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ABSTRACT

In this paper we are interested in safety-critical distributed sys-
tems, composed of heterogeneous processing elements intercon-
nected using the TTEthernet protocol. We address hard real-time
mixed-criticality applications, which may have different critical-
ity levels, and we focus on the optimization of the communica-
tion configuration. TTEthernet integrates three types of traffic:
Time-Triggered (TT) messages, Event-Triggered (ET) messages
with bounded end-to-end delay, also called Rate Constrained (RC)
messages, and Best-Effort (BE) messages, for which no timing
guarantees are provided. TT messages are transmitted based on
static schedule tables, and have the highest priority. RC messages
are transmitted if there are no TT messages, and BE traffic has the
lowest priority. TT and RC traffic can carry safety-critical mes-
sages, while BE messages are non-critical. Mixed-criticality tasks
and messages can be integrated onto the same architecture only
if there is enough spatial and temporal separation among them.
TTEthernet offers spatial separation for mixed-criticality messages
through the concept of virtual links, and temporal separation, en-
forced through schedule tables for TT messages and bandwidth al-
location for RC messages. Given the set of mixed-criticality mes-
sages in the system and the topology of the virtual links on which
the messages are transmitted, we are interested to synthesize offline
the static schedules for the TT messages, such that the deadlines for
the TT and RC messages are satisfied, and the end-to-end delay of
the RC traffic is minimized. We have proposed a Tabu Search-
based approach to solve this optimization problem. The proposed
algorithm has been evaluated using several benchmarks.

Categories and Subject Descriptors

B.4.4 [Input/Output and Data Communications]: Performance
Analysis and Design Aids; C.2.2 [Computer-Communication Net-
works]: Network Protocols
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1. INTRODUCTION
Depending on the particular application, an embedded system

has certain requirements on performance, cost, dependability, size
etc. In a hard real-time application the correctness depends not
only on the logical results of the computations, but also on the
physical instant at which these results are produced [21]. Safety
is a property of a system that will not endanger human life or the
environment. Safety-Integrity Levels (SILs) capture the required
protection against failure when building a safety-critical embedded
system, and will dictate the development processes and certification
procedures that have to be followed.

There are two basic approaches for handling real-time applica-
tions [21]. In the Event-Triggered (ET) approach, activities are ini-
tiated whenever a particular event is noted. In the Time-Triggered
(TT) approach, activities are initiated at predetermined points in
time. There has been a long debate in the real-time and embedded
systems communities concerning the advantages of each approach
[7, 21, 39]. Several aspects have been considered in favor of one or
the other approach, such as flexibility, predictability, jitter control,
processor utilization, testability etc. However, the consensus is that
the right approach depends on the particularities of the application,
as it has been shown in an automotive context [23]. This means
not only that there is no single “best” approach to be used, but also
that within a system the two approaches can be used together, some
tasks and messages being TT and others ET.

This duality is also reflected at the level of the communication
infrastructure, where communication activities can be triggered ei-
ther dynamically, in response to an event, as with the Controller
Area Network (CAN) bus [2], or statically, at predetermined mo-
ments in time, as in the case of Time-Division Multiple Access
(TDMA) protocols such as the Time-Triggered Protocol (TTP) [21].
The trend is towards bus protocols that support both static and dy-
namic communication [4, 5].

Many safety-critical real-time applications, following physical,
modularity or safety constraints, are implemented using distributed
architectures, composed of heterogeneous processing elements (PEs),
interconnected in a network. Initially, each function was imple-
mented in a separate PE, which has led to a large increase in the
number of PEs. The current trends are towards integrated archi-
tectures where several functions are integrated onto the same PE.
Mixed-criticality applications, i.e., applications with different SIL
levels, as well as non-critical applications, can be integrated onto
the same architecture only if there is enough spatial and temporal
separation among them.

In the avionics area, the PE-level separation mechanisms are pro-
vided by implementations of the ARINC 653 standard, also called
Integrated Modular Avionics (IMA) [31]. ARINC 653 consists
of hardware-mediated operating system-level spatial and temporal
partitioning [31] mechanisms. Similar PE-level separation mech-
anisms are available in other industries [15, 22]. At the commu-
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nication level, there are also several partitioning solutions, such as
SAFEBus [19], ARINC 664 Specification Part 7 (ARINC 664p7,
for short) [3] and TTP [21]. In this paper we are interested in the
TTEthernet [5] protocol, which provides both spatial and temporal
partitioning, and can handle both TT and ET communication.

There is a large amount of research on hard real-time systems [21].
At the PE-level, researchers have addressed systems with mixed
time-criticality requirements, showing how TT/ET tasks [29] or
hard/soft real-time tasks [20, 33] can be integrated onto the same
platform. Researchers have also started to address the integration
of mixed safety-criticality tasks onto the same platform [8, 9, 10,
37]. In [37], researchers have proposed an optimization approach
to determine the mapping of tasks to PEs, the assignment of tasks
to partitions, the sequence and size of the time slots on each PE and
the schedule tables, such that all the applications are schedulable
and the development costs are minimized. In that work, communi-
cations were ignored, and a simple un-partitioned statically sched-
uled shared bus was used.

The problem of the optimization of time-partitions has been ad-
dressed at the bus level. Researchers have shown how a TDMA bus
such as the TTP [26] and a mixed TT/ET bus such as FlexRay [30]
can be optimized to decrease the end-to-end delays. FlexRay al-
lows the sharing of the bus among ET and TT messages, thus of-
fering the advantages of both worlds. In [30], an optimization ap-
proach for determining a FlexRay bus configuration is proposed,
which is adapted to the particular features of an application and
guarantees that all time constraints are satisfied.

