LECTURES ON MICROLOCAL CHARACTERIZATIONS IN LIMITED-ANGLE TOMOGRAPHY

Jürgen Frikel

DTU Compute Department of Applied Mathematics and Computer Science 1 Today: Introduction to the mathematics of computerized tomography

- **1 Today:** Introduction to the mathematics of computerized tomography
- 2 Nov. 18: Introduction to the basic concepts of microlocal analysis

- 1 Today: Introduction to the mathematics of computerized tomography
- **2 Nov. 18:** Introduction to the basic concepts of microlocal analysis
- 3 Nov. 25: Microlocal analysis of limited angle reconstructions in tomography I

- 1 Today: Introduction to the mathematics of computerized tomography
- **2 Nov. 18:** Introduction to the basic concepts of microlocal analysis
- (3) Nov. 25: Microlocal analysis of limited angle reconstructions in tomography I
- **4 Dec. 02:** Microlocal analysis of limited angle reconstructions in tomography I

- **1 Today:** Introduction to the mathematics of computerized tomography
- **2 Nov. 18:** Introduction to the basic concepts of microlocal analysis
- (3) Nov. 25: Microlocal analysis of limited angle reconstructions in tomography I
- **4 Dec. 02:** Microlocal analysis of limited angle reconstructions in tomography I

References:

- F. Natterer, The mathematics of computerized tomography. Stuttgart: B. G. Teubner, 1986.
- JF and E. T. Quinto, *Characterization and reduction of artifacts in limited angle tomography*, Inverse Problems 29(12):125007, December 2013.

ORIGINS OF TOMOGRAPHY

Image taken from www.wikipedia.org

J. J. Reiden

Johan Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte Längs gewisser Manningsfaltigkeiten, Berichte Sächsische Akadamie der Wissenschaften, Leipzig, Math.-Phys. Kl., 69, pp. 262- 277, 1917

ORIGINS OF TOMOGRAPHY

Allan Cormack

Godfrey Hounsfield

The **Nobel Prize in Physiology or Medicine 1979** was awarded jointly to Allan M. Cormack and Godfrey N. Hounsfield **for the development of computer assisted tomography**

First scanner, \approx \$300

Modern scanner, > \$1 million

ORIGINS OF TOMOGRAPHY

First clinical scan 1971

Modern scan*

*Case courtesy of Dr Maxime St-Amant, Radiopaedia.org

Analytical approach to computerized tomography

- Principle of tomography
- Radon transform a mathematical model of tomography
- Reconstruction via backprojection
- Fourier slice theorem
- Inversion formulas & Filtered backprojection
- Ill-posedness & regularization

X-rays are attenuated when traveling through object according to

$$\frac{\mathrm{d}I}{\mathrm{d}t} = -f(\boldsymbol{\gamma}(t)) \cdot I(t) \quad \text{for } t \in \mathbb{R}$$
$$I(0) = I_0$$

f = attenuation coefficient, γ = x-ray path

 $\gamma(t) = s \cdot \theta + t \cdot \theta^{\perp}$ = line with direction θ^{\perp} starting at $x_{detector} = s\theta$

X-rays are attenuated when traveling through object according to

$$\frac{\mathrm{d}I}{\mathrm{d}t} = -f(\boldsymbol{\gamma}(t)) \cdot I(t) \quad \text{for } t \in \mathbb{R}$$
$$I(0) = I_0$$

f = attenuation coefficient, γ = x-ray path $\gamma(t) = s \cdot \theta + t \cdot \theta^{\perp}$ = line with direction θ^{\perp} starting at $x_{detector} = s\theta$

Solution of the initial value problem is given by

$$I(\theta, s) = I_0 \cdot \exp\left\{-\int_0^{t_{\text{detector}}} f(s \cdot \theta + t \cdot \theta^{\perp}) \, \mathrm{d}t\right\}$$

X-rays are attenuated when traveling through object according to

$$\frac{dI}{dt} = -f(\gamma(t)) \cdot I(t) \quad \text{for } t \in \mathbb{R}$$
$$I(0) = I_0$$

So.

f = attenuation coefficient, γ = x-ray path $\gamma(t) = s \cdot \theta + t \cdot \theta^{\perp}$ = line with direction θ^{\perp} starting at $x_{detector} = s\theta$

Solution of the initial value problem is given by

$$I(\theta, s) = I_0 \cdot \exp\left\{-\int_0^{t_{\text{detector}}} f(s \cdot \theta + t \cdot \theta^{\perp}) \, \mathrm{d}t\right\} = I_0 \cdot \exp\left\{-\int_{\boldsymbol{L}(\theta, s)} f(x) \, \mathrm{d}x\right\}.$$

X-rays are attenuated when traveling through object according to

$$\frac{dI}{dt} = -f(\gamma(t)) \cdot I(t) \quad \text{for } t \in \mathbb{R}$$
$$I(0) = I_0$$

f = attenuation coefficient, γ = x-ray path $\gamma(t) = s \cdot \theta + t \cdot \theta^{\perp}$ = line with direction θ^{\perp} starting at $x_{detector} = s\theta$

Solution of the initial value problem is given by

$$I(\theta, s) = I_0 \cdot \exp\left\{-\int_0^{t_{\text{detector}}} f(s \cdot \theta + t \cdot \theta^{\perp}) \, \mathrm{d}t\right\} = I_0 \cdot \exp\left\{-\int_{\boldsymbol{L}(\theta, s)} f(x) \, \mathrm{d}x\right\}.$$

Mathematical model of the measurement process

$$\mathcal{R}f(\theta, s) = \int_{L(\theta, s)} f(x) \, \mathrm{d}x = \ln\left(\frac{I_0}{I(\theta, s)}\right)$$

I. Algebraic reconstruction

- Fully discretize formulation of the problem
- \rightarrow Linear system of equations Rx = y

This is an algebraic problem!

Examples: ART, SART, SIRT, statistical reconstruction methods such as ML-EM, variational methods, etc.

I. Algebraic reconstruction

- Fully discretize formulation of the problem
- \rightarrow Linear system of equations Rx = y

This is an algebraic problem!

Examples: ART, SART, SIRT, statistical reconstruction methods such as ML-EM, variational methods, etc.

II. Analytical reconstruction

- Study of the continuous problem (above)
- Derivation of inversion formulas
- Discretization of analytic reconstruction formulas

Examples: Filtered backprojection (FBP), Fourier inversion, etc.

- I. Algebraic reconstruction
- Fully discretize formulation of the problem
- \rightarrow Linear system of equations Rx = y

This is an algebraic problem!

Examples: ART, SART, SIRT, statistical reconstruction methods such as ML-EM, variational methods, etc.

