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A REMINDER ON FBP TYPE INVERSION FORMULAS

We consider the Radon transform R in 2D and filtered backprojection inversion formulas.

Data: g = R f .

. Classical reconstruction:

f (x) =
1

4π
R∗I−1

s g =
1

4π
R∗(−∂2

s )1/2g

=
1

4π

∫
S 1

I−1
s g(θ, x · θ) dθ

=
1

4π

∫
S 1

[ψ ∗s g](θ, x · θ) dθ,

where the filter ψ is defined in the Fourier domain via ψ̂(σ) = |σ|.

. Lambda reconstruction:

Λ f (x) =
1

4π
R∗(−∂2

s )g =
1

4π

∫
S 1

[ψΛ ∗s g](θ, x · θ) dθ

where the filter ψ is defined in the Fourier domain via ψ̂Λ(σ) = |σ|2.
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GENERAL FORM FBP TYPE INVERSION FORMULAS

. In Lambda reconstruction a differential operator (−∂2
s ) is used as filter, which can be written in

terms of the Fourier transform as follows (recall F (∂sg) = iσ · ĝ):

(−∂2
s )g(s) = F −1

(
|σ|2 ĝ(σ)

)
= (2π)−1/2

∫
R
|σ|2 ĝ(σ)eisσ ds.

. In classical reconstructions a fractional power of a differential operator (−∂2
s )−1/2 is used as filter.

We have a similar representation in the Fourier domain

(−∂2
s )−1/2g(s) = F −1 (|σ| ĝ(σ)) = (2π)−1/2

∫
R
|σ| ĝ(σ)eisσ ds.

However, the difference is huge as this operator is not local any more (involves Hilbert
transforms).

This is a so-called pseudodifferential operator.

. Let P be any of the above filters, then reconstruction means applying the operator

R† := R∗P
to data g = R f .

. General FBP type reconstruction formulas use general pseudodifferential operators P as
filters.
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GENERAL FORM FBP TYPE INVERSION FORMULAS

Since FBP type reconstructions are so easy to implement and since the yield very fast
reconstructions, the are applied to all kinds of tomographic data, in particular to incomplete data

. Limited angle data

. Sparse angle data

. Interior data

. Exterior data

. . . .

What do we reconstruct?
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 1

Original FBP Lambda

[0◦, 20◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 1

Original FBP Lambda

[0◦, 40◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 1

Original FBP Lambda

[0◦, 60◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 1

Original FBP Lambda

[0◦, 80◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 1

Original FBP Lambda

[0◦, 100◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 1

Original FBP Lambda

[0◦, 120◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 1

Original FBP Lambda

[0◦, 140◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 1

Original FBP Lambda

[0◦, 160◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 1

Original FBP Lambda

[0◦, 180◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 2

Original FBP Lambda

[0◦, 90◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 2

Original FBP Lambda

[20◦, 110◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 2

Original FBP Lambda

[40◦, 130◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 2

Original FBP Lambda

[60◦, 150◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 2

Original FBP Lambda

[80◦, 170◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 2

Original FBP Lambda

[100◦, 190◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 2

Original FBP Lambda

[120◦, 210◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 2

Original FBP Lambda

[140◦, 230◦]
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LIMITED ANGLE RECONSTRUCTIONS: EXPERIMENT 2

Original FBP Lambda

[160◦, 250◦]
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CHALLENGES IN LIMITED VIEW TOMOGRAPHY

Observations at a first glance:
. Only certain features of the original object can be reconstructed

. Artifacts are generated

Goal:
. Characterize image features that can be reliably reconstructed?

. Develop strategy to reduce artifacts?

Observations at a second glance:
. Common characteristic features for both types of reconstructions are edges

. Information about edges is given in terms of projection directions
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WHAT ARE EDGES?

Practically: Density jumps, boundaries between regions, etc.

Mathematically: Where the function is not smooth→ singularities.

Edges are local and oriented: What’s an appropriate mathematical framework?
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WHAT ARE EDGES?

Practically: Density jumps, boundaries between regions, etc.

Mathematically: Where the function is not smooth→ singularities.

Edges are local and oriented: What’s an appropriate mathematical framework?

Image processing: Location of singularities = locations of high gradient magnitude;

Direction of singularities = gradient directions
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f Singularities of f



WHAT ARE EDGES?

Practically: Density jumps, boundaries between regions, etc.

