
Master Thesis

Synthesis-driven Derivation of Process Graphs
from Functional Blocks for Time-Triggered

Embedded Systems
by

Ghennadii Sivatki

LITH-IDA/DS-EX--05/010--SE

2005-11-25

Linköpings universitet

Rapporttyp
Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

Språk
Language

 Svenska/Swedish

 Engelska/English

ISBN

ISRN LITH-IDA/DS-EX--05/010--SE

Serietitel och serienummer ISSN
Title of series, numbering

Datum
Date

URL för

http://

X

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science 5

X

Titel
Title

Författa
Author

Synth

Ghenn

Samman
Abstract

Embe
machi
produ
Succe
metho
abstra

A d
For ex
such d
this m
develo
which
them e

Nyckelo
Keywor
embed
mappin
 elektronisk version

urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5106

re

esis-driven Derivation of Process Graphs from Func

adii Sivatki

fattning

dded computer systems are used as control systems i
nes, automobiles, airplanes, etc. As the complexity o
cts they are used in reduces, designing reliable syste
ssful design, nowadays, cannot be performed w
dologies. These tools should explore different desi
ction levels to manage the complexity and reduce the
esign is specified using models. Different models a
ample, the functionality of an application can be spe
esign tasks as mapping and scheduling, a lower-lev
odel from a higher-level model of functional bloc
p efficient strategies for such derivations, a
 helps the synthesis tasks to find schedulable implem
xperimentally.

rd
ds
ded systems, time-triggered systems, system-level m
g, scheduling
2005-11-2
tional Blocks for Time-Triggered Embedded Systems

n many products, such as VCRs, digital cameras, washing
f embedded applications grows and time-to-market of the
ms satisfying multiple requirements is a great challenge.
ithout good design tools based on powerful design
gn alternatives to find the best one and do that at high
 design time.
re used at different design stages and abstraction levels.
cified using hierarchical functional blocks. However, for

el flat model of interacting processes is needed. Deriving
ks is the main focus of this thesis. Our objective is to
iming at producing a process graph specification,

entations. We proposed several strategies and evaluated

odelling, functional blocks, allocation, process graphs,

Linköpings universitet
Department of Computer and Information Science

Master Thesis

Synthesis-driven Derivation of Process Graphs
from Functional Blocks for Time-Triggered

Embedded Systems
by

Ghennadii Sivatki

LITH-IDA/DS-EX--05/010--SE

2005-11-25

Supervisor: Paul Pop
Examiner: Paul Pop

To
Taisia and Grigoriy

Abstract

Embedded computer systems are used as control systems in many products, such
as VCRs, digital cameras, washing machines, automobiles, airplanes, etc. As the
complexity of embedded applications grows and time-to-market of the products
they are used in reduces, designing reliable systems satisfying multiple require-
ments is a great challenge. Successful design, nowadays, cannot be performed
without good design tools based on powerful design methodologies. These tools
should explore different design alternatives to find the best one and do that at high
abstraction levels to manage the complexity and reduce the design time.

A design is specified using models. Different models are used at different de-
sign stages and abstraction levels. For example, the functionality of an application
can be specified using hierarchical functional blocks. However, for such design
tasks as mapping and scheduling, a lower-level flat model of interacting processes
is needed. Deriving this model from a higher-level model of functional blocks is
the main focus of this thesis. Our objective is to develop efficient strategies for
such derivations, aiming at producing a process graph specification,
which helps the synthesis tasks to find schedulable implementations. We proposed
several strategies and evaluated them experimentally.

Acknowledgements

I would like to thank my supervisor, Dr. Paul Pop, for the interesting idea of this
thesis, the opportunity to work on this project, and useful discussions.

I am so deeply grateful to my loving family, Taisia, Grigoriy, Vladimir and
Alexei, and to my dearest friend Tatiana who have always been there for me, in
spite of the geographical distance, with their support, understanding, encourage-
ment and belief in me.

Contents

1 Introduction .. 1
1.1 Thesis Overview ... 1

2 Technical Background: Embedded Systems .. 3

2.1 Real-Time Systems ... 3
2.2 Distributed Real-Time Systems .. 5
2.3 Embedded Real-Time Systems ... 5
2.4 Real-Time Scheduling .. 6
2.5 Embedded Systems’ Design Flow .. 7

3 Problem Description ... 11

3.1 System-Level Modelling ... 11
3.1.1 Functional Blocks .. 12
3.1.2 Process Graphs .. 13

3.2 Problem Statement .. 15
3.3 Motivation ... 15

4 Preliminaries: Time-Triggered Embedded Systems .. 21

4.1 Time-Triggered versus Event-Triggered Systems 21
4.2 The Time-Triggered Protocol ... 22
4.3 The Hardware Architecture .. 23
4.4 The Software Architecture .. 24
4.5 Static Cyclic Scheduling ... 24

5 Functional Blocks to Process Graph Translation ... 29

5.1 Inputs and Outputs .. 29
5.2 Allocation Groups ... 30
5.3 Worst-Case Execution Overhead, Execution Time and

 Transmission Time ... 33
5.4 Translation Strategies ... 35

5.2.2 Straightforward Translation Strategies .. 35
5.2.3 Optimizing Translation Strategies ... 37

6 Experimental Results .. 41

6.1 Experimental Setup ... 41
6.2 Experimental Decisions .. 42
6.3 Comparison of Translation Strategies ... 43

xiv

7 Related Work ..45

8 Conclusions and Future Work ...47

8.1 Conclusions ...47
8.2 Future Work ...47

Appendix A ..51

Appendix B ..53

Appendix C ..57

References ..59

List of Figures

2.1 Real-time system .. 3
2.2 Structure of a node in a distributed real-time system 5
2.3 Embedded systems’ design flow .. 9
3.1 An example of a graph of functional blocks .. 13
3.2 An example of a process graph .. 14
3.3 The first motivational example ... 16
3.4 The second motivational example .. 17
3.5 The third motivational example

(the application and the architecture) ... 18
3.6 The third motivational example

(the process graphs and the scheduling) ... 19
4.1 TTP bus access scheme .. 22
4.2 The Hardware Architecture .. 23
4.3 Example of scheduling independent processes

with different periods ... 25
4.4 Example of scheduling a distributed application .. 26
4.5 The list scheduling algorithm ... 27
5.1 Allocation groups based on constraints

for the example graph in Fig.3.1 .. 31
5.2 Allocation groups based on topmost composite functions

for the example graph in Fig.3.1 .. 32
5.3 Allocation groups based on composite functions

for the example graph in Fig.3.1 .. 32
5.4 An allocation group in the case with no constraints

for the example graph in Fig.3.1 .. 33
5.5 An example of the translation based on direct allocation

without grouping .. 35
5.6 An example of the translation based on direct allocation
 with grouping according to topmost composite functions 36
6.1 Comparison of the translation algorithms .. 44
8.1 An example application .. 48
8.2 Schedules for the example application ... 49
B.1 The algorithm of neighbourhood search with steepest descent 53
B.2 The algorithm of simulated annealing .. 54
B.3 The algorithm of tabu search .. 55

List of Tables

6.1 Parameters of the simulated annealing and
 tabu search algorithms .. 43
C.1 Evaluation of the translation strategies for the problem size
 of 10 elementary functions ... 58
C.2 Evaluation of the translation strategies for the problem size
 of 25, 50, 75 and 100 elementary functions ... 58

List of Abbreviations

AGPD Allocation Group to Process Directly
AGPES Allocation Group to Process based on Exhaustive Search
AGPSA Allocation Group to Process based on Simulated Annealing
AGPSD Allocation Group to Process based on Steepest Descent
AGPTS Allocation Group to Process based on Tabu Search
ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
CNI Communication Network Interface
CPU Central Processing Unit
DSP Digital Signal Processor
EDF Earliest Deadline First
EFP Elementary Function to Process
ET Event-Triggered
FPGA Field Programmable Gate Array
FPS Fixed Priority Scheduling
FSM Finite State Machine
I/O Input/Output
IP Intellectual Property
MBI Message Base Interface
MEDL Message Descriptor List
NP Non Polynomial
PCB Process Control Block
RAM Random Access Memory
RG Restricted Growth
ROM Read-Only Memory
SA Simulated Annealing
TDMA Time-Division Multiple Access
TS Tabu Search
TT Time-Triggered
TTP Time-Triggered Protocol
WCAO Worst-Case Administrative Overhead
WCEO Worst-Case Execution Overhead
WCET Worst-Case Execution Time
WCTT Worst-Case Transmission Time

1 Introduction

Embedded systems is a huge class of computer systems that are used to control the
operation of larger host systems in which they are embedded. The examples are
television sets, microwave ovens, mobile phones, wristwatches, washing ma-
chines, etc. Most embedded systems are real-time computer systems, which means
that they operate under strict timing constraints. Many such systems are used in
safety-critical applications. In addition to functional and timing, embedded sys-
tems must satisfy other requirements (power consumption, cost, etc.) that often
compete with each other. Besides that, the highly competitive market of devices
embedded systems are used in puts additional pressure on designers in the form of
the time-to-market requirement. In order for a product to succeed in the market,
this time should be reduced as much as possible. All these make the design of em-
bedded systems very difficult. To manage the difficulty, it is extremely important
to have powerful design methodologies and tools that would free the designer of
low-level decisions and tasks.

Design of embedded systems is usually an iterative process that explores differ-
ent design alternatives and chooses the one that satisfies all the requirements. A
variety of models can be used during the design. They describe the functionality of
the application or its structure at different abstraction levels. Refinement and syn-
thesis of models is necessary for the design space exploration. For safety-critical
systems, which are implemented as time-triggered systems, the main model is a
model of communicating processes that are assigned for execution (mapped) to
computational resources of the system architecture and scheduled. This model
must satisfy all the requirements to the system. Synthesising such a model from a
higher-level specification of functionality is the topic of this thesis. The aim is to
develop strategies for derivation of mapped and scheduled system models from
higher-level behavioural system models.

1.1 Thesis overview

This thesis is structured in eight chapters. Chap. 2 gives an introduction to real-
time and embedded systems, and their design. Chap. 3 describes, states and moti-
vates the problem of the thesis. In Chap. 4, we dwell on a particular kind of em-
bedded systems, which are the main focus of the thesis, time-triggered embedded
systems. We describe the hardware and software architectures that we consider. In
Chap. 5, we propose strategies for derivation of system models represented as

2 1 Introduction

process graphs from the ones represented as functional blocks. Chap. 6 presents
the results achieved during experimentation with the implemented derivation
strategies. Chap. 7 describes related work. And in Chap. 8, we conclude and pro-
pose ideas for future work.

2 Technical Background: Embedded Systems

The purpose of this chapter is to give an introduction to the subject area of this
thesis that is of embedded computer systems, to define their key concepts, and de-
scribe their design methodologies.

2.1 Real-Time Systems

Most of embedded computer systems are real-time computer systems, so are those
this thesis is aiming at. Therefore, first of all, we will define what a real-time sys-
tem is.

“A computer system in which the correctness of the system behaviour depends
not only on the logical results of the computations, but also on the physical instant
at which these results are produced” is called a real-time computer system [8].

A real-time computer system always has an environment, in which it operates.
The environment consists of a human operator and a controlled object with corre-
sponding interfaces – a man-machine interface (MMI) and an instrumentation in-
terface (II) (Fig. 2.1). The man-machine interface includes input and output de-
vices (e.g., keyboard and display). The instrumentation interface includes a set of
sensors and actuators, which transform physical signals of the controlled object
into a digital form understandable by the computer system and vice versa. The
combination of a real-time computer system and its environment is called a real-
time system [8].

