## A Frame Theoretic View on Inverse Problems

Jakob Lemvig - Technical University of Denmark (DTU)
joint work with Jürgen Frikel (OTH Regesburg)

DTU Compute
Department of Applied Mathematics and Computer Science

## Outline

- Frame Theory
- Frames in abstract Hilbert spaces
- Structured frames for $L^{2}\left(\mathbb{R}^{d}\right)$
- Inverse Problems in Abstract Settings: Dual frame based regularizations
- Shearlet Frames in $L^{2}\left(\mathbb{R}^{2}\right)$
- Inversion of the Radon Transform by Shearlet Frames

Convenient Expansions of Functions

- Expansions of signals $f$ of finite energy, i.e., $f \in L^{2}\left(\mathbb{R}^{d}\right)=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{C}: \int_{\mathbb{R}^{d}}|f(x)|^{2} d x<\infty\right\}$

$$
f(x)=\sum_{j=1}^{\infty} c_{k} \varphi_{k}(x)=c_{1} \varphi_{1}(x)+c_{2} \varphi_{2}(x)+\ldots
$$

in terms of convenient building blocks $\varphi_{k} \in L^{2}\left(\mathbb{R}^{d}\right)$.

- Shearlet analysis: An alternative to Fourier analysis, where the building blocks $\left\{\varphi_{k}\right\}$ are dilations (scales), shears and translations of a single function $\psi \in L^{2}\left(\mathbb{R}^{2}\right):$

$$
\left\{\varphi_{k}\right\} \sim\left\{2^{3 j / 4} \psi\left(2^{j} x_{1}+k 2^{j / 2} x_{2}-m_{1}, 2^{j / 2} x_{2}-m_{2}\right)\right\}_{j \in \mathbb{Z}, k \in \mathbb{Z}, m \in \mathbb{Z}^{2}}
$$

- Frames: A generalization of orthonormal bases (ONB) with more flexibility and freedom.


## Beyond Orthonormal Bases: Frames

It is not always possible/desirable to require ONB.

- Problems:
- Non-existence of Gabor ONB with good time-frequency localization
- Non-existence of ONB sensitive to curvilinear singularities
- Non-resilience to erasures/noise of expansions in an ONB


## Beyond Orthonormal Bases: Frames

It is not always possible/desirable to require ONB.

- Problems:
- Non-existence of Gabor ONB with good time-frequency localization
- Non-existence of ONB sensitive to curvilinear singularities
- Non-resilience to erasures/noise of expansions in an ONB
- Solution: Frames - a standard tools in applied mathematics and engineering.


## Beyond Orthonormal Bases: Frames

It is not always possible/desirable to require ONB.

- Problems:
- Non-existence of Gabor ONB with good time-frequency localization
- Non-existence of ONB sensitive to curvilinear singularities
- Non-resilience to erasures/noise of expansions in an ONB
- Solution: Frames - a standard tools in applied mathematics and engineering.
- Key Property of Frames:

Redundancy!

## Frame Theory

## What is a Frame?

## Definition

A sequence $\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$ is a frame for a separable Hilbert space $X$ if

$$
\exists A, B>0: \quad A\|f\|^{2} \leqslant \sum_{k=1}^{\infty}\left|\left\langle f, \varphi_{k}\right\rangle\right|^{2} \leqslant B\|f\|^{2} \quad \text { for all } f \in X
$$

If the upper bound holds, then $\left\{\varphi_{k}\right\}$ is said to be a Bessel sequence.

## Definition

Two Bessel sequences $\left\{\varphi_{k}\right\}$ and $\left\{\psi_{k}\right\}$ are said to be dual frames if

$$
f=\sum_{k=1}^{\infty}\left\langle f, \varphi_{k}\right\rangle \psi_{k} \quad \text { for all } f \in X
$$

## Operators associated with Frames/Bessel sequences

For $\Phi=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$, define the Analysis operator:

$$
C_{\Phi}: X \rightarrow \ell^{2}(\mathbb{N}), \quad C_{\Phi} f=\left\{\left\langle f, \varphi_{k}\right\rangle\right\}_{k \in \mathbb{N}}
$$

and the Synthesis operator:

$$
D_{\Phi}: \ell^{2}(\mathbb{N}) \rightarrow X, \quad D_{\Phi}\left\{c_{k}\right\}_{k \in \mathbb{N}}=\sum_{k=1}^{\infty} c_{k} \varphi_{k}
$$

