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Abstract

Embedded systems are everywhere, from mobile phones to medical devices.
They are becoming more complex, and have to fulfill competing require-
ments, in terms of performance (timing constraints), reliability and energy
consumption (long battery life). Due to the competing constraints, their
design is becoming increasingly difficult. In this thesis we consider hard
real-time applications mapped on distributed heterogeneous architectures.
The applications are modeled as a set of tasks, which are characterized by
a worst-case execution time and a deadline. The processors in the hetero-
geneous architecture have have multiple operating modes, consisting of a
given frequency and voltage. We assume that we know the reliability of the
architecture components. Embedded systems are often designed using static
approaches, where the implementation is derived offline. However, many ap-
plications require more flexible solutions. Hence, researchers are advocating
adaptive approaches, which can change the system configuration in response
to changes in the requirements and the environment.

The objective of this thesis is to design and implement online adaptive
scheduling algorithms, which are able to successfully address competing de-
sign objectives in terms of performance, energy consumption and reliability.
We have adapted performance, energy and reliability model from the litera-
ture. The trade-off between performance and energy consumption has been
addressed using dynamic voltage scaling (DVFS), i.e., reducing the dynamic
power consumption by scaling down operational frequency and circuit supply
voltage. However, lowering the voltage to reduce the energy consumption
will impact negatively the reliability, and we plan to investigate also this
energy/reliability trade-off.

We have designed and implemented a simulation framework. Two main
algorithms have been designed, implemented and compared: Low-Power
Priority-Based Rate Monotonic (LPP) and Cycle-Conserving Rate Mono-
tonic (CCRM). The simulation framework has been implemented using Java
and multiple third party libraries. The framework is extensible, and we have
shown that it can used to successfully evaluate the quality of online schedul-
ing algorithms.
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Chapter 1

Introduction

The common modern society has past the last couple of decades become
more and more dependent on embedded mobile devices. Examples of such
devices in the private consumer market are the legendary and popular prod-
ucts from Apple (iPod, iPhone, iPad). While in the industry they tend to be
devices, such as control devices, medical aids, sensors and security measure-
ments. These devices are then placed in bigger systems, like airplanes, cars,
buildings and so on. The very purpose of these devices ranges from mak-
ing everyday life easier, optimize business processes, enjoy entertainment to
ensure healthiness, safety and security. Each device can have different and
multiple purposes, target audiences, usabilities and requirements.

However, one thing they have in common is being mobile and consuming
power from a limited resource, the battery. The vendors will try to in-
crease the consumer’s dependence to their device, so they can sustain their
market positions or enter new markets, since their primary goals are to
make profit and please the shareholders. This can be accomplished in many
ways, but mainly done by increasing the functionalities on the device, which
again heavily affects the power consumption on the device. Hence, it often
becomes a dilemma for the vendors when taking decisions regarding func-
tionality versus power consumption. In the literature there has been made
extensive research to overcome this dilemma. Some researchers had made
their focus in efficiency when implementing the functionalities, while others
centre around the power consumption of the Central Processing Unit (CPU).
In the latter case, especially, Dynamic Voltage Scaling (DVS) has taken up
a lot of attention.

1.1 Dynamic Voltage Scaling

Dynamic Voltage Scaling (DVS) can be explained as a design technique to
adjust the utilized supply voltage on the CPU during a system’s execution.
A CPU’s energy consumption has a quadratic dependency on the supply
voltage. Hence, it is of great advantage to be able to reduce the supply volt-
age when possible, since it can reduce the energy consumption dramatically.
A reduction in energy consumption can prolong the lifetime of the device
and help overcome the previous mentioned dilemma the vendors are faced
with.

However, there exists a correlation between a CPU’s voltage and it’s op-
erating frequency. Whenever the supply voltage is reduced it will, beside
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a reduced energy consumption, most often result in a lower operating fre-
quency on the CPU. The main objective of a CPU is to handle and execute
tasks, and the operating frequency of the CPU determines how quickly (or
slow) a given task is executed. Thus, a decrease in the supply voltage and
frequency comes with the prize of longer execution times of tasks.

1.1.1 DVS algorithm

A strategy describing how much and when the voltage should be altered
based on relevant input-data is characterized as a DVS algorithm. As all
algorithms, the purpose of developing an algorithm is to solve a (computa-
tional) problem. In this present context, the DVS algorithm is integrated
into a scheduler. The scheduling algorithm within the scheduler decides
which task is to be allowed execution on the CPU, while the DVS algorithm
decides which voltage level - thereby which frequency level - the CPU should
execute the task with. Based on the known relevant information regarding
the tasks in the system the DVS algorithm should produce an optimal volt-
age level decision, which gives energy savings and still satisfy any constraints
in the system.

For the past decade there has been, through research, developed several in-
teresting DVS algorithms. Each algorithm has been extensively described in
each of their respective academic published paper. Nevertheless, throughout
the years these algorithms have become more and more ”outdated”. Mainly,
the assumptions are no longer realistic and new constraints have been put
forward.

A bigger problematic is that a profound comparison of the DVS algorithms
is difficult to setup. Often a new DVS algorithm is proposed, because the
proposer intend to have a better strategy of how to compute the optimal
voltage level, including altering the existing assumptions or making new
constraints. In any case, it put a great lot of preliminary work upon the
proposer to actually prototype the proposed DVS algorithm. Another hassle
is the fact to re-implement other major DVS algorithms to make comparisons
and an in-depth evaluation of the proposed DVS algorithm.

1.2 Arising issues and challenges

An evaluation of a DVS algorithm based on simulation runs is crucial. The
evaluation is an empirical analysis of the outlined strategy in the algorithm
and see how the algorithm behaves under various circumstances and sce-
narios. However, setting up an environment to generate simulation runs
and make an evaluation is time consuming and far too often the solution
is a setup, which just satisfies the needs of that specific concerned DVS
algorithm.
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1.2.1 Simulation framework

To sustain a high level of quality and integrity in academia, a key factor is
to be able to re-produce published results. In the process of either accepting
or rejecting proposed hypotheses, elements of creativity can lead to more
optimal solutions and new hypotheses can arise. This essence of science and
research should also exist in the development of DVS algorithms.

A general simulation framework is necessary, so it can be straightforward to
implement a proposed DVS algorithm. The framework will make it easy to
compare a DVS algorithm with other algorithms.

1.2.2 Constraints on the DVS processor

Dynamically reducing the voltage and hereby obtaining energy reduction,
is not supported by all available CPUs for mobile embedded devices. It
is only lately that the CPU vendors have started targeting the mobile em-
bedded devices with DVS CPUs, and enabled the support for changing the
voltage while the CPU is on and executing tasks. When developing a DVS
algorithm there has to be made considerations concerning the consequences
which emerges, when the supply voltage is changed.

Overheads

The consequences are not only longer response times in the system. A
change in the voltage induces overheads in two ways. One overhead is in
the form of physical time. When the CPU is informed to change the supply
voltage, there is a period where it has to adjust to the new supply voltage
and operating frequency, before it can start executing tasks again. Another
overhead is in the form of extra energy spend, since every change in the
supply voltage requires energy to make the transition.

Discrete vs. Continuos frequency levels

The majority of the DVS algorithms should be renamed to Dynamic Fre-
quency Scaling (DFS) algorithms, since they output a frequency and not
a supply voltage value. These algorithms pass the responsibility of trans-
forming the frequency into voltage to the scheduler, which there is no harm
in. The concern is these algorithms have based their strategy upon con-
tinuos frequency levels. There exists no CPU, which supports continuous
voltage and frequency scaling. In practice, every DVS CPU has a finite
number of supply voltage levels, with corresponding frequency levels, which
are interchangeable. Assuming a CPU can operate in any given frequency
makes the energy saving computed by the algorithm an upper bound for
the actual energy saving, since in practice the chosen frequency will be the
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”discrete” available frequency level above the suggested frequency outputted
by the DVS algorithm. Hence, the actual energy saving will be less than the
originally presumed energy saving.

However, the idea of having an utopian CPU, which can operate at any given
”continuos”supply voltage and frequency level, is reasonable. Decoupling the
practicality of the CPU architecture from the decision problem is a good way
of simplifying and concentrating on a partial solution.

Reliability

Recently, preeminent work (5) has shown a noncritical approach towards
DVS algorithms can have fatal consequences. The consequences when dy-
namically changing the supply voltage are not limited to overheads in the
system. The fault-rate of transient errors increases, when reducing the sup-
ply voltage on the CPU. (5) suggests to add an extra constraint in the
system, namely a reliability threshold. The function of this extra constraint
is to guarantee a certain reliability in the system. Adapting this constraint
into the DVS algorithm, makes the algorithm more pessimistic, because po-
tential energy savings are not exploited due to possible infringement of the
reliability threshold. Hence, the energy savings will be less, however, the re-
liability and availability of the system is maintained. Fault-tolerance of the
system could be extended further. Tolerating transient faults by replication
or re-execution of critical tasks can increase the reliability of the system.