Examples of real-time systems are engine control systems in vehicles, ticket-
booking systems, automatic teller machines, plant automation systems, flight con-
trol systems, etc.

Operator
Controlled

Object

MMI IIReal-Time
Computer
System

Fig. 2.1. Real-time system (adapted from [8])

4 2 Technical Background: Embedded Systems

A real-time computer system must react to stimuli from its environment within
time limits imposed by the environment. The instant of time at which a result must
be produced is called a deadline. If a result is still useful after the deadline has
passed, the deadline is called soft, if not, the deadline is firm. If missing a firm
deadline may result in a catastrophe, the deadline is called hard. A real-time com-
puter system that must meet at least one hard deadline is classified as a hard real-
time computer system or a safety-critical real-time computer system [8]. For ex-
ample, for a nuclear plant control system, failure to react at appropriate time may
lead to catastrophic consequences.

If a real-time computer system does not have any hard deadlines, then it is
called a soft real-time computer system [8]. For example, a multimedia system
may occasionally miss its deadlines, which will result in a degraded quality of im-
age and sound, which in turn will cause only inconvenience to the user.

There are several viewpoints real-time systems can be classified from [8].

• Hard real-time versus soft real-time,
• Fail-safe versus fail-operational,
• Guaranteed-timeliness versus best-effort,
• Resource-adequate versus resource-inadequate, and
• Event-triggered versus time-triggered.

The first two classifications depend on the characteristics of the application,
i.e., the controlled object. The rest depend on the implementation of the computer
system.

Hard real-time systems are different from the soft ones in response time, peak-
load performance, control of pace, safety, size of data files, and redundancy type.

Fail-safe and fail-operational systems are different in the way they behave
upon occurrence of a failure. The systems, for which safe states exist, transition to
one of the states in case of a failure. The systems, for which a safe state cannot be
identified, remain operational, possibly providing a limited service.

Guaranteed-response systems are designed in such a way that they guarantee a
response in the case of a peak load and fault scenario with the probability that the
assumptions about the peak load and faults made during the design will hold in re-
ality. Best-effort systems do not give such an analytic guarantee; instead, they es-
tablish the sufficiency of the design during testing and integration.

Resource-adequate and resource-inadequate systems differ in availability of
resources under peak load and fault scenarios. Guaranteed response requires re-
source adequacy. Hard real-time systems must be designed according to the guar-
anteed response paradigm.

Event-triggered and time-triggered systems are different in the triggering
mechanism used to start an action (e.g., execution of a task or sending a message)
in a node of a computer system.

 5

Host Computer

CNI

Communication Controller

Messages

Communication Network

Fig. 2.2. Structure of a node in a distributed real-time system (adapted from [8])

2.2 Distributed Real-Time Systems

Many real-time applications are distributed by their nature. For example, plant
automation systems, or automotive electronics. In such applications, it makes
sense to perform the data processing at the location of the controlled objects. In
this case, the controlling computer system becomes a distributed real-time com-
puter system. It is implemented as a set of hardware components, called nodes, in-
terconnected by a real-time communication network. Many real-time systems are
designed as distributed systems due to fault tolerance or performance issues.

A node of a distributed real-time system can be structured as two subsystems
(Fig. 2.2), the host computer, and the communication controller interfacing with
each other through the communication network interface (CNI) [8].

The host computer contains a central processing unit (CPU), a memory, and a
real-time clock that is synchronized with the real-time clocks of all the other
nodes. The memory stores the node’s software – the real-time operating system,
input/output drivers, and the application programmes.

The set of all the communication controllers of the nodes and the physical in-
terconnection medium form the real-time communication system of a distributed
real-time system [8].

2.3 Embedded Real-Time Systems

Due to constantly decreasing price-performance ratio of microcontrollers, it has
become economically attractive to replace the conventional mechanical or elec-
tronic control systems inside many products by real-time computer systems. In
this case, such a computer system is called an embedded computer system [8]. The
examples of products with embedded computer systems are telephones, watches,
electronic toys, digital cameras, television sets, computer printers, washing ma-

6 2 Technical Background: Embedded Systems

chines, microwave ovens, automobiles, airplanes, etc. More than 99% of the mi-
croprocessors produced today are used in embedded systems [12].

Although the number and diversity of embedded systems is huge, they share a
small set of common characteristics:

• Since such computer systems are embedded into a host system, they are de-
signed to perform a dedicated set of functions determined by the purpose the
host system serves to.

• Besides correct functionality under timing constraints, the design of embedded
systems has to consider many other tight, varied, and competing issues, such as
development cost, unit cost, size, power consumption, flexibility, time-to-
prototype, time-to-market, maintainability, safety, etc.

• Both hardware and software aspects, and under the above constraints, have to
be considered simultaneously during the design of embedded systems. That
makes the design very difficult.

2.4 Real-Time Scheduling

At run time, the functionality of a real-time system can be represented as a set of
concurrent processes (tasks) executed by the system’s computational resources
(e.g., programmable processors, application specific integrated circuits, etc.).

A process is a sequence of computations, which starts when all its inputs are
available. When it finishes executing, the process produces its output values [9].
The control signal that initiates the execution of a process is provided by the oper-
ating system. Important attributes of a process are:

• Release (arrival, or request) time, the time when the process becomes ready for
execution,

• Execution time, the time it takes to execute the process,
• Worst-case execution time (WCET), C, the maximal time it may take to execute

the process,
• Period, T, the time interval between successive release times,
• Deadline, D, the time by which the execution of a process must be finished,
• Priority, π, the level of importance of the process.

Based on the release times, processes can be:

• Periodic, when the release times are known and the intervals between them are
constant,

• Aperiodic, when the release times are not known, and
• Sporadic, they are aperiodic processes for which minimal inter-release times

are known.

A real-time system must execute the set of its concurrent processes in such a
way that all processes meet their deadlines. Then, the scheduling problem is which
process and at what moment has to be executed on a given computational resource

 7

in order for all timing requirements to be satisfied. The following classifications of
scheduling approaches exist:

• Static versus dynamic,
• Off-line versus on-line, and
• Preemptive versus non-preemptive.

Scheduling is static if pre-run-time predictions about the worst-case behaviour
of the system when the scheduling algorithm is applied are made. Examples of the
static approach are cyclic scheduling and fixed priority scheduling (FPS). If no
pre-run-time predictions are made but instead run-time decisions are used, the
scheduling is dynamic. An example of the dynamic approach is earliest deadline
first (EDF) scheduling.

When there is complete a priori knowledge about the process-set characteris-
tics, e.g. release times, WCETs, precedence relations, etc., a schedule table for the
run-time scheduler can be generated off-line. Such a table contains all the informa-
tion needed to decide at run time which task is to be dispatched next. An example
of the off-line scheduling approach is static cyclic scheduling. If there is no such
complete a priori knowledge, the scheduling decisions have to be made at run time
(on-line). Examples of the on-line scheduling approach are FPS and EDF schedul-
ing.

In preemptive scheduling, the currently executing task may be preempted (in-
terrupted), if a task with a higher priority has been released. In nonpreemptive
scheduling, the currently executing task may not be interrupted.

In order to determine whether a process set is schedulable, that is it can be
scheduled so that each task meets its deadline, or not, a schedulability analysis
(test) is performed. Schedulability analysis can be based on sufficient, necessary,
or necessary and sufficient conditions. If the sufficient condition is satisfied, the
process set is definitely schedulable; otherwise, the process set may be or not be
schedulable. If the necessary condition is not satisfied, the process set is definitely
not schedulable; otherwise, the set may be or not be schedulable. Tests based on
both necessary and sufficient conditions give an exact answer at the expense of
their complexity. Tests based either on sufficient or on necessary conditions may
give either too pessimistic or too optimistic results respectively, but they are sim-
pler. For the off-line scheduling approach, construction of a schedule is considered
a sufficient schedulability test.

2.5 Embedded Systems’ Design Flow

Design of embedded systems is a difficult task due to the following reasons:

• It has to deal with the very complex functionality of modern applications. Many
real-time applications have to be implemented as multiprocessor systems with
heterogeneous structure. This means they contain both programmable proces-
sors and dedicated hardware components. For example, the programmable

8 2 Technical Background: Embedded Systems

processors can be general purpose or application specific microprocessors, mi-
crocontrollers, digital signal processors (DSPs). The dedicated hardware com-
ponents can be implemented as application specific integrated circuits (ASICs)
or field programmable gate arrays (FPGAs). In addition to that, for distributed
systems, the network structure can be heterogeneous too. It can consist of sev-
eral networks, interconnected with each other, with each network having its
own communication protocol,

• Both hardware and software have to be designed simultaneously,
• In addition to desired functionality and correct timing, it has to take into con-

sideration many tight, and often competing requirements, such as development
cost, unit cost, size, power consumption, flexibility, time-to-prototype, time-to-
market, maintainability, safety, etc.

In order to simplify the design process, to reduce its cost and time-to-market,
and to address the complexity of applications, it is very important to have:

• Powerful design methodologies, which would perform as many of the activities
considering different design alternatives as possible at high abstraction levels,

• Efficient design tools based on the above methodologies, which would allow to
automate most of the design tasks, ideally the whole design process,

• Reuse of previously designed and verified hardware and software blocks, and
• Good designers.

Design of embedded systems can be performed at different abstraction levels,
with different types of models used at each level, behavioural and structural. A
behavioural model describes the desired functionality of the system, and a struc-
tural model describes the composition of the system of physical elements. For ex-
ample, the hardware can be designed at:

• Circuit level, the lowest abstraction level. The main building blocks here are
transistors. The system’s functionality is described using differential equations,

• Logic level. With building blocks being gates and flip-flops and the functional-
ity described as Boolean logic,

• Register-transfer level. Where transfers of values between registers, multiplex-
ers, ALUs, etc. describe the functionality,

• System level, the highest abstraction level. Here, the structure is captured using
processors, memories, ASICs, and communication channels and the functional-
ity is described using system level specification formalisms (e.g., hardware de-
scription languages).

It is the system level the design methodologies should make most of the design
space exploration at.

Fig. 2.3 shows such a design flow. It was suggested by researchers to system-
atically address the design of embedded systems [4].

The activities undertaken during the design based on this methodology are the
following:

 9

Modelling

System model

Mapping

Scheduling

Software model

Software
generation

Software blocks

Hardware model

Hardware
synthesis

Hardware blocks

Simulation

Simulation

PrototypeTesting

Fabrication

Architecture
selection

System architecture

Estimation

not OK not OK

OK

not OK

OK

S
y
s
te

m
le

v
e

l
L

o
w

e
r

le
v
e

ls

Simulation

Formal
verification

Informal specification, constraints

Mapped and scheduled model

Formal
verification

Functional
simulation

Fig. 2.3. Embedded systems’ design flow [4]

10 2 Technical Background: Embedded Systems

1. The flow starts from the informal specification (e.g., natural language) of the
functionality and the set of constrains (e.g., power consumption, cost, etc.).

2. As a result of modelling, the system model is produced, possibly using several
refinement steps. The system model is a formal specification of the functional-
ity, based on a modelling concept (e.g. finite state machine, data-flow, Petri net,
etc.).

3. At this step, the system’s architecture (processors, custom intellectual property
(IP) modules, busses, operating system, etc.) is chosen.

4. Mapping of the system’s functionality on the computational resources is per-
formed. This means to choose a resource where a given piece of functionality is
going to be executed in. Here, the decision about what will be implemented as
hardware and what will be implemented as software is made.