## Operators associated with Frames/Bessel sequences

For $\Phi=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$, define the Analysis operator:

$$
C_{\Phi}: X \rightarrow \ell^{2}(\mathbb{N}), \quad C_{\Phi} f=\left\{\left\langle f, \varphi_{k}\right\rangle\right\}_{k \in \mathbb{N}}
$$

and the Synthesis operator:

$$
D_{\Phi}: \ell^{2}(\mathbb{N}) \rightarrow X, \quad D_{\Phi}\left\{c_{k}\right\}_{k \in \mathbb{N}}=\sum_{k=1}^{\infty} c_{k} \varphi_{k}
$$

- $\Phi=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$ is Bessel $\Leftrightarrow C_{\Phi}$ is a bounded operator. Here: $\left(C_{\Phi}\right)^{*}=D_{\Phi}$.


## Operators associated with Frames/Bessel sequences

For $\Phi=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$, define the Analysis operator:

$$
C_{\Phi}: X \rightarrow \ell^{2}(\mathbb{N}), \quad C_{\Phi} f=\left\{\left\langle f, \varphi_{k}\right\rangle\right\}_{k \in \mathbb{N}}
$$

and the Synthesis operator:

$$
D_{\Phi}: \ell^{2}(\mathbb{N}) \rightarrow X, \quad D_{\Phi}\left\{c_{k}\right\}_{k \in \mathbb{N}}=\sum_{k=1}^{\infty} c_{k} \varphi_{k}
$$

- $\Phi=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$ is Bessel $\Leftrightarrow C_{\Phi}$ is a bounded operator. Here: $\left(C_{\Phi}\right)^{*}=D_{\Phi}$.
- The frame inequalities mean $A\|f\|^{2} \leqslant\left\|C_{\Phi} f\right\|^{2} \leqslant B\|f\|^{2}$ for all $f \in X$.


## Operators associated with Frames/Bessel sequences

For $\Phi=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$, define the Analysis operator:

$$
C_{\Phi}: X \rightarrow \ell^{2}(\mathbb{N}), \quad C_{\Phi} f=\left\{\left\langle f, \varphi_{k}\right\rangle\right\}_{k \in \mathbb{N}}
$$

and the Synthesis operator:

$$
D_{\Phi}: \ell^{2}(\mathbb{N}) \rightarrow X, \quad D_{\Phi}\left\{c_{k}\right\}_{k \in \mathbb{N}}=\sum_{k=1}^{\infty} c_{k} \varphi_{k}
$$

- $\Phi=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$ is Bessel $\Leftrightarrow C_{\Phi}$ is a bounded operator. Here: $\left(C_{\Phi}\right)^{*}=D_{\Phi}$.
- The frame inequalities mean $A\|f\|^{2} \leqslant\left\|C_{\Phi} f\right\|^{2} \leqslant B\|f\|^{2}$ for all $f \in X$.
- $\Phi$ and $\Psi$ are dual frames $\Leftrightarrow D_{\Psi} C_{\Phi}=I_{X}$, i.e., $f=\sum_{k=1}^{\infty}\left\langle f, \varphi_{k}\right\rangle \psi_{k} \quad \forall f \in X$


## Operators associated with Frames/Bessel sequences

For $\Phi=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$, define the Analysis operator:

$$
C_{\Phi}: X \rightarrow \ell^{2}(\mathbb{N}), \quad C_{\Phi} f=\left\{\left\langle f, \varphi_{k}\right\rangle\right\}_{k \in \mathbb{N}}
$$

and the Synthesis operator:

$$
D_{\Phi}: \ell^{2}(\mathbb{N}) \rightarrow X, \quad D_{\Phi}\left\{c_{k}\right\}_{k \in \mathbb{N}}=\sum_{k=1}^{\infty} c_{k} \varphi_{k}
$$

- $\Phi=\left\{\varphi_{k}\right\}_{k \in \mathbb{N}}$ is Bessel $\Leftrightarrow C_{\Phi}$ is a bounded operator. Here: $\left(C_{\Phi}\right)^{*}=D_{\Phi}$.
- The frame inequalities mean $A\|f\|^{2} \leqslant\left\|C_{\Phi} f\right\|^{2} \leqslant B\|f\|^{2}$ for all $f \in X$.
- $\Phi$ and $\Psi$ are dual frames $\Leftrightarrow D_{\Psi} C_{\Phi}=I_{X}$, i.e., $f=\sum_{k=1}^{\infty}\left\langle f, \varphi_{k}\right\rangle \psi_{k} \quad \forall f \in X$
- A frame has at least one dual frame: the canonical dual $\left\{\left(D_{\Phi} C_{\Phi}\right)^{-1} \varphi_{k}\right\}_{k \in \mathbb{N}}$.

