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(a) Cell architecture (b) Biochip: array of cells

Figure 2.2: Biochip architecture

The change in the contact angle leads to a change in the wettability of the
droplet, which returns to its hydrophobic state when the voltage is removed.
If the voltage is applied to only one side of the droplet, the gradient in the
contact angle at the two edges of the liquid will cause a surface stress in the
direction of the applied voltage, leading to the movement of the droplet [43].
For example, turning off the middle control electrode and turning on the right
control electrode in Figure 2.2a will force the droplet to move to the right. To
avoid the unexpected mixing of liquids, fluidic constraints must be enforced,
ensuring that a minimum distance is kept between droplets executing on the
microfluidic array. Consider for example droplets d1 and d2 in Figure 2.3a. If
the two droplets are situated on adjacent electrodes (as shown in the figure),
they will tend to merge and form a single large droplet. If merging of the liquids
is to be avoided, a spacing of at least one electrode must be kept between the
two droplets, at any time. A similar situation is presented in Figure 2.3b,
where droplets d1 and d2 are to be transported in the directions shown by the
arrows. Let us consider that the electrodes denoted in the figure by c1 and c2

are activated. Since droplet d2 has two adjacent activated electrodes (c1 and c2)
it will not move significantly, resulting in a merging with droplet d1. In order to
avoid such a situation, there must be only one activated neighboring electrode
for each droplet on the microfluidic array.

A DMB is typically composed of an array of electrodes, together with reservoirs
for storing the samples and reagents. The architecture of the biochip proposed in
Figure 1.2 is optimized for the protocol specific to malaria detection, containing
a general bus used for transporting droplets between the different components
of the chip (e.g., reservoirs, mixer, detector). However, as biochips are expected
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the patient’s blood can signal organ damage or dysfunction prior to observable micro-
scopic cellular damages or other symptoms. Protocols for enzyme-kinetic measure-
ments of metabolites are suitable for droplet-based microfluidics implementation. The
feasibility of performing a colorimetric glucose assay on a digital microfluidic biochip
has been successfully demonstrated in experiments [6,31].

The glucose assay performed on the biochip is based on Trinder’s reaction, a
colorimetric enzyme-based method. The enzymatic reactions involved in the assay:

In the presence of glucose oxidase, glucose can be enzymatically oxidized to
gluconic acid and hydrogen peroxide. Then, in the presence of peroxidase, the
hydrogen peroxide reacts with 4-amino antipyrine (4-AAP) and N-ethyl-N-sulfo-
propyl-m-toluidine (TOPS) to form violet-colored quinoneimine, which has an
absorbance peak at 545 nm. Based on this colorimetric reaction, a complete glucose
assay can be performed following three steps, namely, transportation, mixing, and
optical detection, as shown in Figure 2.1. Sample droplets containing glucose and
reagent droplets containing glucose oxidase, peroxidase, 4-AAP, and TOPS are
dispensed into the microfluidic array from droplet reservoirs. They are then trans-
ported toward a mixer, where droplets of the sample and the reagent are mixed
together, and the enzymatic reaction happens during the mixing. A droplet of the
product is moved to the location of the optical detector. The optical detection is
performed using a green LED and a photodiode. The glucose concentration can be
detected from the absorbance, which is related to the concentration of colored
quinoneimine. Experiments have shown that the results from the digital microfluidic
biochip match well with the reference values obtained from conventional measure-
ments [6].

In addition to glucose assays, the detections of other metabolites such as lactate,
glutamate, and pyruvate in a digital microfluidic biochip have also been demonstrated
recently [6]. Furthermore these assays can be integrated together to form a multi-
plexed 

 

in vitro

 

 diagnostics on different human physiological fluids, which can be
performed concurrently on a microfluidic biochip.

 

FIGURE

 

 2.1

 

Photos of different steps of a glucose assay carried out on a digital microfluidic
biochip [6].
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The behavioral description of an example of a multiplexed 

 

in vitro

 

 diagnostics is
shown in Figure 2.2. Four types of human physiological fluids — plasma, serum,
urine, and saliva — are sampled and dispensed into the microfluidic biochip. Next,
each type of physiological fluid is assayed for glucose, lactate, pyruvate, or glutamate
measurement. For each enzymatic assay, the droplets containing the suitably mod-
ified reagents (e.g., glucose oxidase, peroxidase, 4-AAP, and TOPS for glucose
measurement) are dispensed into the microfluidic array from the relevant reservoirs.
The result of each type of bioassays can be detected using a dedicated optical
absorbance measurement device.