Our focus in this paper is on the optimization of the TTEthernet
protocol [5], which is a deterministic, synchronized and congestion-
free network based on the IEEE 802.3 Ethernet standard and com-
pliant with the ARINC 664p7Ṫhe widespread Ethernet protocol
is known to be unsuitable for real-time or safety-critical applica-
tions [3]. For example, in half-duplex implementations, frame col-
lision is unavoidable, leading to unbounded transmission times.
The ARINC 664p7 specification [3] is a full-duplex Ethernet net-
work, which emulates point-to-point connectivity over the network
by defining virtual links, tree-like structures with one sender and
one or several receivers (see Section 2). ARINC 664p7 provides
predictable event-triggered communication suitable for hard real-
time applications, and separation of safety-critical messages through
the concept of virtual links. In addition to the functionality of-
fered by Ethernet and ARINC 664p7, TTEthernet supports time-
triggered communication based on static communication schedules
which rely on a synchronization time base. Such time-triggered
static scheduling approach is especially suitable for applications
with highest criticality requirements in both temporal and safety
domains.

TTEthernet supports applications with mixed-criticality require-
ments in the temporal domain, as it provides three types of traf-
fic: TT traffic and ET traffic, which is further subdivided into Rate
Constrained (RC) traffic that has bounded end-to-end latencies, and
Best-Effort (BE) traffic, for which no timing guarantees are pro-
vided. TT messages are transmitted based on static schedule tables
and have the highest priority. RC messages are transmitted if there
are no TT messages, and BE traffic has the lowest priority. TTEth-
ernet is highly suitable for applications of different safety criticality
levels, since it offers spatial separation for mixed-criticality mes-
sages through the concept of virtual links. For more details on the
traffic classes, protocol services and separation mechanisms, see
Section 5.

In this paper we are interested in mixed-criticality applications
(both in the safety and time domains) implemented using heteroge-
neous processing elements interconnected using TTEthernet. We
consider that the architecture, the topology of the virtual links and
the assignment of messages to virtual links is given. Furthermore,

we assume that the designer has decided the partitioning of mes-
sages into TT, RC or BE, depending on the particularities of the
application. We are interested in synthesizing the static commu-
nication schedules for the TT messages, such that the TT and RC
messages are schedulable, and the end-to-end delay of RC mes-
sages is minimized. We have proposed a Tabu Search-based meta-
heuristic to solve this optimization problem.

There is very limited work in this area. Steiner proposes in [34]
an approach for the synthesis of static TT schedules, where he
ignored the RC traffic and used a Satisfiability Modulo Theory
(SMT)-solver to find a solution which satisfies an imposed set of
constraints. The same author has proposed an SMT-solver approach
to introduce periodic evenly-spaced slots into the static schedules
to help reduce RC delays in [35]. Our Tabu Search-based meta-
heurstic does not restrict the space inserted into the TT schedules
to evenly-spaced periodic slots and is able to take into account the
RC end-to-end delays during the design space exploration, and not
only as a post-synthesis check.

The paper is organized as follows: after we introduce the archi-
tecture model in Section 2 and the application model in Section 3,
we present the problem formulation in Section 4. Section 5 de-
scribes how the TTEthernet protocol works. Section 6 presents
a motivation example to better understand the problem, and the
proposed solution is described in Section 7. The proposed Tabu
Search-based approach is evaluated in Section 8.

2. ARCHITECTURE MODEL
A TTEthernet network is composed of a set of clusters. Each

cluster consists of a set of End Systems (ESes) interconnected by
links and Network Switches (NSes). The links are full duplex, al-
lowing thus communication in both directions, and the networks
can be multi-hop. An example cluster is presented in Fig. 1, where
we have 4 ESes, ES1 to ES4, and 2 NSes, NS1 and NS2.

Each cluster has its own separate clock synchronization domain,
hence the TT schedules are derived per cluster. The problem of op-
timizing the TT schedules addressed in this paper is performed at
the cluster-level. Each ES consists of a processing element contain-
ing a CPU, RAM and non-volatile memory, and a network interface
card (NIC), see Fig. 1.

We model a TTEthernet cluster as an undirected graph G(V ,E),
where V = ES ∪N S is the set of end systems (ES ) and network
switches (N S ) and E is the set of physical links. For Fig. 1, V =
ES ∪N S = {ES1,ES2,ES3,ES4}∪{NS1,NS2}, and the physical
links E are depicted with thick, black, double arrows.

The space partitioning between messages of different criticality
transmitted over physical links and network switches is achieved
through the concept of virtual link. Virtual links are defined by
ARINC 664p7 [3], which is implemented by the TTEthernet pro-
tocol, as a “logical unidirectional connection from one source end
system to one or more destination end systems”. Virtual links con-
nect one sender to multiple receivers. Each virtual link carries a
single message.

Let us assume that in Fig. 1 we have two applications, A1 and
A2. A1 is a high criticality application consisting of tasks τ1 to τ3

mapped on ES1, ES3 and ES4, respectively. A2 is a non-critical
application, with tasks τ4 and τ5 mapped on ES2 and ES3, respec-
tively. τ1 sends message m1 to τ2 and τ3. Task τ4 sends message
m2 to τ5. The flow of these messages will intersect in the physi-
cal links and switches. Virtual links are used to separate the highly
critical message m1 from the non-critical message m2. Thus, m1

is transmitted over virtual link vl1, which is isolated from virtual
link vl2, on which m2 is sent, through protocol-level temporal and
spatial mechanisms (which are briefly presented in Section 5).

We denote the set of virtual links in a cluster with V L . A vir-
tual link vli ∈ V L is a directed tree, with the sender as the root
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Figure 1: TTEthernet cluster example

and the receivers as leafs. For example, vl1, depicted in Fig. 1 us-
ing dot-dash red arrows, is a tree with the root ES1 and the leafs
ES3 and ES4. Each virtual link is composed of a set of dataflow
paths, one such dataflow path for each root-leaf connection. More
formally, a dataflow path d pi is an ordered sequence of dataflow
links connecting one sender to one receiver. For example, in Fig. 1,
vl1 = d p1∪d p2, and d p1 connects ES1 to ES3, while d p2 connects
ES1 to ES4 (the dataflow paths are depicted with green arrows). A
dataflow link li = [ν j,νk] ∈ L , where L is the set of dataflow links
in a cluster, is a directed communication connection from ν j to νk,
where ν j and νk ∈ V can be ESes or NSes. Using this notation, a
dataflow path such as d p1 in Fig. 1 can be denoted as [[ES1, NS1],
[NS1, NS2], [NS2, ES3]].