Multiple constraints and assumptions are made in the literature regarding
DVS algorithms. When a new DVS algorithm is proposed the assumptions
are not necessary identical with other DVS algorithms. Additionally, new
constraints could have been developed.

1.3 Related work

Dynamic voltage scaling per se is not a new problem. In spite of the area has
been well-studied, only few has tried to establish a simulation framework
to operate from as a baseline. The most prominent work has been done
by (9), which is quite extensive and presents sound concepts to model a
simulation framework. In the preface of this thesis-project, the ambition
was to extend the simulation framework developed by (9), such that trade-
offs and impacts could be analyzed and discussed based on chosen strategies
in the algorithms. However, in the first preliminary phase of the project
it was realized that the research group, had discontinued any further work
with the simulation framework. It was not able to capture the source code
or any executable of the simulation framework, since the responsible code
maintainer Dr. Woonseok Kim had passed away. This was a great set
back, since this highly related work now was harder to take advantage of.
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Nevertheless, their written published work (9) has been of great help and
been taken into consideration, in the process of designing and modeling a
new simulation framework.

1.4 Thesis objective

1.4.1 Problem

Online dynamic voltage scaling algorithms are difficult for a researcher to de-
velop and assess singularly through an evaluation, but also evaluate towards
other online DVS algorithms.

Problem statement

It is a problem, that dynamic voltage scaling algorithms cannot be evalu-
ated in a streamlined manner, such that the trade-offs and impacts can be
thoroughly analyzed.

Questions

• Which relevant online DVS algorithms exist today? Describe them
and their characteristics briefly.

• Which requirements and architecture should be established for a simu-
lation framework? Analyze the requirements and the overall goal is:
online DVS algorithms should be easily implemented, evaluated and
compared to other online DVS algorithms.

• How can the outlined algorithms be implemented and evaluated? The
technical assessment of how the algorithms can be implemented.

• Which extensions to the algorithms are possible to incorporate? Ana-
lyze possible extensions that can improve the outlined algorithms.

• Why is a unified simulation framework essential? Discuss the impor-
tance of the unified simulation framework.

1.4.2 Limitations

Simplification of problems is an approach to make the problems easier to
understand and establish limitations, so the core problem can be addressed
and not distracted by heavy ”detouring”. Often projects have resource con-
straints, e.g. in the form of time and manpower, and it becomes necessary
to limit the project to move forward. The choices of limitations and as-
sumptions should be based on justifications, such that oversimplification is
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avoided. To illustrate which areas exist within real-time systems and DVS,
a mind-map is shown in figure 1.1.

DVS has many exciting and potential areas; one area is IntraDVS, where the
scaling becomes more advanced and instead of deciding one single voltage
level for a given task (InterDVS), IntraDVS makes voltage level decisions
based on execution paths via a Control Flow Graph (CFG) for a task. Ba-
sically, IntraDVS splits a task into multiple basic blocks of computation
and assigns a voltage for each individual block. This thesis scope covers
InterDVS, since developing an code-level analysis of all task becomes too
extensive and the problem statement can still be sufficiently satisfied by
only supporting InterDVS. Other possible areas are inter-task communica-
tion and bus power management, which due to constraints not have been
addressed in this thesis.

The above-mentioned limitations are general, additional limitations have
been made. They are mentioned along with their reasons in their concern-
ing sections, since the context they appear in are necessary to properly
understand them.

Figure 1.1: DVS mind-map

1.4.3 Method of choice

The applied method, to approach the problem and questions, is more or less
accomplished in a deductive manner, where recognized theories and models
are identified and a simulation framework is developed. The framework
becomes both a resulting product of this thesis and a tool to produce more
primary data, based on the outlined and extended online DVS algorithms.
The generated data could be used to either accept or reject the hypotheses
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made in the analysis.

1.5 Structure of the report

At the outset, chapter 1 contains an introduction to dynamic voltage scaling,
followed by a problem, which is transitioned into a problem statement and
multiple research questions. These questions will be addressed during the
report.

In chapter 2 an analysis is made where all relevant models are defined with
their associated theory. A conceptual architecture is explained regarding
the software simulator, giving the reader a foundation in how to understand
the upcoming chapters concerning the implementation of the simulator and
the experiments derived from the simulator.

Hereafter, chapter 3 goes into technical details of the simulator. The imple-
mentations of the specified models are untangled along with decision choices
and design patterns.

After the reader has got a sense around the problem, central theories, models
and implementations, chapter 4 explains the strategy for experiments, and
how the simulator is run based on various scenarios and the results are
outputted.

Chapter 5 takes the results further. The algorithms and their characteristics
are discussed based on the results obtained in the earlier chapter. Interpre-
tations of the results in the light of problem statement, from chapter 1, and
theories, from chapter 2, are presented in this chapter.

The final chapter 6 wraps up conclusions made during the earlier chapters
and makes way for future work, which could not be enlightened due to the
constraints and choices of limitations.
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Chapter 2

Analysis

In this chapter the theory and models behind the foundation of the simula-
tion framework is introduced. The conceptual architecture along with the
requirements and use case of the framework are explained.

2.1 Real-Time Systems

The comprehension of DVS could be improved by understanding the context
within it is used. It is essential to realize that DVS is applied in real-time
systems, which again is an important part of an embedded system. A real-
time system contains of a set of real-time applications. The objective of
a real-time application is to complete tasks and complete them under the
given constraints, namely time or resources. A typical real-time application
is hidden and difficult for a user, even a technically skilled one, to distinguish
from a non real-time application (6). There has previously been mentioned
in which devices real-time applications can be found. Often the existence
of a real-time system is only given away for a user, when it is not behaving
according to it’s requirements specification. This accustoming towards the
invisibility of real-time systems can have fatal consequences if the real-time
system fails to meets it’s requirements. In most situations the user will not
be able to realize the malfunctioning of the system before it is too late. Even
if there is an early detection of the malfunctioning and recovery procedures
are not provided by the real-time system, it is difficult for users to overhaul
the system. Nonetheless, in the theory of scientific real-time systems there is
a specific set of principles and concepts to specify and check the correctness of
a given real-time system, Safety-Critical Embedded Systems, but this thesis
does not go into further details of safety-critical embedded systems.

2.1.1 Reference model of a Real-Time System

Here at the outset, terms and notation should be put in place. A task in a
real-time system is characterized as some kind of work, which is scheduled
to be executed. Every task has several attributes associated with itself. Es-
pecially, worst-case execution time (WCET), release time, deadline, period
and priority are significant attributes.
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Worst-case execution time

WCET is the absolute maximum execution time a task will run for, then also
said that a task not necessary always will run as long as it’s WCET. Since
the execution time is inversely proportional with the operational frequency
of the CPU, it is assumed a task’s WCET is when the CPU is run at it’s
maximum operational frequency. If the frequency is changed at a later point,
self-evidently, the task’s WCET will change as well.

Release time

Release time is a constant which is only relevant once and could be described
as a guaranteed delay. Since not all tasks are interested in being executed
immediately after the system starts up, the release time indicates when the
task should be made available in the pool of ready tasks to the scheduler
after the system start-up.

Deadline

Deadline is more or less self-explanatory. The scheduler must schedule such
that the task is finished executing by the CPU before it’s deadline, otherwise
there is a deadline miss and the consequences can be fatal. If one or more
deadline misses arise it is an indication of one of two incidents. Either the
set of tasks actually cannot be scheduled or the schedulability analysis of
the scheduler has been compromised. In the first case, there is nothing to
do than re-do the composition of tasks. In the latter case, the scheduling
algorithm is inadequate and has to be re-modeled. A brief introduction to
schedulability analysis is further described in section 2.1.2.

Period

The period represents the length of time of recurrence for a periodic task.
As with release time, this time only indicates that the task is released and
ready to be executed on the CPU. There can be made no assumptions that
the task absolutely will be executed at the beginning of the period, since it
is the scheduler who has the sovereignty to decide which task in the pool of
ready tasks, to a given time, should be selected to be executed. All tasks in
this model are periodic tasks.

Priority

In this present model of a real-time system every single task has an assigned
priority. The concept of assigning a priority can help the scheduler to de-
termine which of the ready-to-be-executed tasks, should be selected to be
executed on the CPU. A real-time system can operate with either static
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or dynamic priorities assigned to the tasks. Tasks with static priority are
constant and will not change during the system’s runtime, while tasks with
dynamic priorities can change during the system’s runtime. Scheduling algo-
rithms not taking priorities into considerations performs poorly (7, p. 122).
All tasks in this model are tasks with static priorities.