Mathematically: Where the function is not smooth→ singularities.

Edges are local and oriented: What’s an appropriate mathematical framework?

More powerful framework: Microlocal Analysis

9 Mathematics of computerized tomography Jürgen Frikel (DTU Compute) 18.11.2015
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TODAY

. Global smoothness vs. decay of Fourier transform

. Singular locations

. Singular directions

. Wavefront sets: simultaneous description of singular locations and directions

. Examples
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GLOBAL SMOOTHNESS VS. DECAY OF FOURIER TRANSFORM

In what follows, we only consider real functions f : R2 → R.

The smoothness of any function f can be charachterized by means of the decay of its Fourier
transform f̂ :

f ∈ Ck ⇔ f̂ (ξ) = O(|ξ|−k) for |ξ| → ∞.
In particular,

f ∈ C∞ ⇔ f̂ (ξ) = O(|ξ|−k) for all k ∈ N.

Notation: A function which satisfies f (x) = O(|x|−k) for all k ∈ N is called rapidly decreasing. In all
other cases slowly decreasing.

Definition

A function f which is not C∞ is called singular.

Equivalently, f is singular if the Fourier transform does not decay rapidly.

. Above relations can be proven by using the property F (Dα f ) = i|α|ξαF f

. Above relations also hold for distributions in D′ and S′

. If the Fourier transform of f has compact support (fastest decay one can imagine), then it can
be shown that the function f is analytic (Paley-Wiener)

. One can also use the above relations to define smoothness of order α ∈ R (Sobolev-Spaces)
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GLOBAL SMOOTHNESS VS. DECAY OF FOURIER TRANSFORM

Limitation:

. No information about locations or directions is provided.

. Global smoothness is related to a non-directional decay of the Fourier transform.

Example: Let f be a function which is smooth except at the point 0 ∈ R2, i.e. f ∈ C∞(R2 \ 0). Let
y ∈ R2 be arbitrary and let fy(x) = f (x − y). Then

f̂y(ξ) = e−iξy f̂ (ξ)

and hence ∣∣∣ f̂y(ξ)
∣∣∣ =

∣∣∣ f̂ (ξ)
∣∣∣ .

That is, we can generate functions f and fy that have equal decay properties but arbitrarily
different locations of jums, discontinuities, etc..

Hence, the decay of the Fourier transform does not provide information about the location of
discontinuities.
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SINGULAR LOCATIONS

How can we gain knowledge about locations of jump, discontinuieties, etc.?

What is a proper concept of a singularity that can be used in a distributional setting?

Idea: Localize and study decay of the Fourier transforms!

Definition

. Let f be a function or distribution. We say that x0 ∈ R2 is a regular point of f , if there exists a
(cut-off) function ϕ ∈ C∞c (R2) with ϕ(x0) , 0 such that the Fourier transform F (ϕ f ) decays rapidly
(or in other words s.t. ϕ f ∈ C∞(R2)).

. The complement of the (open) set of all regular points is called the singular support of f and is
denoted by sing supp( f ). It can be explicitly stated as

sing supp( f ) =
{
x ∈ R2 : ∀ϕ ∈ C∞c (R2), ϕ(x) , 0 : ϕ f < C∞(R2)

}
.

. sing supp( f ) ⊂ supp( f )

. sing supp( f ) = ∅ iff f ∈ C∞(R2)
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SINGULAR DIRECTIONS

So far: Locations of singularities are given by the singular support and x ∈ sing supp f implies that
F (ϕ f ) decays slowly for any cut-off function ϕ(x0) , 0.

Can there exist directions along which F (ϕ f ) has rapid decay?

(Example with a line singularity suggests that this might be the case)

Definition

. Let f be a be compactly supported distribution. A direction ξ0 ∈ R2 \ 0 is called regular direction
if there exists a conic neighborhood N of ξ0 such that f̂ decays fast in N.

. The complement of the (open) set of all regular directions is called the frequency set of f and is
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LOCATION AND DIRECTION OF A SINGULARITY

How can we combine the concepts of location and direction of a singularity?

The property Σ(ϕ f ) ⊂ Σ( f ) is the key.

Idea: ZOOM IN

Choose ϕk ∈ C∞c (R2) such that supp(ϕk)→ {x} as k → ∞, then the idea is that the limit limk→∞ Σ(ϕ f )
will contain only singular directions that correspond to the singularity in x.

