A Frame Theoretic View on Inverse Problems

Jakob Lemvig — Technical University of Denmark (DTU)

joint work with Jürgen Frikel (OTH Regesburg)

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Frame Theory
 - Frames in abstract Hilbert spaces
 - \bullet Structured frames for $L^2(\mathbb{R}^d)$
- Inverse Problems in Abstract Settings: Dual frame based regularizations
- Shearlet Frames in $L^2(\mathbb{R}^2)$
- Inversion of the Radon Transform by Shearlet Frames

Frame Theory Convenient Expansions of Functions

• Expansions of signals
$$f$$
 of finite energy, i.e.,
 $f \in L^2(\mathbb{R}^d) = \{f : \mathbb{R}^d \to \mathbb{C} : \int_{\mathbb{R}^d} |f(x)|^2 dx < \infty\}$

$$f(x) = \sum_{j=1}^{k} c_k \varphi_k(x) = c_1 \varphi_1(x) + c_2 \varphi_2(x) + \dots$$

in terms of convenient building blocks $\varphi_k \in L^2(\mathbb{R}^d)$.

• Shearlet analysis: An alternative to Fourier analysis, where the building blocks $\{\varphi_k\}$ are dilations (scales), shears and translations of a single function $\psi \in L^2(\mathbb{R}^2)$:

$$\{\varphi_k\} \sim \left\{2^{3j/4}\psi(2^jx_1 + k2^{j/2}x_2 - m_1, 2^{j/2}x_2 - m_2)\right\}_{j \in \mathbb{Z}, k \in \mathbb{Z}, m \in \mathbb{Z}^2}$$

• Frames: A generalization of orthonormal bases (ONB) with more flexibility and freedom.

Frame Theory Beyond Orthonormal Bases: Frames

It is not always possible/desirable to require ONB.

- Problems:
 - Non-existence of Gabor ONB with good time-frequency localization
 - Non-existence of ONB sensitive to curvilinear singularities
 - Non-resilience to erasures/noise of expansions in an ONB

Frame Theory Beyond Orthonormal Bases: Frames

It is not always possible/desirable to require ONB.

- Problems:
 - Non-existence of Gabor ONB with good time-frequency localization
 - Non-existence of ONB sensitive to curvilinear singularities
 - Non-resilience to erasures/noise of expansions in an ONB
- Solution: Frames a standard tools in applied mathematics and engineering.

Frame Theory Beyond Orthonormal Bases: Frames

It is not always possible/desirable to require ONB.

- Problems:
 - Non-existence of Gabor ONB with good time-frequency localization
 - Non-existence of ONB sensitive to curvilinear singularities
 - Non-resilience to erasures/noise of expansions in an ONB
- Solution: Frames a standard tools in applied mathematics and engineering.
- Key Property of Frames:

Redundancy!

Frame Theory What is a Frame?

Definition

A sequence $\{\varphi_k\}_{k\in\mathbb{N}}$ is a frame for a separable Hilbert space X if

$$\exists A, B > 0 : \quad A \left\| f \right\|^2 \leqslant \sum_{k=1}^{\infty} \left| \langle f, \varphi_k \rangle \right|^2 \leqslant B \left\| f \right\|^2 \qquad \text{for all } f \in X.$$

If the upper bound holds, then $\{\varphi_k\}$ is said to be a Bessel sequence.

Definition

Two Bessel sequences $\{\varphi_k\}$ and $\{\psi_k\}$ are said to be dual frames if

$$f = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle \psi_k \quad \text{for all } f \in X.$$

For $\Phi = \{\varphi_k\}_{k \in \mathbb{N}}$, define the Analysis operator:

$$C_{\Phi}: X \to \ell^2(\mathbb{N}), \quad C_{\Phi}f = \{\langle f, \varphi_k \rangle\}_{k \in \mathbb{N}}$$

and the Synthesis operator:

$$D_{\Phi}: \ell^2(\mathbb{N}) \to X, \quad D_{\Phi}\{c_k\}_{k \in \mathbb{N}} = \sum_{k=1}^{\infty} c_k \varphi_k$$

DTU

For $\Phi = \{\varphi_k\}_{k \in \mathbb{N}}$, define the Analysis operator:

$$C_{\Phi}: X \to \ell^2(\mathbb{N}), \quad C_{\Phi}f = \{\langle f, \varphi_k \rangle\}_{k \in \mathbb{N}}$$

and the Synthesis operator:

$$D_{\Phi}: \ell^2(\mathbb{N}) \to X, \quad D_{\Phi}\{c_k\}_{k \in \mathbb{N}} = \sum_{k=1}^{\infty} c_k \varphi_k$$

• $\Phi = \{\varphi_k\}_{k \in \mathbb{N}}$ is Bessel $\Leftrightarrow C_{\Phi}$ is a bounded operator. Here: $(C_{\Phi})^* = D_{\Phi}$.