Preemption

Some real-time systems run in a non-preemptive manner. Although, in
this model preemptions are allowed and a preemption occurs when a task
is interrupted before it has finished executing and is replaced by another,
generally higher priority, task. The scheduler should make a precaution, so
that any preempted task will be resumed and finished before it’s deadline
to avoid a deadline miss.

Resources

More advanced and complex real-time systems support the possibility of
controlling resources. In such systems every task can reserve an amount of
various resources. Enabling a task to require other resources than the CPU,
can lead to resource contentions. Resource conflicts can arise if one task has
reserved a resource, which also is required by a higher priority task to finish
execute. Suddenly, the likelihood of phenomenons known from the parallel-
and concurrent systems theory are introduced, such as deadlocks, starvation,
fairness and live locks. Undergraduate textbooks in real-time systems (7,
p. 277) explain how to take advantage of Resource Access Control Protocols
to avoid resource contentions and eliminate the newly introduced threads.
The model here takes a more simplistic approach towards the management
of resources. Every task requires only one single resource, the CPU, and the
CPU has no upper limit of how many tasks can request an instance of the
CPU. This limitation is necessary to focus on the stated problem, rather
than introducing another complexity into the model.

Hard versus Soft Real-Time Systems

Real-time systems are split into two categories, hard- and soft real-time
systems. Various definitions of these categories exist in the literature. One
interpretation (3) is using the timing constraints to distinguish1 between the
categories, which will be used here. Thus, the main difference is that a hard
real-time system takes all deadlines solemnly and even one single deadline
miss results in failure of the system. While a soft real-time system is less
stringent and can tolerate deadline misses, the exact rigidness depends on
that specific soft real-time system.

1other measurements could be using the output results
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The application of the system has a great impact to decide whether a system
should be hard or soft. It is obvious that a system, which displays the
temperature on a wall could be a soft real-time system, allowing minor
delays in the system once in a while, both with regard to measurements and
the final display of the actual temperature. While a flight is highly volatile
towards delay in the break system, so the system has to absolutely guarantee
the timing constraints established. To emphasize that DVS can be applied
in systems, which requires strict timing constraints and be safety-critical,
the present model is a hard real-time system.

2.1.2 Schedulability analysis

A schedulability analysis is important to decide if a set of tasks can be
scheduled and, if so, how to schedule the tasks. The schedulability analysis is
the core element in any scheduling algorithm. A weak schedulability analysis
indicates a scheduling algorithm performing poorly. It is common to use a
response-time analysis to determine the schedulability of a set of tasks. The
idea in this analysis is to compute every task’s worst-case response times
and compare that with it’s deadline. The worst-case response time is not
necessary equal to a task’s worst-case execution time, since response times
take the waiting time when a task is preempted into account.

Static analysis

Static analysis is a simple way in advance to see whether a set of task can
be scheduled. It requires information known a priori and the assumption of
that the length of the tasks to be their worst-case execution time. Scheduling
algorithms is divided into offline and online scheduling algorithms.

Offline scheduling algorithm

Offline scheduling algorithms use static analysis to schedule all tasks. There
is no perception of past and future tasks. All tasks are scheduled according
to their worst-case execution times and once they are scheduled, the work of
the algorithm is done. The scheduler follows the schedule, if a task during
runtime of the real-time system finishes earlier than it’s WCET, the CPU
does nothing and there will be a period of no activity on the CPU. This
period is often referred to as slack. The slack will be the difference between
the WCET and the actual execution time. The CPU will first begin execute
again after the slack. Since the offline scheduling algorithm needs to have all
tasks scheduled before the execution of the first task, the algorithm is often
very difficult to develop. Typically, because the scheduling problem can be
hard to solve.
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Online scheduling algorithm

Online scheduling algorithms differ from offline scheduling algorithms, by
making their decisions ”on-the-fly”, while the real-time system is running.
Online scheduling algorithms thereby has a history of already executed tasks.
However, they do not necessary know about the tasks in the future. Knowing
the past and having an idea of which tasks are ready to be executed makes
opportunities for the online scheduling algorithm to be more intelligent.
The actual execution times become available for the scheduling algorithm,
so it can make decisions which take advantage of the slack period, such
that the response times of various task get reduced. In contrast to offline
scheduling algorithms, online scheduling algorithms need to act fast and
make the decision, which task is to be executed, available for the CPU as
soon as possible to avoid any delay.

The real-time scheduling chosen in this real-time system model makes an
online priority-driven approach. The most popular online algorithms in the
literature are Earliest Deadline First (EDF) Rate Monotonic (RM). Both
algorithms make use of CPU utilization and individual schedulability tests
to guarantee if a given task set is schedulable.

Earliest Deadline First scheduling algorithm

EDF is a dynamic priority-driven scheduling algorithm. The basic strategy is
to choose the task with the nearest deadline to the current time of scheduling
point. One advantage of EDF is that it has a utilization bound of 100 %.

U =

n∑
i=1

Ci
Ti
≤ 1 (2.1)

Where Ci is the WCET and Ti is the deadline for the task, i. If the computed
utilization is below 1, EDF can guarantee the set of tasks can be scheduled
on the CPU. EDF is not common in industry hard real-time systems due to
multiple reasons. Instead the RM scheduling algorithm is widely used.

Rate Monotonic scheduling algorithm

RM is a static priority-driven scheduling algorithm. Like EDF, RM also has
a schedulability test, which uses the CPU utilization. A subtle difference is
that RM does not guarantee schedulability if the CPU utilization is below
100 %. There has been made work (7), which has proven that the schedula-
bility with RM scheduling is dependent on the amount of tasks, which has
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to be scheduled. Their work resulted in equation 2.2.

U =
n∑
i=1

Ci
Ti
≤ n(21/n − 1) (2.2)

If the exact number of tasks is known, it is straightforward to estimate if
the CPU utilization is below the bound made by (7). If so, RM guarantees
that the set of task can be scheduled. Moreover, they also computed the
limiting value of the equation when the amount of task is reaching infinite,
which can be seen in equation 2.3.

lim
n→∞

n(
n
√

2− 1) = ln(2) ≈ 0.69 . . . (2.3)

As it can be seen if the CPU utilization is below the ”worst-case” bound
0.69, RM will always guarantee schedulability, but there will be cases where
the utilization can be above the bound and still can be scheduled by RM.

2.1.3 Offline Dynamic Voltage Scaling

As mentioned before, offline scheduling algorithms tend to be complex al-
gorithms solving computational hard problems. It is especially troublesome
that the problem grows exponential with the size of the input. Hence, of-
fline algorithms make use of combinatorial optimization, to find an optimal
scheduling out of many possible scheduling possibilities. Metaheuristics are
also used, although these do not guarantee an optimal solution (scheduling),
since metaheuristics algorithms are quicker and in many cases more feasible
to use.

Figure 2.1: Offline and online scheduling interaction with the system

Even though this thesis do not address offline DVS scheduling, it is optimal
to have preprocessed the input with an offline algorithm. Especially, in
case where the system architecture has more than one processor at disposal.
The complexity becomes very high and infeasible for an online algorithm
to re-evaluate every decision during execution for the whole system. The
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proposed solution is delegation. An offline algorithm could initially make the
complex computations and find the most optimal mapping of tasks (and also
operating frequency) to each processor in the system, and hereafter an online
scheduler takes over for each of the processor. During execution the online
scheduler continuously makes less complex computations to decide what the
actual operating mode should be for the active task on the processor. The
flow is shown in figure 2.1.

TABU-based search algorithm

A very interesting offline DVS algorithm is the one developed by (5). It is
a TABU Search-based algorithm making use of metaheuristics. They have
developed a cost function, which has multiple constraints such as energy,
reliability and time. This cost function is then trying to be minimized when
exploring solutions. One of the advantage of TABU search is that it allows
selection of non-improving solutions, such that it can avoid returning solu-
tions from a local optimum. Furthermore, addressing reliability has become
a very hot topic recently, since it has been proven that the error of transient
faults increases exponentially be reducing the voltage level of the processor.
Mapping moves have been illustrated in figure 2.2, after the mapping the
algorithm decides which level of frequency should be assigned.

Figure 2.2: Mapping moves during offline scheduling

2.1.4 Online Dynamic Voltage Scaling

The main emphasis in this thesis is making it possible to implement online
DVS algorithms into a simulation framework and be able to evaluate them.
The first problem question in section 1.4.1 seeks existing online DVS algo-
rithms. In the literature especially two algorithms turn up frequently and
those algorithms are: Low-Power Priority-Based Rate Monotonic (LPP)
and Cycle-Conserving Rate Monotonic (CCRM). These are chosen to be de-
scribed further and are the ”test algorithms” to be applied in the simulation
framework.

