Lectures on microlocal characterizations in limited-angle TOMOGRAPHY

Jürgen Frikel

DTU Compute
Department of Applied Mathematics and Computer Science

(1) Nov. 11: Introduction to the mathematics of computerized tomography
(2) Nov. 18: Introduction to the basic concepts of microlocal analysis
(3) Today: Microlocal analysis of limited angle reconstructions in tomography
4. Dec. 02: Wrap up \& Discussion (possible Synergies, Projects, Grants) I
(1) Nov. 11: Introduction to the mathematics of computerized tomography
(2) Nov. 18: Introduction to the basic concepts of microlocal analysis
(3) Today: Microlocal analysis of limited angle reconstructions in tomography
4. Dec. 02: Wrap up \& Discussion (possible Synergies, Projects, Grants) I

References:

F. Natterer, The mathematics of computerized tomography. Stuttgart: B. G. Teubner, 1986.
L. Hörmander, The analysis of linear partial differential operators I: Distribution theory and Fourier analysis, vol. 256. Berlin: Springer-Verlag, 2003.

JF and E. T. Quinto, Characterization and reduction of artifacts in limited angle tomography, Inverse Problems 29(12):125007, December 2013.

In limited angle tomography, the projectios $g_{\theta}=\mathcal{R}_{\theta} f$ are known only for certain directions $\theta \in S_{\Phi}^{1} \subsetneq S^{1}$, for other directions θ the projections g_{θ} are unknown. In other words, in limited angle tomography we are given truncated data

$$
g_{\Phi}(\theta, s)=\chi_{S_{\Phi}^{1} \times \mathbb{R}} \cdot \mathcal{R} f(\theta, s)
$$

FBP inversion formula applied to limited angle data

$$
\begin{gathered}
\mathcal{R}^{\dagger} g_{\Phi}(x)=\frac{1}{4 \pi} \int_{S_{\Phi}^{1}}\left[\psi * g_{\theta}\right](x \cdot \theta) \mathrm{d} \theta=? ? ? \\
\text { What do we reconstruct? }
\end{gathered}
$$

In limited angle tomography, the projectios $g_{\theta}=\mathcal{R}_{\theta} f$ are known only for certain directions $\theta \in S_{\Phi}^{1} \subsetneq S^{1}$, for other directions θ the projections g_{θ} are unknown. In other words, in limited angle tomography we are given truncated data

$$
g_{\Phi}(\theta, s)=\chi_{S_{\Phi}^{1} \times \mathbb{R}} \cdot \mathcal{R} f(\theta, s)
$$

FBP inversion formula applied to limited angle data

$$
\begin{gathered}
\mathcal{R}^{\dagger} g_{\Phi}(x)=\frac{1}{4 \pi} \int_{S_{\Phi}^{1}}\left[\psi * g_{\theta}\right](x \cdot \theta) \mathrm{d} \theta=? ? ? \\
\text { What do we reconstruct? }
\end{gathered}
$$

Reconstructions for an angular range $\left[0^{\circ}, 100^{\circ}\right]$

Observations at a first glance:
\triangleright Only certain singularities of the original object can be reconstructed
\triangleright Artifacts (new singularities) are generated

Observations at a first glance:
\triangleright Only certain singularities of the original object can be reconstructed

- Artifacts (new singularities) are generated

Goal: Use microlocal analysis to

- Characterize singularities that can be reliably reconstructed,
- Develop strategy to reduce artifacts.

Reconstructions for an angular range $\left[0^{\circ}, 100^{\circ}\right]$

Reconstructions for an angular range $\left[0^{\circ}, 140^{\circ}\right]$

Reconstructions for an angular range $\left[0^{\circ}, 100^{\circ}\right]$

TODAY
\triangleright A formula for limited angle FBP reconstructions
\triangleright Characterization of visible and invisible singularities
\triangleright Severe ill-posedness of limited angle tomography

- Characterization \& reduction of artifacts

Notation

We study the restricted or limited angle Radon transform

$$
\mathcal{R}_{\Phi} f(\theta, s)=\chi_{S_{\Phi}^{1} \times \mathbb{R}} \cdot \mathcal{R} f(\theta, s)
$$

where $0<\Phi<\pi / 2$ and

$$
S_{\Phi}^{1}=\left\{\theta \in S^{1}: \theta= \pm(\cos \varphi, \sin \varphi),|\varphi|<\Phi\right\} .
$$