For a given application, with tasks mapped to ESes and exchang-
ing messages over the network, there are several possible virtual
link configurations, depending on how senders and receivers are
grouped. In this paper, we assume that the virtual links are given.
Determining the set of virtual links for a given application has been
studied in the context of Steiner trees [16, 17].

3. APPLICATION MODEL
In [37] researchers have proposed an application model for mixed-

criticality applications composed of interacting tasks, which com-
municate using messages. The proposed model can capture as-
pects specific to mixed-criticality applications, e.g., higher criti-
cality tasks cannot receive messages from lower criticality tasks
(because these messages could be corrupted) and additional task-
level separation requirements, preventing certain tasks to share the
same partition on an ES.

In this paper we focus only on messages. There are several ap-
proaches to integrate task and message scheduling, see [25] for a
survey. Each message mi transmitted using TTEthernet is packed
into a frame fi. In this paper we assume that a frame carries only
one message, and that messages are not split into packets. The issue
of frame packing [28] is orthogonal to our problem.

We assume that the topology of virtual links and the assignment
of frames to virtual links are given. This assignment is captured by
the function M ( fi) = vli,M : F → V L , where F is the set of all
frames in the cluster.

As mentioned, TTEthernet supports three traffic classes: time-
trig- gered (TT), rate constrained (RC) and best effort (BE). A bit
pattern specified in the frame header identifies the traffic class. We
assume that the designer has decided the traffic classes for each
frame, and we define the sets F T T , F RC and F BE , respectively,
with F = F T T ∪F RC ∪F BE .

The size fi.size for each frame fi ∈ F is given. In addition,
for the TT and RC frames we know their periods and deadlines,
fi.period and fi.deadline, respectively. RC frames are not neces-
sarily periodic, but have a minimum inter-arrival time fi. We define

the rate of an RC frame fi as fi.rate = 1/ fi.period. Knowing the
size of a frame fi and the given speed of a dataflow link [ν j,νk], we

can determine the transmission duration C
[ν j ,νk]
i of fi on [ν j,νk].

4. PROBLEM FORMULATION
The problem we are addressing in this paper can be formulated

as follows: given (1) the topology of the network G , (2) the set of
TT and RC frames F T T ∪F RC, (3) the set of virtual links V L , (4)
the assignment of frames to virtual links M and (5) for each frame
fi the size, the deadline and the period, we are interested to find the
set of TT schedules S such that the deadlines for the TT and RC
frames are satisfied. Once both TT and RC frames are schedulable
several optimization objectives can be tackled. In this paper we
are interested to synthesize the schedules S such that the end-to-
end delay of RC frames is minimized. Section 7.1 presents the
cost function used for the optimization. In this paper we ignore the
BE traffic, but a quality-of-service measure for the BE traffic could
easily be added to the objective function, if desired. The problem
is illustrated in Section 6 using a motivational example.

5. TTETHERNET PROTOCOL
Let us illustrate how the TTEthernet protocol works using the

example in Fig. 2, where we have two end systems, ES1 and ES2,
and three network switches, NS1 to NS3. Task τ2 on ES1 sends
the TT message m2 to task τ4 mapped on ES2, while task τ1 on
ES1 sends the RC message m1 to task τ3 on ES2. Let us assume
that tasks τ1 and τ3 are part of application A1 and tasks τ2 and τ4

belong to application A2. Furthermore, A1 and A2 are of different
safety criticality. The separation of the applications is achieved
at the CPU-level through partitioning. Thus, tasks τ1 and τ3 are
placed in partitions P1,1 and P2,2, respectively, while tasks τ2 and
τ4 are assigned to partitions P1,2 and P2,1, see Fig. 2.

Message m1 is sent within application A1 and packed in frame
f1. m2 is sent within A2 and packed into the frame f2. The different
criticality frames are separated by assigning them to two different
virtual links, vl1 and vl2 (not depicted in the figure). Frames f1 and
f2 have to transit the switch NS1, which also forwards frames f3
and f4, from NS2 and NS3, respectively, see Fig. 2.

5.1 Time-Triggered Transmission
In this section we present how TT frames are transmited by TTEth-

ernet, using the example of the TT message m2 sent from task τ2

on ES1, to task τ4 on ES2. We depict each step of the TT transmis-
sion on Fig. 2 and mark it with a letter from (a) to (m) on a blue
background.

Thus, in the first step denoted with (a), task τ2 packs m2 into
frame f2 and in the second step (b), f2 is placed into buffer B1,T x

for transmission. Conceptually, there is one such buffer for every
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Figure 2: TT and RC message transmission example

TT message sent from ES1. TT communication is done according
to static communication schedules determined offline and stored
into the ESes and NSes. The complete set of local schedules in a
cluster are denoted with S . The schedules S are derived by our op-
timization approach. Thus, in step (d), the scheduler task T TS will
send f2 to NS1 at the time specified in the send schedule SS stored
in ES1 (c). There are several approaches to the synchronization of
tasks (which could be TT or ET) and TT messages [25]. Often, TT
tasks are used in conjunction with TT messages, and the task and
message schedules are synchronized such that the task is scheduled
to finish before the message is scheduled for transmission.

Next, f2 is sent on a dataflow link to NS1 (e). The computational
logic of the TTEthernet protocol is implemented in hardware and,
conceptually, consists of several hardware tasks working in parallel
to implement the protocol services. Such is the case of the Filtering
Unit (FU) task, which is invoked every time a frame is received by
an NS. The FU checks the integrity and validity of frame f2 (see
step (f)) and forwards it to the TT receiver task T TR (h), which
copies it into the sending buffer B1,T x for later transmission.

The separation mechanisms implemented by TTEthernet to iso-
late mixed-criticality frames, such as f1 and f2 in our example,
are spread across several hardware tasks. In addition, TTEthernet
provides fault-tolerance services, such as fault-containment, to the
application level. For example, if a task such as τ2 becomes faulty
and sends more messages than scheduled (called a “babbling idiot”
failure), the TT sender task T TS on ES1 will protect the network as
it will only transmit messages as specified in the schedule table SS.