Low-Power Priority-Based Rate Monotonic algorithm

This LPP algorithm (10) actually consists of both an offline and online
component, where the offline (WCET) analysis computes the lowest possi-
ble operating frequency all tasks can be run in and which still guarantees
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all deadlines. The interesting part, however, is the online analysis which
dynamically varies the operating frequency based on exploiting the slack
emerged from execution time variations and idle intervals. The algorithm is
briefly described with examples from the relevant literature.

Ti Di Ci Priority

τ1 50 50 10 1

τ2 80 80 20 2

τ3 100 100 40 3

Table 2.1: Task set example (10)

Figure 2.3: Scheduling (10)

LPP requires two queues, one run queue and one delay queue. The run
queue keeps track of all tasks which are ready to run (released) and are
ordered according to their priority. The delay queue keeps track of all tasks
that have already run and finished executing, so the tasks are not ready
to run - be released - before their individual next period occur. They are
sorted according to when their release time is due. The task with the highest
priority in the run queue is called the active task. An example from (10) is
reproduced in figure 2.4 with the task from table 2.1.

Whenever the algorithm is invoked it checks the delay queue to see if any
tasks are ready to be released, if so they are moved to the run queue. In
the process it further checks whether any of the newly released tasks have
a higher priority task to be run than the active task running, in that case,
the active task is replaced with and this is called a context switch. Most



2.1 Real-Time Systems 17

Figure 2.4: State of the queues (a) at time 0 and (b) at time 50

conventional schedulers follows this approach, but LPP get to be interesting
when the run queue becomes empty. It divides the scenario up into two:

• All tasks have completed their executions for their respective periods,
hence no active task exists either. The processor can then enter power
down mode.

• All tasks except the active task has finished their executions for their
respective periods. The processor can then prolong the active tasks
execution time, by reducing the operating frequency, until the earliest
released task of the delay queue.

This is the basic concept of the LPP algorithm, the pseudo code developed
by (10) is listed in appendix A. The computation to reduce the active task’s
the operating frequency, in case it is the only task left outside the delay
queue, is given in equation 2.4.

(ta − tc) · ropt +
(1− ropt)2

ρ
= Ci − Ei (2.4)

Where Ci is the WCET for the active task, τi, and Ei is the already executed
time of τi. The current time is denoted tc and the next arrival time of the
next task available in the delay queue is ta. There is a delay of changing the
operating frequency, this rate is denoted as ρ. Solving ropt in equation 2.4
gives equation 2.5.

ropt =
−ρ · (ta − tc) + 2 +

√
ρ2 · (ta − tc)2 − 4ρ · (ta − tc − Ci + Ei)

2
(2.5)
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Nevertheless, ropt can be computationally expensive to perform for the online
scheduler. To overcome this issue (10) has developed a heuristic solution
given by equation 2.6, where they neglect the above mentioned delay. The
proof that the heuristic solution is an upper bound such that rheu is always
larger than ropt, hence not violating the schedulability constraint is given in
their appendix.

rheu =
Ci − Ei
ta − tc

(2.6)

Cycle-Conserving Rate Monotonic algorithm

CCRM is another online DVS algorithm and differs slightly from LPP, es-
pecially when it comes down to the slack distribution among tasks. The
algorithm is presented in (8) and is briefly explained here.

Ti Di Ci Priority

τ1 8 8 3 1

τ2 10 10 3 2

τ3 14 14 1 3

Table 2.2: Task set example (8)

Figure 2.5: Scheduling (8)

The example in figure 2.5 (letters in parentheses corresponds to the letters
in the figure) shows:

• (a) a scheduling of tasks and assignment of frequency made by static
analysis. It can bee seen that there is an idle period just after the
completion of τ3, this is based on WCET. CCRM is different compared
with LPP, since it tries to distribute the extra available computation
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time not only to one (if enough slack is available), but all remaining
tasks which are released and ready to run.

• (b) despite the fact that, the computed frequency to be run by the
tasks is a decimal between 0.75 and 1.0 (b), CCRM is a discrete DVS
algorithm. Moreover, it makes a pessimistic approach and chooses the
available frequency level which is just above the computed frequency.

• (c) the actual execution is in progress. τ1’s frequency has been set to
the maximum (since the exact computed frequency is not available in
the set of operating modes). The WCET is 3 ms, but during execu-
tion the task has already finished executing after 2 ms. The online
algorithm computes a new frequency, which lies between 0.5 and 0.75.

• (d) τ2 has been set to the closest available ”round-up” frequency level,
0.75, and has finished just after 1.33 ms. Hence, τ3 can be prolonged to
execute till the release of τ1. But the available operating modes limit
the possibility of taking full advantage of the total available slack.

• (e) τ3 is assigned the lowest available frequency, 0.5. The unused slack
is shown and τ1 is released at 8 ms. However, the strategy of CCRM
limits the algorithm further to not look beyond the next deadline in
the system, so τ1 is executed at highest possible frequency.

• (f) Shows the trace of actual executions and frequency levels of all
tasks for 16 ms.

Beside a delay queue and a run/ready queue, CCRM makes use of multiple
counters. Each task is equipped with two counters. One counter, c lefti,
is initialized to the remaining time, which initially would be equal to it’s
WCET. The other counter, di, indicates allocation and is initialized to zero.
Whenever there is slack available the algorithm distributes this slack among
tasks, which are in the run queue. More specifically, the slack added to a
task’s allocation is constrained by di ≤ c lefti, and if more slack is available
then the slack goes on to the next task in the run queue. This constrain
ensures schedulability and the computation of the frequency is shown in
equation 2.7, although the algorithm makes a slightly different approach,
since it ”rounds up” to the closest available operating frequency. The com-
plete pseudo code can be found in appendix B.

f =
d1 + ...+ dn

max cycles until next deadline
(2.7)
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2.1.5 Dynamic Voltage Scaling in immobile devices

Up until now, DVS has been mentioned in mobile embedded devices. Even
though the immediate advantages speak of DVS being most relevant in these
devices, this is not entirely true. DVS has potential in immobile devices as
well, even though these devices have unlimited access to resources and are
not bound by energy constraints.

Governments and non-governmental organizations all over the world is fight-
ing a moral war to reduce the power consumption. Indirectly, a reduction in
power consumption can lead to reduction in carbon dioxide emissions and
greenhouse gasses. Private and public companies spend a huge amount of
money in buying and maintaining cooling systems, to reduce the tempera-
ture in various environments where embedded devices work. Even though
this topic is not going to be followed further, both mentioned issues can be
eliminated by introducing DVS in these immobile embedded devices. DVS
causes potential reduction in power consumption and accomplishes this by
reducing the operating frequency of the CPU. The released heat from the
CPU is directly proportional to the operating frequency.

2.2 System model

The architecture of the relevant real-time system is described as a unipro-
cessor. This is only because this thesis isolates the CPU from the bigger
real-time system. The bigger real-time system is taken from (5) and consists
of a set N heterogeneous processors and interconnected by a communication
channel. The relevant real-time system is then a subsystem and can be seen
as one of the processors. The communication channel is a non-preemptive
fixed-priority bus, but since the bus is only used whenever a task is trans-
ferred between the processors and the relevant real-time system only can
take actions on the present processor the bus and energy consumption from
the bus is neglected.

2.2.1 Operating mode

It is assumed that all processors supports DVS and a single processor, Ni,
has a set of available operating modes. An operating mode is modeled in
equation 2.8.

ΛNij = (fNij , vNij , pNij ) (2.8)

Where fNij indicates the current operating frequency for the processor Ni

in the operating mode j. The frequency is measured in Hertz (Hz), corre-
spondingly, the supply voltage, vNij , is measured in Volts (V) and the power,
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pNij , is measured in Watts (W). The normalized frequency and normalized
voltage are computed in equation 2.9 and equation 2.10, respectively.

FNij =
fNij

fNimax
(2.9)

V Ni
j =

vNij

vNimax
(2.10)

Switching between operating modes

Any dynamic switch in the operating modes of the CPU creates an overhead
in both energy and time. This overhead should somehow be addressed and
(5) suggests two matrices, X and Y . In matrix X an element, Xjl (j 6= l),
represents the time overhead required to switch from mode j to mode l. In
matrix Y , an element, Yjl (j 6= l), represents the energy overhead required
to switch from mode j to mode l. The representation make it possible for
the overhead to be symmetrical, where the overhead is identical whether
switching from mode j to mode l or vice versa. In addition, the matrix
could be asymmetrical and have different overhead whether switching from
mode j to mode l or from mode l to mode j.