Moreover, we define the polar wedge

$$
W_{\Phi}=\mathbb{R} \cdot S_{\Phi}^{1}=\left\{r \theta: r \in \mathbb{R}, \theta \in S_{\Phi}^{1}\right\} .
$$

Theorem (F., Quinto (2013))

Let $f \in \mathcal{S}\left(\mathbb{R}^{2}\right)$. Then, the FBP reconstruction formula $\mathcal{R}_{\Phi}^{\dagger} g=\frac{1}{4 \pi} \mathcal{R}_{\Phi}^{*} \Lambda g$ and the Lambda reconstruction formula $\mathcal{L}_{\Phi} g=\frac{1}{4 \pi} \mathcal{R}_{\Phi}^{*}\left(-\frac{d^{2}}{d s^{2}} g\right)$ satisfy

$$
P_{\Phi} f=\mathcal{R}_{\Phi}^{\dagger}(\mathcal{R} f) \quad \text { and } \quad P_{\Phi}(\Lambda f)=\Lambda\left(P_{\Phi} f\right)=\mathcal{L}\left(\mathcal{R}_{\Phi} f\right) \text {, }
$$

where $P_{\Phi} f=\mathcal{F}^{-1}\left(\chi_{w_{\Phi}} \hat{f}\right)$. This formula is also valid for $f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{2}\right)$. Furthermore, the maps $\mathcal{R}_{\Phi}^{\dagger} \mathcal{R}$ and $\mathcal{L}_{\Phi}^{\dagger} \mathcal{R}$ are weakly continuous from $\mathcal{E}^{\prime}\left(\mathbb{R}^{2}\right)$ to $\mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$.

Remarks

\triangleright The theorem shows that a perfect reconstruction of a function f is only possible if $\operatorname{supp} \hat{f} \subset W_{\Phi}$

Remarks

\triangleright The theorem shows that a perfect reconstruction of a function f is only possible if $\operatorname{supp} \hat{f} \subset W_{\Phi}$

- The theorem charachterizes the kernel of \mathcal{R}_{Φ} :

$$
\mathcal{R}_{\Phi} f \equiv 0 \quad \text { for any } f \text { with } \operatorname{supp} \hat{f} \subset \mathbb{R}^{2} \backslash W_{\Phi}
$$

Remarks

- The theorem shows that a perfect reconstruction of a function f is only possible if $\operatorname{supp} \hat{f} \subset W_{\Phi}$
- The theorem charachterizes the kernel of \mathcal{R}_{Φ} :

$$
\mathcal{R}_{\Phi} f \equiv 0 \quad \text { for any } f \text { with supp } \hat{f} \subset \mathbb{R}^{2} \backslash W_{\Phi}
$$

$$
\text { Reconstructions for an angular range }\left[-80^{\circ}, 80^{\circ}\right]\left(\Phi=80^{\circ}\right)
$$

Remarks

- The theorem shows that a perfect reconstruction of a function f is only possible if $\operatorname{supp} \hat{f} \subset W_{\Phi}$
- The theorem charachterizes the kernel of \mathcal{R}_{Φ} :

$$
\mathcal{R}_{\Phi} f \equiv 0 \quad \text { for any } f \text { with supp } \hat{f} \subset \mathbb{R}^{2} \backslash W_{\Phi}
$$

$$
\text { Reconstructions for an angular range }\left[-80^{\circ}, 80^{\circ}\right]\left(\Phi=80^{\circ}\right)
$$

Corollary (Quinto (1993); F., Quinto (2013))

Let $f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{2}\right)$. Then

$$
\mathrm{WF}\left(\Lambda\left(P_{\Phi} f\right)\right)=\mathrm{WF}\left(P_{\Phi} f\right) \subset \mathbb{R}^{2} \times W_{\Phi}
$$

Reconstruction at the angular range $\left[-45^{\circ}, 45^{\circ}\right]$

Corollary (Quinto (1993); F., Quinto (2013))

Let $f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{2}\right)$. Then

$$
\mathrm{WF}\left(\Lambda\left(P_{\Phi} f\right)\right)=\mathrm{WF}\left(P_{\Phi} f\right) \subset \mathbb{R}^{2} \times W_{\Phi}
$$

We can only expect to reconstruct singularities (x, ξ) where $\xi \in W_{\Phi}$

Visible singularities (red) at the angular range $\left[-45^{\circ}, 45^{\circ}\right]$