Also, a TT receiver task T TR in an NS will rely on a receive
schedule SR (g) stored in the switch to check if a TT frame has
arrived within a specified receiving window. This window is deter-
mined based on the sending times in the send schedules (schedule
SS on ES1 for the case of frame f2), the precision of the clock
synchronization mechanism and the “integration policy” used for
integrating the TT traffic with the RC and BE traffic (see next sub-
section for details). TT message frames arriving outside of this
receiving window are considered faulty. In order to provide virtual
link isolation and fault-containment, a TT receiver task T TR will
drop such faulty frames.

The schedules S contain the sending times and receiving win-
dows for all the frames transmitted during an application cycle,
Tcycle. A periodic frame fi may contain several instances (a frame
instance is the equivalent of the periodic job of a task) within Tcycle.
We denote the x-th instance of frame fi with fi,x. The sending time
of a frame fi relative to the start time of its period is called the
offset, denoted with fi.offset. Within an application cycle, the off-
set of a frame may vary from period to period. However, a par-
ticular TTEthernet implementation may restrict the sending times
such that the offset of a frame is identical in all the periods (which

has the advantage of reducing the size needed to store the sched-
ules). Our implementation considers the general case, and such
constraints can be easily added to our optimization approach. Also,
a restricted TTEthernet implementation can “emulate” the general
case by assigning a message to multiple virtual links.

Let us continue to follow the transmission of f2 in Fig. 2. The
frame has arrived in NS1 and has been placed in B1,T x (h). Next,
f2 is sent by the TT sender task T TS in NS1 to ES2 at the time
specified in the TT send schedule SS in NS1. When f2 arrives at
ES2 (k), the FU task will store the frame into a dedicated receive
buffer B2,Rx (l). Finally, when task τ4 is activated, it will read f2
from the buffer (m).

5.2 Rate Constrained Transmission
This section presents how RC traffic is transmitted using the ex-

ample of frame f1 sent from τ1 on ES1 to τ3 on ES2. Similarly
to the discussion of TT traffic, we mark each step in Fig. 2 using
numbers from (1) to (13), on a green background.

Thus, τ1 packs message m1 into frame f1 (1) and inserts it into
a queue Q1,T x (2). Conceptually, there is one such queue for each
RC virtual link. RC traffic consists of event-triggered messages.
The separation of RC traffic is enforced through “bandwidth allo-
cation”. Thus, for each virtual link vli carrying an RC frame fi the
designer decides the Bandwidth Allocation Gap (BAG). A BAG is
the minimum time interval between two consecutive instances of an
RC frame fi. The BAG is set in such a way to guarantee that there
is enough bandwidth allocated for the transmission of a frame on a
virtual link, with BAGi ≤ 1/ fi.rate.

The BAG is enforced by the Traffic Regulator (TR) task. Thus,
T R1 in ES1 in Fig. 2 will ensure that each BAG1 interval will con-
tain at most one instance of f1 (3). Therefore, even if a frame is
sent in bursts by a task, it will leave the TR task within a speci-
fied BAG. Thus, the maximum bandwidth used by a virtual link vli
which transmits an RC frame fi is BW (vli) = fi.size/BAGi. In this
paper we assume that the BAG for each RC frame is given by the
designer.

Several messages will be sent from an ES. Let us first discuss
how RC messages are multiplexed, and then we will discuss the
integration with the TT traffic.

In an ES, the RC scheduler task RCS (such as the one in ES1) will
multiplex several RC messages (4) coming from the traffic regula-
tor tasks, T Ri, such as T R1 and T R2 in ES1. Fig. 3 depicts how this
multiplexing is performed for the frames fx and fy with the sizes
and BAGs as specified in Fig. 3(a) and (b), respectively. Fig. 3(c)
shows how the two frames will be sent on the outgoing dataflow
link [ES1,NS1] by the RCS task. In the case several TRs attempt
to transmit messages at the same time, due to the multiplexer, the
frames waiting to be transmitted will be affected by jitter. This
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Figure 3: Multiplexing two RC frames

is the case of fy in Fig. 3(c), which is delayed to allow for the
transmission of fx. Thus, the fy,1. jitter jitter for fy,1 equals to the
transmission duration of fx.

RC traffic also has to be integrated with TT traffic, which has
higher priority. Thus, RC frames are transmitted only when there
is no TT traffic on the dataflow link. Hence, for our example on
ES1, the T TS task on ES1 will transmit frame f1 (5) to NS1 on
the dataflow link [ES1,NS1] only when there is no TT traffic (6).
With integration, contention situations can occur when a TT frame
is scheduled for transmission, but an RC frame is already transmit-
ting.

There are three approaches in TTEthernet to handle such situa-
tions [5, 36]: (i) shuffling, (ii) pre-emption and (iii) timely block.
(i) With shuffling, the higher priority TT frame is delayed until the
RC frame finishes the transmission. Thus, in the worst-case sce-
nario, the TT frame will have to wait for the time needed to trans-
mit the largest Ethernet frame, which is 1542 Bytes. In the case (ii)
of timely block, the RC frame is blocked (postponed) from trans-
mission on a dataflow link if a TT frame is scheduled to be sent
before the RC frame would complete its transmission. In the case
(iii) of pre-emption, the RC frame is pre-empted, and its transmis-
sion is restarted after the TT frame finished transmitting. Note that,
as discussed in the previous subsection, the integration approaches
have an impact on the receiving window of a TT frame, which has
to account for the delays due to shuffling, for example.

When the RC frame f1 arrives at NS1, the Filtering Unit task
(7) will check its validity and integrity. As mentioned, TTEthernet
provides services to separate the mixed-criticality frames, such that
a faulty transmission of a lower-criticality frame will not impact
negatively a higher-criticality frame. Fault-containment at the level
of RC virtual links is provided by the Traffic Policing (TP) task,
see NS1 in Fig. 2. TP implements an algorithm known as leaky
bucket [3, 5], which checks the time interval between two consec-
utive instances on the same virtual link. If this interval is shorter
than the specified BAG, the frame instance is dropped. Thus, the
TP function prevents a faulty ES to send faulty RC frames (more
often than allowed) and thus to disturb the network.