2.3 Application model

The application consists of a set of periodic tasks, Γ. Every task, τi, in
Γ is assigned a unique priority and it’s deadline is smaller or equal to it’s
period, i.e., Di ≤ Ti. Although, the mapping of τi on to a specific Nj is
not done at this level of the system. As earlier stated, the present real-
time system model is a subsystem and running on a uniprocessor. Hence,
the optimal mapping and assignment of frequency level is already done in
a preprocessing module. This preprocessing module is a permanent part of
the bigger real-time system and make use of the offline algorithm mentioned
in section 2.1.3 and further explained in (5). So the tasks of one application
could be distributed out to different CPUs, but it is not a requirement for
the online scheduler at this system level to have an overview of the set of
tasks.

2.3.1 Criticality

The application can indicate criticality on any given task, such that some
tasks are critical and others are non-critical, for the application to success-
fully complete. To enforce this criticality and tolerate (transient) faults there
are different solutions, two of which are: replication and re-execution.
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Replication

Replication is when there is made extra copies of the exact same critical
task. The application designer has to specify a desired redundancy level,
ki. The redundancy level will indicate the exact amount of replicated tasks
of task τi will be introduced to the system. This solution increases the
amount of tasks to be scheduled in the system. An assumption is that during
execution whenever a critical task has completed successfully the remaining
replicated tasks will be suspended, which will correspond to idle period or
slack. Replication is already covered by (5) and an integrated part of the
offline scheduler. That being so, the decisions regarding creating replicated
tasks, assigning an optimal individual frequency level and the distribution
of the replicated tasks to CPUs are made by the preprocessing module.

Re-execution

Instead of replicating critical tasks to ensure successful completion of an
application, another approach is to re-execute any failed critical task. Ob-
viously, re-execution solely makes sense in online scheduling, since it is only
during execution it can be known that a critical task has failed and needs
to be re-executed. Therefore, the responsibility of re-execution cannot be
placed in the preprocessing module, but has to be placed at this level of the
system.

2.4 Power model

A core and necessary feature of the system is to keep track of the energy
consumed. A power model was proposed by (5), shown in equation 2.12,
to compute the total energy consumption of all tasks in the custom set, Γ′,
within the hyperperiod, TΓ′ . Every task τi in Γ′ does not need to be trunked
from the same job, but what they have in common is that the schedulability
analysis has chosen these tasks to be run on the same CPU, Nj , and in

the same operating mode, l. The WCET of τi on Nj is C
Nj
i , assuming

the processor will run in it’s highest operating mode (maximum frequency)
constantly. This will most likely not be the case since the whole purpose
with the system is to take advantage of dynamically switching operating
modes, so the WCET needs to be adjusted to the operating mode decided
by the schedulability analysis.

The adjusted new WCET, ci, is computed by using equation 2.11 and F
Nj
l is

the corresponding frequency to the decided operating mode, l, on the CPU.

ci =
C
Nj
i

F
Nj
l

(2.11)
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ES =
∑
τi∈Γ′

⌈
TΓ′

Ti

⌉
· pNjl · ci +O (2.12)

The explained power model is very applicable in an offline schedulability
analysis and the values derived from it can be characterized as an upper-
bound for the energy consumption in the system. However, the very fact
that the calculated energy consumption is an upper-bound makes room for
further energy savings. The power model can be modified so it can be used
in an online schedulability analysis, such that potential energy savings are
exploited, using the gained knowledge of the actual execution time after each
task has completed it’s execution.

2.4.1 Online Power model

Instead of computing the expected energy consumption in advance the on-
line power model computes the energy consumption ad hoc after each task
has completed it’s execution. At this point the exact execution time and
frequency-level are known and the computation of energy consumption,
shown in equation 2.13 [doublecheck notions], becomes fairly trivial and
precise.

ES =
∑
τi∈Γ′′

pl · cτi +O (2.13)

The main differences are: firstly, there is no reference to any processor due
to this system works on a uniprocessor. Secondly, the execution time does
need to be adjusted, since the exact execution time is known and the as-
signed frequency level, l, is obtained from the online schedulability analysis.
Thirdly, the custom task set, Γ′′, does not longer only contains all tasks with
the same assigned frequency level, but the entire set of tasks which has run
to on the processor.

2.5 Task Execution model

A simulation saves the application designer time, resources and the final
evaluation gives a better understanding of how each individual task fits the
real-time system. Since the tasks are not actually executed on a processor,
the complexity of how to simulate the execution online emerges. This com-
plexity is solved by introducing a task execution model, which predicts the
actual execution based on a probabilistic distribution and parameters. The
task execution model used in (11) is based on a random gaussian distribu-
tion, although, there is also presented an extra model which is based on a
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negative exponential distribution [Explain short why this introduction of an
extra model/distribution].

2.5.1 Random Gaussian distribution

The random gaussian distribution (normal distribution) is used widely in
both analyzing data and in experiments. Often data from the real world is
normal distributed and this claim is supported by the central limit theorem,
which basically states the distribution of the mean will be distributed nor-
mally as the number of random independent observations gets sufficiently
large.

The actual executions of the tasks can be modeled as behaving like normally
distributed. Where a large group of tasks finishes their execution around
an estimated mean, while tasks which either are finished almost instantly or
near their WCET are seldom. The popularity of the gaussian distribution
is also caused by being fairly straightforward to understand, implement and
sample from. As it can be observed in 2.14, the distribution can be made
unambiguously by a mean, µ, and a variance, σ2, leading to the notation:
N (µ, σ2).

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.14)

The characteristics about the gaussian distribution are that it tries to cen-
ter around the mean and is symmetrical having no skewing. However, in
experiments the practicality of the distribution depends highly on the two
estimated parameters, mean and variance.

Estimation of parameters

The authors from (11) have not observed actual execution times of tasks
for applications run on processors, so no statistics of actual execution time
is available for them. Instead they define mean with a variable, Best-Case
Execution Time (BCET), which can be seen in equation 2.15. BCET is the
time a task in best-case completes, so saying a task can never finish earlier
than it’s BCET. During their experiments they vary BCET, and thereby the
sampled actual execution time, to analyze the significance of increased or
decreased actual execution times in accordance with energy consumption.

µ =
BCET +WCET

2
(2.15)

It is known from probability theory that the standard deviation of a proba-
bility distribution is the square root of it’s variance. The standard deviation,
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which determines the spread around the mean, can also explain how many
observations (actual executions) are guaranteed to exist within a certain
area of a distribution.

Figure 2.6: Gaussian distribution with standard deviation [source: wikipedia.org]

Figure 2.6 illustrates a gaussian distribution, where the standard deviations
are marked. The percentages indicate the probability, that a random task
takes on a value (actual execution time) in that particular interval. Reason-
ing is used by (11) to determine the standard deviation and the variance,
respectively, σ and σ2. They argue that no task can execute longer than
WCET and there is a probability of 99.69 %, that any random task has an
actual execution time which lies within the interval [µ− 3σ;µ+ 3σ].

µ+ 3σ = WCET
BCET +WCET

2
+ 3σ = WCET

σ =
WCET −BCET

6
(2.16)

During online execution the individual task’s actual execution is then sam-
pled from a gaussian distribution, N (BCET+WCET

2 , (WCET−BCET
6 )2).

2.5.2 Negative Exponential distribution

An extra task execution model is proposed in this thesis, the negative expo-
nential distribution. This exponential distribution deviates from the gaus-
sian distribution by having a completely different shape.

In practice this distribution is often used to model the time interval between
random events. The distribution can be seen in equation 2.17.

f(x;λ) =

{
λe−λx, x ≥ 0,

0, x < 0.
(2.17)

However, the sampling from the negative exponential distribution is a bit
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more tricky. The sampling method described here make use of the cumula-
tive distribution function (CDF), shown in equation 2.18 and initially com-
putes a maximal CDF value, maxCDF , by solving x with WCET, shown
in equation 2.19.

F (x;λ) =

{
1− e−λx, x ≥ 0,

0, x < 0.
(2.18)

maxCDF = 1− e−λ·WCET (2.19)

Equation 2.19 describes the probability that a task will finish execute either
before or at latest at WCET and is noted maxCDF . Hereafter, a uniform
distribution is used to sample a random number, r, from zero to maxCDF .
This r is then used in the inverted CDF to compute the actual execution
time, x, seen in equation 2.20.

x =
−ln(1− r)

λ
(2.20)

Estimation of parameters

The core parameter here is λ. The parameter can be estimated according
to the application, since there is no doubt that the pattern of an actual
execution time of a task is application dependent. In the present context, it
is believed that the tasks execute close to their WCET. A very subjective
estimation of λ is seen in equation 2.21.