II. Analytical reconstruction

- Study of the continuous problem (above)
- Derivation of inversion formulas
- Discretization of analytic reconstruction formulas

Examples: Filtered backprojection (FBP), Fourier inversion, etc.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a suitably chosen function. The Radon transform of f, denoted by $\mathcal{R}f$, is defined as

(1)
$$\mathcal{R}f(\theta, s) = \int_{H(\theta, s)} f(x) \, \mathrm{d}\sigma(x), \qquad (\theta, s) \in S^{n-1} \times \mathbb{R},$$

where

$$H(\theta, s) = \{ x \in \mathbb{R}^n : \langle x, \theta \rangle = s \}$$

is the hyperplane with normal vector θ and the signed distance from the origin *s*.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a suitably chosen function. The Radon transform of f, denoted by $\mathcal{R}f$, is defined as

(1)
$$\mathcal{R}f(\theta, s) = \int_{H(\theta, s)} f(x) \, \mathrm{d}\sigma(x), \qquad (\theta, s) \in S^{n-1} \times \mathbb{R},$$

where

$$H(\theta, s) = \{ x \in \mathbb{R}^n : \langle x, \theta \rangle = s \}$$

is the hyperplane with normal vector θ and the signed distance from the origin *s*.

Notation: $\mathcal{R}_{\theta}f(s) = \mathcal{R}f(\theta, s)$. This function called **projections along direction** θ .

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a suitably chosen function. The Radon transform of f, denoted by $\mathcal{R}f$, is defined as

(1)
$$\mathcal{R}f(\theta, s) = \int_{H(\theta, s)} f(x) \, \mathrm{d}\sigma(x), \qquad (\theta, s) \in S^{n-1} \times \mathbb{R},$$

where

$$H(\theta, s) = \{ x \in \mathbb{R}^n : \langle x, \theta \rangle = s \}$$

is the hyperplane with normal vector θ and the signed distance from the origin *s*.

Notation: $\mathcal{R}_{\theta}f(s) = \mathcal{R}f(\theta, s)$. This function called **projections along direction** θ .

• Radon transform maps functions to its hyperplane itegrals,

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a suitably chosen function. The Radon transform of f, denoted by $\mathcal{R}f$, is defined as

(1)
$$\mathcal{R}f(\theta, s) = \int_{H(\theta, s)} f(x) \, \mathrm{d}\sigma(x), \qquad (\theta, s) \in S^{n-1} \times \mathbb{R},$$

where

$$H(\theta, s) = \{ x \in \mathbb{R}^n : \langle x, \theta \rangle = s \}$$

is the hyperplane with normal vector θ and the signed distance from the origin *s*.

Notation: $\mathcal{R}_{\theta}f(s) = \mathcal{R}f(\theta, s)$. This function called **projections along direction** θ .

- · Radon transform maps functions to its hyperplane itegrals,
- Radon transform is an even function $\mathcal{R}f(-\theta, -s) = \mathcal{R}f(\theta, s) \rightsquigarrow$ Measurment only w.r.t. half-sphere

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a suitably chosen function. The Radon transform of f, denoted by $\mathcal{R}f$, is defined as

(1)
$$\mathcal{R}f(\theta, s) = \int_{H(\theta, s)} f(x) \, \mathrm{d}\sigma(x), \qquad (\theta, s) \in S^{n-1} \times \mathbb{R},$$

where

$$H(\theta, s) = \{ x \in \mathbb{R}^n : \langle x, \theta \rangle = s \}$$

is the hyperplane with normal vector θ and the signed distance from the origin *s*.

Notation: $\mathcal{R}_{\theta}f(s) = \mathcal{R}f(\theta, s)$. This function called **projections along direction** θ .

- · Radon transform maps functions to its hyperplane itegrals,
- Radon transform is an even function $\mathcal{R}f(-\theta, -s) = \mathcal{R}f(\theta, s) \rightsquigarrow$ Measurment only w.r.t. half-sphere
- Continuity of the Radon transform = Stability of the measurement process

 \mathcal{R} is continuous on many standard function spaces, such as $L^1(\mathbb{R}^n)$, $L^2(\Omega)$, $\mathcal{S}(\mathbb{R}^n)$ and many distributional spaces.

 $f : \mathbb{R}^2 \to \mathbb{R}$ is radial if the value f(x) only depends on ||x||, i.e., if there is a function $\varphi : [0, \infty) \to \mathbb{R}$ such that $f(x) = \varphi(||x||)$.

 $f : \mathbb{R}^2 \to \mathbb{R}$ is radial if the value f(x) only depends on ||x||, i.e., if there is a function $\varphi : [0, \infty) \to \mathbb{R}$ such that $f(x) = \varphi(||x||)$.

In this case we have

$$\mathcal{R}f(\theta, s) = \int_{\mathbb{R}} f(s\theta + t\theta^{\perp}) \, \mathrm{d}t$$
$$= \int_{-\infty}^{\infty} \varphi(\sqrt{s^2 + t^2}) \, \mathrm{d}t$$

 $f : \mathbb{R}^2 \to \mathbb{R}$ is radial if the value f(x) only depends on ||x||, i.e., if there is a function $\varphi : [0, \infty) \to \mathbb{R}$ such that $f(x) = \varphi(||x||)$.

In this case we have

$$\mathcal{R}f(\theta, s) = \int_{\mathbb{R}} f(s\theta + t\theta^{\perp}) \,\mathrm{d}t$$
$$= \int_{-\infty}^{\infty} \varphi(\sqrt{s^2 + t^2}) \,\mathrm{d}t$$
$$= 2 \int_{0}^{\infty} \varphi(\sqrt{s^2 + t^2}) \,\mathrm{d}t$$

 $f : \mathbb{R}^2 \to \mathbb{R}$ is radial if the value f(x) only depends on ||x||, i.e., if there is a function $\varphi : [0, \infty) \to \mathbb{R}$ such that $f(x) = \varphi(||x||)$.

In this case we have

$$\mathcal{R}f(\theta, s) = \int_{\mathbb{R}} f(s\theta + t\theta^{\perp}) dt$$
$$= \int_{-\infty}^{\infty} \varphi(\sqrt{s^2 + t^2}) dt$$
$$= 2 \int_{0}^{\infty} \varphi(\sqrt{s^2 + t^2}) dt$$

substitution $r^2 = s^2 + t^2$ gives 2r dr = 2t dt, and hence

$$= 2 \int_{s}^{\infty} \frac{\varphi(r)r}{\sqrt{r^2 - s^2}} \,\mathrm{d}r$$

 $f : \mathbb{R}^2 \to \mathbb{R}$ is radial if the value f(x) only depends on ||x||, i.e., if there is a function $\varphi : [0, \infty) \to \mathbb{R}$ such that $f(x) = \varphi(||x||)$.