After passing the checks of the TP task (8), f1 is copied to the
outgoing queue QT x (9). In this paper we assume that all the RC
frames have the same priority, thus the T TS (10) will send the RC
frames in QT x in a FIFO order, but only when there is no scheduled
TT traffic. At the receiving ES, after passing the FU (11) checks,
f1 is copied in the receiving Q2,Rx queue (12). Finally, when τ3 is
activated, it will take f1 (13) from this queue.

6. MOTIVATIONAL EXAMPLE
Let us illustrate the schedule synthesis problem presented in Sec-

tion 4 using the setup from Fig. 4, where we have an architecture
model for a cluster composed of three ESes, ES1 to ES3 and a net-
work switch NS1 (see Fig. 4a) and an application model with three
frames, see the table in Fig. 4b. We have three virtual links, vl1, vl2

and vl3 one for each frame, f1, f2 and f3, respectively, as captured
by the function M in the table. The periods fi.period, deadlines
fi.deadline and transmission times Ci on a dataflow link are given
in the table for each frame. The dataflow links have the same speed,
hence the Ci of a frame fi is the same for each link. For this ex-
ample we consider that the RC and TT traffic are integrated using
a timely block policy, i.e., an RC frame will be delayed if it could
block a scheduled TT frame.

Our problem is to determine the TT schedules S such that all
the TT and RC frames are schedulable. The schedulability of a TT
frame fi is easy to determine: we just have to check the sched-
ules S to see if the times are synthesized such that the TT frame
fi is received before its deadline fi.deadline. To determine the
schedulability of an RC frame f j we have to compute its worst-
case end-to-end delay, from the moment it is sent to the moment it
is received. We denote this worst-case delay with R f j

. Section 7.2
will present a schedulability analysis technique for determining the
worst-case end-to-end delay of an RC frame, which can then be
compared to the deadline f j.deadline to determine if the RC frame
f j is schedulable.

Fig. 5 presents two possible solutions for synthesizing the TT
schedules S . In both cases, Fig. 5a and 5b, instead of presenting
the actual schedule tables, we show a Gantt chart, which shows on a
timeline from 0 to 600 µs what happens on the three dataflow links,
[ES1,NS1], [ES2,NS1] and [NS1,ES3]. For the TT frames f2 and
f3 the Gantt chart captures their sending times (the left edge of the
rectangle) and transmission duration (the length of the rectangle).

Since the transmission of RC frames is not synchronized with
the TT frames, there are many scenarios that can be depicted for f1,
depending on when f1 is sent in relation to the schedule tables. Be-
cause we are interested in the schedulability of RC frames, for the
RC frame f1 we show in both cases (a) and (b) in Fig. 5 the worst-
case scenario, i.e., the situation which has generated the largest
(worst-case) end-to-end delay. The two TT frames are schedula-
ble in both cases. In Fig. 5a the TT schedules are constructed such
that the end-to-end delay of TT frames is minimized, i.e., the TT
frames arrive at their destination as soon as possible. In this case,
the worst-case end-to-end delay of the RC frame f1, namely R f1

, is
470 µs, which is greater than its deadline of 300 µs, hence f1 is not
schedulable. This worst-case for f1 happens for the first frame in-
stance f1,1, see Fig. 5a, when f1,1 happens to be sent by ES1 at 105
µs. In this case, as the network implements the timely block integra-
tion algorithm, the frame cannot be forwarded by NS1 to ES3 until
there is a big enough time interval to transmit the frame without

(a) Example architecture model

period (µs) deadline (µs) Ci (µs) M
f1 ∈ F RC 300 300 75 vl1
f2 ∈ F T T 200 200 50 vl2
f3 ∈ F T T 300 300 50 vl3

(b) Example application model

Figure 4: Example system model

477



(a) Initial TT schedule

(b) Optimized TT schedule

Figure 5: Worst-case scenario for RC frame f1

disturbing the scheduled TT frames. We denote these “blocked”
time intervals with hatched boxes. The first big enough interval
starts only at time 500, right after f2,3 is received by ES3, which is
too late.

However, if we instead schedule the TT frame f3 such that its
second instance f3,2 will be sent by ES2 to NS1 at 350 µs, the worst
case end-to-end delay for f1 is reduced to 275, hence f1 is schedu-
lable. Such a solution is depicted in Fig. 5b, where we also depict
the worst-case scenario for f1.

This example shows that by considering the RC traffic when
scheduling the TT frames, the impact of the TT schedule on the
latency of the RC frames can be greatly reduced.

7. SCHEDULE OPTIMIZATION
The problem presented in Section 4 is NP-complete [38]. In or-

der to solve this problem, we will use the “TTEthernet Schedule
Optimization” (TTESO) strategy from Fig. 7. TTESO takes as in-
put the topology of the network G , the set of TT and RC frames
F T T ∪F RC (including the size, period/rate and deadline), the set
of virtual links V L and the mapping of frames to virtual links M ,
and returns the schedules S for the TT frames.

Our synthesis strategy uses a tree model to represent each frame
fi. Each frame fi is assigned to a virtual link vli. A virtual link
is a tree structure, where the sender is the root and the receivers
are the leafs. In the case of a virtual link, the ESes and NSes are
the nodes, and the dataflow links are the edges of the tree. How-
ever, in our tree model of a frame, the dataflow links are the nodes
and the edges are the precedence constraints. A periodic frame fi
has several frame instances. We denote with fi,x the xth instance

of frame fi, and with f
[ν j ,νk]
i,x the instance sent on the dataflow link

[ν j,νk]. Fig. 6 presents the tree model of a frame instance f1,1
transmitted on virtual link vl1, from ES1 to ES3 and ES4 consid-

Figure 6: Representation of a frame as a tree

ering the topology from Fig. 1. Naturally, frame instance f1,1 on
dataflow link [NS2,ES3] cannot be sent before it is transmitted on
[NS1,NS2] and received in NS2. Such a precedence constraint is

captured in the model using an edge, e.g., f
[NS1,NS2]
1,1 → f

[NS2,ES3]
1,1 .

We denote with pred( f
[ν j ,νk]
i,x ) the set of predecessor frame in-

stances of the frame instance fi,x on dataflow link [ν j,νk].