The Picture of Frame Expansions
The Picture of Frame Expansions:


Signal $f \quad$ Coefficients $c_{k}=\left\langle\boldsymbol{f}, \varphi_{k}\right\rangle \quad$ Signal $f=\sum_{k} c_{k} \psi_{k}$

- Want: Analysis \& synthesis to be linear and continuous operations, often assuming some structure on $\varphi_{k}$ and/or $\psi_{k}$

Structered Frames in $L^{2}\left(\mathbb{R}^{d}\right)$
Generalized Shift-invariant (GSI) systems are of the form: $\left\{T_{C_{p} k} g_{p}\right\}_{k \in \mathbb{Z}^{d}, p \in P}$, where $g_{p} \in L^{2}\left(\mathbb{R}^{d}\right), C_{p} \in \mathrm{GL}(d, \mathbb{R}), P$ a countable index set.

## Structered Frames in $L^{2}\left(\mathbb{R}^{d}\right)$

Generalized Shift-invariant (GSI) systems are of the form: $\left\{T_{C_{p} k} g_{p}\right\}_{k \in \mathbb{Z}^{d}, p \in P}$, where $g_{p} \in L^{2}\left(\mathbb{R}^{d}\right), C_{p} \in \mathrm{GL}(d, \mathbb{R}), P$ a countable index set.

## Necessary condition for Frame (covering of frequency domain)

If the GSI system is a frame with bounds $A$ and $B$, then

$$
A \leqslant \sum_{p \in P} \frac{1}{\left|\operatorname{det} C_{p}\right|}\left|\hat{g}_{p}(\gamma)\right|^{2} \leqslant B \quad \text { a.e. } \gamma \in \mathbb{R}^{d}
$$

Here we ignore a technical Local Integrability Condition. Result for $d=1$ due to [Christensen, Hasannasab, L.] and for general $d \in \mathbb{N}$ by [Führ, Jakobsen, L.]

Frame Theory

## Structered Frames in $L^{2}\left(\mathbb{R}^{d}\right)$

Generalized Shift-invariant (GSI) systems are of the form: $\left\{T_{C_{p} k} g_{p}\right\}_{k \in \mathbb{Z}^{d}, p \in P}$, where $g_{p} \in L^{2}\left(\mathbb{R}^{d}\right), C_{p} \in \mathrm{GL}(d, \mathbb{R}), P$ a countable index set.

## Necessary condition for Frame (covering of frequency domain)

If the GSI system is a frame with bounds $A$ and $B$, then

$$
A \leqslant \sum_{p \in P} \frac{1}{\left|\operatorname{det} C_{p}\right|}\left|\hat{g}_{p}(\gamma)\right|^{2} \leqslant B \quad \text { a.e. } \gamma \in \mathbb{R}^{d}
$$

## Sufficient condition for Bessel (not too much overlap)

If

$$
B:=\underset{\gamma \in \mathbb{R}^{d}}{\operatorname{esssup}} \sum_{p \in P} \sum_{\alpha \in \mathbb{Z}^{d}} \frac{1}{\left|\operatorname{det} C_{p}\right|}\left|\hat{g}_{p}(\gamma) \hat{g}_{p}\left(\gamma+C_{p}^{\#} \alpha\right)\right|<\infty
$$

then the GSI system is Bessel with bounds $B$. Here $C_{p}^{\#}:=\left(C_{p}^{T}\right)^{-1}$

## An Inverse Problem

Setup: Let $X, Y$ be separable (inf. dim.) Hilbert spaces. Let

$$
K: D(K) \rightarrow Y, X=\overline{D(K)}, Y=\overline{R(K)}
$$

be an injective, closed operator (typically, it is compact).

## Problem

Given $g \in Y$ and $\varepsilon>0$ s.t. $\|K f-g\|_{Y}<\varepsilon$, recover $f$.

## An Inverse Problem

Setup: Let $X, Y$ be separable (inf. dim.) Hilbert spaces. Let

$$
K: D(K) \rightarrow Y, X=\overline{D(K)}, Y=\overline{R(K)}
$$

be an injective, closed operator (typically, it is compact).