Definition

For a distribution f and x0 ∈ R2( f ) we define the localized frequency set as

Σx0 ( f ) =
⋂

ϕ∈C∞c ,ϕ(x0),0

Σ(ϕ f ).

. Σx( f ) ⊂ Σ( f )

. Σx( f ) , ∅ iff x ∈ sing supp( f )

. Σx( f ) is the set of singular directions of f at location x
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THE WAVEFRONT SET

Definition

The wavefront set of a distribution is the set of all tuples (x, ξ) where x is a singular location of f
and ξ is a singular direction of f at x. That is,

WF( f ) =
{
(x, ξ) ∈ R2 × (R2 \ 0) : ξ ∈ Σx( f )

}
.

WF simultaneously describes locations and directions of singularities:

π1(WF( f )) = sing supp( f ), π2(WF( f )) = Σ( f ),

where π1(x, ξ) = x and π2(x, ξ) = ξ.

Alternative representation:
WF( f ) =

⋃
x∈sing supp

{x} × Σx( f ).

A characterization of WF in terms of the complement:

(x0, ξ0) ∈WF( f ) ⇔ ∃ϕ ∈ C∞c (R2), ϕ(x0) , 0 : ξ0 < Σ(ϕ f )

⇔ ∃ϕ ∈ C∞c (R2), ϕ(x0) , 0 : ∃ conic neighb. N(ξ0) : ∀k ∈ N : F (ϕ f ) = O(|ξ|−k)
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EXAMPLES

Example:

Ω ⊂ R2 such that the boundary ∂Ω is a smooth manifold:

(x, ξ) ∈ WF(χΩ) ⇔ x ∈ ∂Ω, and ξ ∈ Nx,

where Nx is the normal space to ∂Ω at x ∈ ∂Ω.
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f distribution with

supp( f ) ⊂ D

bx

ξ

b
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(x, ξdx) ∈WF( f )

17 Mathematics of computerized tomography Jürgen Frikel (DTU Compute) 18.11.2015



EXAMPLES

Example:

Ω ⊂ R2 such that the boundary ∂Ω is a smooth manifold:

(x, ξ) ∈ WF(χΩ) ⇔ x ∈ ∂Ω, and ξ ∈ Nx,

where Nx is the normal space to ∂Ω at x ∈ ∂Ω.

17 Mathematics of computerized tomography Jürgen Frikel (DTU Compute) 18.11.2015

What happens at crossings and corners?

If x is a corner or a crossing singularity (or of similar nature), Σx( f ) = R2 \ 0.

f

bx

ξ

(x, ξ) ∈WF( f )

Singularities of f
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PSEUDODIFFERENTIAL OPERATORS ΨDO’S

Theorem (Pseudolocal property of ΨDO’s)

For any pseudodifferential operator P, we have

WF(P f ) ⊂WF( f ).

If P is elliptic, we even have
WF(P f ) = WF( f ).

. Pseudodifferential operators do not create new singularities!

. The result is also valid for differential operators P as they are special cases of ΨDo’s.

. The result can be also used in order to compute WF, e.g. for Heaviside function H we have
H′ = δ so WF(H) = WF(δ) = {0}.

Example:

The Riesz-Potentials
Iα f = (−∆)−α/2 f = F −1(|ξ|−α f̂ (ξ))

are elliptic pseudodifferential operators.
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CONSEQUENCES FOR TOMOGRAPHY

. In Λ-tomography we reconstruct Λ f = I−1 f . By ellipticity and the pseudolocal property we get

WF(Λ f ) = WF( f ).

Λ-tomography reconstructs all singularities of f .

. From the inversion formula f = const · I1−nR∗R f we get similarly

WF(R∗R f ) = WF( f ).

. Although singularities are differently pronounced in f , R∗R f and Λ f , we have

WF( f ) = WF(R∗R f ) = WF(Λ f ).

WF does not quantify the strength of singularities. To quantify the strength of singularities, a
refined notion of the wavefront set can be defined (Sobolev wavefront set).

. For general FBP type reconstruction operators R∗P with general pseudodifferential operators P
as filters, a minimum requirement on the filter can be formulated as

WF(R∗PR f ) !
= WF( f ).

In general, this is not even if P is elliptic.
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Thanks!

Next week: Microlocal analysis in limited angle tomography
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