
Motivation: Why Inverse Problems?

A large-scale example, coming from a collaboration with
Università degli Studi di Napoli “Federico II” in Naples.
From measurements of the magnetic field above Vesuvius, we determine
the activity inside the volcano.

⇒
Measurements Reconstruction
on the surface inside the volcano
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Another Example: the Hubble Space Telescope

For several years, the HST produced blurred images.
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Inverse Problems

. . . typically arise when one wants to compute information about some
“interior” properties using “exterior” measurements.
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Inverse Problems: Examples
A quite generic formulation:∫

Ω
input × system dΩ = output

Image restoration

scenery → lens → image

Tomography

X-ray source → object → damping

Seismology

seismic wave → layers → reflections
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Discrete Ill-Posed Problems

Our generic ill-posed problem:

A Fredholm integral equation of the first kind∫ 1

0
K (s, t) f (t) dt = g(s) , 0 ≤ s ≤ 1 .

Definition of a discrete ill-posed problem (DIP):
1 a square or over-determined system of linear algebraic equations

Ax = b or min
x
‖Ax − b‖2

2 whose coefficient matrix A has a huge condition number, and
3 comes from the discretization of an inverse/ill-posed problem.
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Computational Issues

The plots below show solutions x to the 64× 64 DIP Ax = b.

Standard numerical methods (x = A\b) produce useless results.
Specialized methods (this course) produce “reasonable” results.
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The Mechanisms of Ill-Conditioned Problems
Consider a linear system with coefficient matrix and right-hand side

A =

0.16 0.10
0.17 0.11
2.02 1.29

 , b =

0.27
0.25
3.33

 = A

(
1
1

)
+

 0.01
−0.03
0.02

 .

There is no vector x such that Ax = b.

The least squares solution, which solves the problem

min
x
‖Ax − b‖2,

is given by

xLS =

(
7.01
−8.40

)
⇒ ‖AxLS − b‖2 = 0.022 .

Far from exact solution ( 1 , 1 )T yet the residual is small.
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Other Solutions with Small Residual
Two other “solutions” with a small residual are

x ′ =

(
1.65
0

)
⇒ ‖Ax ′ − b‖2 = 0.031

x ′′ =

(
0

2.58

)
⇒ ‖Ax ′′ − b‖2 = 0.036 .

All the “solutions” xLS, x ′ and x ′′ have small residuals, yet they are far from
the exact solution!

What we have learned:
The matrix A is ill conditioned.
Small perturbations of the data (here: b) can lead to
large perturbations of the solution.
A small residual does not imply a good solution.

(All this is well known stuff from matrix computations.)
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Stabilization!

It turns out that we can modify the problem such that the solution is more
stable, i.e., less sensitive to perturbations.

Example: enforce an upper bound on the solution norm ‖x‖2:

min
x
‖Ax − b‖2 subject to ‖x‖2 ≤ δ .

The solution xδ depends in a nonlinear way on δ:

x0.1 =

(
0.08
0.05

)
, x1 =

(
0.84
0.54

)

x1.385 =

(
1.17
0.74

)
, x10 =

(
6.51
−7.60

)
.

By supplying valuable additional information we can compute a good
approximate solution.
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Inverse Problems → Ill-Conditioned Problems

Whenever we solve an inverse problem on a computer, we face difficulties
because the computational problems are ill conditioned.

The purpose of these lectures are:
1 To explain why ill-conditioned computations always arise when solving

inverse problems.
2 To explain the fundamental “mechanisms” underlying the ill

conditioning.
3 To explain how we can modify the problem in order to stabilize the

solution.
4 To show how this can be done efficiently on a computer.

Regularization methods is at the heart of all this.
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Inverse Problems are Ill-Posed Problems

Hadamard’s definition of a well-posed problem (early 20th century):
1 the problem must have a solution,
2 the solution must be unique, and
3 it must depend continuously on data and parameters.

If the problem violates any of these requirements, it is ill posed.

Condition 1 can be fixed by reformulating/redefining the solution.

Condition 2 can be “fixed” by additional requirements to the solution, e.g.,
that of minimum norm.

Condition 3 is harder to “fix” because it implies that
arbitrarily small perturbations of data and parameters can produce
arbitrarily large perturbations of the solution.
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Model Problem: Gravity Surveying

Unknown mass density distribution f (t) at depth d below surface,
from 0 to 1 on t axis.
Measurements of vertical component of gravitational field g(s)
at surface, from 0 to 1 on the s axis.