Visible singularities

$$
\mathrm{WF}_{\Phi}(f):=\left\{(x, \xi) \in \mathrm{WF}(f): \xi \in W_{\Phi}\right\}
$$

Visible singularities (red) at the angular range $\left[-45^{\circ}, 45^{\circ}\right]$

Visible singularities

$$
\mathrm{WF}_{\Phi}(f):=\left\{(x, \xi) \in \mathrm{WF}(f): \xi \in W_{\Phi}\right\}
$$

Invisible singularities, (x, ξ) with $\xi \in \mathbb{R}^{2} \backslash \bar{W}_{\Phi}$, are smeared or distorted

Visible singularities (red) at the angular range $\left[-45^{\circ}, 45^{\circ}\right]$

Original

Sinogram for $\left[0^{\circ}, 70^{\circ}\right]$

FBP for $\left[0^{\circ}, 70^{\circ}\right]$

Sinogram for $\left[0^{\circ}, 120^{\circ}\right]$

FBP for $\left[0^{\circ}, 120^{\circ}\right]$

REMARKS ABOUT ILL-POSEDNESS

Recall: In case of full data we have the Sobolev-space estimates

$$
c\|f\|_{H_{0}^{\alpha}} \leq\|\mathcal{R} f\|_{H^{\alpha+1 / 2}} \leq C\|f\|_{H_{0}^{\alpha}}
$$

That is, the tomography problem is mildly ill-posed (of order $1 / 2$)

Remarks about ill-Posedness

Recall: In case of full data we have the Sobolev-space estimates

$$
c\|f\|_{H_{0}^{\alpha}} \leq\|\mathcal{R} f\|_{H^{\alpha+1 / 2}} \leq C\|f\|_{H_{0}^{\alpha}}
$$

That is, the tomography problem is mildly ill-posed (of order $1 / 2$)

Can such an estimate hold for the limited angle Radon transform?

REMARKS ABOUT ILL-POSEDNESS

Recall: In case of full data we have the Sobolev-space estimates

$$
c\|f\|_{H_{0}^{\alpha}} \leq\|\mathcal{R} f\|_{H^{\alpha+1 / 2}} \leq C\|f\|_{H_{0}^{\alpha}}
$$

That is, the tomography problem is mildly ill-posed (of order $1 / 2$)

Can such an estimate hold for the limited angle Radon transform?
\triangleright NO, such Sobolev space cannot hold (for any $\alpha \in \mathbb{R}$,) for the limited angle Radon transform \mathcal{R}_{Φ} ! Therefore, the limited angle tomography is severely ill-posed!

Remarks about ill-posedness

Recall: In case of full data we have the Sobolev-space estimates

$$
c\|f\|_{H_{0}^{\alpha}} \leq\|\mathcal{R} f\|_{H^{\alpha+1 / 2}} \leq C\|f\|_{H_{0}^{\alpha}}
$$

That is, the tomography problem is mildly ill-posed (of order $1 / 2$)

Can such an estimate hold for the limited angle Radon transform?
\triangleright NO, such Sobolev space cannot hold (for any $\alpha \in \mathbb{R}$,) for the limited angle Radon transform \mathcal{R}_{Φ} ! Therefore, the limited angle tomography is severely ill-posed!
\triangleright On the previous slide we have seen that for $\Phi<\pi / 2$ we can always construct a function f that is discontinuous, i.e., $\|f\|_{H^{\alpha}}=\infty\left(f \notin H^{\alpha}\right)$ for $\alpha>1$, for which however $\mathcal{R}_{\Phi} f$ is smooth, i.e., $\left\|\mathcal{R}_{\Phi} f\right\|_{H^{\alpha}}<\infty$ for all $\alpha>1$. Similar constructions can be made for all α. Therefore, the left-hand-side Sobolev-space estimate cannot hold.