5. Next, based on the results of the mapping, on the estimation of the WCETs of
the process-set with the given mapping, and on the chosen scheduling algo-
rithm, schedulability analysis is performed. If the static cyclic scheduling was
chosen (the case in Fig. 2.3), then the scheduling tables for each processing
element are built. Depending on the result, the flow may move forward or go
back to the previous stages to explore different architectures, mappings, and
schedules.

6. Now, the partitioning of the system model into the software model and the
hardware model can be done. The software model describes the functionality
mapped to processors, and the hardware model describes the functionality
mapped to ASICs and FPGAs.

7. And finally, the low-level design tasks, which are automatic or manual software
generation and hardware synthesis, prototyping, and testing the prototype, are
performed.

At all the stages of the design, the model should be either formally verified or
simulated to check its validity. Depending on the results of validation, adjustments
to the model can be made.

The described approach is a so-called function/architecture co-design method-
ology. The main characteristic of this methodology is that it uses a top-down syn-
thesis approach and, at the same time, a bottom-up evaluation of design alterna-
tives [9].

Usually a design does not start from scratch. The design is based on a hardware
platform, which is instantiated for the given application by parameterizing the
platform’s components (e.g., the frequencies of the processors, the sizes of the
memories, etc.). Such a design is called platform based.

3 Problem Description

As we have said in the previous chapter, it is very important for the design of em-
bedded system to have powerful design methodologies that could handle the high
complexity and tight requirements of embedded applications. One of such meth-
odologies was described in Sect. 2.5. However, there are issues inside a methodol-
ogy itself that are essential for a successful design, such as strategies and tech-
niques used for a particular activity of the design. The activity this thesis is in
concern of is automatic creation of a mappable system model from a higher-level
behavioural specification (see Fig. 2.3).

3.1 System-Level Modelling

There are two models in the design flow shown in Fig. 2.3 denoted as “System
model” and “Mapped and scheduled model” we are interested in. The system
model is a behavioural model describing the functionality of the application being
designed as a set of behaviours that can be directly mapped onto the processing
elements of the system architecture. The mapped and scheduled model can be
viewed as a structural model where each physical element from the system archi-
tecture is assigned a piece of functionality from the system model to execute (in a
specified order and at specified time instances1). The process of transforming a
behavioural representation into a structural representation is known as synthesis.
Therefore, we say that the system model is synthesized into the mapped and
scheduled model during the design.

The model used for mapping and scheduling is a flat model of interacting be-
haviours that are represented as processes at run-time. For complex applications, it
may be very difficult to construct such a model directly from the informal specifi-
cation of functionality. Therefore, a move to higher abstraction levels in formal
behavioural descriptions is necessary. Then, the transition from the informal speci-
fication to the model of interacting processes can be done as a sequence of refine-
ment2 steps.

A possible modelling scenario could be the following. First of all, based on the
requirements and constraints of the informal specification, an overall behavioural

1 We assume that a static cyclic scheduling is used, which allows building scheduling tables

off-line.
2 Refinement is a process of lowering the abstraction level of a model by adding more de-

tails.

12 3 Problem Description

model of the system is constructed as a single black box transforming its inputs to
the outputs. This model can be built using a system level modelling formalism
(suitable for the given application), such as a Petri Net or a Finite State Machine
(FSM), which is mathematically verifiable. Next, the overall behaviour is decom-
posed into a set of interacting concurrent hierarchical behaviours. The decomposi-
tion is done following, for instance, availability of reusable hardware and software
IP components, implementation constraints, or the designer’s vision of how it
should be done. And finally, the model of hierarchical behavioural blocks is re-
fined into a model suitable for processing by the synthesis task.

This last refinement is a problem we are going to solve.
In the following two subsections, we will describe the representations that will

be used for the two models that are an input and an output of the refinement prob-
lem.

3.1.1 Functional Blocks

In our representation, a behaviour in the model of interacting concurrent hierarchi-
cal behaviours is called a functional block, or a function. Each function may con-
sist of other functions. We call the leaf functions elementary. Composite functions
are the functions that include elementary or other composite functions.

The model is represented as a directed hierarchical graph H = (Fe, Fc, D, h, c),
where Fe is a set of elementary functions; Fc is a set of composite functions;
Fe ∪ Fc = F, where F is a set of all functions; D is a set of edges between the ele-
ments of Fe; h: Fc → Fc is an inclusion relation between the composite functions;
c: Fe → Fc is an inclusion relation between the elementary and composite func-
tions. An element of D is called a dependence and represents data dependency be-
tween a pair of functions. This graph is a kind of a dataflow graph.

An elementary function is an implementable behaviour (the implementation can
be done in a modelling or a programming language). A composite function is a
specifying behaviour, which means that it defines how the functional hierarchy
(with this function in the root) should behave.

Given system architecture, timing information for elementary functions and de-
pendences can be specified. For an elementary function, the timing characteristics
are its worst-case execution time and period. The worst-case execution time of a
function is the maximal time it may take to execute the function on a reference
computational resource of the system architecture. The WCETs of all the elemen-
tary functions are estimated for the same reference resource. For techniques on
WCET estimation, please refer to [3]. The period is the time interval between suc-
cessive invocations of the function. It is specified in the requirements to the appli-
cation being modelled.

For a dependence, the timing attribute is its worst-case transmission time. Each
dependence is associated with an amount of data, which is passed between the two
functions the dependence connects. Hence, its WCTT is the time it takes to trans-
mit those data over a reference bus of the system architecture.

 13

F8

F9

F7

F1 F3

F2

F6

F4

F5

Fig. 3.1. An example of a graph of functional blocks

Example 3.1: In the graph of functional blocks shown in Fig. 3.1, Fe = {F1, F2,
F3, F4, F5, F8, F9}, and Fc = {F6, F7}.

3.1.2 Process Graphs

We represent the model of interacting processes as a process graph (also called a
task graph), which is a kind of a dataflow graph [2]. A process graph is a directed
acyclic graph G = (P, M), where P is a set of processes, and M is a set of edges
representing dependences between the processes in the form of messages [9].

The graph is a polar graph, which means that there are two special vertices in it,
called source and sink that represent the first and the last processes respectively.
These processes are dummy, they do not perform any computations, their execu-
tion time is zero, and they are not assigned to any computational resources. All the
other processes in the graph are successors of source and predecessors of sink [9].

A mapped process graph G* = (P*, M*, m) is generated from a process graph G
= (P, M) by introducing communication processes and by mapping each process to
a processing element from the set of processing elements PE. PE = Rcomp ∪ Rcomm,
where Rcomp is a set of the system’s computational resources (i.e., programmable
processors and dedicated hardware), and Rcomm is a set of the systems communica-
tional resources (i.e. busses). Communication is performed using message passing
through shared memory if the communicating processes are mapped to the same
computational resource, or through a bus if the communicating processes are
mapped to different computational resources. Communication processes are in-
serted in edges that represent messages sent using the busses. Function m: P* →
PE gives the mapping of the processes in P to the processing elements in PE. For
every process Pi ∈ P, m(Pi) is the processing element to which Pi is assigned for
execution [9].

14 3 Problem Description

Timing information for a process graph is the same as for a graph of functional
blocks – worst-case execution times, periods, and worst-case transmission times.
However, for a mapped process graph it can be expressed for those resources the
processes and messages were mapped to. In addition, the messages between the
processes mapped to the same computational resource are considered to take no
time.

Example 3.2: In the mapped process graph in Fig.3.2, P0 and P12 are source
and sink processes, respectively. P1, P2, …, P11 are processes that perform
computations. They are assigned for execution to one of the computational re-
sources (Processor 1, Processor 2, or ASIC), as indicated by the shadings. The
solid black circles in the figure depict communication processes. They are in-
troduced after the mapping of the computations is done, and only for those
communications that are performed between processes mapped to different
computational resources. The communication processes are mapped to the sin-
gle bus. A number to the right of each process is the WCET of that process on
the given resource. The worst-case execution time of a communication process
is equal to the worst-case transmission time of the message this processes
represents.

Processor 1

Processor 2

ASIC

Bus

1

1

1

2

P12

P1 2

P3 3 P4 5

P6 8 P7 16

P2 5

P5 6

P8 7

P11 6

P10 4P9 11

P0

Fig. 3.2. An example of a process graph

 15

3.2 Problem Statement

We state the problem of this thesis as follows.
Given a hierarchical behavioural model represented as a graph of functional

blocks, system architecture, and a synthesis algorithm, the problem is to build a
flat behavioural model represented as a process graph such that the implementa-
tion obtained using the synthesis algorithm is schedulable. The synthesis algo-
rithm produces mapping, and schedule tables (since we are interested in time-
triggered systems, static cyclic scheduling is used).

The procedure of building a process graph based on the graph of functional
blocks consists of building processes out of functional blocks. A process may be
constructed out of one or several functions. We say that in this procedure, func-
tional blocks are allocated to processes. The goal is to find such an allocation that
the resulting process graph is schedulable. The search is driven by the given syn-
thesis algorithm, which maps the process graph under consideration to the given
architecture, schedules it, and gives the answer whether the process graph is
schedulable or not. Often the designer is interested in finding a process graph that
is not only schedulable but also has minimal schedule length. We will use sched-
ule length as a search criterion.

3.3 Motivation

We will motivate the problem by giving several motivational examples.

Example 3.3: Let us consider a simple application that is modelled as the graph
of functional blocks shown in Fig. 3.3a. It is a composite function F1 that in-
cludes two elementary functions F1/1 and F1/2. The elementary functions are in-
vocated every 6 time units, and they must finish executing before they are in-
vocated again. The application is to be implemented on the architecture in Fig.
3.3b, consisting of two computational nodes N1 and N2, and a bus. The nodes
have the same performance, and the execution of the elementary functions on
either of them would take 2 time units for F1/1 and 4 time units for F1/2. There
are two ways to transform the given hierarchical graph of functional blocks into
a flat process graph. They are shown in Fig. 3.3c, d. In the first case, the proc-
ess graph consists of a single process P1 that performs the computations of both
elementary functions F1/1 and F1/2. In the second case, two processes are cre-
ated, each corresponding to an elementary function. The worst-case execution
time of a process is a sum of the WCETs of the elementary functions making
up the process. In addition to that, a process’s WCET should also include the
overhead for executing the process by the operating system at run-time (the
overheads will be discussed in Sect. 5.2.1). For this example, we consider the
overhead for each process to be equal to 1 time unit. Then the WCETs of the
created processes are:

16 3 Problem Description

F1

2

F1/1

4

F1/2

a) Application

N1 N2

b) Architecture

d) Process graph, case 2

P0 P2

P1/1

3

P1/2

5

P0 P2P1

7

c) Process graph, case 1

e) Scheduling, case 1

N1

P1N2 Missed

D
e

a
d

li
n

e

0 2 4 6 8

f) Scheduling, case 2

D
e

a
d

li
n

e

P1/2N2 Met

P1/1N1 Met

0 2 4 6 8

Fig. 3.3. The first motivational example

• In the first case, 7 (the functions have to be executed sequentially inside the

process), and
• In the second case, 3 for P1/1 and 5 for P1/2.

 17

Fig. 3.3c, d also illustrate the mappings of the processes to the computational
nodes. With such mappings, scheduling can be performed as shown in Fig.
3.3e, f (the width of the rectangle depicting a process corresponds to the proc-
ess’s execution time). As we can see, the first process graph is unschedulable,
while the second solution satisfies all the deadlines (if the processes are
mapped to different nodes).