For $\Phi = \{\varphi_k\}_{k \in \mathbb{N}}$, define the Analysis operator:

$$C_{\Phi}: X \to \ell^2(\mathbb{N}), \quad C_{\Phi}f = \{\langle f, \varphi_k \rangle\}_{k \in \mathbb{N}}$$

and the Synthesis operator:

$$D_{\Phi}: \ell^2(\mathbb{N}) \to X, \quad D_{\Phi}\{c_k\}_{k \in \mathbb{N}} = \sum_{k=1}^{\infty} c_k \varphi_k$$

• $\Phi = \{\varphi_k\}_{k \in \mathbb{N}}$ is Bessel $\Leftrightarrow C_{\Phi}$ is a bounded operator. Here: $(C_{\Phi})^* = D_{\Phi}$.

• The frame inequalities mean $A \|f\|^2 \leq \|C_{\Phi}f\|^2 \leq B \|f\|^2$ for all $f \in X$.

For $\Phi = \{\varphi_k\}_{k \in \mathbb{N}}$, define the Analysis operator:

$$C_{\Phi}: X \to \ell^2(\mathbb{N}), \quad C_{\Phi}f = \{\langle f, \varphi_k \rangle\}_{k \in \mathbb{N}}$$

and the Synthesis operator:

$$D_{\Phi}: \ell^2(\mathbb{N}) \to X, \quad D_{\Phi}\{c_k\}_{k \in \mathbb{N}} = \sum_{k=1}^{\infty} c_k \varphi_k$$

- $\Phi = \{\varphi_k\}_{k \in \mathbb{N}}$ is Bessel $\Leftrightarrow C_{\Phi}$ is a bounded operator. Here: $(C_{\Phi})^* = D_{\Phi}$.
- The frame inequalities mean $A ||f||^2 \leq ||C_{\Phi}f||^2 \leq B ||f||^2$ for all $f \in X$.
- Φ and Ψ are dual frames $\Leftrightarrow D_{\Psi}C_{\Phi} = I_X$, i.e., $f = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle \psi_k \quad \forall f \in X$

For $\Phi = \{\varphi_k\}_{k \in \mathbb{N}}$, define the Analysis operator:

$$C_{\Phi}: X \to \ell^2(\mathbb{N}), \quad C_{\Phi}f = \{\langle f, \varphi_k \rangle\}_{k \in \mathbb{N}}$$

and the Synthesis operator:

$$D_{\Phi}: \ell^2(\mathbb{N}) \to X, \quad D_{\Phi}\{c_k\}_{k \in \mathbb{N}} = \sum_{k=1}^{\infty} c_k \varphi_k$$

- $\Phi = \{\varphi_k\}_{k \in \mathbb{N}}$ is Bessel $\Leftrightarrow C_{\Phi}$ is a bounded operator. Here: $(C_{\Phi})^* = D_{\Phi}$.
- The frame inequalities mean $A ||f||^2 \leq ||C_{\Phi}f||^2 \leq B ||f||^2$ for all $f \in X$.
- Φ and Ψ are dual frames $\Leftrightarrow D_{\Psi}C_{\Phi} = I_X$, i.e., $f = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle \psi_k \quad \forall f \in X$
- A frame has at least one dual frame: the canonical dual $\{(D_{\Phi}C_{\Phi})^{-1}\varphi_k\}_{k\in\mathbb{N}}$.

Frame Theory The Picture of Frame Expansions

DTU

The Picture of Frame Expansions:

Signal f Coefficients $c_k = \langle f, arphi_k
angle$ Signal $f = \sum_k c_k \psi_k$

- Want: Analysis & synthesis to be linear and continuous operations, often assuming some structure on φ_k and/or ψ_k

Frame Theory Structered Frames in $L^2(\mathbb{R}^d)$

DTU

Generalized Shift-invariant (GSI) systems are of the form: $\{T_{C_pk}g_p\}_{k\in\mathbb{Z}^d,p\in P}$, where $g_p \in L^2(\mathbb{R}^d), C_p \in \mathrm{GL}(d,\mathbb{R}), P$ a countable index set.