In Fig. 6, pred( f
[NS2,ES3]
1,1 ) = { f

[ES1,NS1]
1,1 , f

[NS1,NS2]
1,1 }. We denote

with succ( f
[ν j ,νk]
i,x ) the set of successor frame instances of the frame

instance f
[ν j ,νk]
i,x . In Fig. 6, succ( f

[NS1,NS2]
1,1 )= { f

[NS2,ES3]
1,1 , f

[NS2,ES4]
1,1 }.

Our strategy has 2 steps:
(1) In the first step, we determine an initial set of TT schedules S◦,
line 1 in Fig. 7. The initial schedules S◦ are built without using
the analysis of RC traffic, and with the goal of minimizing the end-
to-end response time of the TT frames. In this step we use a List
Scheduling (LS) based heuristic to construct the static schedules
S◦. Before LS is called, we merge [27] all the trees representing the
frames (which can have different periods) into a single graph cov-
ering the least common multiple of all the periods. The graph has
a dummy source node to which all root nodes are connected, and a
dummy sink node to which all leafs are predecessors. LS schedules
this graph onto the given architecture considering the given virtual
link topology. The ESes, NSes and dataflow links are considered
the resources onto which the frame instances have to “execute”.

(2) In the second step, we use a Tabu Search meta-heuristic (see
Section 7.1) to determine the TT schedules S , such that the TT and
RC frames are schedulable, and the end-to-end delay of RC frames
is minimized.

7.1 Tabu Search
Tabu Search (TS) [18] is a meta-heuristic optimization, which

sear- ches for that solution which minimizes the cost function. Tabu
Search takes as input the topology of the network G , the set of
TT and RC frames F T T ∪F RC (including the size, period/rate and
deadline), the set of virtual links V L and the mapping of frames
to virtual links M , and returns at the output the best TT schedules
S found during the design space exploration, in terms of the cost
function. We define the cost function of an implementation as:

Cost = wTT ×δT T +wRC ×δRC (1)

where δT T is the “degree of schedulability” for the TT frames and
δRC is the degree of schedulability for the RC frames. These are
summed together into a single value using the weights wTT and
wRC, given by the designer. In case a frame is not schedulable, its
corresponding weight is a very big number, i.e., a “penalty” value.
This allows us to explore unfeasible solutions (which correspond
to unschedulable frames) in the hope of driving the search towards

TTESO(G , F T T ∪F RC, V L, M )

1 S◦ = InitialSolution(G , F T T ∪F RC, V L, M )
2 S = TabuSearch(G , F T T ∪F RC, V L, M , S◦)
3 return S

Figure 7: TTEthernet Schedule Optimization strategy
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(a) Postpone move on f
[NS1,ES2]
2,3 from Fig. 5b

(b) Advance move on f
[ES2,NS1]
3,2 from Fig. 8a

Figure 8: Moves for TT traffic

a feasible region. Once the TT frames are schedulable we set the
weight wT T to zero, since we are interested to minimize the end-
to-end delays for the RC frames. The degree of schedulability is
calculated as:

δT T/RC =

{

c1 = ∑i max(0,R fi
− fi.deadline) ifc1 > 0

c2 = ∑i(R fi
− fi.deadline) ifc1 = 0

(2)

If at least one frame is not schedulable, there exists one R fi
greater

than the deadline fi.deadline, and therefore the term c1 will be
positive. However if all the frames are schedulable, this means
that each R fi

is smaller than fi.deadline, and the term c1 = 0. In
this case, we use c2 as the degree of schedulability, since it can
distinguish between two schedulable solutions.

Tabu Search explores the design space by using design transfor-
mations (or “moves”) applied to the current solution in order to
generate neighboring solutions. As it is practically impossible to
exhaustively evaluate the whole design space, in order to increase
the efficiency of the Tabu Search, and to drive it intelligently to-
wards the solution, these “moves” are not performed random, but
chosen based on a candidate list of moves that may improve the
search. Each candidate is evaluated. If the currently explored solu-
tion is better than the best known solution, it is saved as the “best-
so-far” solution. To escape local minima, TS incorporates an adap-
tive memory (called “Tabu list”), to prevent the search from revis-
iting previous solutions. Thus, moves that improve the search are
saved as “Tabu”. In case there is no improvement in finding a better
solution for a number of iterations, we use diversification, i.e., we
visit previously unexplored regions of the search space. In case the
search diversification is unsuccessful, we restart the search from
the best known solution.

We use four types of moves applied to TT frame instances: ad-
vance, advance predecessors, postpone and postpone successors.
The advance move will advance the scheduled send time of a TT

frame instance fi,x from a node ν j on a dataflow link [ν j,νk] to
an earlier moment in time. The advance predecessors applied to

a frame instance f
[ν j ,νk]
i,x , will advance the scheduled send time for

all its predecessors, pred( f
[ν j ,νk]
i,x ). Similarly the postpone move

will postpone the schedule send time of a TT frame instance from
a node, while postpone successors will postpone the send time for
all the successors of that frame instance.

The maximum amount of time a frame instance is advanced or
postponed at a node ν j ∈ V is computed such that the frame in-
stance will not be sent before it is received, or sent too late to
meet its deadline. Also, after each move we may need to adjust
the schedules (move other frame instances later or earlier) to keep
the solution valid, i.e., the schedules respect the precedence and
resource constraints.

Let us illustrate these moves using the example presented in Sec-
tion 6. The setup from Fig. 4 shows the architecture model in
Fig. 4a and the application model in Fig. 4b. Fig. 5a presents a
possible solution for synthesizing the TT schedule. In this case,
the worst-case end-to-end delay R f1

for the RC frame f1 is 470
µs. Fig. 5b shows the result of a postpone successors move applied
to the frame instance f3,2 from Fig. 5a on dataflow link [ES2,NS1].

Consequently, frame instance f
[NS1,ES3]
3,2 is also postponed, thus cre-

ating sufficient space for f1,1 to execute. The latency of frame in-
stance f1,2 can be further reduced by applying a postpone move to

f
[NS1,ES3]
2,3 from Fig. 5b, as shown in Fig. 8a. Fig. 8b presents the

result of an advance move applied to f3,2 from Fig. 8a on dataflow
link [NS1,ES3], with no effect on the latencies of any of the frames
involved.

