

Faculty of Science

Characterizing and reducing artefacts - caused by varying projection truncation

Leise Borg

September 14, 2016 Slide 1/42

Leise Borg

Background

Analysis

Results

Discussion

Future work

Background

2 Analysis

3 Results

4 Discussion

Char	acterizing
and	reducing
ar	tefacts

Background

- Analysis
- Results
- Discussion
- Future work

Introduction

- $\bullet\,$ Porous chalk samples of size ~ 1 2 mm.
- Monochromatic, parallel X-ray beam
- Micro-CT

Background

Analysis

Results

Discussion

Future work

Vendor reconstruction (a type of FBP)

Leise Borg

Background

Analysis

Results

Discussion

Future work

Transmission sinogram

Figure: Transmission sinogram, $T \in [0, 0.53]$, and two zooms

$$T=\frac{I}{I_0}$$

Fraction of photons reaching the detector.

Leise Borg

Background

Analysis

Results

Discussion

Future work

Experimental set-up

no signal metal bar metal bar signal sample signal detector metal bar metal bar

no signal

signal

signal

metal bar

metal bar

Leise Borg

Background

Analysis

Results

Discussion

Future work

Background

2 Analysis

3 Results

4 Discussion

5 Future work

Char	acterizing
and	reducing
ar	tefacts

Background

Analysis

Results

Discussion

Future work

Transmission vs. regular sinogram

Figure: Transmission sinogram, $T \in [0, 0.53]$

- Physical interpretation of the smooth transitions
- Relation between transmission sinogram (T) and regular sinogram (S):

$$S = -log(T) = -log\left(rac{l}{l_0}
ight)$$

Char	acterizing
and	reducing
ar	tefacts

Background

Analysis

Results

Discussion

Future work

Introduction of a threshold

Figure: Regular sinogram, $S \in [0, 1.43]$

- Physical interpretation of the smooth transitions
- Relation between transmission sinogram (T) and regular sinogram (S):

$$S = egin{cases} 0 & ext{if } - \log(\mathcal{T}) > 1.43, \ -\log(\mathcal{T}) & ext{otherwise} \end{cases}$$

Leise Borg

Background

Analysis

Results

Discussion

Future work

Introduction of a threshold

Some of the data we don't consider as being trustworthy due to scattering effects and some penetration of the metal bar. In the sinogram (S) there are now zeros where data is missing. This is also the case for standard LA-problems, such as in mammography. This is not considered a problem since back-projecting zeros adds nothing to the reconstruction.

Background

Analysis

Results

Discussion

Future work

Our reconstruction calculated by FBP

Leise Borg

Background

Analysis

- Results
- Discussion
- Future work

Vendor reconstruction

Leise Borg

Background

Analysis

Results

Discussion

Future work

But where do the streaks come from?

Leise Borg

Background

Analysis

Results

Discussion

Future work

Micro-local analysis¹

Singularities:

- are density jumps
- can be desribed by the tuple, (x, ξ), where x is the singular position and ξ is the singular direction (normal to the edge).

 We can only expect to reconstruct singularities
 (x, ξ), where ξ ε φ (φ is the angular range where data has been recorded)

¹Frikel, J and Quinto, E, T. "Characterization and reduction of artifacts in limited angle tomography", *Inverse Problems* (2013)

Leise Borg

Background

Analysis

Results

Discussion

Future work

Micro-local analysis¹

Streaks:

- are caused by the limited-angle cut-offs in the sinogram
- emerge only from edges in the image

• can be reduced by smoothing the limited-angle cut-offs in the sinogram

¹Frikel, J and Quinto, E, T. "Characterization and reduction of artifacts in limited angle tomography", *Inverse Problems* (2013)

Background

Analysis

Results

Discussion

Future work

Micro-local analysis - applied

Background

Analysis

Results

Discussion

Future work

Micro-local analysis - applied

Leise Borg

Background

Analysis

Results

Discussion

Future work

Where do the streaks come from?

Characterizing and reducing artefacts Leise Borg

Probable solutions

- Background
- Analysis
- Results
- Discussion
- Future work

- Micro-local analysis: Sinogram smoothing in the *angular direction*.
- Each of the tips have singularities in the detector direction: Sinogram smoothing in the *detector direction*.

Leise Borg

Background

Analysis

Results

Discussion

Future work

Smoothing - before

Leise Borg

Background

Analysis

Results

Discussion

Future work

Smoothing - after

Leise Borg

Background

Analysis

Results

Discussion

Future work

Smoothing - before

Leise Borg

Background

Analysis

Results

Discussion

Future work

Smoothing - after

Leise Borg

Background

Analysis

Results

Discussion

Future work

Background

Analysis

3 Results

4 Discussion

Background

Analysis

Results

Discussion

Future work

Smoothed vs. unsmoothed

Background

Analysis

Results

Discussion

Future work

Smoothed vs. standard LA

Leise Borg

Background

Analysis

Results

Discussion

Future work

Smoothed vs. vendor

Leise Borg

Background

Analysis

Results

Discussion

Future work

Background

Analysis

3 Results

5 Future work

Leise Borg

- Background
- Analysis
- Results
- Discussion
- Future work

Discussion

Smoothing in detector direction:

- Removes streak artefacts
- Does not handle overexposure in the parts of the image where extra data is present

Figure: FBP reconstruction.

Figure: Cimmino. Zeros in sinogram.

Figure: Cimmino. Rows removed.

Figure: Cimmino. Rows removed, nonneg. constr.

Leise Borg

- Background
- Analysis
- Results
- Discussion
- Future work

Comparison between FBP and Cimmino

- Overexposion is handled by the algebraic method.
- Zeros in a sinogram do not represent missing data. This is not an issue in standard limited-angle problems. But for the special limited-angle problem, it is.
- However, time and space matters.

Leise Borg

Background

Analysis

Results

Discussion

Future work

Outline

Background

Analysis

3 Results

4 Discussion

Leise Borg

Background

Analysis

Results

Discussion

Future work

What we did:

Mapping of values above threshold c_S (below c_T):

- Zeros do not represent missing data
- Removed the inherent (wanted!) smoothness

$$S = egin{cases} 0 & ext{if } - \log(\mathcal{T}) > c_S, \ -\log(\mathcal{T}) & ext{otherwise} \end{cases}$$

Leise Borg

- Background
- Analysis
- Results
- Discussion
- Future work

So let's take a step back:

Figure: Transmission sinogram, $T \in [0, 0.53]$

First order Taylor of -log around 1:

 $-\log(x) \sim 1-x$

artefacts

Analysis

Future work

Figure: First order Taylor of -log around 1 (leaving out the constant terms): $-\log(x) \sim 1 - x \rightarrow -x$

UNIVERSITY OF COPENHAGEN

and reducing artefacts
Leise Borg
Background
Analysis
Results
Discussion
Future work

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Characterizing and reducing artefacts

Leise Borg

- Background
- Analysis
- Results
- Discussion
- Future work

Taylor expansion

Leise Borg

- Background
- Analysis
- Results
- Discussion
- Future work

Smoothing