In this case we have

$$\mathcal{R}f(\theta, s) = \int_{\mathbb{R}} f(s\theta + t\theta^{\perp}) dt$$
$$= \int_{-\infty}^{\infty} \varphi(\sqrt{s^2 + t^2}) dt$$
$$= 2 \int_{0}^{\infty} \varphi(\sqrt{s^2 + t^2}) dt$$

substitution $r^2 = s^2 + t^2$ gives 2r dr = 2t dt, and hence

$$= 2 \int_{s}^{\infty} \frac{\varphi(r)r}{\sqrt{r^2 - s^2}} \,\mathrm{d}r$$

The Radon transform of radial functions is independent of θ !

 \sim 1 Projection enough to reconstruct a radial function

Example: $f(x) = \chi_{B(0,1)}(x) = \chi_{[0,1]}(||x||)$:

$$\mathcal{R}f(\theta, s) = 2 \int_{s}^{\infty} \frac{\chi_{[0,1]}(r)r}{\sqrt{r^2 - s^2}} \,\mathrm{d}r$$

Example: $f(x) = \chi_{B(0,1)}(x) = \chi_{[0,1]}(||x||)$:

$$\mathcal{R}f(\theta, s) = 2 \int_{s}^{\infty} \frac{\chi_{[0,1]}(r)r}{\sqrt{r^2 - s^2}} \,\mathrm{d}r$$

s > 1: $\mathcal{R}f(\theta, s) = 0$

Example: $f(x) = \chi_{B(0,1)}(x) = \chi_{[0,1]}(||x||)$:

$$\mathcal{R}f(\theta, s) = 2 \int_{s}^{\infty} \frac{\chi_{[0,1]}(r)r}{\sqrt{r^2 - s^2}} \,\mathrm{d}r$$

s>1 : $\mathcal{R}f(\theta,s)=0$

$$s < 1$$
: $\mathcal{R}f(\theta, s) = 2 \int_{s}^{1} \frac{r}{\sqrt{r^2 - s^2}} \, \mathrm{d}r = 2 \left[r^{1/2} \right]_{0}^{1 - s^2} = 2 \sqrt{1 - s^2}$

Example: $f(x) = \chi_{B(0,1)}(x) = \chi_{[0,1]}(||x||)$:

$$\mathcal{R}f(\theta, s) = 2 \int_{s}^{\infty} \frac{\chi_{[0,1]}(r)r}{\sqrt{r^2 - s^2}} \,\mathrm{d}r$$

$$s > 1$$
: $\mathcal{R}f(\theta, s) = 0$

$$s < 1$$
: $\mathcal{R}f(\theta, s) = 2 \int_{s}^{1} \frac{r}{\sqrt{r^2 - s^2}} \, \mathrm{d}r = 2 \Big[r^{1/2} \Big]_{0}^{1-s^2} = 2 \sqrt{1 - s^2}$

Let *g* be a (sinogram) function on $S^{n-1} \times \mathbb{R}$. Given a projection along the direction θ , we define the backprojection operators along direction θ via

 $\mathcal{R}^*_\theta g(x) = g(\theta, x \cdot \theta).$

Let *g* be a (sinogram) function on $S^{n-1} \times \mathbb{R}$. Given a projection along the direction θ , we define the backprojection operators along direction θ via

$$\mathcal{R}^*_{\theta}g(x) = g(\theta, x \cdot \theta).$$

The **backprojection operator** \mathcal{R}^* as follows:

$$\mathcal{R}^*g(x) = \int_{S^{n-1}} \mathcal{R}^*_{\theta}g(x) \, \mathrm{d}\sigma(\theta) = \int_{S^{n-1}} g(\theta, x \cdot \theta) \, \mathrm{d}\sigma(\theta).$$

Let *g* be a (sinogram) function on $S^{n-1} \times \mathbb{R}$. Given a projection along the direction θ , we define the backprojection operators along direction θ via

$$\mathcal{R}^*_{\theta}g(x) = g(\theta, x \cdot \theta).$$

The **backprojection operator** \mathcal{R}^* as follows:

$$\mathcal{R}^*g(x) = \int_{S^{n-1}} \mathcal{R}^*_{\theta}g(x) \, \mathrm{d}\sigma(\theta) = \int_{S^{n-1}} g(\theta, x \cdot \theta) \, \mathrm{d}\sigma(\theta).$$

• The value $\mathcal{R}^*g(x)$ is an average of all measurements $g = \mathcal{R}f(\theta, s)$ which correspond to hyperplanes passing through the point $x \in \mathbb{R}^n$.

Definition

Let *g* be a (sinogram) function on $S^{n-1} \times \mathbb{R}$. Given a projection along the direction θ , we define the backprojection operators along direction θ via

$$\mathcal{R}^*_{\theta}g(x) = g(\theta, x \cdot \theta).$$

The **backprojection operator** \mathcal{R}^* as follows:

$$\mathcal{R}^*g(x) = \int_{S^{n-1}} \mathcal{R}^*_{\theta}g(x) \, \mathrm{d}\sigma(\theta) = \int_{S^{n-1}} g(\theta, x \cdot \theta) \, \mathrm{d}\sigma(\theta).$$

- The value $\mathcal{R}^*g(x)$ is an average of all measurements $g = \mathcal{R}f(\theta, s)$ which correspond to hyperplanes passing through the point $x \in \mathbb{R}^n$.
- The operator \mathcal{R}^* is the L^2 Hilbert space adjoint of the Radon transform \mathcal{R} , i.e., for $f \in L^2(\Omega)$ and $g \in L^2(S^{n-1} \times \mathbb{R})$

$$\int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R}f(\theta, s)g(\theta, s) \,\mathrm{d}\theta \,\mathrm{d}s = \int_{\mathbb{R}^n} f(x)\mathcal{R}^*g(x) \,\mathrm{d}x.$$

Definition

Let *g* be a (sinogram) function on $S^{n-1} \times \mathbb{R}$. Given a projection along the direction θ , we define the backprojection operators along direction θ via

$$\mathcal{R}^*_{\theta}g(x) = g(\theta, x \cdot \theta).$$

The **backprojection operator** \mathcal{R}^* as follows:

$$\mathcal{R}^*g(x) = \int_{S^{n-1}} \mathcal{R}^*_{\theta}g(x) \, \mathrm{d}\sigma(\theta) = \int_{S^{n-1}} g(\theta, x \cdot \theta) \, \mathrm{d}\sigma(\theta).$$