## Problem

Given $g \in Y$ and $\varepsilon>0$ s.t. $\|K f-g\|_{Y}<\varepsilon$, recover $f$.

- It holds $\left(K^{-1}\right)^{*}=\left(K^{*}\right)^{-1}$; for short, we write this operator as $K^{-*}: X \rightarrow Y$.
- $D\left(K^{-*}\right)=X \Leftrightarrow K^{-1}$ bounded. If $K$ is compact, $K^{-1}$ is unbounded.
- Take dual frames $\left\{\varphi_{k}\right\}$ and $\left\{\psi_{k}\right\}$ for $X$ s.t. $\varphi_{k} \in D\left(K^{-*}\right)$ :

$$
f=\sum_{k=1}^{\infty}\left\langle f, \varphi_{k}\right\rangle_{X} \psi_{k} \quad \text { for all } f \in X
$$

- Note that

$$
\left\langle f, \varphi_{k}\right\rangle_{X}=\left\langle f, K^{*} K^{-*} \varphi_{k}\right\rangle_{X}=\left\langle K f, K^{-*} \varphi_{k}\right\rangle_{Y}
$$

- This gives the inversion formula:

$$
f=\sum_{k=1}^{\infty}\left\langle K f, K^{-*} \varphi_{k}\right\rangle_{Y} \psi_{k} \quad \text { for all } f \in X
$$

## Regularization Strategy based on Dual Frames I

- Set $w_{k}=\kappa_{k} K^{-*} \varphi_{k}$. Pick weights $\kappa_{k}>0$ s.t. $W=\left\{w_{k}\right\}_{k \in \mathbb{N}}$ is a Bessel sequence in $X$.

This is indeed always possible:

## Lemma

Let $\left\{\theta_{k}\right\}$ be a sequence of positive numbers such that $\sum_{k \in \mathbb{N}} \theta_{k}<\infty$. Take $\kappa_{k}=\sqrt{\theta_{k}} /\left\|K^{-*} \varphi_{k}\right\|_{Y}$. Then $W=\left\{w_{k}\right\}_{k \in \mathbb{N}}$ is Bessel with bound $B=\sum_{k \in \mathbb{N}} \theta_{k}$.

## Regularization Strategy based on Dual Frames I

- Set $w_{k}=\kappa_{k} K^{-*} \varphi_{k}$. Pick weights $\kappa_{k}>0$ s.t. $W=\left\{w_{k}\right\}_{k \in \mathbb{N}}$ is a Bessel sequence in $X$.

This is indeed always possible:

## Lemma

Let $\left\{\theta_{k}\right\}$ be a sequence of positive numbers such that $\sum_{k \in \mathbb{N}} \theta_{k}<\infty$. Take $\kappa_{k}=\sqrt{\theta_{k}} /\left\|K^{-*} \varphi_{k}\right\|_{Y}$. Then $W=\left\{w_{k}\right\}_{k \in \mathbb{N}}$ is Bessel with bound $B=\sum_{k \in \mathbb{N}} \theta_{k}$.

- The inversion formula is now:

$$
f=\sum_{k=1}^{\infty} \frac{1}{\kappa_{k}}\left\langle K f, w_{k}\right\rangle_{Y} \psi_{k} \quad \text { for all } f \in D(K)
$$

- Or in terms of analysis, synthesis and multiplication operators:

$$
f=D_{\Psi} M_{1 / \kappa} C_{W} K f
$$

where $M_{1 / \kappa}$ is a (often unbounded) multiplication operator on $\ell^{2}(\mathbb{N})$ defined by $M_{1 / \kappa}\left\{c_{k}\right\}_{k \in \mathbb{N}}=\left\{c_{k} / \kappa_{k}\right\}_{k \in \mathbb{N}}$.

## Regularization Strategy based on Dual Frames II

- We define the recovery operator $R=D_{\Psi} M_{1 / \kappa} C_{W}$ :

$$
\begin{equation*}
R: D(R) \rightarrow X, R g=\sum_{k \in \mathbb{N}} \frac{1}{\kappa_{k}}\left\langle g, w_{k}\right\rangle_{Y} \psi_{k} \tag{1}
\end{equation*}
$$

where the domain is determined by a Picard condition:

$$
D(R)=\left\{g \in Y: \sum_{k \in \mathbb{N}} \frac{\left|\left\langle g, w_{k}\right\rangle_{Y}\right|^{2}}{\kappa_{k}^{2}}<\infty\right\} .
$$

- The recovery strategy from $\|K f-g\|<\varepsilon$ is:

$$
D_{\Psi} M_{1 / \kappa} S C_{W} g
$$

where $S: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ is a threshold procedure.