P0 P2

P1/1

3

P1/2

5

d) Process graph, case 2

P0 P2P1

7

c) Process graph, case 1

N1

b) Architecture

F1

2

F1/1

4

F1/2

a) Application

f) Scheduling, case 2

P1/2P1/1N1 Missed

D
e
a
d
li
n
e

0 2 4 6 8

e) Scheduling, case 1

P1N1 Met

D
e
a
d
li
n
e

0 2 4 6 8

Fig. 3.4. The second motivational example

18 3 Problem Description

Example 3.4: Let us consider the same application as in Fig. 3.3. However, the
periods (and the deadlines) of the elementary functions equal to 7, and the ar-
chitecture consists only of one node (Fig. 3.4a, b). Using the same approach to
creating process graphs, we get a schedulable solution when the elementary
functions are combined into the same process (Fig. 3.4c, e), and an unschedul-
able solution when a separate process corresponds to each of the elementary
functions (Fig. 3.4d, f). The total execution time of the application is larger in
the second case because there are two processes and the overhead has to be
considered twice.

Example 3.5: Fig. 3.5 and Fig. 3.6 give an example of a more complex applica-
tion. Here, we assume that sending messages between the processes mapped to
different nodes takes zero time since scheduling of messages is not relevant for
this example. We also assume that the nodes have equal performance. In the
first case, process P6 does not meet its deadline, and it is not possible to solve
this problem by a different mapping because of the chain of dependences P1 –
P3 – P4 – P6. However, if each of the elementary functions inside F3 is repre-
sented as a separate process (the second case), all the deadlines are met.

It is clear from the above examples that the way processes are built out of func-
tional blocks affects the timing of an application and leads to either schedulable or
not schedulable design. For complex graphs of functional blocks with large num-
ber of functions, multiple hierarchical levels, and constraints on function alloca-
tion, creating a schedulable flat process graph is not as straightforward as in the
simple examples we have given. It may require more sophisticated and intelligent
ways of finding the right grouping of elementary functions into processes. In the
following chapters, we will elaborate and compare the methods of design space
exploration during this design task.

b) Architecture

N2 N3N1

a) Application

F3

2

F3/1

4

F3/2

F4

4

F6

3

F5

3

F2

3

F1

6

Fig. 3.5. The third motivational example (the application and the architecture)

 19

a) Process graph, case 1

P0 P7

P1

7

P3

7

P5

4

P6

4

P4

5

P2

4

b) Process graph, case 2

P0 P7

P1

7

P5

4

P6

4

P2

4

5

P3/2P3/1

3

P4

5

c) Scheduling, case 1

D
e
a
d
li
n
e

N1
P1 P3

N3 MetP5

P4N2 MissedP2 P6

0 4 8 12 16 20 24

d) Scheduling, case 2

D
e
a
d
li
n
e

N3 MetP5

N2 MetP2 P4 P6

N1
P1 P3/1 P3/2

0 4 8 12 16 20 24

Fig. 3.6. The third motivational example (the process graphs and the scheduling)

4 Preliminaries: Time-Triggered Embedded
Systems

In Chap. 2, we shortly described embedded real-time systems in general. In this
chapter, we will dwell on a particular kind of embedded systems, time-triggered
embedded systems, which are the focus of this thesis.

4.1 Time-Triggered versus Event -Triggered Systems

In a real-time computer system, every action, e.g., the execution of a process or
the transmission of a message, must be initiated by a control signal. Such a control
signal is called a trigger. Depending on the triggering mechanism for the start of
processing and communication activities, two different approaches to the design
of real-time applications exist, resulting in two types of systems [8]:

• Event-triggered approach (systems).
• Time-triggered approach (systems).

In event-triggered (ET) systems, all processing and communication activities
are initiated by events. An event is an occurrence of a significant change of the
system’s state. For example, pressing of a button by the operator, an arrival of a
message at a node, or termination of a process in a node. The signalling of events
is realized by the interrupt mechanism. The worst-case execution time of an inter-
rupt handler, as well as the context switches before and after the interrupt handler,
are added up to the worst-case administrative overhead (WCAO) of the operating
system. The fact that WCAOs due to interrupts are variable and not every interrupt
leads to activating a different application process, makes the timing behaviour of
ET systems difficult to predict. Event-triggered systems require an on-line sched-
uling strategy (e.g. preemptive fixed priority scheduling) in order to activate the
appropriate process to service the event.

In time-triggered (TT) systems, all processing and communication activities are
initiated by progression of time. The only interrupt available here is a periodic
clock interrupt, which is generated whenever the real-time clock within a node
reaches a preset value. At these instances, a so-called trigger process is invoked
that scans the system for a change of state and decides whether another application
process needs to be started. The scans introduce additional overhead. However,
predictability of the WCAO in a TT system is high. Time-triggered systems are
usually implemented with off-line scheduling, such as non-preemptive static cy-

22 4 Preliminaries: Time-Triggered Embedded Systems

clic scheduling. In a distributed TT system, it is assumed that the clocks of all
nodes are synchronized to form a global notion of time.

Choosing an approach, the event-triggered or the time-triggered, depends on
the particularities of the application. The high predictability of time-triggered sys-
tems makes the TT approach suitable for implementing safety-critical real-time
systems. For complex distributed applications, such as modern automotive appli-
cations, the mixed event-triggered time-triggered approach can be used.

4.2 The Time-Triggered Protocol

Communication between the nodes in a distributed system is done using a com-
munication protocol. The protocol used in time-triggered systems is the Time-
Triggered Protocol (TTP). It was developed in the Vienna University of Technol-
ogy and primarily intended for the automotive industry. It is a protocol for distrib-
uted real-time applications that require predictability and reliability (e.g. x-by-wire
systems in vehicles). The description of the TTP given in this section is based on
[9] and [11].

In a distributed system, nodes communicate over a broadcast channel. The
Time-Triggered Protocol relies on the Time-Division Multiple Access (TDMA)
scheme to control access to the channel (see an example in Fig. 4.1). Each node Ni
is allowed to transmit only during a predetermined (off-line) time interval Si,
called TDMA slot. A node can send several messages packaged in one frame in its
slot. If a node has no data to send, an empty frame is transmitted. A sequence of
slots for every node in the system architecture forms a TDMA round. A node is al-
lowed to transmit only once in a TDMA round. The duration of the slot of a given
node and the sequence of all the slots is the same in every round; however, the
amount and contents of data the node sends may vary from round to round. The
sequence of all different TDMA rounds can be combined together in a cycle,
called a cluster cycle, which is repeated periodically.

Time

TDMA round

Cluster cycle

TDMA slot

S2S1 S2 S3 S4 S1 S3 S4S5 S5

Frame
Fig. 4.1. TTP bus access scheme

 23

The protocol services in a node are executed by its communication controller
(see Fig. 2.2). Communication with the CPU is performed through the communi-
cation network interface. In case of TTP, the CNI is called message base interface
(MBI), which is usually implemented as a dual ported RAM.

The DTMA bus access scheme is imposed by a so-called message descriptor
list (MEDL), which is located in every communication controller (TTP controller).
The MEDL determines when the TTP controller has to send a frame to or receive
a frame from the communication channel. Thus, it serves as a schedule table for
the controller. In addition, for each frame, the MEDL stores its address in the
MBI, and its length. The size of the MEDL is one cluster cycle.

By executing a synchronization algorithm, the TTP controller provides syn-
chronization of the local clock with the local clocks of all the other nodes.

4.3 The Hardware Architecture

In Sect. 2.2, we presented general hardware architecture for distributed real-time
systems as a set of nodes interconnected with a communication network. The
structure of a node is shown in Fig. 2.2. Fig. 4.2 gives a more detailed organiza-
tion of a node in a time-triggered system. A typical node contains a CPU to exe-
cute the application, a real-time clock synchronized with the real-time clocks of all
the other nodes, a RAM and a ROM to store the software, an input/output inter-
face to sensors and actuators, a TTP controller to execute the time-triggered proto-
col, and it can also contain an ASIC to accelerate parts of the functionality.

Sensors, Actuators

Node

TT Bus

I/O Interface

TTP Controller

CPU

RAM

ROM

ASIC

MBI
Clock

Fig. 4.2. The Hardware Architecture (adapted from [9])

24 4 Preliminaries: Time-Triggered Embedded Systems

4.4 The Software Architecture

The main component of the software architecture in a time-triggered system is a
real-time kernel running in the CPU of each node. The kernel of a node has a
schedule table that contains all the information needed to decide which process
has to be executed or which message has to be transmitted at a given time instant
in this node.

When a process finishes executing, it calls the send kernel function in order to
send its messages. Sending a message between two processes mapped to the same
node is done by copying its data from the memory location corresponding to the
message of the first process to the memory location corresponding to the message
of the second process. The time needed for this operation represents the WCAO
for sending a message between processes located on the same node, δS. When the
second process is activated, it will find the message in the right location. The
scheduling policy is that whenever a receiving process needs a message, the mes-
sage is already placed in the corresponding memory location. Thus, there is no
overhead on the receiving side for messages exchanged within the same node [9].

In order to send a message to a process mapped to a different node, the kernel
transfers the message to the TTP controller by packing it into a frame and placing
it in the MBI. The worst-case administrative overhead of this operation is δKS. The
TTP controller knows from its MEDL when it has to take the frame from the MBI
and broadcast it on the bus. The TTP controller of the receiving node knows from
its MEDL when it has to read a frame from the bus and transfer it to the MBI. The
kernel reads a message from the MBI with the WCAO of δKR. When the receiving
process is activated according to the local schedule table, it will already have the
message in its memory location [9].

4.5 Static Cyclic Scheduling

Static cyclic scheduling is an off-line scheduling approach. The schedule built us-
ing this approach must guarantee all the deadlines, considering the precedence, re-
source, and synchronization requirements of the scheduled processes. In a distrib-
uted system, a schedule is constructed for each node, and plans both execution of
the processes and access to the communication media. It will be used at run-time
by a distributed scheduler.

A static cyclic schedule is a periodic time-triggered schedule. It contains activa-
tion times for all the processes executed by the node the schedule is built for. In
this schedule, the time line is partitioned into a sequence of intervals called minor
cycles. Each minor cycle’s length, Lminor, is equal to the smallest of periods of the
processes mapped to the current node,

Lminor = min(T1, T2, …, Tn). (4.1)

 25

The start of a minor cycle is denoted by a periodic clock interrupt. The whole
schedule is called a major cycle. Its duration, Lmajor, is the least common multiplier
of all the periods,

Lmajor = LCM(T1, T2, …, Tn). (4.2)

The periods of the processes should be a multiple of the minor cycle time. If this is
not the case, the periods must be adjusted. The number of minor cycles in a major
cycle is determined as

N = Lmajor / Lminor. (4.3)

A process Pi is activated in every m-th minor cycle of a major one:

m = Ti / Lminor, (4.4)

where Ti is the period of process Pi. The processes with execution times that do
not fit into available time slots in the minor cycles should be split (off-line) into
smaller parts. Then the schedule will be preemptive.

Example 4.1: Fig. 4.3 presents scheduling of five independent processes on
one processor. In this example, Lminor = 20, Lmajor = 80. The trigger process
should also be considered. Its period is made equal to the duration of the minor
cycle. In the schedule chart (Fig. 4.3b), each rectangle denotes a process, and
the width of a rectangle corresponds to the process’s WCET.