- The value $\mathcal{R}^*g(x)$ is an average of all measurements $g = \mathcal{R}f(\theta, s)$ which correspond to hyperplanes passing through the point $x \in \mathbb{R}^n$.
- The operator \mathcal{R}^* is the L^2 Hilbert space adjoint of the Radon transform \mathcal{R} , i.e., for $f \in L^2(\Omega)$ and $g \in L^2(S^{n-1} \times \mathbb{R})$

$$\int_{S^{n-1}} \int_{\mathbb{R}} \mathcal{R}f(\theta, s)g(\theta, s) \, \mathrm{d}\theta \, \mathrm{d}s = \int_{\mathbb{R}^n} f(x)\mathcal{R}^*g(x) \, \mathrm{d}x.$$

• As an adjoint operator, \mathcal{R}^* is **continuous** whenever \mathcal{R} is

For $f \in \mathcal{S}(\mathbb{R}^n)$ we have

$$\mathcal{R}^*\mathcal{R}f(x) = \left|S^{n-2}\right| \cdot \left(f * \frac{1}{\|\cdot\|}\right)(x)$$

For $f \in \mathcal{S}(\mathbb{R}^n)$ we have

$$\mathcal{R}^*\mathcal{R}f(x) = \left|S^{n-2}\right| \cdot \left(f * \frac{1}{\|\cdot\|}\right)(x)$$

Original

Backprojection reconstruction

For $f \in \mathcal{S}(\mathbb{R}^n)$ we have

$$\mathcal{R}^*\mathcal{R}f(x) = \left|S^{n-2}\right|\cdot\left(f*\frac{1}{\|\cdot\|}\right)(x)$$

• Backprojection reconstruction produces a function that is smoother than the original function (by 1 order): high frequencies are damped

For $f \in \mathcal{S}(\mathbb{R}^n)$ we have

$$\mathcal{R}^*\mathcal{R}f(x) = \left|S^{n-2}\right|\cdot\left(f*\frac{1}{\|\cdot\|}\right)(x)$$

- Backprojection reconstruction produces a function that is smoother than the original function (by 1 order): high frequencies are damped
- Since \mathcal{R}^* is a continuous operator, the backprojection reconstruction is stable

For $f \in \mathcal{S}(\mathbb{R}^n)$ we have

$$\mathcal{R}^*\mathcal{R}f(x) = \left|S^{n-2}\right| \cdot \left(f * \frac{1}{\|\cdot\|}\right)(x)$$

- Backprojection reconstruction produces a function that is smoother than the original function (by 1 order): high frequencies are damped
- Since \mathcal{R}^* is a continuous operator, the backprojection reconstruction is stable
- To reconstruct the original function f, we need to restore (amplify) high frequencies \rightarrow filtering (sharpening) step

For $f \in \mathcal{S}(\mathbb{R}^n)$ we have

$$\mathcal{R}^* \mathcal{R} f(x) = \left| S^{n-2} \right| \cdot \left(f * \frac{1}{\|\cdot\|} \right)(x)$$

- Backprojection reconstruction produces a function that is smoother than the original function (by 1 order): high frequencies are damped
- Since \mathcal{R}^* is a continuous operator, the backprojection reconstruction is stable
- To reconstruct the original function f, we need to restore (amplify) high frequencies \rightarrow filtering (sharpening) step
- Using the above theorem, the normal equation $\mathcal{R}^*\mathcal{R}f = \mathcal{R}^*g$ (up to a constant) reads

$$f * \frac{1}{\|\cdot\|} = \mathcal{R}^* g$$
, for data $g = \mathcal{R} f$

 \rightarrow tomographic reconstruction can be interpreted as a deconvolution problem

FOURIER TRANSFORM

Fourier transform turns out to be a very useful tool for studying the Radon transform.

Definition (Fourier transform and its inverse)

Let $f \in L^1(\mathbb{R}^n)$. The Fourier transform of f is defined via

$$\mathcal{F}f(\xi) \coloneqq \hat{f}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-ix\cdot\xi} \,\mathrm{d}x.$$

Let $g \in L^1(\mathbb{R}^n)$. The inverse Fourier transform of f is defined via

$$\mathcal{F}^{-1}g(x) \coloneqq \check{g}(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(\xi) e^{ix\cdot\xi} \,\mathrm{d}\xi.$$

FOURIER TRANSFORM

Fourier transform turns out to be a very useful tool for studying the Radon transform.

Definition (Fourier transform and its inverse)

Let $f \in L^1(\mathbb{R}^n)$. The Fourier transform of f is defined via

$$\mathcal{F}f(\xi) \coloneqq \hat{f}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(x) e^{-ix\cdot\xi} \,\mathrm{d}x.$$

Let $g \in L^1(\mathbb{R}^n)$. The inverse Fourier transform of f is defined via

$$\mathcal{F}^{-1}g(x) \coloneqq \check{g}(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} f(\xi) e^{ix\cdot\xi} \,\mathrm{d}\xi.$$

Sometimes it's useful to calculate the 1D Fourier transform of the projection function $g(\theta, s) = \mathcal{R}f(\theta, s)$ with respect to the second variable *s*. To make that clear, we will write

$$\mathcal{F}_s g(\theta, \sigma) = (2\pi)^{-1/2} \int_{\mathbb{R}} g(\theta, s) e^{-is \cdot \sigma} \, \mathrm{d}s$$

for the Fourier transform of $g(\theta, s)$ with respect to the variable *s* (here θ is considered to be a fixed parameter). Whenever we write $\widehat{\mathcal{R}f}(\theta, \sigma)$ the Fourier transform of $\mathcal{R}f$ has to be understood in that sense. Same holds for the inverse Fourier transform.

Theorem (Fourier slice theorem)

Let $f \in S(\mathbb{R}^n)$. Then, for $\sigma \in \mathbb{R}$,

 $\mathcal{F}_s \mathcal{R} f(\theta, \sigma) = (2\pi)^{(n-1)/2} \widehat{f}(\sigma \theta).$

Theorem (Fourier slice theorem)

Let $f \in S(\mathbb{R}^n)$. Then, for $\sigma \in \mathbb{R}$,

$\mathcal{F}_{s}\mathcal{R}f(\theta,\sigma) = (2\pi)^{(n-1)/2}\widehat{f}(\sigma\theta).$

Theorem (Fourier slice theorem)

Let $f \in S(\mathbb{R}^n)$. Then, for $\sigma \in \mathbb{R}$,

$\mathcal{F}_{s}\mathcal{R}f(\theta,\sigma) = (2\pi)^{(n-1)/2}\widehat{f}(\sigma\theta).$

This theorem can be used derive a reconstruction procedure \rightsquigarrow Fourier reconstructions

Many proprities of the Radon transform can be derived from the properties of the Fourier transform.

Theorem

The Radon transform $\mathcal{R}: L^1(\mathbb{R}^n) \to L^1(S^{n-1} \times \mathbb{R})$ is an **injective** operator.

Many proprities of the Radon transform can be derived from the properties of the Fourier transform.