Recall: In case of full data we have the Sobolev-space estimates

$$
c\|f\|_{H_{0}^{\alpha}} \leq\|\mathcal{R} f\|_{H^{\alpha+1 / 2}} \leq C\|f\|_{H_{0}^{\alpha}}
$$

That is, the tomography problem is mildly ill-posed (of order $1 / 2$)

Can such an estimate hold for the limited angle Radon transform?
\triangleright NO, such Sobolev space cannot hold (for any $\alpha \in \mathbb{R}$,) for the limited angle Radon transform \mathcal{R}_{Φ} ! Therefore, the limited angle tomography is severely ill-posed!
\triangleright On the previous slide we have seen that for $\Phi<\pi / 2$ we can always construct a function f that is discontinuous, i.e., $\|f\|_{H^{\alpha}}=\infty\left(f \notin H^{\alpha}\right)$ for $\alpha>1$, for which however $\mathcal{R}_{\Phi} f$ is smooth, i.e., $\left\|\mathcal{R}_{\Phi} f\right\|_{H^{\alpha}}<\infty$ for all $\alpha>1$. Similar constructions can be made for all α. Therefore, the left-hand-side Sobolev-space estimate cannot hold.
\triangleright We don't have control over the Fourier region outside of W_{Φ} ! Here, anything can happen and that's where the severe instabilities come from.

Recall: In case of full data we have the Sobolev-space estimates

$$
c\|f\|_{H_{0}^{\alpha}} \leq\|\mathcal{R} f\|_{H^{\alpha+1 / 2}} \leq C\|f\|_{H_{0}^{\alpha}}
$$

That is, the tomography problem is mildly ill-posed (of order $1 / 2$)

Can such an estimate hold for the limited angle Radon transform?
\triangleright NO, such Sobolev space cannot hold (for any $\alpha \in \mathbb{R}$,) for the limited angle Radon transform \mathcal{R}_{Φ} ! Therefore, the limited angle tomography is severely ill-posed!
\triangleright On the previous slide we have seen that for $\Phi<\pi / 2$ we can always construct a function f that is discontinuous, i.e., $\|f\|_{H^{\alpha}}=\infty\left(f \notin H^{\alpha}\right)$ for $\alpha>1$, for which however $\mathcal{R}_{\Phi} f$ is smooth, i.e., $\left\|\mathcal{R}_{\Phi} f\right\|_{H^{\alpha}}<\infty$ for all $\alpha>1$. Similar constructions can be made for all α. Therefore, the left-hand-side Sobolev-space estimate cannot hold.
\triangleright We don't have control over the Fourier region outside of W_{Φ} ! Here, anything can happen and that's where the severe instabilities come from.

- The existence of invisible singularities makes the problem severely (or exponentially) ill-posed

Recall: In case of full data we have the Sobolev-space estimates

$$
c\|f\|_{H_{0}^{\alpha}} \leq\|\mathcal{R} f\|_{H^{\alpha+1 / 2}} \leq C\|f\|_{H_{0}^{\alpha}}
$$

That is, the tomography problem is mildly ill-posed (of order $1 / 2$)

Can such an estimate hold for the limited angle Radon transform?
\triangleright NO, such Sobolev space cannot hold (for any $\alpha \in \mathbb{R}$,) for the limited angle Radon transform \mathcal{R}_{Φ} ! Therefore, the limited angle tomography is severely ill-posed!
\triangleright On the previous slide we have seen that for $\Phi<\pi / 2$ we can always construct a function f that is discontinuous, i.e., $\|f\|_{H^{\alpha}}=\infty\left(f \notin H^{\alpha}\right)$ for $\alpha>1$, for which however $\mathcal{R}_{\Phi} f$ is smooth, i.e., $\left\|\mathcal{R}_{\Phi} f\right\|_{H^{\alpha}}<\infty$ for all $\alpha>1$. Similar constructions can be made for all α. Therefore, the left-hand-side Sobolev-space estimate cannot hold.
\triangleright We don't have control over the Fourier region outside of W_{Φ} ! Here, anything can happen and that's where the severe instabilities come from.

- The existence of invisible singularities makes the problem severely (or exponentially) ill-posed
- If one would use supp $\hat{f} \subset W_{\Phi}$ or $\mathrm{WF}(f) \subset \mathbb{R}^{2} \times W_{\Phi}$ as a-priori information, then we could get the same stability as in the case of full data, i.e., we can show that

$$
c\left\|P_{\Phi} f\right\|_{H_{0}^{\alpha}} \leq\left\|\mathcal{R}_{\Phi} f\right\|_{H^{\alpha+1 / 2}}
$$

Theorem (F., Quinto (2013); Katsevich (1997))

Let $\Phi \in[0, \pi / 2)$ and let $f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{2}\right)$. Let \mathcal{R}^{\dagger} be the $F B P$ reconstruction operator. Then

$$
\mathrm{WF}_{\Phi}(f) \subset \mathrm{WF}\left(\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)\right) \subset \mathrm{WF}_{\bar{\Phi}}(f) \cup \mathcal{A}_{\Phi}(f)
$$

where

$$
\mathcal{A}_{\Phi}=\left\{\left(x+r \theta(\varphi)^{\perp}, \alpha \theta(\varphi)\right):(x, \theta(\varphi)) \in \mathrm{WF}(f), r, \alpha \in \mathbb{R} \backslash\{0\}, \varphi= \pm \Phi\right\}
$$

is the set of added singularities. Here $\theta(\varphi)=(\cos \varphi, \sin \varphi)$ for $\varphi \in[-\pi, \pi)$.