λ = WCET · 3/4 (2.21)

µ = λ−1 ⇒ µ = (WCET · 3/4)−1 (2.22)

2.5.3 Uniform distribution

The last task execution model, which is introduced in this thesis is making
use of an uniform distribution. In practice, a hypothesis or observations
from actual task executions would be used to estimate the parameters in
the above-mentioned two task execution models. In this model there is no
extra parameters than the interval within the sampling should take place.
It could be discussed, whether the model is realistic, but the purpose of this
model is to get a view of how the strategies work on tasks which has equal
probabilities of execution time between BCET to WCET. So the model
could rather be applied to test various strategies. The sampling is relatively
straightforward and the interval is defined as x ∈ [BCET ;WCET ].
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All three task execution models make use of a probability distribution to
sample the online actual execution time for each task. However, there is
a subtle difference between the models. The model based on the gaussian
distribution tend to output actual execution times centering around the mid-
dle/mean, while the model based on the negative exponential distribution
tend to output them close to the task’s WCET. The uniform distribution
do not require any parameters to bias the distribution in any direction or
skewness.

2.6 Software model

The software models are explained in a conceptual architectural manner,
and both entities and relations are illustrated in figure 2.7. The simulation
framework encapsulates five units and those are specification, scheduler, sim-
ulation engine and output. One of the main goals is to make the framework
flexible, such that all units can be replaced with a custom one, except the
simulation engine. This flexibility is enforced, so it becomes easy for a devel-
oper or researcher to develop and prototype various scenarios and strategies.
This section could also be characterized as the structural requirements for
the simulation framework.

2.6.1 Specifications

The specifications should be seen as input to the simulation framework and is
split into task specification and machine specification. While the task spec-
ification is static input, the machine specifications are dynamic input. The
simulator engine will dynamically interact with the machine specifications
throughout the simulation.

Task specification

The task specification contains the set of tasks, which are to be scheduled
and evaluated through the simulator. The specification describes each task
in detail and contains the parameters shown and explained in table 2.3.
The reason to make task specifications interchangeable is to provide the
developer the possibility of creating task sets with certain characteristics.
These task sets can hereafter be evaluated and give an impression how well
the algorithm has performed. The set of tasks, Γ = {τ1, τ2, τ3, ..., τn}, is
stored in a data-file, which is then parsed into the simulation engine as
input.
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Parameter Description

Taskname Identifier of τi
WCET Worst Case Execution Time of τi
BCET Best Case Execution Time of τi
Pi Period of τi
Di Deadline of τi
ρi Priority of τi
δi The arrival offset of τi
fi Frequency of τi

Table 2.3: Task specification for the task, τi

Machine specification

The machine specification describes the hardware model, namely, the pro-
cessor architecture. Basically, the machine specification is an operational-
ization of the system model described in section 2.2. It contains a set of
processors, N , where each processor has a set of operating modes, ΛNi , and
a single operating mode is described in the system model and equation 2.8.
Like the task specification, the purpose of this specification is to give the
developer more control and flexibility. Especially, it could be interesting to
analyze how well an algorithm performs on various different processors with
different parameters such as number of operating modes and their energy
consumption.

Parameter Description

Processor name Identifier for Ni

fmax Maximum frequency of Ni

scalingPoints Set of operating modes, ΛNi , of Ni

scalingFactor Scaling factor of Ni

Table 2.4: Machine specification for a single processor, Ni

2.6.2 Energy consumption

This unit of the simulation framework operationalizes the power model from
section 2.4. In the literature researchers have various ways of estimating the
consumption of power and energy. It is essential not to make this unit a
static part of the simulation framework, since then it is possible to adapt
foreign power models and the consequences can be observed directly.
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2.6.3 Task execution

The task execution part could be one of the three different task execution
models, which were introduced in section 2.5. Each of them do exactly the
same, announce the actual execution time of a task, but differ in the way of
computing it.

2.6.4 Scheduler

The primary objective for a scheduler is to react upon requests from the
simulator engine. It is implemented based on an online DVS algorithm.
Multiple schedulers could be developed and the motivation is to make the
developer rapidly prototype ideas and strategies and compare the schedulers.

2.6.5 Simulator engine

The simulator engine should not only take actions based on inputs, but also
act like an ”umpire” overseeing all impacting actions on the scheduling of
the tasks. Hence, the engine needs overall overview and should enforce the
virtual laws, e.g. take action whenever a deadline miss occur. In contrast to
all the other units of the simulation framework there exist only one simulator
engine.

2.6.6 Output

The simulation engine has the possibility of passing raw information it col-
lects during execution to an output unit. This output unit then can process
the information and show it in a graphical presentation for the developer.

2.7 Design

The analysis of the software model has so far illustrated the conceptual ar-
chitecture. The purpose of making a conceptual architecture is to explain
the description of the system in a more abstract way and highlight the the
ideas and concepts of the simulation framework. Nevertheless, the con-
ceptual architecture cannot stand alone in an analysis. To fully cover the
usability of the simulation framework the analysis has to be supplemented
with requirements and use cases.

2.7.1 Requirements

The requirements explained here are functional requirements and non-functional
requirements. These requirements are defined to ensure the needs of devel-
oping an online DVS algorithm and that it is possible to evaluate in the
simulation framework.
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Figure 2.7: Conceptual software architecture of the simulation framework

Functional requirements

The functional requirements demand which specific functionalities are to be
expected in the simulation framework and what it actually can do. They
are shown in table 2.5.

Non-functional requirements

The non-functional requirements concerns the performance of the simulation
framework and constraints on the system. They are shown in table 2.6.

2.7.2 Use cases

It is a good practice to develop use cases before an implementation of the
software model. In the process of defining a use case, multiple scenarios
are identified, which then are tied together by a common user goal (4).
Although, having identified important scenarios does not directly lead to
a use case, since there is no format in creating the optimal use case or
collaborating use case diagrams (2). Which has resulted in many variants
of use cases. A suggested use case template made by (2), explained in table
2.7, is used as the format for creating use cases here.
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Name Description

Task set Task set can be defined by developer and used
as input

Machine specs System architecture can be defined by developer
and be used as input

Models Power- execution distribution models can be
chosen (build-in) or implemented by the devel-
oper

Scheduler A scheduler can be loaded into the framework
or build-in schedulers can be chosen

Multiple schedulers It should be possible to choose multiple sched-
ulers to be run

Visualization The results should be visualized inside the
framework

Table 2.5: Functional requirements of the simulation framework

Name Description

Look and feel The look and feel should be intuitive and simple

Multi-platform The framework should be able to run on cross
platform and the GUI should not vary

Waiting time There should not be unnecessary waiting time

Text The messages inside the framework should be
understandable

Table 2.6: Non-functional requirements of the simulation framework

Use Case Use case identifier and reference number
and modification history

Description Goal to be achieved by use case and
sources for requirement

Actors List of actors involved in use case

Assumptions Conditions that must be true for use case
to terminate successfully

Steps Interactions between actors and system
that are necessary to achieve goal

Variations (Optional) Any variations in the steps of a use case

Non-functional (Optional) List of non-functional requirements that
the use case must meet

Issues List of issues that remain to be resolved

Table 2.7: Use case template
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Use Case Evaluation of two online algorithms (LPP and
CCRM)

Description An evaluation of those two algorithms together
with a baseline scheduler (RMS)

Actors Developer, researcher, student

Assumptions The algorithms should have been implemented
or given by the actor

Steps The actor should first decide which models
should be used in the evaluation, the next step
is to actually run the simulation

Issues The task set is not schedulable, since the pre-
processing phase has failed

Table 2.8: Evaluation of two online algorithms
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Implementation

The implementation of the simulation framework is made in Java and de-
scribed in the upcoming sections. Emphasis in the description of the frame-
work has not been in-depth technical details and line-by-line specifics. It is
rather design patterns and significant implementation concepts, which are
brought forward.

3.1 Simulation engine

The simulation engine is actually a group of the basic objects:

• BasicTask: This is the basic task model having the minimum level
of parameters, which all schedulers can use. However, a scheduler can
derive from this task, e.g. create an ExtendedTask, if it needs further
parameters to support the developing algorithm.

• ScalingPoint: The scaling point is a single operating mode of a DVS
processor.

• Processor: The processor, which has a list of all available scaling
points.

• Execution: This object contains the specific timings, when a task
starts executing and has finished or preempted.

• Job: Containing the primary task and the list of executions.

• Simulator: The essential object within the engine-package. Holds all
necessary information to act as an neutral umpire. All simulation runs
are executed by the run function in this object.