Theorem

The Radon transform $\mathcal{R} : L^1(\mathbb{R}^n) \to L^1(S^{n-1} \times \mathbb{R})$ is an **injective** operator.

Proof.

Suppose $\mathcal{R}f \equiv 0$ for $f \in L^1(\mathbb{R}^n)$. Then, the Fourier slice theorem implies

$$\widehat{f}(\sigma\theta) = (2\pi)^{(1-n)/2} \mathcal{F}_s \mathcal{R} f(\theta,\sigma) = 0$$

for all $(\theta, \sigma) \in S^{n-1} \times \mathbb{R}$. Hence,

 $\widehat{f} \equiv 0$

and the injectivity of the Fourier transform implies that $f \equiv 0$.

Many proprities of the Radon transform can be derived from the properties of the Fourier transform.

Theorem

The Radon transform $\mathcal{R} : L^1(\mathbb{R}^n) \to L^1(S^{n-1} \times \mathbb{R})$ is an **injective** operator.

So far: There is a unique solution to the reconstruction problem $\Re f = y$, formally given as

 $f = \mathcal{R}^{-1} y.$

DTU

Many proprities of the Radon transform can be derived from the properties of the Fourier transform.

Theorem

The Radon transform $\mathcal{R} : L^1(\mathbb{R}^n) \to L^1(S^{n-1} \times \mathbb{R})$ is an **injective** operator.

So far: There is a unique solution to the reconstruction problem $\Re f = y$, formally given as

 $f = \mathcal{R}^{-1} y.$

• Are there explicit expressions for \mathcal{R}^{-1} ?

Many proprities of the Radon transform can be derived from the properties of the Fourier transform.

Theorem

The Radon transform $\mathcal{R} : L^1(\mathbb{R}^n) \to L^1(S^{n-1} \times \mathbb{R})$ is an **injective** operator.

So far: There is a unique solution to the reconstruction problem $\Re f = y$, formally given as

 $f = \mathcal{R}^{-1} y.$

• Are there explicit expressions for \mathcal{R}^{-1} ?

YES! We will derive them in a minitute.

Many proprities of the Radon transform can be derived from the properties of the Fourier transform.

Theorem

The Radon transform $\mathcal{R} : L^1(\mathbb{R}^n) \to L^1(S^{n-1} \times \mathbb{R})$ is an **injective** operator.

So far: There is a unique solution to the reconstruction problem $\Re f = y$, formally given as

 $f = \mathcal{R}^{-1} y.$

- Are there explicit expressions for \mathcal{R}^{-1} ? YES! We will derive them in a minitute.
- Is \mathcal{R}^{-1} continuous?

Many proprities of the Radon transform can be derived from the properties of the Fourier transform.

Theorem

The Radon transform $\mathcal{R} : L^1(\mathbb{R}^n) \to L^1(S^{n-1} \times \mathbb{R})$ is an **injective** operator.

So far: There is a unique solution to the reconstruction problem $\mathcal{R}f = y$, formally given as

 $f = \mathcal{R}^{-1} y.$

• Are there explicit expressions for \mathcal{R}^{-1} ?

YES! We will derive them in a minitute.

• Is \mathcal{R}^{-1} continuous?

Unfortuntely, NO. It can be shown that \mathcal{R}^{-1} is not a continuous operator and, hence, that the reconstruction problem $\mathcal{R}f = y$ is ill-posed. However, the ill-posedness is mild (maybe later).

INVERSION FORMULAS

For $f \in S(\mathbb{R}^n)$ and $\alpha < n$ we define the **Riesz potential** (which is a linear operator) via

$$I^{\alpha}f = (-\Delta)^{-\alpha/2}f = \mathcal{F}^{-1}\left(|\xi|^{-\alpha}\,\widehat{f}(\xi)\right).$$

For $g \in \S(S^{n-1} \times \mathbb{R})$ we analogously define the Riesz-potential with respect to the second variable

$$I_{s}^{\alpha}g(\theta,s) = \left(-\partial_{s}^{2}\right)^{-\alpha/2} \mathcal{R}f(\theta,s) = \mathcal{F}_{s}^{-1}\left(|\sigma|^{-\alpha} \mathcal{F}_{s}g(\theta,\sigma)\right).$$

INVERSION FORMULAS

For $f \in S(\mathbb{R}^n)$ and $\alpha < n$ we define the **Riesz potential** (which is a linear operator) via

$$I^{\alpha}f = (-\Delta)^{-\alpha/2}f = \mathcal{F}^{-1}\left(|\xi|^{-\alpha}\,\widehat{f}(\xi)\right).$$

For $g \in \S(S^{n-1} \times \mathbb{R})$ we analogously define the Riesz-potential with respect to the second variable

$$I_s^{\alpha}g(\theta,s) = \left(-\partial_s^2\right)^{-\alpha/2} \mathcal{R}f(\theta,s) = \mathcal{F}_s^{-1}\left(|\sigma|^{-\alpha} \mathcal{F}_s g(\theta,\sigma)\right).$$

Theorem

Lef $f \in S(\mathbb{R}^n)$. Then, for any $\alpha < n$, the following inversion formulas hold:

 $f = \frac{1}{2} (2\pi)^{1-n} I^{-\alpha} \mathcal{R}^* I_s^{\alpha-n+1} \mathcal{R} f.$

$$n = 3 \text{ and } \alpha = 2$$
: $f = -\frac{1}{8\pi^2} \cdot \Delta \mathcal{R}^* \mathcal{R} f$

$$n = 3 \text{ and } \alpha = 2$$
: $f = -\frac{1}{8\pi^2} \cdot \Delta \mathcal{R}^* \mathcal{R} f$

$$n = 3$$
 and $\alpha = 0$: $f = \frac{1}{8\pi^2} \mathcal{R}^* I_s^{-2} \mathcal{R} f = -\frac{1}{8\pi^2} \cdot \mathcal{R}^* (-\partial_s^2) \mathcal{R} f$

$$n = 3 \text{ and } \alpha = 2$$
: $f = -\frac{1}{8\pi^2} \cdot \Delta \mathcal{R}^* \mathcal{R} f$

$$n = 3$$
 and $\alpha = 0$: $f = \frac{1}{8\pi^2} \mathcal{R}^* I_s^{-2} \mathcal{R} f = -\frac{1}{8\pi^2} \cdot \mathcal{R}^* (-\partial_s^2) \mathcal{R} f$

$$n = 2$$
 and $\alpha = 0$: $f = \frac{1}{4\pi} \mathcal{R}^* I_s^{-1} \mathcal{R} f = \frac{1}{4\pi} \cdot \mathcal{R}^* (-\partial_s^2)^{1/2} \mathcal{R} f$

$$n = 3 \text{ and } \alpha = 2$$
: $f = -\frac{1}{8\pi^2} \cdot \Delta \mathcal{R}^* \mathcal{R} f$

$$n = 3$$
 and $\alpha = 0$: $f = \frac{1}{8\pi^2} \mathcal{R}^* I_s^{-2} \mathcal{R} f = -\frac{1}{8\pi^2} \cdot \mathcal{R}^* (-\partial_s^2) \mathcal{R} f$

$$n = 2$$
 and $\alpha = 0$: $f = \frac{1}{4\pi} \mathcal{R}^* I_s^{-1} \mathcal{R} f = \frac{1}{4\pi} \cdot \mathcal{R}^* (-\partial_s^2)^{1/2} \mathcal{R} f$