In the case when all the processes have equal periods, there is only one minor
cycle, which coincides with the major cycle.

b) Schedule

Time

– Pt

P1 P2 P3 P1 P2 P3 P1 P2 P4

Interrupt Interrupt Interrupt Interrupt

P1 P2 P4

P5

Interrupt

Minor cycle

Major cycle

a) Process set

Process

P1

P2

P3

P4

P5

Pt

Period

20

20

40

40

80

20

WCET

8

6

4

3

2

1 Pt – trigger process

Fig. 4.3. Example of scheduling independent processes with different periods

26 4 Preliminaries: Time-Triggered Embedded Systems

Example 4.2: Fig. 4.4 illustrates scheduling of a distributed application. The
application is modelled as a process graph in which processes have equal peri-
ods (Fig. 4.4a). It has to be implemented on the architecture consisting of three
nodes and a time-triggered bus. The chart (Fig. 4.4b) shows a possible sched-
ule.

a)Application

Node 1

Node 2

Node 3

TT Bus P12

P1 2

P3 3 P4 5

P6 8 P7 16

P2 5

P5 6

P8 7

P11 6

P10 4P9 11

1

1

1

2

P0

b) Schedule

P3P1 P6 P9Node 1

P2 P5 P7Node 2

M1-4 M5-8M2-8 M4-6

TT Bus

P4 P8 P10 P11Node 3

Fig. 4.4. Example of scheduling a distributed application

 27

Optimal scheduling (e.g., minimizing the schedule length) has been proven to
be an NP-complete problem. Heuristic approaches to the scheduling problem ex-
ist. They produce results of good quality within reasonable amount of time. A
classical heuristic algorithm for static cyclic scheduling is the list scheduling algo-
rithm (Fig. 4.5). The algorithm is based on maintaining a list of processes eligible
for activation, ReadyProcessesList, for every processing element. Such a list con-
tains the processes, mapped to the given processing element, that have not been
scheduled yet, however, all their predecessors have been scheduled and termi-
nated. The process to be scheduled next is the process with the highest priority in
the ReadyList. Priorities are assigned to processes according to a priority function.
An example of a priority function is a partial critical path from the given process
to the sink process; the longer is the critical path the higher is the priority. A proc-
ess is scheduled on that processing element which is available at the current time.

1 assign priorities to all the processes;

2 for each processing element PE do

3 IsAvailableTimePE = 0;

4 end for;

5 CurrentTime = 0;

6 repeat

7 for each processing element PE do

8 if CurrentTime IsAvailableTimePE then

9 update ReadyProcessesListPE;

10 select the highest priority process P from ReadyProcessesListPE;

11 schedule P at CurrentTime;

12 IsAvailableTime PE = CurrentTime + WCETp;

13 end if;

14 end for;

15 CurrentTime = the earliest of the termination times of the

scheduled but not yet finished processes;

16 until all the processes are scheduled;
Fig. 4.5. The list scheduling algorithm

5 Functional Blocks to Process Graph
Translation

In Chap. 3, we described the problem of transitioning from a hierarchical behav-
ioural application model to a flat behavioural application model represented as a
graph of functional blocks and a process graph respectively. In this chapter, we
propose strategies that can be used for such transitions.

5.1 Inputs and Outputs

According to the problem statement (see Sect. 3.2) the inputs to the problem are:

1. A graph of functional blocks,
2. System architecture, and
3. The synthesis algorithm.

The graph of functional blocks represents the system’s functionality specified
as a set of interacting hierarchical behaviours. The mathematical model of the
graph was described in Sect. 3.1.1. We assume that the graph of functional blocks
is pre-processed in such a way that:

• Global variables are removed; the functions have only local variables, and shar-
ing of data is done by message passing,

• Loops are removed,
• All the functions have the same period of invocation,
• Dependences represent synchronous communication,
• The worst-case execution time (WCET) for each elementary function, and the

worst-case transmission time (WCTT) for each dependence are given.

System architecture is specified as a set of computational nodes and a bus. The
system is time-triggered. For each node, its performance is known and is given as
a factor by which it differs from the reference node’s performance. We consider
the fastest node in the architecture as a reference. In the time-triggered bus, there
is a TDMA slot for every node. We assume that all the slots are of the same size,
and the size is given as the maximum of WCTTs of dependences between func-
tions in the graph of functional blocks.

The synthesis algorithm is an algorithm that takes a process graph and system
architecture as an input, allocates the processes from the process graph to the

30 5 Functional Blocks to Process Graph Translation

nodes of the system architecture1, and produces schedule tables for every node us-
ing not-preemptive static cyclic scheduling approach. The implementation of the
algorithm we will use is based on the balancing and several heuristic strategies
(greedy, simulated annealing, tabu search) for mapping, and on the list algorithm
for scheduling (see Sect. 4.5). Balanced mapping tries to distribute the computa-
tional load on the nodes evenly by simply choosing the least loaded node to map
the current process to. Heuristic mapping tries to find the mapping that minimizes
the schedule length. The synthesis routine takes into consideration the overhead of
the trigger process. This overhead is expressed as a fraction of CPU power it util-
izes, and, therefore, affects the execution times of the processes executed by the
given CPU [9].

As a result of transformations applied to the graph of functional blocks, we
want to get:

1. A process graph with minimal schedule length,
2. Mapping information for each node, that is which processes will be executed by

the given node, and
3. Schedule tables for each node, containing the times at which the processes

mapped to the given node are activated and the messages are transmitted.

5.2 Allocation Groups

The translation strategies we propose are based on the notion of an allocation
group. An allocation group is a set of elementary functions of a graph of func-
tional blocks that are allowed to be allocated to the same process. This means that
functions belonging to a group may be executed within the same process or within
different processes, however they may not be executed together with functions
from other groups within the same process.

Having such allocation groups, translation of a graph of functional blocks to a
process graph can be done using two approaches to allocation of these groups to
processes, which we call direct allocation and search-based allocation. The trans-
lation strategies that use these approaches are, correspondingly, straightforward
translations and optimizing translations. In the direct allocation, every group is di-
rectly allocated to a process. In the search-based allocation, these groups are parti-
tioned into sub-groups in such a way that allocating each of the sub-groups to a
process results in a schedule with the minimal schedule length. Hence, the task
here is to find the optimal partitioning.

 Allocation groups are identified according to grouping criteria, which can be
the following:

• Compatibility of characteristics of elementary functions (e.g., the same period
of activation),

1 Since there is a single bus in our architecture, all the inter-node communications will be

mapped to that bus.

 31

Allocation groups

F1 F3

F2 F4

F5

F9

F8

Fig. 5.1. Allocation groups based on constraints for the example graph in Fig.3.1

• Allocation constraints,
• The hierarchy of the graph of functional blocks, or
• No grouping.

Allocation constraints are design constraints on which elementary functions to
allow to execute within the same process. Allocation groups can be formed based
on them. For example, a design may have a requirement that particular functions
must be executed on processing elements of a particular type (e.g. DSPs, or
ASICs, etc.); therefore, these functions are included into one allocation group.
Suppose that for the graph in Fig.3.1, we have the following constraints. Functions
F1 and F3, functions F2, F4 and F5, and functions F8 and F9 are allowed to be allo-
cated to the same processes. Then, the allocation groups are as shown in Fig. 5.1.
Such constraints may have different strictness. From saying that the functions in a
group can be combined into processes in any way, to saying that the functions in a
group must be a single process.

When the hierarchy of a graph of functional blocks is used as a grouping crite-
rion, allocation groups are formed according to the containment of elementary
functions in composite functions. Two cases of this kind of grouping are possible.
In the first case, a group corresponding to each composite function at the highest
level of hierarchy (topmost composite function) is created. For a given topmost
composite function and the corresponding group, all the elementary functions con-
tained in the composite function and all its sub-functions are included in the
group. For example, for the graph of functional blocks in Fig.3.1, the allocation
groups created based on topmost composite functions are shown in Fig. 5.2 In the
second case, a group corresponding to every composite function at any level of hi-
erarchy is created. For a given composite function and the corresponding group,
all the elementary functions contained in the composite function are included in
the group. For example, for the graph of functional blocks in Fig.3.1, the alloca-
tion groups created using this kind of grouping are shown in Fig. 5.3. In both

32 5 Functional Blocks to Process Graph Translation

cases, the elementary functions that do not belong to any composite functions are
considered as separate groups. This criterion can be taken into consideration after
the previous two in order to decrease the solution space if the search-based alloca-
tion is used.

A special type of grouping is no grouping. Alternatively, for the sake of com-
monality with the previous grouping types, we can say that a separate group for
every elementary function is created. A given elementary function is included in
the corresponding group.

Allocation groups

F8

F9

F1

F2

F3

F4

F5

Fig. 5.2. Allocation groups based on topmost composite functions for the example graph in
Fig.3.1

Allocation groups

F8

F9F4

F5

F1

F2

F3

Fig. 5.3. Allocation groups based on composite functions for the example graph in Fig.3.1

 33

Allocation group
F8

F2 F9

F1 F3

F4

F5

Fig. 5.4. An allocation group in the case with no constraints for the example graph in
Fig.3.1

In the case when allocation is not constrained and no other grouping criteria is

used, a single allocation group for the graph of functional blocks is created, which
includes all the elementary functions (see the example in Fig. 5.4).

5.3 Worst-Case Execution Overhead, Execution Time and
Transmission Time

As we have noted in the problem motivational examples in Chap. 3, when deter-
mining the worst-case execution time of a process, we should take into considera-
tion the overhead introduced by the operating system when it executes the process.
The sources making up this overhead when non-preemptive scheduling is used are
the following:

• Process creation time,
• Process termination time, and
• Execution time of the system calls for message passing.

A process is created by the operating system via a create-process system call.
During this operation, the system allocates resources to the process (e.g. memory),
and creates the process control block (PCB) [10]. The time needed for this system
call is the WCAO for creating a process, δC.

Termination of a process is done by executing an exit system call, which deallo-
cates the resources and deletes the PCB [10]. The time this operation takes is the
WCAO for terminating a process, δT.

The message passing mechanism in time-triggered systems was explained in
Sect. 4.4. The worst-case administrative overheads associated with it are the
WCAO for sending a message between processes located on the same node, δS,

34 5 Functional Blocks to Process Graph Translation

the WCAO for sending a message to a process located on a different node, δKS,
and the WCAO for receiving a message from a process located on a different
node, δKR [9].

The first two components of the overall process execution overhead, process
creation time and process termination time, may or may not be present depending
on when a process is created, during the initialization phase of the system or when
it is time to execute it. In the first case, the process stays in the RAM all the time
the system runs, and the scheduler activates it when needed. The process termi-
nates only if the system shuts down. Activities that take place during initialization
or shutdown are not captured in the schedule table; therefore, process creation and
termination times are not considered as overheads. In the second case, the process
is created every time it is scheduled for execution; hence, the associated overheads
are taken into consideration.

In a time-triggered system, execution times of the above system calls are pre-
dictable, therefore, so is the process execution overhead.

The overall process execution overhead is different for every process. It de-
pends on the length of the transmitted messages [9] and on the mapping. However,
in this thesis, we assume it to be the same for all processes, and equal to 1 time
unit.

Thus, the worst-case execution time of a process is composed of the WCETs of
the elementary functions allocated to this process, and its worst-case execution
overhead (WCEO):

iexec
FF

Fi
iallocj

j
CC .

.

δ+= ∑
∈

 (5.1)

where Ci is the WCET of process Pi, is the WCET of elementary function F
jFC j,

Falloc.i is the set of elementary functions allocated to process Pi, and δexec.i is the
worst-case execution overhead for process Pi.

The worst-case transmission time of a message is the same as the WCTT of the
corresponding dependence.

When performing transformations over a graph of functional blocks, there may
be situations when several parallel dependences have to be merged into a single
message. In this case, the WCTT of the message is determined as a sum of the
WCTTs of the merged dependences (the amount of data to be transmitted is
summed):

∑
−−

−
∈

− =
kialloclj

lj
DD

Dki CC
.