-
0 1 s

-
0 1 t
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Setting Up the Integral Equation

The value of g(s) due to the part dt on the t axis

dg =
sin θ

r2 f (t) dt ,

where r =
√

d2 + (s − t)2. Using that sin θ = d/r , we get

sin θ

r2 f (t) dt =
d

(d2 + (s − t)2)3/2 f (t) dt .

The total value of g(s) for 0 ≤ s ≤ 1 is therefore

g(s) =

∫ 1

0

d

(d2 + (s − t)2)3/2 f (t) dt .

This is the forward problem.
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Our Integral Equation

Fredholm integral equation of the first kind:∫ 1

0

d

(d2 + (s − t)2)3/2 f (t) dt = g(s) , 0 ≤ s ≤ 1 .

The kernel K , which represents the model, is

K (s, t) = h(s − t) =
d

(d2 + (s − t)2)3/2 ,

and the right-hand side g is what we are able to measure.

From K and g we want to compute f , i.e., an inverse problem.
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Numerical Examples

Observations:
The signal/“data” g(s) is a smoothed version of the source f (t).
The deeper the source, the weaker the signal.
The discontinuity in f (t) is not visible in g(s).
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Fredholm Integral Equations of the First Kind
Our generic inverse problem:∫ 1

0
K (s, t) f (t) dt = g(s), 0 ≤ s ≤ 1 .

Here, the kernel K (s, t) and the right-hand side g(s) are known functions,
while f (t) is the unknown function.

In multiple dimensions, this equation takes the form∫
Ωt

K (s, t) f (t) dt = g(s), s ∈ Ωs .

An important special case: K (s, t) = h(s − t) → deconvolution:∫ 1

0
h(s − t) f (t) dt = g(s), 0 ≤ s ≤ 1

(and similarly in more dimensions).
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Another Example: 1-D Image Restoration
Kernel K : point spread function
for an infinitely long slit of width
one wavelength.

Independent variables t and s
are the angles of the incoming
and scattered light.

Regularization Tools: shaw.

K (s, t) =
(
cos(s) + cos(t)

)2(sin(u)

u

)2

u = π
(
sin(s) + sin(t)

)
∫ π/2

−π/2
K (s, t) f (t) dt = g(s) , −π/2 ≤ s ≤ π/2
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Yet Another Example: Second Derivative

Kernel K : Green’s function for
the second derivative

K (s, t) =

{
s(t − 1) , s < t
t(s − 1) , s ≥ t

Regularization Tools: deriv2.

Not differentiable across the line t = s.∫ 1

0
K (s, t) f (t) dt = g(s) , 0 ≤ s ≤ 1

Solution:
f (t) = g ′′(t) , 0 ≤ t ≤ 1 .
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The Riemann-Lebesgue Lemma

Consider the function

fp(t) = sin(2πp t) , p = 1, 2, . . .

then for p →∞ and “arbitrary” K we have

gp(s) =

∫ 1

0
K (s, t) fp(t) dt → 0 .

Smoothing: high frequencies are damped in the mapping f 7→ g .
Hence, the mapping from g to f must amplify the high frequencies.

Therefore we can expect difficulties when trying to reconstruct
f from noisy data g .
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Illustration of the Riemann-Lebesgue Lemma

Gravity problem with fp(t) = sin(2πp t), p = 1, 2, 4, and 8.

Higher frequencies are damped more than low frequencies.
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Difficulties with High Frequencies

In this example δgp(s) =
∫ 1
0 K (s, t) δfp(t) dt and ‖δgp‖2 = 0.01.

Higher frequencies are amplified more in the reconstruction process.
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Why do We Care?

Why bother about these (strange) issues?
Ill-posed problems model a variety of real applications:

Medical imaging (brain scanning, etc.)
Geophysical prospecting (search for oil, land-mines, etc.)
Image deblurring (astronomy, CSI1, etc.)
Deconvolution of instrument’s response.

We can only hope to compute useful solutions to these problems if we
fully understand their inherent difficulties . . .
and how these difficulties carry over to the discretized problems
involved in a computer solution,
and how to deal with them in a satisfactory way.