Artifacts are located on straight lines with normal directions $\theta(\pm \Phi)$

Added singularities

$$
\mathcal{A}_{\Phi}=\left\{\left(x+r \theta(\varphi)^{\perp}, \alpha \theta(\varphi)\right):(x, \theta(\varphi)) \in \mathrm{WF}(f), r, \alpha \in \mathbb{R}^{*}, \varphi= \pm \Phi\right\}
$$

Original

Reconstruction for $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$

Set of added singularities $\mathcal{A}_{\frac{\pi}{4}}$

Outline of the proof

\triangleright First note that

$$
\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)=P_{\Phi} f=\mathcal{F}^{-1}\left(\chi_{W_{\Phi}} \cdot \hat{f}\right)=\frac{1}{2 \pi} \check{u}_{\Phi} * f
$$

where

$$
\check{u}_{\Phi}=\mathcal{F}^{-1}\left(\chi_{W_{\Phi}}\right) .
$$

Therefore

$$
\mathrm{WF}\left(\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)\right)=\mathrm{WF}\left(\check{u}_{\Phi} * f\right)
$$

OUtLINE OF THE PROOF
\triangleright First note that

$$
\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)=P_{\Phi} f=\mathcal{F}^{-1}\left(\chi_{W_{\Phi}} \cdot \hat{f}\right)=\frac{1}{2 \pi} \check{u}_{\Phi} * f
$$

where

$$
\check{u}_{\Phi}=\mathcal{F}^{-1}\left(\chi_{W_{\Phi}}\right) .
$$

Therefore

$$
\mathrm{WF}\left(\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)\right)=\mathrm{WF}\left(\check{u}_{\Phi} * f\right)
$$

\triangleright Then, use the following general result from microlocal analysis: If either f or g or both have compact support (as distributions) then

$$
\mathrm{WF}(f * g) \subset\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}(g)\right\}
$$

\triangleright First note that

$$
\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)=P_{\Phi} f=\mathcal{F}^{-1}\left(\chi_{W_{\Phi}} \cdot \hat{f}\right)=\frac{1}{2 \pi} \check{u}_{\Phi} * f
$$

where

$$
\check{u}_{\Phi}=\mathcal{F}^{-1}\left(\chi_{W_{\Phi}}\right) .
$$

Therefore

$$
\mathrm{WF}\left(\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)\right)=\mathrm{WF}\left(\check{u}_{\Phi} * f\right)
$$

\triangleright Then, use the following general result from microlocal analysis: If either f or g or both have compact support (as distributions) then

$$
\mathrm{WF}(f * g) \subset\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}(g)\right\}
$$

\triangleright Applied to our situation, we get

$$
\mathrm{WF}\left(\mathcal{R}^{\dagger} \mathcal{R}_{\Phi} f\right) \subset\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}\left(\check{u}_{\Phi}\right)\right\}
$$

\triangleright First note that

$$
\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)=P_{\Phi} f=\mathcal{F}^{-1}\left(\chi_{W_{\Phi}} \cdot \hat{f}\right)=\frac{1}{2 \pi} \check{u}_{\Phi} * f
$$

where

$$
\check{u}_{\Phi}=\mathcal{F}^{-1}\left(\chi_{W_{\Phi}}\right) .
$$

Therefore

$$
\mathrm{WF}\left(\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)\right)=\mathrm{WF}\left(\check{u}_{\Phi} * f\right)
$$

\triangleright Then, use the following general result from microlocal analysis: If either f or g or both have compact support (as distributions) then

$$
\mathrm{WF}(f * g) \subset\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}(g)\right\}
$$

- Applied to our situation, we get

$$
\mathrm{WF}\left(\mathcal{R}^{\dagger} \mathcal{R}_{\Phi} f\right) \subset\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}\left(\check{u}_{\Phi}\right)\right\}
$$