For situations when there are several TT frames scheduled for
transmission back-to-back on a dataflow link [ν j,νk] which may
lead to large delays for RC frames, our optimization applies an

add blank move, which adds a blank interval bi
[ν j ,νk]
i on dataflow

link [ν j,νk], which is reserved for RC traffic. Blank spaces will
also be introduced by advance/postpone moves. The difference be-
tween an add blank and these moves is that the blank interval intro-
duced through advance/postpone may be used by other TT frames,
while the space introduced by an add blank move is reserved for
RC frames only. In case a TT frame instance misses its deadline

due to a certain blank interval bi
[ν j ,νk]
i on dataflow link [ν j,νk], the

optimization will either remove or resize the blank interval, by per-
forming a remove blank move or a resize blank move, respectively.

Let us consider the situation presented in Fig. 9. We assume the
topology presented in Fig. 4a, and we consider dataflow links [ES1,
NS1] and [NS1,ES2]. We assume that the dataflow links have equal
transmission speeds. For this example, we have one RC frame, f10

sent by ES1 to ES2, with the transmission duration Cf10
= 100 µs,

and 5 TT frames f1 to f5 to be forwarded by NS1 to ES2. The
transmission durations for the TT frames f1 to f5 are 100 µs, 75 µs,
100 µs, 50 µs and 125 µs, respectively. Let us consider the TT
schedule presented in Fig. 9a, where the TT frames are sched-
uled back-to-back on dataflow link [NS1,ES2], starting at time 150
µs. In this case, the worst-case delay for the RC frame f10 is 725
µs. The network implements the timely block approach (see Sec-
tion 5.2), and we represent with a hatched box the time interval RC
frame is blocked to transmit so it does not disturb the TT frames.

For situations such as the one presented in Fig. 9a, where an RC
frame is blocked from transmission due to TT frames scheduled
back-to-back, the candidate list will contain an add blank move to
reduce the delay of the RC frame. By applying an add blank move
to dataflow link [NS1,ES2], as shown in Fig. 9b, the algorithm re-
serves a time interval of 175 µs for RC traffic, marked by a green
box on the schedule. In this case, the worst-case delay for f10 is of
only 550 µs.
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(a) Initial TT schedules

(b) The add blank move reduces the latency for f10

(c) The resize blank move reduces the latency for f4 and f5

Figure 9: Moves for RC traffic

Let us assume frame f5 has a deadline of 775 µs. In case a

frame instance misses its deadline due to a blank interval bi
[ν j ,νk]
i

on dataflow link [ν j,νk], the algorithm can apply either a remove
blank or a resize blank move to the blank interval. In Fig. 9c we
apply a resize blank move on the blank interval bi1 on dataflow link
[NS1,ES2]. Thus, we resize bi1 from 175 µs to 100 µs, which al-
lows us to advance the scheduled send time for frames f4 and f5,
and consequently, allows frame f5 to be delivered before its dead-
line.

7.2 RC frame end-to-end delay analysis
The worst-case end-to-end delay R fi

of an RC frame fi ∈ F RC

sent on a virtual link vli = M ( fi) is the sum of the worst-case

queueing delays Q
[ν j ,νk]
fi

on each network node (ES or NS) ν j ∈ V
(which is the source of a dataflow link [ν j,νk] ∈ vli) and the trans-

mission duration C
[ν j ,νk]
fi

for each dataflow link [ν j,νk] ∈ vli the

frame transits:

R fi
= ∑

ν j ,νk∈V
[ν j ,νk]∈vli

(Q
[ν j ,νk]
fi

+C
[ν j ,νk]
f1

) (3)

The worst-case queueing delay Q
[ν j ,νk]
fi

of frame fi ∈ F RC transmit-

ted on dataflow link ll = [ν j,νk] is given by the following equation:

Q
[ν j ,νk]
fi

= QT T
fi,[ν j ,νk]

+QRC
fi,[ν j ,νk]

+QT L
ν j

(4)

where QT T
fi,[ν j ,νk]

is the queueing delay due to the transmission of

TT frames scheduled to be sent between the moment fi arrives at
the network node ν j and the moment the frame instance is sent,

QRC
fi,[ν j ,νk]

is the delay caused by the RC frames that can arrive, in

Figure 10: Worst-case end-to-end analysis for frame f1

the worst-case, before fi at the node and thus are placed before fi
into the outgoing queue. QT L

ν j
is the technical latency introduced

by the network node for frame fi, due to the hardware tasks im-
plementing the TTEthernet protocol functionality, other than the
latency resulting from queueing effects.

Let us illustrate in Fig. 10 these sources of delay for an RC frame
at a network node considering the topology example presented in
Fig. 2. There are 4 frames, with frames f1 and f2 sent from ES1 to
ES2 and frames f3 and f4 forwarded by NS2 and NS3, respectively,
to ES2, with f1, f3 ∈ F RC and f2, f4 ∈ F T T . All the dataflow links
have the same speed, hence the transmission duration for the frames
are C1 = 120 µs for f1, C2 = 125 µs for f2, C3 = 80 µs for f3
and C4 = 100 µs for f4. The RC frame under analysis is f1,1. We

consider the technical latency introduced by NS1 to be QT L
NS1

= 5 µs.
The network implements the timely block approach.