Shearlet Systems in $L^{2}\left(\mathbb{R}^{2}\right)$

- Anisotropic scaling $A$ :

$$
A=\left(\begin{array}{cc}
2 & 0 \\
0 & 2^{1 / 2}
\end{array}\right),
$$

- Shearing $S_{k}$ (direction parameter $\leftrightarrow$ rotations):

$$
S_{k}=\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right)
$$

- The shearlet system generated by $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$ is

$$
\left\{\psi_{j, k, m}=D_{S_{k} A^{j}} T_{m} \psi=2^{3 j / 4} \psi\left(S_{k} A^{j} \cdot-m\right): j \in \mathbb{Z}, k \in \mathbb{Z}, m \in \mathbb{Z}^{2}\right\}
$$

- Frequency localization of $\psi$ :

$$
\left|\hat{\psi}\left(\gamma_{1}, \gamma_{2}\right)\right| \leqslant C \min \left(1,\left|2 \gamma_{1}\right|^{\alpha}\right) \min \left(1,\left|\gamma_{1}\right|^{-\delta}\right) \min \left(1,\left|\gamma_{2}\right|^{-\delta}\right)
$$

for some $C>0, \alpha>\delta>3$

Action of Anisotropic Scaling, Shearing, and Translation in 2D

$\psi_{j, k, m}$ for $j=0, k=0, m=(0,0)$

Action of Anisotropic Scaling, Shearing, and Translation in 2D

$\psi_{j, k, m}$ for $j=1, k=0, m=(0,0)$

Action of Anisotropic Scaling, Shearing, and Translation in 2D

$\psi_{j, k, m}$ for $j=2, k=0, m=(0,0)$

Action of Anisotropic Scaling, Shearing, and Translation in 2D

$\psi_{j, k, m}$ for $j=1, k=0, m=(0,0)$

Action of Anisotropic Scaling, Shearing, and Translation in 2D

$\psi_{j, k, m}$ for $j=1, k=0, m=(1,-1)$

Action of Anisotropic Scaling, Shearing, and Translation in 2D

$\psi_{j, k, m}$ for $j=1, k=0, m=(0,0)$

Action of Anisotropic Scaling, Shearing, and Translation in 2D

$\psi_{j, k, m}$ for $j=1, k=-1, m=(0,0)$

Action of Anisotropic Scaling, Shearing, and Translation in 2D

$\psi_{j, k, m}$ for $j=1, k=-2, m=(0,0)$

Action of Anisotropic Scaling, Shearing, and Translation in 2D

$\psi_{j, k, m}$ for $j=1, k=-3, m=(0,0)$

## Shearlet Frames in $L^{2}\left(\mathbb{R}^{2}\right)$

Cone-adapted Shearlet systems

- Problem: "Length" of $\operatorname{supp} \hat{\psi}_{j, k, m}$ goes to $\infty$ as $|k| \rightarrow \infty$.


## Cone-adapted Shearlet systems

- Problem: "Length" of $\operatorname{supp} \hat{\psi}_{j, k, m}$ goes to $\infty$ as $|k| \rightarrow \infty$.
- Solution: Cone-adapted shearlet system


## Definition

For $\phi, \psi, \tilde{\psi} \in L^{2}\left(\mathbb{R}^{2}\right)$, the cone-adapted shearlet system $\operatorname{SH}(\phi, \psi, \tilde{\psi})$ is the union:

$$
\left\{T_{k} \phi\right\}_{k \in \mathbb{Z}^{2}} \cup\left\{D_{S_{k} A^{j}} T_{m} \psi\right\}_{j \geqslant 0,|k| \leqslant\left\lceil 2^{j / 2}\right\rceil, m \in \mathbb{Z}^{2}} \cup\left\{D_{\tilde{S}_{k} \tilde{A}^{j}} T_{m} \tilde{\psi}\right\}_{j \geqslant 0,|k| \leqslant\left\lceil 2^{j / 2}\right\rceil, m \in \mathbb{Z}^{2}}
$$




