
Discretization Methods

Must replace the problem of computing the unknown function f with a
discrete problem that we can solve on a computer.

Linear integral equation ⇒ system of linear algebraic equations.
Quadrature Methods.

Compute approximations f̃j = f̃ (tj) to the solution f
at the abscissas t1, t2, . . . , tn.

Expansions Methods.
Compute an approximation of the form

f (n)(t) =
n∑

j=1

ζj φj(t),

where φ1(t), . . . , φn(t) are expansion/basis functions.
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Quadrature Discretization

Recall the quadrature rule∫ 1

0
ϕ(t) dt =

n∑
j=1

wj ϕ(tj) + En ,

where En is the quadrature error, and

wj = weights , tj = abscissas , j = 1, . . . , n .

Now apply this rule formally to the integral,

Ψ(s) =

∫ 1

0
K (s, t) f (t) dt =

n∑
j=1

wj K (s, tj) f (tj) + En(s) .
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Quadrature Discretization + Collocation

Now enforce the collocation requirement that Ψ equals the right-hand side
g at n selected points:

Ψ(si ) = g(si ) , i = 1, . . . , n ,

where g(si ) are sampled/measured values of the function g .

Must neglect the error term En(s), and thus replace f (tj) by f̃j :

n∑
j=1

wj K (si , tj) f̃j = g(si ), i = 1, . . . , n .

Could use m > n collocation points → overdetermined system.
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The Discrete Problem in Matrix Form

Write out the last equation to obtain
w1K (s1, t1) w2K (s1, t2) · · · wnK (s1, tn)
w1K (s2, t1) w2K (s2, t2) · · · wnK (s2, tn)

...
...

...
w1K (sn, t1) w2K (sn, t2) · · · wnK (sn, tn)



f̃1
f̃2
...
f̃n

 =


g(s1)
g(s2)

...
g(sn)


or simply

Ax = b

where A is n × n with

aij = wj K (si , tj)

xj = f̃ (tj)

bi = g(si )

 i , j = 1, . . . , n .

Intro to Inverse Problems Chapter 3 Discretization; SVD 4 / 23



Discretization: the Galerkin Method
Select two sets of functions φi and ψj , and write

f (t) = f (n)(t) + Ef (t), f (n)(t) ∈ span{φ1, . . . , φn}
g(s) = g (n)(s) + Eg (s), g (n)(s) ∈ span{ψ1, . . . , ψn} .

Write f (n) as the expansion

f (n)(t) =
n∑

j=1

ζj φj(t)

and define the function

ϑ(s) =

∫ 1

0
K (s, t) f (n)(t) dt =

n∑
j=1

ζj

∫ 1

0
K (s, t)φj(t) dt

= ϑ(n)(s) + Eϑ(s) , ϑ(n) ∈ span{ψ1, . . . , ψn} .

Note that, in general, ϑ does not lie in the same subspace as g (n).
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Computation of the Galerkin Solution
The best we can do is to require that ϑ(n)(s) = g (n)(s) for s ∈ [0, 1].
This is equivalent to requiring that the residual g(s)− ϑ(s) is orthogonal
to span{ψ1, . . . , ψn}, which is enforced by

〈ψi , g〉 = 〈ψi , ϑ〉 =

〈
ψi ,

∫ 1

0
K (s, t) f (n)(t) dt

〉
, i = 1, . . . , n.

Inserting the expansion for f (n), we obtain the n × n system

Ax = b

with xi = ζi and

aij =

∫ 1

0

∫ 1

0
ψi (s)K (s, t)φj(t) ds dt

bi =

∫ 1

0
ψi (s) g(s) ds .
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The Singular Value Decomposition
Assume that A is m × n and, for simplicity, also that m ≥ n:

A = U ΣV T =
n∑

i=1

σi ui v
T
i (reall the SVE.)

Here, Σ is a diagonal matrix with the singular values, satisfying

Σ = diag(σ1, . . . , σn) , σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 .

The matrices U and V consist of singular vectors

U = (u1, . . . , un) , V = (v1, . . . , vn)

and both matrices have orthonormal columns: UTU = V TV = In.
Then ‖A‖2 = σ1, ‖A−1‖2 = ‖V Σ−1UT‖2 = σ−1

n , and

cond(A) = ‖A‖2 ‖A−1‖2 = σ1/σn.
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SVD Software for Dense Matrices

Software package Subroutine
ACM TOMS HYBSVD
EISPACK SVD
IMSL LSVRR
LAPACK _GESVD
LINPACK _SVDC
NAG F02WEF
Numerical Recipes SVDCMP
Matlab svd, ssvd

Complexity of SVD algorithms: O(mn2).
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Important SVD Relations
Relations similar to the SVE

Avi = σi ui , ‖Avi‖2 = σi , i = 1, . . . , n.