, (5.2)

where Ci-k is the WCTT of message Mi-k sent from process Pi to process Pk,
is the WCTT of dependence D

ljDC
− j-l between elementary functions Fj and Fl,

Dalloc.i-k is the set of dependences between the elementary functions allocated to
process Pi and process Pk correspondingly.

 35

a) Graph of functional blocks

2
F9

F8 12

F7

F1
4

F2
3

F3
2

F6

F4
5

F5
7

2

1

1

0

0 3

00

1

4

0

0

b) Process graph

P1
5

P2
4

P3

3

P4
6

P5
8

P9
3

P8 13

2

1

1

0

0 3

00

1

4

0

0

Fig. 5.5. An example of the translation based on direct allocation without grouping

5.4 Translation Strategies

5.4.1 Straightforward Translation Strategies

Straightforward translation strategies directly allocate an allocation group to a
process. Let us consider two examples.

Example 5.1: Fig. 5.5 illustrates the translation based on direct allocation
without grouping. The given graph of functional blocks with WCETs and
WCTTs of elementary functions and dependences is shown in Fig. 5.5a, and the
derived process graph – in Fig. 5.5b (the source and the sink processes are not
shown).

36 5 Functional Blocks to Process Graph Translation

The translation is done by simply ignoring all the hierarchy in the graph of
functional blocks and adding the process execution overhead to the WCET of each
elementary function. The dependences between the elementary functions now be-
come messages between processes with the same WCTTs.

P7

22

P9
3

0 4

0
4

0

P8 13

0

c) Process graph

a) Graph of functional blocks

2
F9

F8 12

F7

F1
4

F2
3

F3
2

F6

F4
5

F5
7

2

1

1

0

0 3

00

1

4

0

0

b) Allocation groups

0

0 3

00

1

4

0

0

2
F9

F8 12

F1
4

F2
3

F3
2

F4
5

F5
7

2

1

1

Fig. 5.6. An example of the translation based on direct allocation with grouping according
to topmost composite functions

 37

Example 5.2: Consider the same graph of functional blocks as in the
previous example. Then, using the translation based on direct allocation
with grouping according to topmost composite functions, a process graph
can be derived as shown in Fig. 5.6b, c. The worst-case execution and
transmission times are calculated according to Eq. 5.1 and Eq. 5.2. For exam-
ple, Falloc.7 = {F1, F2, F3, F4, F5}, Falloc.9 = {F9}, Dalloc.7-9 = {D3-9, D4-9}, then

,

, .

221752347.7 54321
=+++++=+++++= execFFFFF CCCCCC δ

3129.9 9
=+=+= execFCC δ 431

949397 =+=+=
−−− DD CCC

The straightforward translations do not search for a better solution in terms of
schedule length. However, they are fast, and we can predict that in case of direct
allocation without grouping very good scheduling results may be achieved if the
process execution overheads are small, and an effective mapping optimization
heuristic is used.

5.4.2 Optimizing Translation Strategies

The advantage of the straightforward translation strategies is that their execution is
fast. However, the scheduling results they produce may be not satisfactory. In this
subsection, we introduce optimizing translation strategies that use search-based
allocation approach. These strategies try to find optimal allocation of elementary
functions to processes.

Given a graph of functional blocks with defined allocation groups (an alloca-
tion graph), the task is to find the partitioning of these groups into sub-groups
such that after allocating the sub-groups to processes a schedule of optimal (mini-
mal) length is produced.

The best strategy, in terms of scheduling results, is to find all possible partitions
and to choose the optimal one.

Example 5.3: Consider the graph with allocation groups shown in Fig. 5.3. Ini-
tial grouping is: {F1, F2, F3}, {F4, F5}, {F8}, {F9}. Then, the possible partitions
are the following:

1. {F1, F2, F3}, {F4, F5}, {F8}, {F9};
2. {F1, F2, F3}, {F4}, {F5}, {F8}, {F9};
3. {F1, F2}, {F3}, {F4, F5}, {F8}, {F9};
4. {F1, F2}, {F3}, {F4}, {F5}, {F8}, {F9};
5. {F1, F3}, {F2}, {F4, F5}, {F8}, {F9};
6. {F1, F3}, {F2}, {F4}, {F5}, {F8}, {F9};
7. {F1}, {F2, F3}, {F4, F5}, {F8}, {F9};
8. {F1}, {F2, F3}, {F4}, {F5}, {F8}, {F9};
9. {F1}, {F2}, {F3}, {F4, F5}, {F8}, {F9};
10. {F1}, {F2}, {F3}, {F4}, {F5}, {F8}, {F9}.

In total, there are ten partitions of the given grouping, and a process graph cor-
responds to each of them. Each sub-group in a partition is allocated to a proc-

38 5 Functional Blocks to Process Graph Translation

ess. Next, every process graph is mapped and scheduled by the synthesis algo-
rithm, and the one that gives the shortest schedule length is chosen as the solu-
tion.

An allocation group is a set (of elementary functions). The number of ways a
set can be partitioned into disjoint subsets exponentially depends on the number of
elements in the set, and is given by the so-called Bell number. For example, for
the number of elements being 1, 2, ..., 14, the Bell numbers have the values 1, 2, 5,
15, 52, 203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322
[1]. For more information on set partitions, please refer to appendix A. For a
grouping consisting of several allocation groups, the number of possible partitions
is given by the following equation:

∏
=

=
AN

i
ip bN

1
, (5.3)

where bi is the Bell number for the i-th allocation group, and NA is the number of
allocation groups.

 With large allocation groups (consisting of many elementary functions), it may
be not feasible to find all possible partitions of the given grouping, and to perform
mapping and scheduling of corresponding process graphs within the acceptable
time period. The solutions are:

• To decrease the number of possible partitions by making the allocation groups
smaller and increasing their quantity. For example, let us suppose that there is
an allocation group with 12 functions in it. This means that the group can be
partitioned into sub-groups in 4,213,597 different ways. Making instead of this
large group two smaller groups of size 7 and 5 would decrease the number of
partitions to 877 · 52 = 45,604 (according to Eq. 5.3).

• To use a heuristic approach to searching for a partition that gives the optimal
allocation. Any general-purpose heuristic algorithm can be used (e.g.,
neighbourhood search, simulated annealing, tabu search, genetic algorithms,
etc.). The neighbourhood search, simulated annealing and tabu search algo-
rithms are described in Appendix B.

In both exhaustive and heuristic approaches, the partitioning can be done using
partitioning vectors. A partitioning vector for a graph of functional blocks with al-
location groups is a collection of restricted growth strings for each allocation
group in the graph. For instance, the partitioning vectors for the Example 5.2 are:

1. 000 00 0 0
2. 000 01 0 0
3. 001 00 0 0
4. 001 01 0 0
5. 010 00 0 0
6. 010 01 0 0
7. 011 00 0 0
8. 011 01 0 0

 39

9. 012 00 0 0
10. 012 01 0 0

When heuristic algorithms are used, generation of neighbouring solutions of a
current solution is necessary. A neighbour solution can be obtained by applying a
simple design transformation to the current solution. For an allocation graph, a
simple design transformation can be a move of a single elementary function to a
new sub-group or to another existing sub-group, which is a partition of the initial
allocation group the function belonged to. The neighbourhood of a given alloca-
tion graph is a set of other allocation graphs produced through such transforma-
tions. Applied to partitioning vectors, a move of an elementary function means a
change of the value of the element corresponding to the function in the restricted
growth string corresponding to the initial allocation group the function belonged
to. For example, the neighbours of solution 011 00 0 0 are:

1. 001 00 0 0
2. 010 00 0 0
3. 012 00 0 0
4. 011 01 0 0

When using tabu search algorithm, a tabu history should be maintained. The
history contains the partitioning vectors corresponding to the design transforma-
tions accepted during a number of the previous iterations. This is explained in the
following example.

Example 5.4: The size of the history is 2. Suppose that the partitioning vector
corresponding to the initial solution is 000 00 0 0. This vector is put into the
history. During the next iteration the neighbour 000 01 0 0 was accepted. It is
also pushed into the history. Vector 000 00 0 0 is a neighbour of the current
vector but it is not considered because it is a tabu vector. Next, solution 010 01
0 0 was accepted. It is pushed into the history. However, since the size of the
history is 2, the first vector in the history, which is 000 00 0 0, is popped out of
it, and this means it is not prohibited to consider it as an alternative during the
following iterations until it gets into the history again.

6 Experimental Results

Based on the theory presented in Chap. 5, six translation strategies were imple-
mented. They are:

1. Direct allocation without grouping, or elementary function to process (EFP),
2. Direct allocation with grouping, or allocation group to process directly

(AGPD),
3. Exhaustive search based allocation (AGPES),
4. Steepest descent neighbourhood search based allocation (AGPSD),
5. Simulated annealing based allocation (AGPSA), and
6. Tabu search based allocation (AGPTS).

The goal of the experiments is to compare the quality of the results produced by
the six strategies and the time it takes to execute them for different sizes of the
problem of translation.

6.1 Experimental Setup

The size of the problem depends on the number of allocation groups in a graph of
functional blocks and on the number of elementary functions in an allocation
group (see Eq. 5.3), and indirectly on the total number of elementary functions.
For the experiments, we used the most difficult transformation case when there are
no constraints on allocation of elementary functions to processes, which means
that all the elementary functions are included in a single allocation group. There-
fore, in this case, the size of the problem directly depends on the total number of
elementary functions in a graph of functional blocks. In addition, for such a case,
using the AGPD type of transformation does not make much sense; thus, it was
not executed.

We considered problem dimensions of 10, 25, 50, 75, and 100 elementary func-
tions, with hardware architectures consisting of 2, 2, 3, 4, and 5 nodes respec-
tively. Ten graphs were randomly generated for each of the dimensions. In total,
we evaluated 50 applications. The worst-case execution and transmission times for
elementary functions and dependences were assigned randomly using uniform dis-
tribution.

The mapping algorithm used within the synthesis algorithm is the one of bal-
anced mapping.

42 6 Experimental Results

The experiments were run on a computer system with AMD Athlon 1.84 GHz
processor, 1 GB of RAM, and MS Windows XP operating system.

6.2 Experimental Decisions

There is a number of decisions that had to be taken in order to achieve better re-
sults when using heuristic-based translation strategies.

1. Selection of the initial solution. Two alternatives exist here, either the solution
produced by the EFP transformation or by the AGPD transformation. We tried
both for the problem dimensions of 10 and 25 elementary functions. The first
alternative showed better results. In addition to that, the heuristic-based transla-
tion with the second alternative for the initial solution may not always find a
problem solution at all if the initial process graph and all others explored are
cyclic or have messages with WCTTs that does not fit into corresponding slots
in the TT bus. While the first alternative guarantees a solution which, in the
worst case, is the initial one.

2. The cost function. As the cost function, we used the schedule length produced
by the synthesis algorithm.

3. The cooling schedule and its parameters for the simulated annealing based
translation. We used the cooling schedule by Lundy and Mees (eq. B.2). The
initial temperature was selected such that any non-improving solution was ac-
cepted at temperatures close to the initial one. The low limit for the temperature
parameter was set such that no non-improving solutions were accepted at tem-
peratures close to the final one. In this way, the search is allowed to converge to
a local optimum at its concluding stage. With β parameter, we controlled rigor-
ousness of the search. We used the same values of the initial and final tempera-
tures, which are 1000 and 10 respectively, for all sizes of applications and var-
ied only β to achieve desired results.