Structure: Filter & Backproject

$$n = 3 \text{ and } \alpha = 2$$
: $f = -\frac{1}{8\pi^2} \cdot \Delta \mathcal{R}^* \mathcal{R} f$

$$n = 3$$
 and $\alpha = 0$: $f = \frac{1}{8\pi^2} \mathcal{R}^* I_s^{-2} \mathcal{R} f = -\frac{1}{8\pi^2} \cdot \mathcal{R}^* (-\partial_s^2) \mathcal{R} f$

$$n = 2$$
 and $\alpha = 0$: $f = \frac{1}{4\pi} \mathcal{R}^* I_s^{-1} \mathcal{R} f = \frac{1}{4\pi} \cdot \mathcal{R}^* (-\partial_s^2)^{1/2} \mathcal{R} f$

Structure: Filter & Backproject

17

$$n = 3 \text{ and } \alpha = 2$$
: $f = -\frac{1}{8\pi^2} \cdot \Delta \mathcal{R}^* \mathcal{R} f$

$$n = 3$$
 and $\alpha = 0$: $f = \frac{1}{8\pi^2} \mathcal{R}^* I_s^{-2} \mathcal{R} f = -\frac{1}{8\pi^2} \cdot \mathcal{R}^* (-\partial_s^2) \mathcal{R} f$

$$n = 2$$
 and $\alpha = 0$: $f = \frac{1}{4\pi} \mathcal{R}^* I_s^{-1} \mathcal{R} f = \frac{1}{4\pi} \cdot \mathcal{R}^* (-\partial_s^2)^{1/2} \mathcal{R} f$

Structure: Filter & Backproject

Backprojection

Filtered backprojection

For $\alpha = 0$ we obtain a classical filtered backprojection form

$$f = \frac{1}{2} (2\pi)^{1-n} \mathcal{R}^* I_s^{1-n} \mathcal{R} f,$$

For $\alpha = 0$ we obtain a classical filtered backprojection form

$$f = \frac{1}{2} (2\pi)^{1-n} \mathcal{R}^* \boldsymbol{I}_s^{1-n} \mathcal{R} f,$$

$$\mathcal{F}_{s}[I_{s}^{1-n}\mathcal{R}_{\theta}f](\sigma) = |\sigma|^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$
$$= (\operatorname{sgn}(\sigma) \cdot \sigma)^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

For $\alpha = 0$ we obtain a classical filtered backprojection form

$$f = \frac{1}{2} (2\pi)^{1-n} \mathcal{R}^* \boldsymbol{I}_s^{1-n} \mathcal{R} f,$$

$$\mathcal{F}_{s}[I_{s}^{1-n}\mathcal{R}_{\theta}f](\sigma) = |\sigma|^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$
$$= (\operatorname{sgn}(\sigma) \cdot \sigma)^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$
$$= (\operatorname{sgn}(\sigma))^{n-1}\sigma^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

For $\alpha = 0$ we obtain a classical filtered backprojection form

$$f = \frac{1}{2} (2\pi)^{1-n} \mathcal{R}^* \boldsymbol{I}_s^{1-n} \mathcal{R} f,$$

$$\mathcal{F}_{s}[I_{s}^{1-n}\mathcal{R}_{\theta}f](\sigma) = |\sigma|^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

$$= (\operatorname{sgn}(\sigma) \cdot \sigma)^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

$$= (\operatorname{sgn}(\sigma))^{n-1}\sigma^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

$$= (\operatorname{sgn}(\sigma))^{n-1}i^{-(n-1)} \cdot i^{n-1}\sigma^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

For $\alpha = 0$ we obtain a classical filtered backprojection form

$$f = \frac{1}{2} (2\pi)^{1-n} \mathcal{R}^* \boldsymbol{I}_s^{1-n} \mathcal{R} f,$$

$$\mathcal{F}_{s}[I_{s}^{1-n}\mathcal{R}_{\theta}f](\sigma) = |\sigma|^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

$$= (\operatorname{sgn}(\sigma) \cdot \sigma)^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

$$= (\operatorname{sgn}(\sigma))^{n-1}\sigma^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

$$= (\operatorname{sgn}(\sigma))^{n-1}i^{-(n-1)} \cdot i^{n-1}\sigma^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

$$= (-i\operatorname{sgn}(\sigma))^{n-1} \cdot (i\sigma)^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma)$$

For $\alpha = 0$ we obtain a classical filtered backprojection form

$$f = \frac{1}{2} (2\pi)^{1-n} \mathcal{R}^* \boldsymbol{I}_s^{1-n} \mathcal{R} f,$$

where the operator I_s^{1-n} acts as a filter on the data $g = \mathcal{R}f$.

$$\begin{aligned} \mathcal{F}_{s}[I_{s}^{1-n}\mathcal{R}_{\theta}f](\sigma) &= |\sigma|^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma) \\ &= (\mathrm{sgn}(\sigma) \cdot \sigma)^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma) \\ &= (\mathrm{sgn}(\sigma))^{n-1}\sigma^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma) \\ &= (\mathrm{sgn}(\sigma))^{n-1}i^{-(n-1)} \cdot i^{n-1}\sigma^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma) \\ &= (-i\,\mathrm{sgn}(\sigma))^{n-1} \cdot (i\sigma)^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma) \end{aligned}$$

because $\mathcal{F}_s[\partial_s^n g](\sigma) = (i\sigma)^n \hat{g}(\sigma)$ we have

$$= (-i \operatorname{sgn}(\sigma))^{n-1} \cdot \mathcal{F}_{s}[\partial_{s}^{n-1} \mathcal{R}_{\theta}](\sigma)$$

For $\alpha = 0$ we obtain a classical filtered backprojection form

$$f = \frac{1}{2} (2\pi)^{1-n} \mathcal{R}^* \boldsymbol{I}_s^{1-n} \mathcal{R} f,$$

where the operator I_s^{1-n} acts as a filter on the data $g = \mathcal{R}f$.