3.2 Schedulers

The three schedulers which have been implemented are: EventCCRMSched-

uler, EventLPPcheduler and EventRMScheduler. They have been earlier
described in-detail by going through their individual algorithm in section
2.1.4. Moreover, CCRM and LPP have also been the given the opportu-
nity to be run in a continuous frequency-level. Instead of going further into
the implementation-details, the more important part is how to implement a
scheduler.
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3.2.1 Interface

The solution of making the schedulers replaceable is based on interfaces.
The interface for a scheduler is shown in listing 3.1. So when developing a
scheduler, the scheduler has to implement the interface and all the methods
listed in the interface. Since the engine has list of all tasks and knows in
advance when they are released and when each task has it’s deadline it will
during execution tell the scheduler the current time and which task has been
released. Then it is the scheduler’s responsibility to give a reply back with
the intended task to be run. The engine will react upon deadline-misses. If
any should arise the scheduler is notified and the run is terminated. The
actual replacement is done by runtime class loading.

Listing 3.1: Interface for a scheduler

1 pub l i c Task taskRe leased (Task re leasedTask , Task executedTask , ...
double currentTime , double deltaTime ) ;

2 pub l i c void invokeDeadl ineMiss (HashSet<Task> dead l ineMis s e s ) ;
3 pub l i c void invokeInval idAss ignedExecut ionTime (Task ...

executedTask ) ;
4

5 pub l i c Task ta skFa i l ed (Task fa i l edTask , double currentTime , ...
double deltaTime ) ;

6 pub l i c Task taskF in i shed (Task f in i shedTask , double currentTime , ...
double deltaTime ) ;

7

8 pub l i c void i sD i s c r e t e ( boolean i sD i s c r e t e ) ;
9 pub l i c boolean i sD i s c r e t e ( ) ;

10

11 pub l i c Task timedPreemption (Task executedTask , double ...
currentTime , double deltaTime ) ;

12

13 pub l i c void setLayout ( IGui gui ) ;
14 pub l i c void s e tExecu t i onD i s t r i bu t i on ( IExecu t i onD i s t r i bu t i on ...

e x e cu t i onD i s t r i bu t i on ) ;
15 pub l i c void addHandler ( Handler handler ) ;
16 pub l i c CubicSpl ine getPowerModel ( ) ;
17 pub l i c void run ( ) ;

3.3 Replaceable design pattern

The same approach of making scheduler’s replaceable has been used when
handling execution distributions models and power models. If the developer
wants to modify or create a completely new model, the interfaces must be
implemented and followed.
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3.4 Making use of external libraries

In the process of developing the simulation framework multiple third party
libraries have been used. Worth to mention is the jgoodies-library, which
has provided the look and feel and animation-functionality. The gson-library
has been used to develop the parser of the input specifications, while the
CubicSpline functionality is brought in by flanagan-library.

3.5 Parser

The inputs, both task- and machine specification, are read into the simu-
lation framework through a parser. This parser uses the gson-library and
avoids several middle steps, compared to a traditional parser, by reading
from a JSON-format file and directly using a class. An example is shown in
3.2, where a list of processors is created by iterating over a machine specifi-
cation file.

Listing 3.2: Parsing a machine specification directly into a list of objects

1 while ( scanner . hasNext ( ) ) {
2 p ro c e s s o r s . add ( gson . fromJson ( scannner . nextLine ( ) ,
3 Proces sor . c l a s s ) ) ;
4 }

3.6 Interpolation

The flanagan-library has been of great help, when interpolating between
the scaling points (operating modes). During the continuous frequency level,
the precise power consumption cannot be read from the machine specifica-
tion. Thus, there has been made an interpolation of all the operating modes
with a curve fitting called CubicSpline. The library provides a very straight-
forward way of ”sampling” an arbitrary power consumption given a set of
finite operating modes.

3.7 Graphical User Interface

The Graphical User Interface (GUI) has been developed using the jgood-

ies-library, mainly because of the look and feel, which ensures the same
representation across platforms. Additionally, it enables parallel animations
through a build-in thread-based mini-framework. After each simulation run,
the engine feeds the library with the details of a run, after all simulation
runs have finished the simulation initializes a visualization of a run from
each scheduler. An example can be seen in figure 4.6 and 4.7.
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3.8 Step-by-Step-based vs. Event-based

Initially, the simulation framework was build upon a step-by-step design. So
a clock was build and it incremented ”time” with a time unit of one. The
engine would then ”wake-up” every time-unit and orientate itself (which
tasks have been released, any deadlines missed, etc.) and ask for decisions
from the scheduler. However, the way it was implemented required that
all executions should be discrete and that was an assumption, which was
too drastic. Hence, another approach was tried, namely, the event-based.
The main difference is that the engine can ”sleep” till an event occurs, and
this event can occur in the continuous range of time. Roughly compared
with SOA-architecture, it could be said that the framework went from using
”pull”-mechanism (fixed delay to wake up) to ”push”-mechanism (arbitrary
delay to wake up).
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Experiments

The simulation framework is a product of this thesis, even so, the practicality
of the product is difficult to determine. To overcome this, the simulation
framework has been taken into use in this chapter by running experiments
and obtaining results. This chapter will first introduce how the experiments
will be run and then visualize the results.

4.1 Scenario

The scenario which should be imagined is the two online DVS algorithms
mentioned in section 2.1.4 has been understood and implemented by follow-
ing the interfaces from section 3.2. Intuitively, and by looking at the pseudo-
code, it seems like CCRM is slightly more advanced, which should most
likely have an impact on the energy-savings during execution and evaluation.
To have a baseline, there has also been implemented a simple static Rate-
Monotonic Scheduling algorithm (RMS), which does no dynamic changes
regarding the operating frequency. RMS will schedule the task according
to the priority and in case a task finishes before it’s WCET, the scheduler
will execute the next available task, if none then it goes into an idle period.
Since the power model used do not consume energy during idle period, this
will correspond to a power down mode.

4.1.1 Models and parameters

Operating mode Frequency (Mhz) Voltage (V) Power (W)

1 1000.0 1.6 25.0

2 666.0 1.4 12.0

3 334.0 1.2 4.0

Table 4.1: Specification of DVS processor

The parameters have been chosen to be simple and clear. The following
models should be defined before the experiment can begin:

• Task set: As task set the previous set, shown when explaining the
LPP algorithm, is used and can be found in table 2.1.

• Machine specification: The machine specification is a DVS proces-
sor with operating modes specified in table 4.1.
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• Power model: The online power model is mentioned in section 2.4.1
and has been implemented as a standard model in the simulation
framework.

• Execution distribution: The execution distribution used in this
scenario is the negative exponential distribution, explained in section
2.5.2.

• Scheduler: The three schedulers, which have been implemented and
are going to be tested, are: RMS, LPP and CCRM.

4.1.2 Execution

To evaluate the schedulers, multiple simulations are run for each scheduler.
250 runs have been observed and the average power consumption has been
computed for each scheduler. For practical reasons, the execution time has
been sat to totally 300, and even though the time unit do not need to be
specified, then to get a sensible unit from the power model, the time unit is
defined as milliseconds (ms). It is worthwhile mentioning that idle intervals
(NOP) in this system do not consume any energy, while in practice this has
been measured to be approximately 20 % of a typical instruction (1). Hence,
the comparison would be very conservative, especially RMS which will have
the most idle periods during execution, since the scheduler is not taking
advantage of extra slack and idle periods. This will be further discussed in
chapter 5.

4.1.3 Results

The output from the simulation framework has been processed further in
SAS JMP, since it has strong statistical analysis functionalities. Only the
mean value has been taken into this thesis. The output is shown from figure
4.1 to 4.5.

Figure 4.1: The result of RMS
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Figure 4.2: The result of LPP discrete

Figure 4.3: The result of LPP continuous

Figure 4.4: The result of CCRM discrete

Figure 4.5: The result of CCRM continuous
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4.1.4 Comparison

The mean values obtained from the SAS JMP output and the relative devia-
tion from the baseline (RMS) are shown in table 4.2. The relative deviation
is computed by using equation 4.1.

baseline dev% =
non baseline mean value− baseline mean value

baseline mean value
· 100%

(4.1)

Scheduler Mean value (J) Baseline deviation

RMS (baseline) 6.47 -

LPP (discrete) 6.20 -4.17 %

LPP (continuous) 6.13 -5.26 %

CCRM (discrete) 6.12 -5.41 %

CCRM (continuous) 6.00 -7.26 %

Table 4.2: Comparison of scheduling output

4.1.5 Simulation framework output

In figure 4.6 a single run is visualized in the simulation framework. This
figure only illustrates the discrete version of CCRM and LPP and a regular
version of RMS, while figure 4.7 illustrates the continuous version of CCRM
and LPP along with regular version of RMS. The listing of schedulers are
mentioned in the caption of each figure.
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Figure 4.6: Single run visualized in the simulation framework - order is top: LPP
(discrete); middle: CCRM (discrete); bottom: RMS

Figure 4.7: Single run visualized in the simulation framework - order is top:
CCRM (continuous); middle: RMS; bottom: LPP (continuous)
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Chapter 5

Discussion

This chapter will not only discuss the results obtained in the previous chap-
ter, but also discuss the importance of a unified simulation framework.
Short-term and long-term future works are pointed out.