Frame Theory Structered Frames in $L^2(\mathbb{R}^d)$

Generalized Shift-invariant (GSI) systems are of the form: $\{T_{C_pk}g_p\}_{k\in\mathbb{Z}^d,p\in P}$, where $g_p \in L^2(\mathbb{R}^d), C_p \in \mathrm{GL}(d,\mathbb{R}), P$ a countable index set.

Necessary condition for Frame (covering of frequency domain)

If the GSI system is a frame with bounds \boldsymbol{A} and $\boldsymbol{B},$ then

$$A \leqslant \sum_{p \in P} \frac{1}{|\det C_p|} \left| \hat{g}_p(\gamma) \right|^2 \leqslant B \quad a.e. \ \gamma \in \mathbb{R}^d$$

Here we ignore a technical Local Integrability Condition. Result for d = 1 due to [Christensen, Hasannasab, L.] and for general $d \in \mathbb{N}$ by [Führ, Jakobsen, L.]

Frame Theory Structered Frames in $L^2(\mathbb{R}^d)$

Generalized Shift-invariant (GSI) systems are of the form: $\{T_{C_pk}g_p\}_{k\in\mathbb{Z}^d,p\in P}$, where $g_p \in L^2(\mathbb{R}^d), C_p \in \mathrm{GL}(d,\mathbb{R}), P$ a countable index set.

Necessary condition for Frame (covering of frequency domain)

If the GSI system is a frame with bounds A and B, then

$$A \leqslant \sum_{p \in P} \frac{1}{|\det C_p|} |\hat{g}_p(\gamma)|^2 \leqslant B \quad a.e. \ \gamma \in \mathbb{R}^d$$

Sufficient condition for Bessel (not too much overlap)

$$B := \underset{\gamma \in \mathbb{R}^d}{\operatorname{ess\,sup}} \sum_{p \in P} \sum_{\alpha \in \mathbb{Z}^d} \frac{1}{|\det C_p|} \left| \hat{g}_p(\gamma) \hat{g}_p(\gamma + C_p^{\#}\alpha) \right| < \infty$$

then the GSI system is Bessel with bounds B. Here $C_p^{\#} := (C_p^T)^{-1}$

Setup: Let X, Y be separable (inf. dim.) Hilbert spaces. Let

$$K: D(K) \to Y, X = \overline{D(K)}, Y = \overline{R(K)}$$

be an injective, closed operator (typically, it is compact).

Problem

Given $g \in Y$ and $\varepsilon > 0$ s.t. $\|Kf - g\|_Y < \varepsilon$, recover f.

Setup: Let X, Y be separable (inf. dim.) Hilbert spaces. Let

$$K: D(K) \to Y, X = \overline{D(K)}, Y = \overline{R(K)}$$

be an injective, closed operator (typically, it is compact).

Problem

Given $g \in Y$ and $\varepsilon > 0$ s.t. $\|Kf - g\|_Y < \varepsilon$, recover f.

- It holds $(K^{-1})^* = (K^*)^{-1}$; for short, we write this operator as $K^{-*}: X \to Y$.
- $D(K^{-*}) = X \Leftrightarrow K^{-1}$ bounded. If K is compact, K^{-1} is unbounded.

Inverse Problems in Abstract Settings: Dual frame based regularizations Inversion Formula based on Dual Frames

• Take dual frames $\{\varphi_k\}$ and $\{\psi_k\}$ for X s.t. $\varphi_k \in D(K^{-*})$:

$$f = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle_X \psi_k$$
 for all $f \in X$.

Note that

$$\langle f, \varphi_k \rangle_X = \langle f, K^* K^{-*} \varphi_k \rangle_X = \langle K f, K^{-*} \varphi_k \rangle_Y$$

This gives the inversion formula:

$$f = \sum_{k=1}^{\infty} \langle Kf, K^{-*}\varphi_k \rangle_Y \psi_k \quad \text{for all } f \in X.$$

Inverse Problems in Abstract Settings: Dual frame based regularizations Regularization Strategy based on Dual Frames I

• Set $w_k = \kappa_k K^{-*} \varphi_k$. Pick weights $\kappa_k > 0$ s.t. $W = \{w_k\}_{k \in \mathbb{N}}$ is a Bessel sequence in X.