## Shearlet systems as GSI systems

By the commutator relations

$$
D_{A^{j} S_{k}} T_{m}=T_{S_{-k} A^{-j} m} D_{A^{j} S_{k}},
$$

it follows that

$$
\psi_{j, k, m}=D_{S_{k} A j} T_{m} \psi=T_{S_{-k} A^{-j} m} D_{A^{j} S_{k}} \psi
$$

Hence, the shearlet system on horizontal is a GSI system $\left\{T_{C_{p} k} g_{p}\right\}_{k \in \mathbb{Z}^{d}, p \in P}$ with

$$
C_{p}=C_{(j, k)}=S_{-k} A^{-j} \quad \text { and } \quad g_{p}=g_{(j, k)}=D_{A^{j} S_{k}} \psi
$$

where

$$
P=\bigcup_{j \in \mathbb{N}_{0}}\{j\} \times\left[-\left\lceil 2^{j / 2}\right\rceil,\left[2^{j / 2}\right\rceil\right]
$$

Similar for the vertical cones and the central box.

## Necessary and Sufficient Conditions

## Necessary condition for Frame (covering of frequency domain)

If the shearlet system $\mathrm{SH}(\phi, \psi, \tilde{\psi})$ is a frame with bounds $A$ and $B$, then

$$
A \leqslant|\hat{\phi}(\gamma)|^{2}+\sum_{j=0}^{\infty} \sum_{|k| \leqslant\left\lceil 2^{j / 2}\right\rceil}\left|\hat{\psi}\left(S_{-k}^{T} A^{j} \gamma\right)\right|^{2}+\sum_{j=0}^{\infty} \sum_{|k| \leqslant\left\lceil 2^{j / 2}\right\rceil}\left|\hat{\tilde{\psi}}\left(\tilde{S}_{-k}^{T} \tilde{A}^{j} \gamma\right)\right|^{2} \leqslant B
$$

for a.e. $\gamma \in \mathbb{R}^{2}$.

## Sufficient condition for Bessel (not too much overlap)

If

$$
\begin{aligned}
B:=\underset{\gamma \in \mathbb{R}^{2}}{\operatorname{esssup}}\left(\sum_{\alpha \in \mathbb{Z}^{2}}|\hat{\phi}(\gamma) \hat{\phi}(\gamma+\alpha)|\right. & +\sum_{j=0}^{\infty} \sum_{|k| \leqslant\left\lceil 2^{j / 2}\right\rceil}\left|\hat{\psi}\left(S_{-k}^{T} A^{j} \gamma\right) \hat{\psi}\left(S_{-k}^{T} A^{j} \gamma+\alpha\right)\right| \\
& \left.+\sum_{j=0}^{\infty} \sum_{|k| \leqslant\left\lceil 2^{j / 2}\right\rceil}\left|\hat{\tilde{\psi}}\left(\tilde{S}_{-k}^{T} \tilde{A}^{j} \gamma\right) \hat{\tilde{\psi}}\left(\tilde{S}_{-k}^{T} \tilde{A}^{j} \gamma+\alpha\right)\right|\right)<\infty,
\end{aligned}
$$



What is the weighted system $W$ ?

- Setup: $X=L^{2}\left(\mathbb{R}^{2}\right), Y=L^{2}\left(S^{1} \times \mathbb{R}\right)$, and

$$
R f(\theta, s)=\int_{-\infty}^{\infty} f\left(s \theta+t \theta^{\perp}\right) d t
$$

## Inversion of the Radon Transform by Shearlet Frames

## What is the weighted system $W$ ?

- Setup: $X=L^{2}\left(\mathbb{R}^{2}\right), Y=L^{2}\left(S^{1} \times \mathbb{R}\right)$, and

$$
R f(\theta, s)=\int_{-\infty}^{\infty} f\left(s \theta+t \theta^{\perp}\right) d t
$$

- It can be shown that $R^{-*}=\Lambda_{s} R$, where $\Lambda f=\mathcal{F}^{-1}(|\gamma| \hat{f}(\gamma))$ is a Riesz potential (here on the $s$-variable)


## Inversion of the Radon Transform by Shearlet Frames

## What is the weighted system $W$ ?

- Setup: $X=L^{2}\left(\mathbb{R}^{2}\right), Y=L^{2}\left(S^{1} \times \mathbb{R}\right)$, and

$$
R f(\theta, s)=\int_{-\infty}^{\infty} f\left(s \theta+t \theta^{\perp}\right) d t
$$