4. The stopping condition and the tabu tenure (the size of the history record) for
the tabu search based translation. The search is terminated after a given number
of iterations without improvement has passed. By changing this parameter, we
made the search more or less rigorous. [5] reports that the best results with tabu
search heuristic for some size-dependent problems are achieved when the tabu
tenure is in the range [0.5 N , 2 N], where N is the size of the problem. For
the dimensions we use, the respective integer ranges are [1, 7], [2, 10], [3, 15],
[4, 18], [5, 20]. We ran the tabu search based translation for every value of tabu
tenure in the ranges corresponding to dimensions of 10, 25, and 50 elementary
functions. The best results were achieved for those tenures that are in the mid-
dle of a range. For example, for the size of 10, the value of tenure is 4, for the
size of 25, the value is 6, and for the size of 50, the value is 9. Based on these
results, we set the values of tenures for the sizes of 75 and 100 to 11 and 13 re-
spectively.

 43

Table 6.1. Parameters of the simulated annealing and tabu search algorithms

Problem
size

Initial
tempera-
ture

Final
tempera-
ture

β Tabu
tenure

Iter. w/o
improv.

10 1000 10 0.000009 4 100
25 1000 10 0.00001/0.000001 6 15/1000
50 1000 10 0.00003/0.000003 9 15/60
75 1000 10 0.00001 11 10/15
100 1000 10 0.00001,

0.000009,
0.000008

13 5/10

The values of β and tabu tenure are given for the normal and longer runs (normal
run/longer run). For the size of 100, the simulated annealing based transformation was exe-
cuted with 3 different values of β and the overall best results were chosen.

The experimentation strategy was the following. For function graphs of 10

elementary functions, all types of translations included in the setup were run. The
necessary parameters of the simulated annealing and tabu search algorithms were
adjusted to achieve results close to the ones produces by the exhaustive search al-
gorithm. For function graphs of larger dimensions, execution of the exhaustive
search based translation would take infeasible amount of time. Therefore, the pa-
rameters of the simulated annealing and tabu search algorithms were chosen such
that to get results better than the ones produced by the neighbourhood search algo-
rithm. Then, we showed that with longer runs it is possible to achieve even better
results. The selected parameters are given in Table 6.1.

6.3 Comparison of Translation Strategies

The chart in Fig.6.1a presents average schedule length improvements produced by
optimizing translation strategies with respect to EFP translation. The average exe-
cution times of the translation algorithms are depicted in Fig. 6.1b. Please refer to
Appendix C for the values of average schedule length deviations and execution
times of the translation algorithms that were used as a source for Fig 6.1.

Experimenting with the simulated annealing based translation on graphs of 100
elementary functions using different parameters, we did not manage to get an im-
provement compared to the steepest descent based translation. We modified the
simulated annealing algorithm in such a way that it does not accept any non-
improving solutions for a number of iterations (temperatures) since the last im-
provement. This modified algorithm produced much better results, both schedule
lengths and execution times, for the size of 100. We achieved an average improv-
ing deviation from the descent algorithm of 2.07%, and average execution time of
42m 22s. However, we did not get improvement for all ten graphs with a single
value of β. Therefore, we had to use different values of β, which are 0.00009,

44 6 Experimental Results

0.00008, 0.00007, 0.00006 and 0.00005, and to choose the best one and the corre-
sponding solution for a given graph as a result.

The conclusion is that the optimizing translation strategies produce much better
scheduling results than the straightforward ones. By adjusting the parameters of
those based on simulated annealing and tabu search algorithms, it is possible to
achieve the desired quality of results and the desired optimization times. However,
simulated annealing needs to be tuned more thoroughly.

0

5

10

15

20

25

10 25 50 75 100

Number of elementary functions

A
v
e
ra

g
e

im
p
ro

v
e
m

e
n
t,

%

AGPSD AGPSA AGPSA (longer) AGPTS AGPTS (longer) AGPES

a) Quality of the translation algorithms

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

10 25 50 75 100

Number of elementary functions

E
x
e
c
u
ti
o
n

ti
m

e
,
s

EFP AGPSD AGPSA

AGPSA (longer) AGPTS AGPTS (longer)

b) Execution times of the translation algorithms

Fig. 6.1. Comparison of the translation algorithms

7 Related Work

[13] and [7] focus on model transformations during the design of embedded soft-
ware. The process of design and implementation of embedded software is parti-
tioned into behaviour design, software structure design, runtime system design,
and code generation. In each of these design stages, a different specification model
is used – behavioural model, structural model, runtime model, and programming
model. And in each stage, the corresponding model is refined into a model for the
next stage.

The special attention is to transformation of a structural software model to a
runtime model. The structural model is defined as a graph in which vertices are
software components, and edges are links representing data or control flow be-
tween the components. The runtime model is represented as a task graph. A task
may consist of subtasks executed in a predefined order. Each task has a set of at-
tributes associated with it – period, deadline, execution location, and scheduling
parameters. The links between tasks represent communications with given costs.
The attributes of tasks and links are derived from the software structural model,
platform model, and system constraints. Given such structural and runtime mod-
els, the problem of transformation of a structural software model to a runtime
model is to map the actions of the components in the structural model to tasks in
the runtime model in such a way that the execution sequence of actions defined in
the structural model to achieve functional objectives is preserved, and the timing
and scheduling constraints of the system are met.

The proposed transformation method relies on the notion of transaction. A
transaction is a sequence of actions of software components performed in the end-
to-end processing of an input event. During a transformation, all such transactions
are identified. Each action in a transaction is assigned a priority. The actions with
the same priority are grouped in a task. The communications between tasks are de-
rived based on the links between components. The tasks are mapped to the given
hardware platform and schedulability analysis is performed. The mapping is done
using the first-fit algorithm to minimize the required usage of both processors and
network links. The priorities of the actions in a transaction must be such that the
schedulability and timing requirements of the transaction are satisfied. Changing
an action’s priority changes the task within which the action is executed, and
hence, changes that task’s timing attributes. Priority assignment, mapping, and
schedulability analysis is an iterative process based on the simulated annealing
heuristic. The optimal solution must satisfy timing and schedulability constraints,
and must have low runtime overheads for task and inter-task communications.

8 Conclusions and Future Work

8.1 Conclusions

In this thesis, we addressed and solved the problem of automatic transitioning
from a hierarchical behavioural application model represented as a graph of func-
tional blocks to a flat behavioural application model represented as a process
graph. We proposed strategies that can be used for such transitions. In order to
confirm that the chosen approach is correct as well as to test the strategies, a tool
translating graphs of functional blocks into process graphs was implemented, and
experimentation on a number of randomly generated applications was done. The
tool integrated the new translation algorithms with existing mapping and schedul-
ing algorithms. It allows to explore the design space on three levels:

1. Different process graphs for a given graph of functional blocks,
2. Different mappings of a given process graph to the system architecture, and
3. Different schedule tables for a given mapping.

Not only schedule length can be used as a cost function within the tool, but
also, for example, utilization of computational resources, or power and energy
consumption, etc.

8.2 Future Work

In order to achieve better quality of results and to reduce optimization time, a
problem specific heuristic translation algorithm is necessary. Such an algorithm
could address the following issues:

1. Using feedback from the synthesis algorithm to guide the search process by
analyzing the current solution and taking decision what the next solution should
be.

2. Ability to tell if putting given functions into the same process will result in a
better solution without running mapping and scheduling algorithms.

3. Allowing to create several instances of a function. Different instances will be
included into different processes. This may improve the utilization of process-
ing elements and save time on message passing.

More accurate modelling of process execution overheads is also needed.

48 8 Conclusions and Future Work

F1 4

F2 2
F3 5

F4 3

m 1

P1 5

P2 3 P3 6

P4 4

TTP

N 2N 1

Fig. 8.1. An example application

The solution space to be explored may be reduced if the optimization is per-

formed not on a graph of functional blocks but on a mapped and scheduled proc-
ess graph. In this case, the simplest translation, when each elementary function is
transformed into a process, can be used; and afterwards, a powerful mapping op-
timization algorithm, for instance, a tabu search based one. After we get the final
mapped and scheduled model, further optimization can be done by merging some
of the processes that have been mapped to the same node. Consider the following
example.

Example 8.1: Fig. 8.1 gives an application modelled as a graph of functional
blocks, the system architecture, and the produced process graph with mapping,
which we consider optimal. The numbers next to functions and processes are
their worst-case execution times. Those of processes include the process execu-
tion overhead, δexec, which is equal to 1 time unit. The processes were sched-
uled as shown in Fig. 8.2a. We can see that three process, P1, P2, and P3, were
mapped to the same node and scheduled one after the other. These processes
can be merged, and three alternatives exist, which are shown in Fig. 8.2b, c, d.
Merging of n processes leads to reduction of the WCET of the resulting process
compared to the total WCET of separate processes of (n – 1)δexec. This may re-
sult in reduction of the schedule length as in alternative 1 (Fig. 8.2b). However,
not necessarily, due to dependences between the merged processes and the
processes mapped to other nodes, as in alternatives 2 and 3 in Fig. 8.2c,d.

 49

P1N 1 P3P2
- overhead

P4N 2

TTP S1 S2 S1 S2 S1 S2 S1 S2 S1 S2m
1

N 1 P1/2 P3

P4N 2

TTP S1 S2 S1 S2 S1 S2 S1 S2 S1 S2m
1

N 2 P4

N 1 P2/3P1

TTP S1 S2 S1 S2 S1 S2 S1 S2 S1 S2m
1

P4N 2

N 1 P1/2/3

TTP S1 S2 S1 S2 S1 S2 S1 S2 S1 S2m
1

a) Initial schedule

b) Schedule after merging, alternative 1

c) Schedule after merging, alternative 2

d) Schedule after merging, alternative 3

0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18

0 2 4 6 8 10 12 14 16 18

Fig. 8.2. Schedules for the example application in Fig.8.1

50 8 Conclusions and Future Work

Hypothetically, the rules of merging are:

• A process that transmits (Pi) can be merged with a process it depends on (Pj)
only if Pj does not transmit, or Pi and Pj transmit to the same process, or Pi and
Pj transmit to different nodes; and

• A process that transmits (Pi) can be merged with a concurrent process (Pk) only
if Pi and Pk transmit to the same process, or Pi and Pk transmit to different
nodes.

Otherwise, there will be no improvement in schedule length.

Appendix A

Set Partitions

The source of information provided here is [6]. A set partition of the set [n] =
{1, 2, …, n} is a collection B0, B1, ..., Bj of disjoint subsets of [n] whose union is
[n]. Each Bi is called a block. Below, the partitions for n = 4 are shown. The peri-
ods separate the individual sets so that, for example, 1.2.34 is the partition
{{1}, {2}, {3, 4}}.