\triangleright Need to calculate $\mathrm{WF}\left(\breve{u}_{\Phi}\right)$: To that end, note that \breve{u}_{Φ} is a homogeneous distribution as the (inverse) Fourier transform of the homogeneous distribution $u_{\Phi}=\chi_{W_{\Phi}}$. Then, we can use the following general result for homogeneous distributions u :

$$
\begin{aligned}
& (x, \xi) \in \mathrm{WF}(u) \quad \Leftrightarrow \quad(\xi,-x) \in \operatorname{WF}(\hat{u}) \quad \text { for } x \neq 0, \xi \neq 0 \\
& (0, \xi) \in \operatorname{WF}(u) \quad \Leftrightarrow \quad \xi \in \operatorname{sing} \operatorname{supp}(\hat{u})
\end{aligned}
$$

\triangleright First note that

$$
\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)=P_{\Phi} f=\mathcal{F}^{-1}\left(\chi_{W_{\Phi}} \cdot \hat{f}\right)=\frac{1}{2 \pi} \check{u}_{\Phi} * f
$$

where

$$
\check{u}_{\Phi}=\mathcal{F}^{-1}\left(\chi_{W_{\Phi}}\right) .
$$

Therefore

$$
\mathrm{WF}\left(\mathcal{R}^{\dagger}\left(\mathcal{R}_{\Phi} f\right)\right)=\mathrm{WF}\left(\check{u}_{\Phi} * f\right)
$$

\triangleright Then, use the following general result from microlocal analysis: If either f or g or both have compact support (as distributions) then

$$
\mathrm{WF}(f * g) \subset\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}(g)\right\}
$$

\triangleright Applied to our situation, we get

$$
\mathrm{WF}\left(\mathcal{R}^{\dagger} \mathcal{R}_{\Phi} f\right) \subset\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}\left(\check{u}_{\Phi}\right)\right\}
$$

\triangleright Need to calculate $\operatorname{WF}\left(\breve{u}_{\Phi}\right)$: To that end, note that \breve{u}_{Φ} is a homogeneous distribution as the (inverse) Fourier transform of the homogeneous distribution $u_{\Phi}=\chi_{W_{\Phi}}$. Then, we can use the following general result for homogeneous distributions u :

$$
\begin{aligned}
& (x, \xi) \in \mathrm{WF}(u) \quad \Leftrightarrow \quad(\xi,-x) \in \operatorname{WF}(\hat{u}) \quad \text { for } x \neq 0, \xi \neq 0 \\
& (0, \xi) \in \operatorname{WF}(u) \quad \Leftrightarrow \quad \xi \in \operatorname{sing} \operatorname{supp}(\hat{u})
\end{aligned}
$$

\triangleright To calculate $\mathrm{WF}\left(\check{u}_{\Phi}\right)$ we therefore first calculate

$$
\mathrm{WF}\left(\chi_{W_{\Phi}}\right)=\left\{\left(\alpha \theta(\varphi), r \theta^{\perp}(\varphi)\right) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right): \alpha, r \in \mathbb{R} \backslash 0, \varphi= \pm \Phi\right\} \cup\left(\{0\} \times \overline{W_{\Phi}}\right)
$$

OUtLINE OF THE PROOF

- To calculate $\mathrm{WF}\left(\breve{u}_{\Phi}\right)$ we first observe that outside of the origin $(x \neq 0)$ we have

$$
\left(\alpha \theta(\varphi), r \theta^{\perp}(\varphi)\right) \in \mathrm{WF}\left(\chi_{W_{\Phi}}\right) \quad \text { for } \alpha, r \in \mathbb{R} \backslash 0, \varphi= \pm \Phi
$$

OUtLINE OF THE PROOF

- To calculate $\mathrm{WF}\left(\breve{u}_{\Phi}\right)$ we first observe that outside of the origin $(x \neq 0)$ we have

$$
\left(\alpha \theta(\varphi), r \theta^{\perp}(\varphi)\right) \in \mathrm{WF}\left(\chi_{W_{\Phi}}\right) \quad \text { for } \alpha, r \in \mathbb{R} \backslash 0, \varphi= \pm \Phi
$$

- Therefore, by previous result we have

$$
\begin{aligned}
\mathrm{WF}\left(\check{u}_{\Phi}\right) & =\left\{\left(r \theta^{\perp}(\varphi), \alpha \theta(\varphi)\right) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right): \alpha, r \in \mathbb{R} \backslash 0, \varphi= \pm \Phi\right\} \cup\left(\{0\} \times \overline{W_{\Phi}}\right) \\
& =: \mathrm{WF}_{1} \cup \mathrm{WF}_{2}
\end{aligned}
$$