This is indeed always possible:

Lemma

Let $\{\theta_k\}$ be a sequence of positive numbers such that $\sum_{k \in \mathbb{N}} \theta_k < \infty$. Take $\kappa_k = \sqrt{\theta_k} / \|K^{-*}\varphi_k\|_Y$. Then $W = \{w_k\}_{k \in \mathbb{N}}$ is Bessel with bound $B = \sum_{k \in \mathbb{N}} \theta_k$.

Inverse Problems in Abstract Settings: Dual frame based regularizations Regularization Strategy based on Dual Frames I

• Set $w_k = \kappa_k K^{-*} \varphi_k$. Pick weights $\kappa_k > 0$ s.t. $W = \{w_k\}_{k \in \mathbb{N}}$ is a Bessel sequence in X.

This is indeed always possible:

Lemma

Let $\{\theta_k\}$ be a sequence of positive numbers such that $\sum_{k \in \mathbb{N}} \theta_k < \infty$. Take $\kappa_k = \sqrt{\theta_k} / \|K^{-*}\varphi_k\|_Y$. Then $W = \{w_k\}_{k \in \mathbb{N}}$ is Bessel with bound $B = \sum_{k \in \mathbb{N}} \theta_k$.

The inversion formula is now:

$$f = \sum_{k=1}^\infty \frac{1}{\kappa_k} \langle Kf, w_k \rangle_Y \psi_k \qquad \text{for all } f \in D(K).$$

• Or in terms of analysis, synthesis and multiplication operators:

$$f = D_{\Psi} M_{1/\kappa} C_W K f$$

where $M_{1/\kappa}$ is a (often unbounded) multiplication operator on $\ell^2(\mathbb{N})$ defined by $M_{1/\kappa} \{c_k\}_{k \in \mathbb{N}} = \{c_k/\kappa_k\}_{k \in \mathbb{N}}$.

Inverse Problems in Abstract Settings: Dual frame based regularizations Regularization Strategy based on Dual Frames II

• We define the recovery operator $R = D_{\Psi} M_{1/\kappa} C_W$:

$$R: D(R) \to X, \ Rg = \sum_{k \in \mathbb{N}} \frac{1}{\kappa_k} \langle g, w_k \rangle_Y \psi_k \tag{1}$$

where the domain is determined by a Picard condition:

$$D(R) = \left\{ g \in Y : \sum_{k \in \mathbb{N}} \frac{\left| \langle g, w_k \rangle_Y \right|^2}{\kappa_k^2} < \infty \right\}.$$

- The recovery strategy from $\|Kf-g\|<\varepsilon$ is:

$$D_{\Psi}M_{1/\kappa}SC_Wg$$

where $S: \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ is a threshold procedure.

Shearlet Frames in $L^2(\mathbb{R}^2)$ Shearlet Systems in $L^2(\mathbb{R}^2)$

• Anisotropic scaling *A*:

$$A = \begin{pmatrix} 2 & 0\\ 0 & 2^{1/2} \end{pmatrix},$$

• Shearing S_k (direction parameter \leftrightarrow rotations):

$$S_k = \begin{pmatrix} 1 & \mathbf{k} \\ 0 & 1 \end{pmatrix}$$

- The shearlet system generated by $\psi \in L^2(\mathbb{R}^2)$ is

$$\left\{\psi_{j,k,m} = D_{S_kA^j}T_m\psi = 2^{3j/4}\psi(S_kA^j \cdot -m) : j \in \mathbb{Z}, k \in \mathbb{Z}, m \in \mathbb{Z}^2\right\}$$

• Frequency localization of ψ :

$$|\hat{\psi}(\gamma_1, \gamma_2)| \leq C \min(1, |2\gamma_1|^{\alpha}) \min(1, |\gamma_1|^{-\delta}) \min(1, |\gamma_2|^{-\delta})$$

for some $C>0, \ \alpha > \delta > 3$

13/23 DTU Compute

 $\psi_{j,k,m}$ for j = 0, k = 0, m = (0,0)

 $\psi_{j,k,m}$ for j = 1, k = 0, m = (0,0)

 $\psi_{j,k,m}$ for j = 2, k = 0, m = (0,0)

 $\psi_{j,k,m}$ for j = 1, k = 0, m = (0,0)

 $\psi_{j,k,m}$ for j = 1, k = 0, m = (1, -1)

 $\psi_{j,k,m}$ for j = 1, k = 0, m = (0,0)

 $\psi_{j,k,m}$ for j = 1, k = -1, m = (0,0)

 $\psi_{j,k,m}$ for j = 1, k = -2, m = (0,0)

 $\psi_{j,k,m}$ for j = 1, k = -3, m = (0,0)

Shearlet Frames in $L^2(\mathbb{R}^2)$ Cone-adapted Shearlet systems

• Problem: "Length" of $\operatorname{supp} \hat{\psi}_{j,k,m}$ goes to ∞ as $|k| \to \infty$.