- It can be shown that $R^{-*}=\Lambda_{s} R$, where $\Lambda f=\mathcal{F}^{-1}(|\gamma| \hat{f}(\gamma))$ is a Riesz potential (here on the $s$-variable)
- A intertwining relation gives $R^{-*}=R \Lambda$


## What is the weighted system $W$ ?

- Setup: $X=L^{2}\left(\mathbb{R}^{2}\right), Y=L^{2}\left(S^{1} \times \mathbb{R}\right)$, and

$$
R f(\theta, s)=\int_{-\infty}^{\infty} f\left(s \theta+t \theta^{\perp}\right) d t
$$

- It can be shown that $R^{-*}=\Lambda_{s} R$, where $\Lambda f=\mathcal{F}^{-1}(|\gamma| \hat{f}(\gamma))$ is a Riesz potential (here on the $s$-variable)
- A intertwining relation gives $R^{-*}=R \Lambda$
- Since $R$ is bounded, we only have to make

$$
\left\{\kappa_{j, k, m} \Lambda \psi_{j, k, m}\right\}_{j \geqslant 0,|k| \leqslant\left\lceil 2^{j / 2}\right\rceil, m \in \mathbb{Z}^{2}}
$$

a Bessel system for some choice of $\kappa_{j, k, m}>0$. And similar for the vertical cones and the central box.

- Since $\Lambda$ is a Fourier multiplier, it commutes with translation:

$$
\Lambda T_{C_{p} k} g_{p}=T_{C_{p} k} \Lambda g_{p}
$$

- Hence, $\Lambda$ maps the shearlet system to a GSI system (that is not a shearlet system!) with generators $g_{p}=\Lambda D_{A^{j} S_{k}} \psi$.

Inversion of the Radon Transform by Shearlet Frames
Covering of the Horizontal Cone
Plot of

$$
\sum_{j=0}^{\infty} \sum_{|k| \leqslant\left\lceil 2^{j / 2}\right\rceil}\left|\hat{\psi}\left(S_{-k}^{T} A^{j} \gamma\right)\right|^{2}
$$



Inversion of the Radon Transform by Shearlet Frames
Covering of the Horizontal Cone
Plot of

$$
\sum_{j=0}^{\infty} \sum_{|k| \leqslant\left\lceil 2^{j / 2}\right\rceil} \kappa_{j}^{2}|\gamma|^{2}\left|\hat{\psi}\left(S_{-k}^{T} A^{j} \gamma\right)\right|^{2}, \quad \kappa_{j}=2^{-j},
$$



## Inversion of the Radon Transform by Shearlet Frames

Covering of the Horizontal Cone
Plot of

$$
\sum_{j=0}^{\infty} \sum_{|k| \leqslant\left\lceil 2^{j} / 2\right\rceil} \kappa_{j}^{2}|\gamma|^{2}\left|\hat{\psi}\left(S_{-k}^{T} A^{j} \gamma\right)\right|^{2}, \quad \kappa_{j}=2^{-5 j / 4},
$$



Inversion of the Radon Transform by Shearlet Frames
Covering of the Horizontal Cone
Plot of

$$
\sum_{j=0}^{\infty} \sum_{|k| \leqslant\left\lceil 2^{j / 2}\right\rceil} \kappa_{j}^{2}|\gamma|^{2}\left|\hat{\psi}\left(S_{-k}^{T} A^{j} \gamma\right)\right|^{2}, \quad \kappa_{j}=2^{-3 j / 4},
$$



## Future tasks

- We really want the solve the inverse problem under the prior information that $f \in C \subset X$ for some image class $C$, e.g., cartoon-like images.
- If $\left\{\left\langle f, \phi_{k}\right\rangle\right\}_{k \in \mathbb{N}}$ belongs (after reordering descending in absolute value) to a weak $\ell_{p}$ space for some small $p>0$, then so does $\left\{\left\langle K f, K^{-*} \phi_{k}\right\rangle\right\}_{k \in \mathbb{N}}$.
- Understand the role of the weights $\kappa_{k}$


## References

E. J. Candès and D. L. Donoho.

Recovering edges in ill-posed inverse problems: optimality of curvelet frames.
Ann. Statist., 30(3):784-842, 2002.

## Thank You!

Jakob Lemvig - Technical University of Denmark (DTU) Group: Harmonic Analysis - Theory and Applications
Email: jakle@dtu.dk.
Preprints: www.compute.dtu.dk/people/J.Lemvig