- To calculate $\mathrm{WF}\left(\breve{u}_{\Phi}\right)$ we first observe that outside of the origin $(x \neq 0)$ we have

$$
\left(\alpha \theta(\varphi), r \theta^{\perp}(\varphi)\right) \in \mathrm{WF}\left(\chi_{W_{\Phi}}\right) \quad \text { for } \alpha, r \in \mathbb{R} \backslash 0, \varphi= \pm \Phi
$$

- Therefore, by previous result we have

$$
\begin{aligned}
\mathrm{WF}\left(\breve{u}_{\Phi}\right) & =\left\{\left(r \theta^{\perp}(\varphi), \alpha \theta(\varphi)\right) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right): \alpha, r \in \mathbb{R} \backslash 0, \varphi= \pm \Phi\right\} \cup\left(\{0\} \times \overline{W_{\Phi}}\right) \\
& =: \mathrm{WF}_{1} \cup \mathrm{WF}_{2}
\end{aligned}
$$

- We now apply the result about the wavefront set of convolutions (see previous slide) and obtain the assertion

$$
\begin{aligned}
\mathrm{WF}\left(\mathcal{R}^{\dagger} \mathcal{R}_{\Phi} f\right) \subset & \left.\subset(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}\left(\check{u}_{\Phi}\right)\right\} \\
\subset & \left\{\left(x+r \theta^{\perp}(\varphi), \alpha \theta(\varphi)\right) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right): \alpha, r \in \mathbb{R} \backslash 0,(x, \alpha \theta(\varphi)) \in \mathrm{WF}(f) \varphi= \pm \Phi\right\} \\
& \cup\left\{(x, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f), \xi \in \overline{W_{\Phi}}\right\} \\
& \mathcal{A}_{\Phi} \cup \mathrm{WF}_{\bar{\Phi}}(f)
\end{aligned}
$$

What is the cause of artifacts?

- First observe that if we had

$$
\mathcal{A}_{\Phi}=\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}\left(\check{u}_{\Phi}\right), y \neq 0\right\}
$$

What is the cause of artifacts?
\triangleright First observe that if we had

$$
\mathcal{A}_{\Phi}=\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}\left(\check{u}_{\Phi}\right), y \neq 0\right\},
$$

\triangleright Therefore $\mathcal{A}_{\Phi}=\emptyset$ only if sing supp $\check{u}_{\Phi}=\{0\}$

- First observe that if we had

$$
\mathcal{A}_{\Phi}=\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}\left(\check{u}_{\Phi}\right), y \neq 0\right\},
$$

\triangleright Therefore $\mathcal{A}_{\Phi}=\emptyset$ only if sing supp $\check{u}_{\Phi}=\{0\}$
\triangleright To avoid the generation of additional artifacts, the idea is to develop an FBP type reconstruction formula

$$
\mathcal{R}^{*} P \mathcal{R} f=\frac{1}{4 \pi} f * \check{\kappa}_{\Phi}
$$

such that $\check{\kappa}_{\Phi}$ is a homogeneous distribution with a smooth Fourier transform away from origin (then sing supp $\check{\kappa}_{\Phi}=\{0\}$).

- First observe that if we had

$$
\mathcal{A}_{\Phi}=\left\{(x+y, \xi) \in \mathbb{R}^{2} \times\left(\mathbb{R}^{2} \backslash 0\right):(x, \xi) \in \mathrm{WF}(f),(y, \xi) \in \mathrm{WF}\left(\check{u}_{\Phi}\right), y \neq 0\right\},
$$

\triangleright Therefore $\mathcal{A}_{\Phi}=\emptyset$ only if sing supp $\check{u}_{\Phi}=\{0\}$
\triangleright To avoid the generation of additional artifacts, the idea is to develop an FBP type reconstruction formula

$$
\mathcal{R}^{*} P \mathcal{R} f=\frac{1}{4 \pi} f * \check{\kappa}_{\Phi}
$$

such that $\check{\kappa}_{\Phi}$ is a homogeneous distribution with a smooth Fourier transform away from origin (then sing supp $\check{\kappa}_{\Phi}=\{0\}$).
\triangleright Alternatively, since we know that pseudodifferential operators do not increase wavefront sets, we could formulate the artifact reduction strategy in a more abstract way as follows: Design an FBP reconstruction operator $\mathcal{R}^{*} P$ such that $\mathcal{R}^{*} P \mathcal{R}$ is a standard pseudodifferential operator, then $\mathrm{WF}\left(\mathcal{R}^{*} P \mathcal{R} f\right) \subset \mathrm{WF}(f)$.

