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OUTLINE

. Incomplete data in tomography

. Microlocal Analysis

. Microlocal characterization of incomplete data reconstructions

. Use of directional representations in incomplete data tomography
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TOMOGRAPHIC RECONSTRUCTION PROBLEMS

X-ray tomography: Classical Radon transform

R f (θ, p) =

∫
R

f (pθ + tθ⊥) dt = ln
(

I0

I(θ, p)

)

Source

Detector

f

I0

I(θ, p)

Notation: p ∈ R, θ = (θ1, θ2) ∈ S 1 and θ⊥ = (−θ2, θ1)
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TOMOGRAPHIC RECONSTRUCTION PROBLEMS

Photoacoustic tomography: Spherical Radon transform

M f (ξ, r) =

∫
S 1

f (ξ + rζ) dζ

Soft tissue

Transducer
ξ

Laser pulse

r

Acquisition surface S

Notation: r > 0, θ = (θ1, θ2) ∈ S 1
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INCOMPLETE DATA IN TOMOGRAPHY
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full data sparse angle data limited angle data

Breast tomosynthesis Dental CT Electron microscopy ... and many more



LIMITED ANGLE LAMBDA RECONSTRUCTIONS

Original X-ray tomography, [0◦ , 140◦] Photoacoustic tomography,
[−45◦ , 225◦]
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LIMITED ANGLE LAMBDA RECONSTRUCTIONS

X-ray tomography1, [0◦ , 140◦] Photoacoustic tomography2, [−45◦ , 225◦]

Data by courtesy of 1Department of Diagnostic and Interventional Radiology, TUM and 2Helmholtz Zentrum München
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CHALLENGES IN LIMITED VIEW TOMOGRAPHY

Observations:

. Only certain features of the original object can be reconstructed,

. Artifacts are generated.

Need to characterize visible singularities and artifacts (microlocal anlysis)

. Facilitate better interpretation of reconstructions,

. Design new improved reconstruction methods (reduction artifacts, design priors,
etc.).

Need mathematical tools to implement these insights into alogrithms

. Applied harmonic analysis provides highly directional and numerically efficient
representations.
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MICROLOCAL ANALYSIS IN TOMOGRAPHY

I JF, E. T. Quinto, Limited data problems for the generalized Radon transform in Rn, SIAM J.
Math. Anal., 2016.

I JF, E. T. Quinto, Artifacts in incomplete data tomography – with applications to photoacoustic
tomography and sonar, SIAM J. Appl. Math., 2015.

I JF, E. T. Quinto, Characterization and reduction of artifacts in limited angle tomography,
Inverse Problems, 2013.

I JF, L. V. Nguyen, L. Barannyk, On artifacts in limited data spherical Radon transform: curved
observation surfaces, Inverse Problems 2015.

I L. V. Nguyen, How strong are streak artifacts in limited angle computed tomography?,
Inverse Problems, 2015.

I L. V. Nguyen, On artifacts in limited data spherical Radon transform: flat observation
surfaces, SIAM J. Math. Anal. (2015)

I A. I. Katsevitch, Local tomography for the limited-angle problem, J. Math. Anal. Appl., 1997.
I E. T. Quito, Singularities of the x-ray transform and limited data tomography in R2 and R3,

SIAM J. Math. Anal., 1993.

I Microlocal analysis, visible singularities and artifacts in other tomography problems:
G. Ambartsoumian, R. Felea, D. V. Finch, A. Greenleaf, V. Guillemin, A. Katsevich, V. P.
Krishnan, I.-R. Lan, P. Kuchment, C. Nolan, V. Palamodov, E. T. Quinto, A. Ramm, H.
Rullgard, P. Stefanov, G. Uhlmann, . . .
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WHAT ARE SINGULARITIES?

Practically: Density jumps, boundaries between regions

Mathematically: Where the function is not smooth. . .

Paradigm: Fourier transform of f decays rapidly at ∞ iff f is smooth.

Singularities are local and oriented! { Wavefront set: localize & microlocalize

f Singularities of f
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MICROLOCAL ANALYSIS

Definition (Wavefront set)
A tuple (x0, ξ0) ∈ R2 ×R2\{0} is not in the wavefront set WF( f ) of f ∈ D′(R2) iff

I there is a cut-off function ϕ ∈ D(R2), ϕ(x0) , 0, (Localize at x0)

I there is a conic neighborhood N(ξ0), (Microlocalize at ξ0)

such that F (ϕ f ) decays rapidly in N(ξ0).