5.1 Evaluation

Based on the output and the comparison made in table 4.2 it shows that
DVS is absolutely a worthwhile investment instead of implementing a regu-
lar RMS. As indicated in the analysis, CCRM is a slightly more advanced
algorithm than LPP, but spending time to build a more advanced algorithm
can lead to further energy savings. CCRM makes a further reduction in en-
ergy than LPP. Another important observation is that the schedulers using
continuous frequency levels actually make a significant energy saving com-
pared to the discrete frequency levels, this yields for processors with more
frequency levels or an actual processor with 100 % support for continuous
operating modes.

Viewing the visualization provided by the simulation framework, it is noted
how CCRM, LPP and RMS distinguish from each other and the algorithms
individual characteristics are further clarified. E.g. CCRM in figure 4.6
at time 250, where CCRM distributes the slack multiple tasks, while LPP
only distributes it when their is one (active) task left - RMS does nothing
intelligent at all. This kind of visual analysis is very valuable, when working
with more advanced algorithms. In figure 4.7 the idle periods from 4.6 do
not exist, since they are absorbed by the continuous algorithms. The scope
of this thesis is not to simulate multiple scenarios and definitively conclude
whether LPP or CCRM is the most efficient algorithm, it is to provide
the tool to make it possible to make the final evaluation. This has been
demonstrated in a small scale and by using the simulation framework more,
the evaluation can be extensive.

5.2 Simulation framework

There has only been simulated one single scenario, although, the practicality
of the framework has been proven. The result produced by the simulator
can be part of a statistical analysis (confidence intervals), by using it e.g. in
SAS JMP. Especially, the visualization can make it easier for the developer
to comprehend various strategies designed in the algorithm. Deciding to
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go from a step-by-step-based to an event-based framework has definitely
shown to be an advantage. Assuming all tasks to execute in discrete time
would have been too unrealistic and less energy savings would have been
demonstrated.

5.3 Importance

It is of great importance to be able to re-produce other researchers results,
since the academic world relies on this principle. Multiple articles claim
their algorithms have the best performance, but in many cases their results
are enclosed in simulators, which are not accessible. Even if they are, it
is very difficult to extend the simulator to compare their algorithm with
another one, since the simulator has been designed and ”hardcoded” to their
specific purpose and algorithm. This simulation framework breaks with that
tradition and focus on being open, extensible and flexible.

5.4 Future work

Future work tend to be a long of list to-do’s, where ”nice-to-have”-features
appears. Here, concrete suggestions are presented, which has been split into
short-term and long-term goals.

5.4.1 Two-level frequency

An extended version of the LPP and CCRM scheduler was implemented
supporting what could be characterized as ”dithering”, so a task switches
between two-levels of available frequencies to simulate the optimal com-
puted frequency. However, these schedulers were successfully simulating in
the framework, the validity of the algorithms have not been proven and
therefore not completed. To validate and verify the correctness of these ex-
tended algorithms would be a short-term future work. To support two-level
frequency the engine has been extended with what would be characterized as
an interruption. So a scheduler can plan an interruption during execution,
which highly reflects real-world application.

5.4.2 Reliability

As mentioned in section 2.1.3 the reliability of a real-time system has become
a very important subject, since embedded systems also needs to be fault-
tolerant. The foundation to extend LPP or CCRM with this reliability
constraint and evaluate the trade-offs in the framework has been established.
This extension could be a short term goal.
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5.4.3 Preprocessing/offline-module

A long term goal would be to extend the simulation framework to enable
preprocessing of tasks with regard to the offline algorithm mentioned in 2.1.3
(TABU search-based algorithm). Where the mapping of tasks to processor
and operating mode is done before the actual online simulation run, but
within the framework.
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Chapter 6

Conclusion

In this thesis an extensible simulation framework has been developed, which
purpose is to evaluate online DVS algorithms. The framework is both ex-
tensible, but also flexible. The algorithm-developer can setup an environ-
ment based on the actual application, system model and assumptions, such
as power and actual execution. The framework provides output in both
numeric form and in a visual form (histograms). As default the framework
offers two build-in online DVS algorithms (LPP and CRRM), a power model
and three execution distribution models.

There has been made evaluation of the above-mentioned online DVS al-
gorithms together with a baseline (RMS). This evaluation has shown that
the total energy consumption deviates relatively 4.17 % (LPP) and 5.41 %
(CCRM) from the baseline, when only using (discrete) the available oper-
ating modes on the DVS processor. If a utopian CPU is introduced, which
can operate at arbitrary frequency levels the relative deviation can go up
to 5.26 % (LPP) and 7.26 & (CCRM). It should be noted that the scenario
simulated only was with three tasks and a short simulation period of 300
ms, although, it is not the scope of this thesis to do a comprehensive eval-
uation of the two online DVS algorithms with multiple scenarios - or ”play
around” with the various parameters, which the models allow. It is rather
to show that the evaluation can be done and conclusions can be drawn from
the results.

Before developing the framework, an analysis of the algorithms had to be
made to understand which requirements should be created to satisfy an
extensible and flexible simulation framework. For which reason, the archi-
tecture and requirements are defined in chapter 2.

To take the simulator to the next level, there had been developed extended
algorithms and initial thoughts about introducing a new constraint into the
system, the reliability. The extended algorithms can be run, but the results
indicate they have not implemented the interruption-feature of the engine
correctly. Due to time constraints a solution to the extended algorithms was
not found, and the reliability constraint was neither investigated further.

It is believed the framework is highly applicable, when developing more
complex algorithms, where it is essential to comprehend the execution and
analyze the numeric results. The framework can be used to accept, reject
or modify strategies. Hence, it is a powerful tool for researchers, developers
and educational purposes.
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Appendix A

Pseudo code of the LPP
scheduler

1 i f cu r r en t f r equency < maximum frequency then
2 i n c r e a s e the clock f r equency and the supply vo l tage to ...

the maximum value ;
3 e x i t ;
4 end i f
5

6 while delay queue . head . r e l e a s e t ime ≤ cur r ent t ime do
7 move delay queue . head to the run queue ;
8 end do
9

10 i f run queue . head . p r i o r i t y > a c t i v e t a s k . p r i o r i t y then
11 set the a c t i v e t a s k . executed t ime ;
12 context switch ;
13 end i f
14

15 i f run queue i s empty then
16 i f a c t i v e t a s k i s null then
17 set t imer to ( de lay queue . head . r e l e a s e t ime − ...

wakeup delay ) ;
18 ente r power down mode ;
19 else
20 s p e ed r a t i o = Compute speed rat io ( ) ;
21 find a minimum a l l owab l e clock f r equency ≥ ...

s p e ed r a t i o ∗ max frequency ;
22 ad jus t the clock f r equency along with the ...

supply vo l tage ;
23 end i f
24 end i f
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Appendix B

Pseudo code of the CCRM
scheduler

1 assume fj i s f r equency set by s t a t i c s c a l i n g a lgor i thm
2

3 s e l e c t f requency ( ) :
4 set sm = max cyc l e s un t i l n ex t d ead l i n e ( ) ;
5 use lowest f r e q . fi ∈ {f1, ..., fm|f1 < ... < fm}
6 such that (d1 + ...+ dn)/sm ≤ fi/fm
7

8 upon t a s k r e l e a s e (Ti ) :
9 set c lefti = Ci ;

10 set sm = max cyc l e s un t i l n ex t d ead l i n e ( ) ;
11 set sj = sm · fj/fm ;
12 a l l o c a t e c y c l e s (sj ) ;
13 s e l e c t f r e q u en c y ( ) ;
14

15 upon task comple t ion (Ti ) :
16 set c lefti = 0 ;
17 set di = 0 ;
18 s e l e c t f r e q u en c y ( ) ;
19

20 during ta sk exe cu t i on (Ti ) :
21 decrement c lefti and di ;
22

23 a l l o c a t e c y c l e s (k ) :
24 for i = 1 to n , Ti ∈ {T1, ..., Tn|P1 ≤ ... ≤ Pn}
25 /∗ ta sk s so r t ed by per iod ∗/
26

27 i f ( c lefti < k )
28 set di = c lefti ;
29 set k = k− c lefti ;
30 else
31 set di = k ;
32 set k = 0 ;
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