Artifact reduction

Theorem (F., Quinto (2013))

Let $\kappa: S^{1} \rightarrow \mathbb{R}$ be a smooth function with $\operatorname{supp}(\kappa) \subset \operatorname{cl}\left(S_{\Phi}^{1}\right)$ and assume $\kappa=1$ on $S_{\Phi^{\prime}}^{1}$ for some $\Phi^{\prime} \in(0, \Phi)$. Let \mathcal{K} be the operator that multiplies by к

$$
\mathcal{K} g(\theta, s)=\kappa(\theta) g(\theta, s) .
$$

Then, the operator

$$
\mathcal{R}^{\dagger} \mathcal{K} \mathcal{R}_{\Phi}
$$

is a standard pseudodifferential operator and for $f \in \mathcal{E}^{\prime}\left(\mathbb{R}^{2}\right)$,

$$
\mathrm{WF}_{\Phi^{\prime}}(f) \subset \mathrm{WF}\left(\mathcal{R}^{\dagger} \mathcal{K}\left(\mathcal{R}_{\Phi} f\right)\right) \subset \mathrm{WF}_{\Phi}(f)
$$

The reconstruction formula $\mathcal{R}^{\dagger} \mathcal{K}\left(\mathcal{R}_{\Phi}\right)$ does not produce additional artifacts!

$$
\mathcal{R}^{\dagger} \mathcal{K} \mathcal{R}_{\Phi} f=\frac{1}{4 \pi} \mathcal{R}^{*} \mathcal{I}^{-1} \mathcal{K} \mathcal{R}_{\Phi} f
$$

Remarks

$$
\mathcal{R}^{\dagger} \mathcal{K} \mathcal{R}_{\Phi} f=\frac{1}{4 \pi} \mathcal{R}^{*} \mathcal{I}^{-1} \mathcal{K} \mathcal{R}_{\Phi} f
$$

\triangleright Preprocessing of limited angle data data $g_{\Phi}=\mathcal{R}_{\Phi} f$:

$$
\bar{g}_{\Phi}(\theta, s)=\kappa_{\Phi}(\theta) \cdot g_{\Phi}(\theta, s)
$$

$$
\mathcal{R}^{\dagger} \mathcal{K} \mathcal{R}_{\Phi} f=\frac{1}{4 \pi} \mathcal{R}^{*} \mathcal{I}^{-1} \mathcal{K} \mathcal{R}_{\Phi} f
$$

\triangleright Preprocessing of limited angle data data $g_{\Phi}=\mathcal{R}_{\Phi} f$:

$$
\bar{g}_{\Phi}(\theta, s)=\kappa_{\Phi}(\theta) \cdot g_{\Phi}(\theta, s)
$$

- Modification of the FBP filter in the Fourier domain:

$$
\hat{\psi}(\theta, r)=|r| \quad \mapsto \quad \hat{\psi}_{\Phi}(\theta, r)=\kappa_{\Phi}(\theta)|r|
$$

Remarks

$$
\mathcal{R}^{\dagger} \mathcal{K} \mathcal{R}_{\Phi} f=\frac{1}{4 \pi} \mathcal{R}^{*} \mathcal{I}^{-1} \mathcal{K} \mathcal{R}_{\Phi} f
$$

\triangleright Preprocessing of limited angle data data $g_{\Phi}=\mathcal{R}_{\Phi} f$:

$$
\bar{g}_{\Phi}(\theta, s)=\kappa_{\Phi}(\theta) \cdot g_{\Phi}(\theta, s)
$$

- Modification of the FBP filter in the Fourier domain:

$$
\hat{\psi}(\theta, r)=|r| \quad \mapsto \quad \hat{\psi}_{\Phi}(\theta, r)=\kappa_{\Phi}(\theta)|r|
$$

Δ Preconditioner for the limited angle Radon transform:

$$
\mathcal{R}_{\Phi} \quad \mapsto \quad \mathcal{K} \mathcal{R}_{\Phi}
$$

FBP

artifact reduced FBP

Difference

Lambda

artifact reduced Lambda

Difference

Thanks!