Shearlet Frames in $L^2(\mathbb{R}^2)$ Cone-adapted Shearlet systems

- Problem: "Length" of $\operatorname{supp} \hat{\psi}_{j,k,m}$ goes to ∞ as $|k| \to \infty$.
- Solution: Cone-adapted shearlet system

Definition

For $\phi, \psi, \tilde{\psi} \in L^2(\mathbb{R}^2)$, the cone-adapted shearlet system $SH(\phi, \psi, \tilde{\psi})$ is the union:

 $\{T_k\phi\}_{k\in\mathbb{Z}^2}\cup\{D_{S_kA^j}T_m\psi\}_{j\ge 0,|k|\leqslant \left\lceil 2^{j/2}\right\rceil,m\in\mathbb{Z}^2}\cup\{D_{\tilde{S}_k\tilde{A}^j}T_m\tilde{\psi}\}_{j\ge 0,|k|\leqslant \left\lceil 2^{j/2}\right\rceil,m\in\mathbb{Z}^2}$

Shearlet Frames in $L^2(\mathbb{R}^2)$ Shearlet systems as GSI systems

DTU

By the commutator relations

$$D_{A^jS_k}T_m = T_{S_{-k}A^{-j}m}D_{A^jS_k},$$

it follows that

$$\psi_{j,k,m} = D_{S_kA^j}T_m\psi = T_{S_{-k}A^{-j}m}D_{A^jS_k}\psi$$

Hence, the shearlet system on horizontal is a GSI system $\{T_{C_pk}g_p\}_{k\in\mathbb{Z}^d,p\in P}$ with

$$C_p = C_{(j,k)} = S_{-k}A^{-j}$$
 and $g_p = g_{(j,k)} = D_{A^jS_k}\psi$

where

$$P = \bigcup_{j \in \mathbb{N}_0} \{j\} \times \left[- \left\lceil 2^{j/2} \right\rceil, \left\lceil 2^{j/2} \right\rceil \right].$$

Similar for the vertical cones and the central box.

Shearlet Frames in $L^2(\mathbb{R}^2)$ Necessary and Sufficient Conditions

Necessary condition for Frame (covering of frequency domain)

If the shearlet system ${\rm SH}(\phi,\psi,\tilde\psi)$ is a frame with bounds A and B, then

$$A \leqslant \left| \hat{\phi}(\gamma) \right|^2 + \sum_{j=0}^{\infty} \sum_{|k| \leqslant \left\lceil 2^{j/2} \right\rceil} \left| \hat{\psi}(S_{-k}^T A^j \gamma) \right|^2 + \sum_{j=0}^{\infty} \sum_{|k| \leqslant \left\lceil 2^{j/2} \right\rceil} \left| \hat{\psi}(\tilde{S}_{-k}^T \tilde{A}^j \gamma) \right|^2 \leqslant B$$

for a.e. $\gamma \in \mathbb{R}^2$.

Sufficient condition for Bessel (not too much overlap)

lf

$$\begin{split} B &:= \mathop{\mathrm{ess\,sup}}_{\gamma \in \mathbb{R}^2} \Big(\sum_{\alpha \in \mathbb{Z}^2} \left| \hat{\phi}(\gamma) \hat{\phi}(\gamma + \alpha) \right| + \sum_{j=0}^{\infty} \sum_{|k| \leqslant \left\lceil 2^{j/2} \right\rceil} \left| \hat{\psi}(S_{-k}^T A^j \gamma) \hat{\psi}(S_{-k}^T A^j \gamma + \alpha) \right| \\ &+ \sum_{j=0}^{\infty} \sum_{|k| \leqslant \left\lceil 2^{j/2} \right\rceil} \left| \hat{\psi}(\tilde{S}_{-k}^T \tilde{A}^j \gamma) \hat{\psi}(\tilde{S}_{-k}^T \tilde{A}^j \gamma + \alpha) \right| \Big) < \infty, \end{split}$$

then $SH(\phi, \psi, \tilde{\psi})$ is a Bessel system with bounds $B_{\text{Frame Theoretic View opening}}^{Here} C_{\text{Teplems}}^{\#} := (C_{\text{Teplems}}^{T})^{-1}$