(Hörmander ’90)
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I there is a cut-off function ϕ ∈ D(R2), ϕ(x0) , 0, (Localize at x0)

I there is a conic neighborhood N(ξ0), (Microlocalize at ξ0)

such that F (ϕ f ) decays rapidly in N(ξ0).

(Hörmander ’90)

WF simultaneously describes locations and directions of a singularity

Example:
Ω ⊂ R2 such that the boundary ∂Ω is a smooth manifold:

(x, ξ) ∈ WF(χΩ) ⇔ x ∈ ∂Ω, and ξ ∈ Nx,

where Nx is the normal space to ∂Ω at x ∈ ∂Ω.
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f

bx

ξ

(x, ξ) ∈WF( f )

Singularities of f
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GENERAL SETUP

Forward operator is a Fourier Integral operator (FIO)

T : E′(Ω)→ E′(Ξ),

where Ω is the object space and Ξ is the data space.

Reconstruction problem: Recover f (or singularities f ) from the data g = T f

I Limited data: g(y) known only for y ∈ A ( Ξ (χA = characteristic function of A)

I Limited data forward operator: TA f = χAT f

Reconstruction operators (FBP type):

BgA = T ∗PgA, gA = TA f

P is a pseudodifferential operator and T ∗ dual (or backprojection) operator.
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VISIBLE SINGULARITIES AND ADDED ARTIFACTS

Theorem (Quinto, JF 2013-2015)
Let T ∈ {R,M}, f ∈ E′(Ω), and let P be a pseudodifferential operator on D′(Ξ).
Then,

WF(T ∗PTA f ) ⊂WF[a,b]( f ) ∪A{a,b}( f ).
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Let T ∈ {R,M}, f ∈ E′(Ω), and let P be a pseudodifferential operator on D′(Ξ).
Then,

WF(T ∗PTA f ) ⊂WF[a,b]( f ) ∪A{a,b}( f ).

Theorem (Quinto, JF)
Under additional assumptions on P we have

WF(a,b)( f ) ⊂WF(T ∗PTA f ) ⊂WF[a,b]( f ) ∪A{a,b}( f ).
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VISIBLE SINGULARITIES AND ARTIFACTS IN LIMITED ANGLE X-RAY TOMOGRAPHY

. Visible singularities are characterized in terms of their orientation

Only singularities (x, θ(ϕ)) ∈WF( f ) can be reconstructed for which ϕ ∈ [a, b]

. Artifacts are spread along lines having orientations corresponding to the
boundary of the angular range, θ(a) or θ(b), respectively

Streaks are added at location x whenever (x, θ(a)) ∈WF( f ) or
(x, θ(b)) ∈WF( f )

Original Reconstruction

A[−45◦ ,45◦ ]

14/23 | Directional representations for incomplete data tomography Jürgen Frikel | 14.09.2016



VISIBLE SINGULARITIES AND ARTIFACTS IN LIMITED ANGLE X-RAY TOMOGRAPHY

. Visible singularities are characterized in terms of their orientation

Only singularities (x, θ(ϕ)) ∈WF( f ) can be reconstructed for which ϕ ∈ [a, b]

. Artifacts are spread along lines having orientations corresponding to the
boundary of the angular range, θ(a) or θ(b), respectively

Streaks are added at location x whenever (x, θ(a)) ∈WF( f ) or
(x, θ(b)) ∈WF( f )

Original Reconstruction A[−45◦ ,45◦ ]

14/23 | Directional representations for incomplete data tomography Jürgen Frikel | 14.09.2016



WHAT DO WE LEARN?

. Microlocal characterisations provide insight into the information content of
incomplete data.

. X-ray tomography:
I Reliably reconstructed singularities are (x, θ(ϕ)) ∈WF( frec) with ϕ ∈ (a, b),
I Any singularity (x, θ(ϕ)) ∈WF( frec) with ϕ < {a, b} can be an added streak

artifact.