Also, if A is nonsingular, then

A−1ui = σ−1
i vi , ‖A−1ui‖2 = σ−1

i , i = 1, . . . , n.

These equations are related to the (least squares) solution:

x =
n∑

i=1

(vTi x) vi

Ax =
n∑

i=1

σi (vTi x) ui , b =
n∑

i=1

(uTi b) ui

A−1b =
n∑

i=1

uTi b

σi
vi .
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What the SVD Looks Like

The following figures show the SVD of the 64× 64 matrix A, computed by
means of csvd from Regularization Tools:

>> help csvd
CSVD Compact singular value decomposition.

s = csvd(A)
[U,s,V] = csvd(A)
[U,s,V] = csvd(A,’full’)

Computes the compact form of the SVD of A:
A = U*diag(s)*V’,

where
U is m-by-min(m,n)
s is min(m,n)-by-1
V is n-by-min(m,n).

If a second argument is present, the full U and V are returned.
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The Singular Values
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The Left and Right Singular Vectors
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Some Observations

The singular values decay gradually to zero.
No gap in the singular value spectrum.
Condition number cond(A) = “∞.”
Singular vectors have more oscillations as i increases.
In this problem, # sign changes = i − 1.

The following pages: Picard plots with increasing noise.
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The Discrete Picard Plot
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Discrete Picard Plot with Noise
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Discrete Picard Plot – More Noise
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The Ursell Problem
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The Discrete Picard Condition

The relative decay of the singular values σi and the right-hand side’s SVD
coefficients uTi b plays a major role!

The Discrete Picard Condition is satisfied if the coefficients |uTi bexact|,
on the average, decay to zero faster than the corresponding singular
values σi .
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Computation of the SVE
Based on the Galerkin method with orthonormal φi and ψj .

1 Discretize K to obtain n × n matrix A, and compute its SVD.
2 Then σ(n)j → µj as n→∞.
3 Define the functions

u
(n)
j (s) =

n∑
i=1

uij ψi (s) , j = 1, . . . , n

v
(n)
j (t) =

n∑
i=1

vij φi (t) , j = 1, . . . , n .

Then u
(n)
j (s)→ uj(s) and v

(n)
j (t)→ vj(t) as n→∞.

4 Finally, the right-hand side coefficients satisfy

uTj b = 〈u(n)j , g (n)〉 → 〈uj , g〉 as n→∞.
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More Precise Results

Let

‖K‖22 ≡
∫ 1

0

∫ 1

0
|K (s, t)|2 ds dt , δ2n ≡ ‖K‖22 − ‖A‖2F .

Then for i = 1, . . . , n
0 ≤ µi − σ

(n)
i ≤ δn

σ
(n)
i ≤ σ(n+1)

i ≤ µi
Also it can be shown that

max
{
‖u1 − u

(n)
1 ‖2 , ‖v1 − v

(n)
1 ‖2

}
≤
(

2 δn
µ1 − µ2

)1/2

.

Similar, but more complicated, results hold for the remaining singular
functions.
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Noisy Problems

Real problems have noisy data! Recall that we consider problems

Ax = b or minx ‖Ax − b‖2

with a very ill-conditioned coefficient matrix A,

cond(A)� 1.

Noise model:

b = bexact + e, where bexact = Axexact .

The ingredients:
xexact is the exact (and unknown) solution,
bexact is the exact data, and
the vector e represents the noise in the data.
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A Few Statistical Issues
Let Cov(b) be the covariance for the right-hand side.
Then the covariance matrix for the (least squares) solution is

Cov(x) = A−1 Cov(b)A−T .

Cov(xLS) = (ATA)−1AT Cov(b)A (ATA)−1.

Unless otherwise stated, we assume for simplicity that bexact and e are
uncorrelated, and that

Cov(b) = Cov(e) = η2I ,

then
Cov(x) = Cov(xLS) = η2(ATA)−1.

cond(A)� 1 ⇒

Cov(x) and Cov(xLS) are likely to have very large elements.
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Need for Stabilization = Noise Reduction

Recall that the (least squares) solution is given by

x =
n∑

i=1

uTi b

σi
vi .

Must get rid of the “noisy” SVD components. Note that

uTi b = uTi b
exact + uTi e ≈

{
uTi b

exact, |uTi bexact| > |uTi e|

uTi e, |uTi bexact| < |uTi e|.

Hence, due to the DPC:
“noisy” SVD components are those for which |uTi bexact| is small,
and therefore they correspond to the smaller singular values σi .
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