• Setup:
$$X = L^2(\mathbb{R}^2)$$
, $Y = L^2(S^1 \times \mathbb{R})$, and

$$Rf(\theta,s) = \int_{-\infty}^{\infty} f(s\theta + t\theta^{\perp})dt$$

• Setup:
$$X = L^2(\mathbb{R}^2)$$
, $Y = L^2(S^1 \times \mathbb{R})$, and

$$Rf(\theta,s) = \int_{-\infty}^{\infty} f(s\theta + t\theta^{\perp}) dt$$

• It can be shown that $R^{-*} = \Lambda_s R$, where $\Lambda f = \mathcal{F}^{-1}(|\gamma| \hat{f}(\gamma))$ is a Riesz potential (here on the s-variable)

• Setup:
$$X = L^2(\mathbb{R}^2)$$
, $Y = L^2(S^1 \times \mathbb{R})$, and

$$Rf(\theta,s) = \int_{-\infty}^{\infty} f(s\theta + t\theta^{\perp}) dt$$

- It can be shown that $R^{-*} = \Lambda_s R$, where $\Lambda f = \mathcal{F}^{-1}(|\gamma| \hat{f}(\gamma))$ is a Riesz potential (here on the s-variable)
- A intertwining relation gives $R^{-*} = R\Lambda$

• Setup:
$$X = L^2(\mathbb{R}^2)$$
, $Y = L^2(S^1 \times \mathbb{R})$, and

$$Rf(\theta,s) = \int_{-\infty}^{\infty} f(s\theta + t\theta^{\perp})dt$$

- It can be shown that $R^{-*} = \Lambda_s R$, where $\Lambda f = \mathcal{F}^{-1}(|\gamma| \hat{f}(\gamma))$ is a Riesz potential (here on the s-variable)
- A intertwining relation gives $R^{-*} = R\Lambda$
- Since R is bounded, we only have to make

$$\{\kappa_{j,k,m}\Lambda\psi_{j,k,m}\}_{j\ge 0,|k|\leqslant \left\lceil 2^{j/2}\right\rceil,m\in\mathbb{Z}^2}$$

a Bessel system for some choice of $\kappa_{j,k,m} > 0$. And similar for the vertical cones and the central box.

- Since Λ is a Fourier multiplier, it commutes with translation:

$$\Lambda T_{C_pk}g_p = T_{C_pk}\Lambda g_p$$

• Hence, Λ maps the shearlet system to a GSI system (that is not a shearlet system!) with generators $g_p = \Lambda D_{A^j S_k} \psi$.

Plot of

DTU

Plot of

$$\sum_{j=0}^{\infty} \sum_{|k| \leq \lfloor 2^{j/2} \rfloor} \kappa_j^2 |\gamma|^2 |\hat{\psi}(S_{-k}^T A^j \gamma)|^2, \quad \kappa_j = 2^{-j},$$

Covering of the Horizontal Cone

Plot of

$$\sum_{j=0}^{\infty} \sum_{|k| \leq \lfloor 2^{j/2} \rfloor} \kappa_j^2 |\gamma|^2 \left| \hat{\psi}(S_{-k}^T A^j \gamma) \right|^2, \quad \kappa_j = 2^{-5j/4},$$

DTU

20/23 DTU Compute

Plot of

20/23

$$\sum_{j=0}^{\infty} \sum_{|k| \le \lceil 2^{j/2} \rceil} \kappa_j^2 |\gamma|^2 |\hat{\psi}(S_{-k}^T A^j \gamma)|^2, \quad \kappa_j = 2^{-3j/4},$$

Inversion of the Radon Transform by Shearlet Frames Future tasks

- We really want the solve the inverse problem under the prior information that $f \in C \subset X$ for some image class C, e.g., cartoon-like images.
- If $\{\langle f, \phi_k \rangle\}_{k \in \mathbb{N}}$ belongs (after reordering descending in absolute value) to a weak ℓ_p space for some small p > 0, then so does $\{\langle Kf, K^{-*}\phi_k \rangle\}_{k \in \mathbb{N}}$.
- Understand the role of the weights κ_k

References

E. J. Candès and D. L. Donoho.

Recovering edges in ill-posed inverse problems: optimality of curvelet frames.

Ann. Statist., 30(3):784-842, 2002.

Thank You!

Jakob Lemvig – Technical University of Denmark (DTU) Group: Harmonic Analysis – Theory and Applications Email: jakle@dtu.dk. Preprints: www.compute.dtu.dk/people/J.Lemvig