Fig. 10 presents the worst-case scenario for frame f1, i.e., the
case in which the end-to-end response time R f1

is the largest. This
happens for the frame instance f1,i, which is delayed by frame in-
stance f2,1, f4,1 and f3, j . Thus, the TT frames f2,1 and f4,1 are
scheduled for transmission on dataflow link [NS1,ES4] at 130 µs
and 310 µs, respectively, according to the TT schedules determined
at design time. In the worst-case scenario, frame f1,i arrives at NS1

at time moment 250 µs. Note that the RC frames are not synchro-
nized with the TT schedules, so they can arrive at any time. The
network implements the timely block algorithm, hence frame f1,i
cannot be dispatched as soon as it arrives at NS1, as it would in-
terfere with the transmission of the scheduled TT frame f4,1. We
marked this blocking time of 60 µs in Fig. 10 with an hatched box.
In this case, QT T

f1,[NS1,ES4]
= 265 µs, and it includes the blocking

time.
In the worst-case scenario for f1,i, the RC frame instance f3, j

arrives at NS1 before f1,i, hence, f3, j will be sent to ES4 before

f1,i. Consequently, QRC
f1,[NS1,ES4]

= 80 µs. The worst-case queueing

delay for f1,i in NS1, using Eq. 4, is Q
[NS1,ES4]
f1

= QT T
f1,[NS1,ES4]

+

QRC
f1,[NS1,ES4]

= 265+ 80 = 345 (µs). Thus, we can compute the

worst-case end-to-end delay for f1,i using Eq. 3 as R f1
=C

[ES1,NS1]
f1

+

Q
[NS1,ES4]
f1

+C
[ES1,NS1]
f1

= 120+345+120 = 485 (µs).

Researchers have proposed several worst case end-to-end de-
lay analyses for the traffic in an ARINC 664p7 network, includ-
ing analyses based on Network Calculus [14, 13], Finite State Ma-
chine [32], Timed Automata [6] or Trajectory Approach [11, 12].
However, none of these analysis methods are applicable to TTEth-
ernet, since they do not consider the impact of TT messages on the
schedulability of RC messages. In this paper we use the TTEther-
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Set Test case ES NS Messages
Frame Load ∆cost

instances [%] [%]

1

11 13 4 80 12593

50

2.58
12 25 6 88 1787 24.44
13 35 8 103 2285 20.06
14 45 10 165 3299 11.90

2
21 11 4 115 16904

70
9.17

22 25 6 179 2523 20.61
23 35 8 154 3698 39.34

3

31

25 6

76 1387 40 37.97
32 88 1787 50 24.44
33 115 2503 60 40.47
34 179 2523 70 20.61
35 155 2960 80 32.10

4

41

35 8

65 1976 40 38.75
42 103 2285 50 20.06
43 89 2801 60 12.73
44 176 3856 70 12.75
45 135 3490 80 20.23

5 automotive 15 3 170 38305 80 50.88

Table 1: Experimental results

net analysis from [35], which shows how to consider TT messages.
In our future work, we plan to extend the Trajectory Approach [12]
to consider TT messages, with the aim to reduce the pessimism of
the analysis from [35]. However, note that the analysis used for RC
frames is orthogonal to our optimization problem.

8. EXPERIMENTAL EVALUATION
For the evaluation of our proposed optimization approach, “TTEth-

ernet Schedules Optimization” (TTESO), we used 17 synthetic bench-
marks and one real-life case study. The TTESO algorithm was im-
plemented in Java (JDK 1.6), running on SunFire v440 computers
with UltraSPARC IIIi CPUs at 1.062 GHz and 8 GB of RAM.

The results are presented in Table 1. For the synthetic bench-
marks, we have used 6 network topologies, and we have randomly
generated the parameters for the frames, taking into account the
details of the TTEthernet protocol. All the dataflow links have a
transmission speed of 100 Mbps. In columns 3–7, we have the
details of each benchmark, the number of ESes, NSes, number of
messages, the number of frame instances and the load on the net-
work, respectively. The load within an application cycle Tcycle is
calculated as the ratio of the sum of the sizes of all frame instances
divided by the network speed (in our case 100 Mbps).

For all experiments, we have compared TTESO with a baseline
solution, namely the Straightforward Solution (SS), which builds
the TT schedules with the goal of minimizing the end-to-end re-
sponse time of the TT frames without using the analysis of RC
traffic. The comparison between SS and TTESO, ∆cost , is shown in
the last column in the table as a percentage improvement of TTESO
over SS, in terms of the cost function (Eq. 1).

In the first two sets of experiments, labeled “Set 1” and “Set 2”
in Table 1, we were interested to evaluate the quality of the results
obtained with TTESO as the size of the system increases. Thus,
we have used 7 synthetic benchmarks, with the number of network
nodes ranging between 16 and 55 nodes. The first set of 4 bench-
marks have a load of 50%, and the second set of benchmarks have
a load of 70%. As we can see, TTESO is able to significantly im-
prove the cost function over SS, even as the size of the system in-
creases. We used a time limit of 45 minutes for the first set and 90
minutes for the second set.

In the third sets of experiments, labeled “Set 3” were interested
on how TTESO performs as the load of the network increases from
40% to 80%. As we can see, TTESO is able to significantly im-
prove on the the solution provided by SS. These results were ob-

tained using a time limit of 30, 45, 70, 90 and 120 minutes for
the test cases with a load of 40%, 50%, 60%, 70% and 80%, re-
spectively. A similar evaluation was performed in the case of ex-
perimental “Set 4”, with the difference that we considered a larger
architecture.

Finally, we used one real-life benchmark derived from [24], based
on the SAE automotive communication benchmark [1]. In this
benchmark we have 18 network nodes (ESes and NSes), and 83
frames (with the parameters generated based on the messages pre-
sented in [24]). Table 1 contains the results for this benchmark—
the last line labeled with “Set 5”. The results obtained for the real-
life benchmark confirms the results of the synthetic benchmarks.

9. CONCLUSIONS
In this paper we have addressed the optimization of the TTEth-

ernet protocol. TTEthernet is very suitable for mixed-criticality
systems, both in the temporal and safety domain. In the tempo-
ral domain, TTEthernet offers three types of traffic classes, Time-
Triggered, Rate Constrained and Best Effort. In the safety domain,
the protocol offers separation between mixed-criticality frames us-
ing the concept of virtual links, and protocol-level specialized de-
pendability services.

We have considered mixed-criticality hard real-time applications
implemented on distributed heterogenous architectures. Given the
sets of TT and RC frames and the topology of the virtual links to
which they are assigned, we have proposed a Tabu Search optimiza-
tion strategy for the synthesis of the TT schedules. The synthesis is
performed such that the frames are schedulable, and the degree of
schedulability is improved. The results on several synthetic bench-
marks and a real-life case study show that through the careful op-
timization of TT static schedules, significant improvements can be
obtained.
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