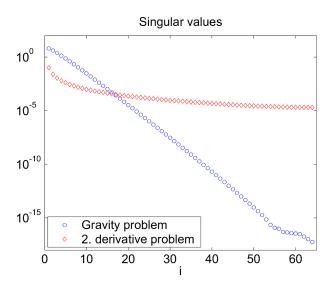
What the SVD Looks Like

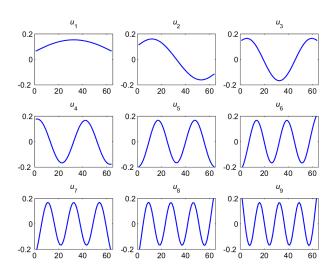
The following figures show the SVD of the 64×64 matrix A, computed by means of csvd from Regularization Tools:

```
CSVD Compact singular value decomposition.
 s = csvd(A)
 [U,s,V] = csvd(A)
 [U,s,V] = csvd(A,'full')
Computes the compact form of the SVD of A:
    A = U*diag(s)*V',
where
    U is m-by-min(m,n)
    s is min(m,n)-by-1
    V is n-by-min(m,n).
 If a second argument is present, the full U and V are returned.
```

>> help csvd

The Singular Values



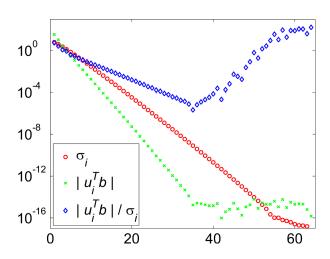


Some Observations

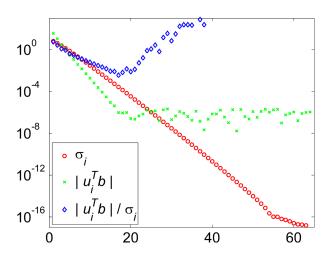
- The singular values decay gradually to zero.
- No gap in the singular value spectrum.
- Condition number $cond(A) = "\infty."$
- Singular vectors have more oscillations as i increases.
- In this problem, # sign changes = i 1.

The following pages: Picard plots with increasing noise.

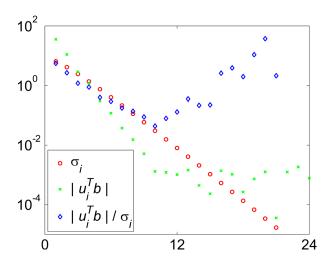
The Discrete Picard Plot



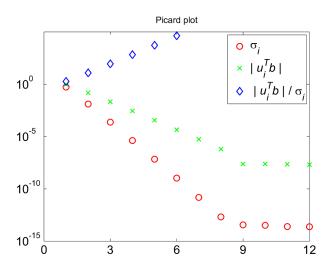
Discrete Picard Plot with Noise



Discrete Picard Plot - More Noise



The Ursell Problem



The Discrete Picard Condition

The relative decay of the singular values σ_i and the right-hand side's SVD coefficients $u_i^T b$ plays a major role!

The Discrete Picard Condition is satisfied if the coefficients $|u_i^T b^{\text{exact}}|$, on the average, *decay* to zero faster than the corresponding singular values σ_i .

Computation of the SVE

Based on the Galerkin method with orthonormal ϕ_i and ψ_i .

- ① Discretize K to obtain $n \times n$ matrix A, and compute its SVD.
- 2 Then $\sigma_j^{(n)} \to \mu_j$ as $n \to \infty$.
- Oefine the functions

$$u_j^{(n)}(s) = \sum_{i=1}^n u_{ij} \, \psi_i(s) \,, \qquad j=1,\ldots,n$$

$$v_j^{(n)}(t) = \sum_{i=1}^n v_{ij} \, \phi_i(t) \,, \qquad j=1,\ldots,n \,.$$

Then $u_j^{(n)}(s) \to u_j(s)$ and $v_j^{(n)}(t) \to v_j(t)$ as $n \to \infty$.

Finally, the right-hand side coefficients satisfy

$$u_j^\mathsf{T} b = \langle u_j^{(n)}, g^{(n)} \rangle \to \langle u_j, g \rangle \quad \text{as} \quad n \to \infty.$$

More Precise Results

Let

$$\|K\|_2^2 \equiv \int_0^1 \int_0^1 |K(s,t)|^2 \, ds \, dt \; , \qquad \delta_n^2 \equiv \|K\|_2^2 - \|A\|_{\rm F}^2 \; .$$

Then for $i = 1, \ldots, n$

$$0 \le \mu_i - \sigma_i^{(n)} \le \delta_n$$
$$\sigma_i^{(n)} \le \sigma_i^{(n+1)} \le \mu_i$$

Also it can be shown that

$$\max\left\{\|u_1-u_1^{(n)}\|_2,\,\|v_1-v_1^{(n)}\|_2\right\} \leq \left(\frac{2\,\delta_n}{\mu_1-\mu_2}\right)^{1/2}.$$

Similar, but more complicated, results hold for the remaining singular functions.

Noisy Problems

Real problems have noisy data! Recall that we consider problems

$$Ax = b$$
 or

$$\min_{x} \|Ax - b\|_2$$

with a very ill-conditioned coefficient matrix A,

$$cond(A) \gg 1$$
.

Noise model:

$$b = b^{\mathsf{exact}} + e, \qquad \mathsf{where} \qquad b^{\mathsf{exact}} = A \, x^{\mathsf{exact}} \; .$$

The ingredients:

- x^{exact} is the exact (and unknown) solution.
- b^{exact} is the exact data, and
- the vector e represents the noise in the data.

A Few Statistical Issues

DTU

Let Cov(b) be the covariance for the right-hand side. Then the covariance matrix for the (least squares) solution is

$$Cov(x) = A^{-1} Cov(b) A^{-T}.$$

$$Cov(x_{LS}) = (A^T A)^{-1} A^T Cov(b) A (A^T A)^{-1}.$$

Unless otherwise stated, we assume for simplicity that $b^{\rm exact}$ and e are uncorrelated, and that

$$Cov(b) = Cov(e) = \eta^2 I,$$

then

$$Cov(x) = Cov(x_{LS}) = \eta^2 (A^T A)^{-1}.$$

 $cond(A) \gg 1 \Rightarrow$

Cov(x) and $Cov(x_{LS})$ are likely to have very large elements.

Recall that the (least squares) solution is given by

$$x = \sum_{i=1}^{n} \frac{u_i^T b}{\sigma_i} v_i.$$

Must get rid of the "noisy" SVD components. Note that

$$u_i^T b = u_i^T b^{\text{exact}} + u_i^T e \approx \begin{cases} u_i^T b^{\text{exact}}, & |u_i^T b^{\text{exact}}| > |u_i^T e| \\ u_i^T e, & |u_i^T b^{\text{exact}}| < |u_i^T e|. \end{cases}$$

Hence, due to the DPC:

- "noisy" SVD components are those for which $|u_i^T b^{\text{exact}}|$ is small,
- and therefore they correspond to the smaller singular values σ_i .