1Crime Scene Investigation.
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Some Important Questions

How to discretize the inverse problem; here, the integral equation?
Why is the matrix in the discretized problem always so ill conditioned?
Why can we still compute an approximate solution?
How can we compute it stably and efficiently?
Is additional information available?
How can we incorporate it in the solution scheme?
How should we implement the numerical scheme?
How do we solve large-scale problems?
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The Singular Value Expansion (SVE)
For any square integrable kernel K holds

K (s, t) =
∞∑
i=1

µi ui (s) vi (t),

where 〈ui , uj〉 = 〈vi , vj〉 = δij , and µ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ 0.
The “fundamental relation” and the expansions∫ 1

0
K (s, t) vi (t) dt = µi ui (s) , i = 1, 2, . . .

f (t) =
∞∑
i=1

〈vi , f 〉 vi (t) and g(s) =
∞∑
i=1

〈ui , g〉 ui (s)

lead to the expression for the solution:

f (t) =
∞∑
i=1

〈ui , g〉
µi

vi (t) .
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The Singular Values

Ordering
µ1 ≥ µ2 ≥ µ3 ≥ · · · ≥ 0 .

Norm of kernel

‖K‖2 ≡
∫ 1

0

∫ 1

0
|K (s, t)|2 ds dt =

∞∑
i=1

µ2
i .

Hence,
µi = O(i−q) , q > 1/2

i.e., the µi decay faster than i−1/2. We have:
If the derivatives of order 0, . . . , q exist and are continuous, then µi is
approximately O(i−q−1/2).
Second derivative: µi ≈ i−2 (“moderately ill posed”).
1-D image reconstruction: µi ≈ e−2i (“severely ill posed”).

Intro to Inverse Problems Chapter 1 and 2 Introduction; SVE 25 / 32



Example of SVE (Degenerate)
We can occasionally calculate the SVE analytically. Example∫ 1

−1
(s + 2t) f (t) dt = g(s), −1 ≤ s ≤ 1.

For this kernel K (s, t) = s + 2t we have

µ1 = µ2 = 2/
√
3, µ3 = µ4 = . . . = 0.

u1(s) = 1/
√
2, u2(s) =

√
3/2 s

v1(t) =
√

3/2 t, v2(t) = 1/
√
2.

A solution exists only if

g ∈ range(K ) = span{u1, u2},

i.e., if g is of the form
g(s) = c1 + c2 s.

Intro to Inverse Problems Chapter 1 and 2 Introduction; SVE 26 / 32



The Smoothing Effect

The “smoother” the kernel K , the faster the µi decay to zero:
If the derivatives of order 0, . . . , q exist and are continuous, then µi is
approximately O(i−q−1/2).

The smaller the µi , the more oscillations (or zero-crossings) in the singular
functions ui and vi .

Since vi (t)→ µi ui (s), higher frequencies are damped more than lower
frequencies (smoothing) in the forward problem.

Intro to Inverse Problems Chapter 1 and 2 Introduction; SVE 27 / 32



The Picard Condition

In order that there exists a square integrable solution f to the integral
equation, the right-hand side g must satisfy

∞∑
i=1

(
〈ui , g〉
µi

)2

<∞ .

Equivalent condition: g ∈ range(K ).
In plain words: the absolute value of the coefficients (ui , g) must decay
faster than the singular values µi !

Main difficulty: a noisy g does not satisfy the PC!
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Illustration of the Picard Condition

The violation of the Picard condition is the (simple) explanation of the
instability of linear inverse problems in the form of first-kind Fredholm
integral equations.

SVE analysis + Picard plot → insight → remedy → algorithms.
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A Problem with no Solution
Ursell (1974) presented the following innocently-looking problem:∫ 1

0

1
s + t + 1

f (t) dt = 1, 0 ≤ s ≤ 1.

This problem has no square integrable solution!
Expand right-hand side g(s) = 1 in terms of the singular functions:

gk(s) =
k∑

i=1

〈ui , g〉 ui (s); ‖g − gk‖2 → 0 for k →∞.

Now consider
∫ 1
0

fk (t)
s+t+1 dt = gk(s), whose solution fk is

fk(t) =
k∑

i=1

〈ui , g〉
σi

vi (t).

Clearly ‖fk‖2 is finite for all k ; but ‖fk‖2 →∞ for k →∞.
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Ursell Problem – Numerical Results

Intro to Inverse Problems Chapter 1 and 2 Introduction; SVE 31 / 32



Analytic SVEs are Rare

A few cases where analytic SVEs are available, e.g., the Radon transform.
But in most applications we must use numerical methods for analysis and
solution of the integral equation.

Many of these lectures are devoted to numerical methods!

Our analysis has given us an understanding of the difficulties we are facing
– and they will manifest themselves again in any numerical approach we’re
using to solve the integral equation.
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