1 block: 1234
2 blocks: 123.4, 124.3, 12.34, 134.2, 13.24, 14.23, 1.234
3 blocks: 12.3.4, 13.2.4, 1.23.4, 14.2.3, 1.24.3, 1.2.34
4 blocks: 1.2.3.4

The blocks in each partition above are listed in increasing order of smallest ele-
ment; thus block 0 contains element 1, block 1 contains the smallest element not
in block 0, and so on. A restricted growth string (RG string) is a string a1a2… an
where ai is the block in which element i occurs. Here are the RG strings corre-
sponding to the partitions shown above:

1 block: 0000
2 blocks: 0001, 0010, 0011, 0100, 0101, 0110, 0111
3 blocks: 0012, 0102, 0112, 0120, 0121, 0122
4 blocks: 0123

The name "restricted growth" comes from the fact that RG strings are charac-
terized by the following growth inequality (for i = 1, 2, ..., n-1, and with a1 = 0):

ai+1 < 1 + max(a1, a2, ..., ai}. (A.1)

The number of partitions of an n-set is called a Bell number, bn. For n = 0, 1,
2, ..., 14, the Bell numbers have the values 1, 1, 2, 5, 15, 52, 203, 877, 4140,
21147, 115975, 678570, 4213597, 27644437, 190899322. The Bell numbers have
the exponential generating function and satisfy the recurrence relation 1−xee

n

∑
=

+ =
k

n
kkn bb

0
1)((A.2)

Appendix B

Heuristic Algorithms

B.1 Neighbourhood Search

Neighbourhood search overcomes the problem of computational expensiveness of
searching the entire solution space for the optimal solution by searching only a
small subset of the solution space. This is achieved by defining a neighbourhood
structure on it and searching the neighbourhood of the current solution for an im-
provement. If there is no neighbour, which results in an improvement to the cost
function, the current solution is taken as an approximation to the optimum. If an
improvement is found, the current solution is replaced by the improvement and the
process is repeated. The method of steepest descent searches the whole
neighbourhood and selects that neighbour which results in the greatest improve-
ment to the cost function. Random descent selects neighbouring solutions ran-
domly and accepts the first solution, which improves the cost function. The algo-
rithm of neighbourhood search with steepest descent is illustrated in Fig. B.1,
where N(s) denotes the neighbourhood of s, which is a set of solutions reachable
from s by a simple transformation; and c(s) is the cost of solution s.

Step 1 (Initialization)

(A) Select a starting solution ;

(B) Record the current best known solution by setting

= , = ().

Step 2 (Choice and termination)

Choose a solution () to satisfy () < ()

and terminate if no such can be found.

Step 3 (Update)

Reset = ;

() < perform Step 1(B);

Step 2.

s S

s s best_cost c s

s N s c s c s

s

s s

c s best_cost

now

best now best

next now next now

next

now next

now
If then

Goto

�

�

Fig. B.1. The algorithm of neighbourhood search with steepest descent

54 Appendix B

Select an initial solution ;

Select an initial temperature > 0;

Select a temperature reduction function ;

Randomly select ();

= () - ();

< 0 =

generate random uniformly in the range (0, 1);

< exp(- /) = ;

=

Set = ();

stopping condition = .

as the solution.

s S
t

s N s

c s c s

s s
x

x t s s
iteration_count nrep

t t
true

s

now

next now

next now

now next

now next

now

0

Repeat

Repeat

If then else

If then

Until

Until

Return

�

�

�

�

�

�

�

Fig. B.2. The algorithm of simulated annealing

B.2 Simulated Annealing

The main disadvantage of neighbourhood search is its likelihood of finding a lo-
cal, rather than global, optimum. By allowing uphill moves in a controlled man-
ner, simulated annealing (SA) offers a way of alleviating this problem. The an-
nealing algorithm is similar to the random descent method in that the
neighbourhood is sampled at random. It differs in that a neighbour giving rise to
an increase in the cost function may be accepted and this acceptance will depend
on the control parameter called temperature, and the magnitude of the increase.
The algorithm is given in Fig. B.2.

The simulated annealing algorithm has to be carefully tuned in order to provide
good enough solutions in a short time. There is a number of generic and problem
specific decisions that have to be taken to achieve this.

The generic decisions involve the cooling schedule, including the initial tem-
perature (t0), the number of iterations at a given temperature (nrep), the tempera-
ture reduction function (α), and the stopping criterion. The initial temperature
must be “hot” enough to allow almost free exchange of neighbouring solutions.
There are two most widely used temperature reduction schemes:

• Geometric reduction function

α(t) = at, (B.1)

where a < 1. At each temperature a number of iterations is performed.
• Cooling schedule by Lundy and Mees

α(t) = t / (1 +β t), (B.2)

where β is a suitably small value. Here, only one iteration is executed at each
temperature. However, the temperature is reduced very slowly.

 55

The stopping criteria can be the following: a small enough value of the tem-
perature is reached, a number of iteration without acceptance has passed, the pro-
portion of accepted and rejected solutions has dropped below a given value, or a
given total number of iterations has been completed.

The problem specific decisions of simulated annealing deal with the solution
space, neighbourhood structure, and the cost function.

B.3 Tabu Search

Tabu search (TS) is a neighbourhood search method that allows uphill moves in
order to avoid local optima. However, compared to simulated annealing such
moves are controlled in a more intelligent way. Tabu search maintains a selective
history H of the states encountered during the search, and replaces N(snow) by a
modified neighbourhood N(H, snow). History therefore determines which solutions
may be reached by a move from the current solution, selecting snext from
N(H, snow).

N(H, snow) is a subset of N(snow). N(H, snow) is formed by excluding forbidden
(tabu) neighbouring solutions from N(snow). Tabus are used to restrict the search
space and avoid cyclic behaviour. The algorithm of tabu search is presented in
Fig. B.3.

Step 1 (Initialization)

(A) Select a starting solution ;

(B) Record the current best known solution by setting

= , = ();

(C) Set the history record empty.

Step 2 (Choice and termination)

Determine (,);

Select from (,) to minimize () over this set;

Terminate by a chosen stopping condition and

return as a result.

Step 3 (Update)

Reset = ;

() < perform Step 1(B);

Update the history record ;

s S

s s best_cost c s
H

N H s

s N H s c s

s

s s

c s best_cost
H

now

best now best

now

next now

best

now next

now
If then

�

Fig. B.3. The algorithm of tabu search

Appendix C

Evaluation of translation algorithms

Tables C.1 and C.2 present average schedule length deviations and average execu-
tion times produced by the translation algorithms. The deviations are given from
EFP. In addition, for size 10, the deviations from AGPES are given for all the
other algorithms.

58 Appendix C
T

a
b

le
C

.
1

.
E

v
al

u
at

io
n

o
f

th
e

tr
an

sl
at

io
n

al
g

o
ri

th
m

s
fo

r
th

e
p

ro
b

le
m

si
ze

o
f

1
0

el
em

en
ta

ry
fu

n
ct

io
n

s

E
F

P
A

G
P

S
D

A
G

P
S

A
A

G
P

T
S

A
G

P
E

S
S

iz
e

A
v
g
.

d
ev

.

E
S

,
%

A
v
g
.

ex
ec

.

ti
m

e

A
v
g
.

d
ev

.

E
F

P,
%

A
v
g
.

d
ev

.

E
S

,
%

A
v
g
.

ex
ec

.

ti
m

e

A
v
g
.

d
ev

.

E
F

P,
%

A
v
g
.

d
ev

.

E
S

,
%

A
v
g
.

ex
ec

.

ti
m

e

A
v
g
.

d
ev

.

E
F

P,
%

A
v
g
.

d
ev

.

E
S

,
%

A
v
g
.

ex
ec

.

ti
m

e

A
v
g
.

d
ev

.

E
F

P,
%

A
v
g
.
ex

ec
.

ti
m

e

1
0

2
2

.5
2

0
.0

2
s

-1
0

.8
3

8
.2

4
0

.4
7

s
-1

5
.9

2
1

.6
9

2
m

2
9

.0
8

s
-1

5
.5

1
2

.2
2

3
3

.8
3

s
-1

7
.3

5
1

5
m

3
5

.0
2

s
A

p
o

si
ti

v
e

v
al

u
e

o
f

an
av

er
ag

e
sc

h
ed

u
le

le
n

g
th

d
ev

ia
ti

o
n

m
ea

n
s

d
et

er
io

ra
ti

o
n

in
sc

h
ed

u
le

le
n

g
th

T
a

b
le

C
.
2

.
E

v
al

u
at

io
n

o
f

th
e

tr
an

sl
at

io
n

al
g

o
ri

th
m

s
fo

r
th

e
p

ro
b

le
m

si
ze

o
f

2
5

,
5

0
,

7
5

an
d

1
0

0
el

em
en

ta
ry

fu
n

ct
io

n
s

E
F

P
A

G
P

S
D

A
G

P
S

A
A

G
P

S
A

(l
o
n
g
er

)
A

G
P

T
S

A
G

P
T

S
(l

o
n
g
er

)
S

iz
e

A
v
g
.

ex
ec

.

ti
m

e

A
v
g
.

d
ev

.

E
F

P,
%

A
v
g
.
ex

ec
.

ti
m

e

A
v
g
.

d
ev

.

E
F

P,
%

A
v
g
.
ex

ec
.

ti
m

e

A
v
g
.

d
ev

.

E
F

P,
%

A
v
g
.
ex

ec
.

ti
m

e

A
v
g
.

d
ev

.

E
F

P,
%

A
v
g
.
ex

ec
.

ti
m

e

A
v
g
.

d
ev

.

E
F

P,
%

A
v
g
.
ex

ec
.

ti
m

e

2
5

0
.0

4
s

-1
2

.5
2

4
.8

8
s

-1
4

.7
2

5
m

3
1

.8
4

s
-1

5
.8

9
5

4
m

1
5

.4
7

s
-1

5
.4

8
1

m
3

1
.7

0
s

-1
6

.1
0

1
h

0
3

m
0

1
.2

6
s

5
0

0
.1

7
s

-1
1

.6
9

4
2

.8
5

s
-1

4
.4

3
8

m
5

1
.6

0
s

-1
6

.8
8

1
h

2
8

m
3

8
.7

5
s

-1
6

.7
1

2
m

5
8

.1
6

s
-1

8
.7

9
1

h
1

8
m

2
4

.4
5

s

7
5

0
.4

8
s

-1
4

.8
0

4
m

2
6

.7
5

s
-1

5
.9

2
1

h
1

4
m

2
4

.3
5

s
–

–
-2

0
.1

6
1

h
2

4
m

3
2

.2
9

s
-2

1
.2

2
2

h
1

3
m

1
7

.4
3

s

1
0

0
1

.0
2

s
-1

5
.5

6
1

5
m

0
9

.9
2

s
-1

2
.6

0
2

h
5

6
m

0
2

.4
9

s
–

–
-1

7
.1

2
1

h
2

0
m

4
6

.3
3

s
-1

8
.1

9
3

h
1

8
m

0
2

.0
1

s

References

1. Bell number. http://mathworld.wolfram.com/BellNumber.html
2. Cortés LA, Eles P, Peng Z (1999) A survey on hardware/software co-design representa-

tion models. In: SAVE project report. Linköping University
3. Edgar SF (2002) Estimation of worst-case execution time using statistical analysis. Ph.D.

thesis, University of York
4. Eles P (2003) Lecture notes on “System design and methodology: modelling and design

of embedded Systems”. http://www.ida.liu.se/~TDTS30/
5. Glover F, Laguna M (1993) Tabu search. In: Reeves CR (ed) Modern heuristic tech-

niques for combinatorial problems. Blackwell scientific publications, Oxford
6. Info about set partitions. http://www.theory.csc.uvic.ca/~cos/inf/setp/SetPartitions.html
7. Kodase S, Wang S, Shin KG (2003) Transforming structural model to runtime model of

embedded software with real-time constraints. In: Proceedings of Design, automation
and test in Europe conference

8. Kopetz H (1997) Real-time systems: design principles for distributed embedded applica-
tions. Kluwer Academic Publishers, Boston Dordrecht London

9. Pop P (2003) Analysis and synthesis of communication intensive heterogeneous real-
time systems. Ph.D. thesis, Linköping University

10. Silberschatz A, Galvin PB, Gagne G (2003) Operating system concepts. John Wiley &
Sons, New York

11. The TTP Protocols. http://www.vmars.tuwien.ac.at/projects/ttp/
12. Turley J (1999) Embedded processors by the numbers. Embedded systems program-

ming. Vol. 12 (5)
13. Wang S, Kodase S, Shin KG (2002) Automating embedded software construction and

analysis with design models. In: Proceedings of Euro-uRapid conference