$$\begin{aligned} \mathcal{F}_{s}[I_{s}^{1-n}\mathcal{R}_{\theta}f](\sigma) &= |\sigma|^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma) \\ &= (\mathrm{sgn}(\sigma) \cdot \sigma)^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma) \\ &= (\mathrm{sgn}(\sigma))^{n-1}\sigma^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma) \\ &= (\mathrm{sgn}(\sigma))^{n-1}i^{-(n-1)} \cdot i^{n-1}\sigma^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma) \\ &= (-i\,\mathrm{sgn}(\sigma))^{n-1} \cdot (i\sigma)^{n-1}\mathcal{F}_{s}\mathcal{R}_{\theta}(\sigma) \end{aligned}$$

because $\mathcal{F}_s[\partial_s^n g](\sigma) = (i\sigma)^n \hat{g}(\sigma)$ we have

$$= (-i \operatorname{sgn}(\sigma))^{n-1} \cdot \mathcal{F}_s[\partial_s^{n-1} \mathcal{R}_\theta](\sigma)$$

= $\mathcal{F}_s[H^{n-1}\partial_s^{n-1} \mathcal{R}_\theta](\sigma),$

where H is defined in the Fourier domain via

$$\widehat{H}g(\sigma) = -i\operatorname{sgn}(\sigma) \cdot \widehat{g}(\sigma).$$

Now observe that for $n \ge 2$ we have

$$(-i \operatorname{sgn}(\sigma))^{n-1} = \begin{cases} (-1)^{(n-2)/2} \cdot (-i \operatorname{sgn}(\sigma)), & \text{for } n \text{ even} \\ (-1)^{(n-1)/2}, & \text{for } n \text{ odd} \end{cases}$$
INVERSION FORMULAS IN EVEN AND ODD DIMENSIONS

Now observe that for $n \ge 2$ we have

$$(-i\,\mathrm{sgn}(\sigma))^{n-1} = \begin{cases} (-1)^{(n-2)/2} \cdot (-i\,\mathrm{sgn}(\sigma)), & \text{ for } n \text{ even} \\ (-1)^{(n-1)/2}, & \text{ for } n \text{ odd} \end{cases}$$

Therefore

$$f = \frac{1}{2} (2\pi)^{1-n} \mathcal{R}^* \cdot \begin{cases} (-1)^{(n-2)/2} \cdot H \,\partial_s^{n-1} \,\mathcal{R}f(\theta, x \cdot \theta), & \text{for } n \text{ even} \\ (-1)^{(n-1)/2} \cdot \partial_s^{n-1} \,\mathcal{R}f(\theta, x \cdot \theta), & \text{for } n \text{ odd} \end{cases}$$

Now observe that for $n \ge 2$ we have

$$(-i\,\mathrm{sgn}(\sigma))^{n-1} = \begin{cases} (-1)^{(n-2)/2} \cdot (-i\,\mathrm{sgn}(\sigma)), & \text{ for } n \text{ even} \\ (-1)^{(n-1)/2}, & \text{ for } n \text{ odd} \end{cases}$$

Therefore

$$f = \frac{1}{2} (2\pi)^{1-n} \mathcal{R}^* \cdot \begin{cases} (-1)^{(n-2)/2} \cdot H \partial_s^{n-1} \mathcal{R} f(\theta, x \cdot \theta), & \text{for } n \text{ even} \\ (-1)^{(n-1)/2} \cdot \partial_s^{n-1} \mathcal{R} f(\theta, x \cdot \theta), & \text{for } n \text{ odd} \end{cases}$$

If *n* is odd, the filter is a differential operator and, hence, a local operator. As a result, the inversion formula is local, i.e., the inversion formula can be evaluated at point *x* if the data *Rf*(*θ*, *y* · *θ*) is known for all *θ* ∈ *S*^{*n*-1} and for *y* in a neighbourhood of *x*.

Now observe that for $n \ge 2$ we have

$$(-i\,\mathrm{sgn}(\sigma))^{n-1} = \begin{cases} (-1)^{(n-2)/2} \cdot (-i\,\mathrm{sgn}(\sigma)), & \text{ for } n \text{ even} \\ (-1)^{(n-1)/2}, & \text{ for } n \text{ odd} \end{cases}$$

Therefore

$$f = \frac{1}{2} (2\pi)^{1-n} \mathcal{R}^* \cdot \begin{cases} (-1)^{(n-2)/2} \cdot H \,\partial_s^{n-1} \,\mathcal{R}f(\theta, x \cdot \theta), & \text{for } n \text{ even} \\ (-1)^{(n-1)/2} \cdot \partial_s^{n-1} \,\mathcal{R}f(\theta, x \cdot \theta), & \text{for } n \text{ odd} \end{cases}$$

- If *n* is odd, the filter is a differential operator and, hence, a local operator. As a result, the inversion formula is local, i.e., the inversion formula can be evaluated at point *x* if the data *Rf*(*θ*, *y* · *θ*) is known for all *θ* ∈ *S*^{*n*-1} and for *y* in a neighbourhood of *x*.
- If n is even, the inversion formula is **not** local, since H is an integral operator

$$Hg(s) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{g(t)}{s-t} \, \mathrm{d}t$$

H is the so-called **Hilbert transform**.

LAMBDA RECONSTRUCTION

To make the reconstruction formula local for n = 2, the strategy is to have filter which is local (differential operator).

$$I^{1}f = \frac{1}{4\pi} \mathcal{R}^{*} I_{s}^{-2} \mathcal{R}f = \frac{1}{4\pi} \mathcal{R}^{*} (-\partial_{s}^{2}) \mathcal{R}f$$

- Instead of reconstructing f we reconstruct $\Lambda f := I^1 f$.
- This formula is local and of filtered backprojection type.

$$I^{1}f = \frac{1}{4\pi}\mathcal{R}^{*}I_{s}^{-2}\mathcal{R}f = \frac{1}{4\pi}\mathcal{R}^{*}(-\partial_{s}^{2})\mathcal{R}f$$

- Instead of reconstructing f we reconstruct $\Lambda f := I^1 f$.
- This formula is local and of filtered backprojection type.
- In the implementation, the standard FBP filter |*σ*| has to be replaces by |*σ*|²
 → high frequecies are amplified even more, low frequencies are damped.

$$I^{1}f = \frac{1}{4\pi}\mathcal{R}^{*}I_{s}^{-2}\mathcal{R}f = \frac{1}{4\pi}\mathcal{R}^{*}(-\partial_{s}^{2})\mathcal{R}f$$

- Instead of reconstructing f we reconstruct $\Lambda f := I^1 f$.
- This formula is local and of filtered backprojection type.
- In the implementation, the standard FBP filter |σ| has to be replaces by |σ|²
 → high frequecies are amplified even more, low frequencies are damped.
- Instead of values f(x), it reconstructs the singularities of f.

$$I^{1}f = \frac{1}{4\pi} \mathcal{R}^{*} I_{s}^{-2} \mathcal{R}f = \frac{1}{4\pi} \mathcal{R}^{*} (-\partial_{s}^{2}) \mathcal{R}f$$

- Instead of reconstructing f we reconstruct $\Lambda f := I^1 f$.
- This formula is local and of filtered backprojection type.
- In the implementation, the standard FBP filter |*σ*| has to be replaces by |*σ*|²
 → high frequecies are amplified even more, low frequencies are damped.
- Instead of values f(x), it reconstructs the singularities of f.