. To avoid generation of artifacts we need to make sure that

WF( frec) ⊂ R2 × (a, b)

How can we integrate this directional a priori information into the
reconstruction?

{ Need directional transforms that can simultaneously localize and
microlocalize

{ Shearlets, curvelets, or similar transforms
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SHEARLET / CURVELET DICTIONARIES

. The shearlet / curvelet dictionary

{ψa,b,θ}(a,b,θ)∈I

simultaneously localize at location a and along
direction θ.

a = scale, b = location, θ = orientation.

. Tight frame property: For each f ∈ L2(R2) we have

f =
∑

(a,b,θ)∈I

〈
f , ψ(a,b,θ)

〉
ψ(a,b,θ), ‖ f ‖22 =

∑
(a,b,θ)∈I

∣∣∣∣〈 f , ψ(a,b,θ)
〉∣∣∣∣2

. Optimally sparse representation of edges (cartoon
images)

Theorem (Resolution of the wavefront set)

(b, θ) <WF( f ) ⇔ 〈
f , ψ(a,b,θ)

〉
decays rapidly as a→ 0

(Candes, Donoho, Kutyniok, Lemvig, Lim, Grohs, Guo, Labate, Easley, . . . )
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VISIBLE COEFFICIENTS AND DIMENSIONALITY REDUCTION

Definition (Visible coefficients)
We define the index set of visible coefficients at limited angular range [a, b]
as

I[a,b] = {(a, b, θ) ∈ I : θ ∈ [a, b]}.
Coefficients with (a, b, θ) ∈ I \ I[a,b] are called invisible at limited angular range
[a, b].

Decomposition into a visible and an invisible part

f =
∑

(a,b,θ)∈I[a,b]

〈
f , ψ(a,b,θ)

〉
ψ(a,b,θ) +

∑
(a,b,θ)∈I\I[a,b]

〈
f , ψ(a,b,θ)

〉
ψ(a,b,θ)

= fvisible + finvisible.

Dimensionality reduction: reconstruct only the visible part

(works with any reconstruction algorithm)
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DIMENSIONALITY REDUCTION

0◦ 20◦ 40◦ 60◦ 80◦ 100◦ 120◦ 140◦ 160◦ 180◦

1

2

3

·105

Angular range Φ

D
im

en
si

on

full dim
reduced dim

Dimensions of the reconstruction problem in the curvelet domain for an image of size 256 × 256. The plot shows the
dependence of the full dimension and reduced (adapted) dimension on the available angular range
[0,Φ].
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NUMERICAL EXPERIMENTS

Sparse regularization

ĉ = arg min
c

{∥∥∥RT ∗c − yδ
∥∥∥2

2
+ ‖c‖`1

w

}
, f̂ = T ∗ĉ =

∑
γ

ĉγψγ.

Testimage

(JF, 2013; Vandeghinste et al., 2013; Wieczorek et al., 2015)
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NUMERICAL EXPERIMENTS: RECONSTRUCTION FOR [0◦, 160◦]

CSR ACSR FBP

Reconstruction of the Brainstem image of size 300 × 300 using curvelet sparse regularisation
(CSR) and adapted curvelet sparse regularisation (ACSR):

Angular range [0◦, 160◦], ∆θ = 1◦, Noiselevel 2%.

20/23 | Directional representations for incomplete data tomography Jürgen Frikel | 14.09.2016



REAL DATA RECONSTRUCTIONS

ACSR FBP

No artifact reduction

CT data1 of an abdomen examination; limited angular range ∼ 140◦.

1 Data by courtesy of Dr. Peter Noël (Department of Diagnostic and Interventional Radiology,
TUM).
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REAL DATA RECONSTRUCTIONS

ACSR FBP

With artifact reduction

CT data1 of an abdomen examination; limited angular range ∼ 140◦.

1 Data by courtesy of Dr. Peter Noël (Department of Diagnostic and Interventional Radiology,
TUM).
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SUMMARY

. Microlocal is a powerful framework for characterisation of incomplete
data reconstructions in tomography

I Visible singularities
I Added artifacts

. Harmonic analysis provides tools and makes microlocal insights
accessible algorithmically

I Shearlets, curvelets or similar dictionaries
I Dimensionality reduction and artifact reduction in limited angle x-ray

tomography
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Thank you!
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