Reconstruction is mildly ill-posed (of order (n-1)/2)

 $c \|f\|_{H^{\alpha}_{0}} \le \|\mathcal{R}f\|_{H^{\alpha+(n-1)/2}} \le C \|f\|_{H^{\alpha}_{0}}$

Reconstruction is mildly ill-posed (of order (n-1)/2)

 $c \|f\|_{H^{\alpha}_{0}} \le \|\mathcal{R}f\|_{H^{\alpha+(n-1)/2}} \le C \|f\|_{H^{\alpha}_{0}}$

What causes instabilities in the reconstruction???

Reconstruction is mildly ill-posed (of order (n-1)/2)

 $c \|f\|_{H^{\alpha}_{0}} \leq \|\mathcal{R}f\|_{H^{\alpha+(n-1)/2}} \leq C \|f\|_{H^{\alpha}_{0}}$

What causes instabilities in the reconstruction???

• We know \mathcal{R} and \mathcal{R}^* continuous (stable) operations.

Reconstruction is mildly ill-posed (of order (n-1)/2)

 $c \|f\|_{H^{\alpha}_{0}} \le \|\mathcal{R}f\|_{H^{\alpha+(n-1)/2}} \le C \|f\|_{H^{\alpha}_{0}}$

What causes instabilities in the reconstruction???

- We know \mathcal{R} and \mathcal{R}^* continuous (stable) operations.
- Given the inversion formula $f = 1/2(2\pi)^{1-n} \mathcal{R}^* I_s^{1-n} \mathcal{R} f$ the instabilities must come from filtering:

Reconstruction is mildly ill-posed (of order (n-1)/2)

 $c \|f\|_{H^{\alpha}_{0}} \le \|\mathcal{R}f\|_{H^{\alpha+(n-1)/2}} \le C \|f\|_{H^{\alpha}_{0}}$

What causes instabilities in the reconstruction???

- We know \mathcal{R} and \mathcal{R}^* continuous (stable) operations.
- Given the inversion formula $f = 1/2(2\pi)^{1-n} \mathcal{R}^* I_s^{1-n} \mathcal{R} f$ the instabilities must come from filtering:

 $\mathcal{F}_{s}[I_{s}^{1-n}\mathcal{R}f](\theta,\sigma) = |\sigma|^{n-1} \cdot \mathcal{F}_{s}\mathcal{R}f(\theta,\sigma) = (2\pi)^{(n-1)/2} |\sigma|^{n-1} \hat{f}(\sigma\theta)$

Reconstruction is mildly ill-posed (of order (n-1)/2)

 $c \|f\|_{H^{\alpha}_{0}} \le \|\mathcal{R}f\|_{H^{\alpha+(n-1)/2}} \le C \|f\|_{H^{\alpha}_{0}}$

What causes instabilities in the reconstruction???

- We know \mathcal{R} and \mathcal{R}^* continuous (stable) operations.
- Given the inversion formula $f = 1/2(2\pi)^{1-n} \mathcal{R}^* I_s^{1-n} \mathcal{R} f$ the instabilities must come from filtering:

 $\mathcal{F}_{s}[I_{s}^{1-n}\mathcal{R}f](\theta,\sigma) = |\sigma|^{n-1} \cdot \mathcal{F}_{s}\mathcal{R}f(\theta,\sigma) = (2\pi)^{(n-1)/2} |\sigma|^{n-1} \hat{f}(\sigma\theta)$

• High frequencies are amplified!

Reconstruction is mildly ill-posed (of order (n-1)/2)

 $c \|f\|_{H^{\alpha}_{0}} \le \|\mathcal{R}f\|_{H^{\alpha+(n-1)/2}} \le C \|f\|_{H^{\alpha}_{0}}$

What causes instabilities in the reconstruction???

- We know \mathcal{R} and \mathcal{R}^* continuous (stable) operations.
- Given the inversion formula $f = 1/2(2\pi)^{1-n} \mathcal{R}^* I_s^{1-n} \mathcal{R} f$ the instabilities must come from filtering:

$$\mathcal{F}_{s}[I_{s}^{1-n}\mathcal{R}f](\theta,\sigma) = |\sigma|^{n-1} \cdot \mathcal{F}_{s}\mathcal{R}f(\theta,\sigma) = (2\pi)^{(n-1)/2} |\sigma|^{n-1} \hat{f}(\sigma\theta)$$

• High frequencies are amplified!

• This causes instabilities since noise is a high frequency phenomenon.

Reconstruction is mildly ill-posed (of order (n-1)/2)

 $c \|f\|_{H^{\alpha}_{0}} \le \|\mathcal{R}f\|_{H^{\alpha+(n-1)/2}} \le C \|f\|_{H^{\alpha}_{0}}$

What causes instabilities in the reconstruction???

- We know \mathcal{R} and \mathcal{R}^* continuous (stable) operations.
- Given the inversion formula $f = 1/2(2\pi)^{1-n} \mathcal{R}^* I_s^{1-n} \mathcal{R} f$ the instabilities must come from filtering:

$$\mathcal{F}_{s}[I_{s}^{1-n}\mathcal{R}f](\theta,\sigma) = |\sigma|^{n-1} \cdot \mathcal{F}_{s}\mathcal{R}f(\theta,\sigma) = (2\pi)^{(n-1)/2} |\sigma|^{n-1} \hat{f}(\sigma\theta)$$

• High frequencies are amplified!

- This causes instabilities since noise is a high frequency phenomenon.
- Regularizationation by replacing the filtered with a band-limited version:

 $|\sigma|^{n-1} \mapsto w(\sigma) \cdot |\sigma|^{n-1}$

REGULARIZED FBP

For $\alpha > 0$, let $\omega_{\alpha} : (-1/\alpha, 1/\alpha) \to [0, \infty)$ be smooth such that $\omega_{\alpha}(\sigma) \to \sigma$ as $\alpha \to 0$ ($\forall \sigma$), and set $\psi_{\alpha}(\sigma) := \mathcal{F}^{-1}(\omega_{\alpha}(\sigma) \cdot |\sigma|)$.

See you next week!