An abstract model of a bioassay behavior at the architectural level can be developed
in terms of operations and the dependencies between them. We use the sequencing
graph model from high-level synthesis [47]. We assume that there are a total of 
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operations. The sequencing graph is acyclic and polar. There are two vertices, called
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 The details of these operations
and the resources that these operations use are as follows. (We assume that 
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 types
of physiological fluids are assayed for 
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 types of enzymatic measurements.)

 

2.2.2.1 Input Operations
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) from the on-chip reservoir, which are then dispensed
into the microfluidic array. These operations are represented using the nodes shown in
Figure 2.3. There are 
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Assumption 1:

 

 We assume that the time required to generate and dispense droplets
from the reservoir is determined mainly by the system parameters, such as the aspect
ratio of the channel gap to electrode gap [58]. The properties of the fluid have little
impact on the operation time. This assumption has been verified by experimental data [58].
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(a) Cell architecture (b) Biochip: array of cells

Figure 2.2: Biochip architecture

The change in the contact angle leads to a change in the wettability of the
droplet, which returns to its hydrophobic state when the voltage is removed.
If the voltage is applied to only one side of the droplet, the gradient in the
contact angle at the two edges of the liquid will cause a surface stress in the
direction of the applied voltage, leading to the movement of the droplet [43].
For example, turning off the middle control electrode and turning on the right
control electrode in Figure 2.2a will force the droplet to move to the right. To
avoid the unexpected mixing of liquids, fluidic constraints must be enforced,
ensuring that a minimum distance is kept between droplets executing on the
microfluidic array. Consider for example droplets d1 and d2 in Figure 2.3a. If
the two droplets are situated on adjacent electrodes (as shown in the figure),
they will tend to merge and form a single large droplet. If merging of the liquids
is to be avoided, a spacing of at least one electrode must be kept between the
two droplets, at any time. A similar situation is presented in Figure 2.3b,
where droplets d1 and d2 are to be transported in the directions shown by the
arrows. Let us consider that the electrodes denoted in the figure by c1 and c2

are activated. Since droplet d2 has two adjacent activated electrodes (c1 and c2)
it will not move significantly, resulting in a merging with droplet d1. In order to
avoid such a situation, there must be only one activated neighboring electrode
for each droplet on the microfluidic array.

A DMB is typically composed of an array of electrodes, together with reservoirs
for storing the samples and reagents. The architecture of the biochip proposed in
Figure 1.2 is optimized for the protocol specific to malaria detection, containing
a general bus used for transporting droplets between the different components
of the chip (e.g., reservoirs, mixer, detector). However, as biochips are expected
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Figure 2.8: Mixing Stage of the Polymerase Chain Reaction Assay

Figure 2.9: In-Vitro Diagnostics on Physiological Fluids
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Figure 2.10: Colorimetric Protein Assay
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(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the
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Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.
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Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
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erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input
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ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
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Table 2: Results for the real-life applications

Application Area Best Average Standard dev.
RBS MBS RBS MBS RBS MBS

8 × 9 68.43 72.94 68.77 77.81 0.16 2.12
In-vitro 8 × 8 68.87 82.12 69.13 102.37 0.14 13.58

(28 operations) 7 × 8 69.12 87.33 69.46 111.18 0.17 12.26
11 × 11 113.63 184.06 117.51 205.30 4.65 8.38

Proteins 11×10 114.33 185.91 119.62 202.14 6.63 8.84
(103 operations) 10 × 10 115.65 208.90 120.65 219.17 7.73 7.89

Table 3: Results for synthetic benchmarks

Operations Area1 Average1 Best1 Area2 Average2 Best2 Area3 Average3 Best3
RBS MBS RBS MBS RBS MBS RBS MBS RBS MBS RBS MBS

10 6 × 6 39.92 42.61 39.12 42.61 5 × 7 39.95 76.1 39.55 76.1 5 × 6 40.97 102.9 40.46 102.9
20 8 × 8 50.18 52.71 49.73 52.71 7 × 8 50.95 53.62 50.5 49.01 7 × 7 51.74 60.06 51.19 49.81
30 8 × 8 65.96 72.84 64.73 67 7 × 8 67.79 84.08 66.92 76.4 7 × 7 69.68 95.54 68.42 82.49
40 8 × 8 61.93 102.69 61.18 91.97 7 × 8 63.74 111.47 63.01 98.25 7 × 7 65.85 131.63 64.75 99.29
50 9 × 10 83.89 86.99 83.27 82.4 9 × 9 84.76 93.5 84.02 87.21 8 × 9 86.34 101.59 85.37 87.03
60 9 × 9 94.98 100.44 93.82 89.90 8 × 10 95.15 104.80 94.34 95.70 8 × 9 95.85 122.42 94.39 106.7
70 10 × 10 179.97 194.91 140.4 153.8 9 × 11 197.05 182.99 155.93 164.01 9 × 10 186.02 233.57 147.39 162.41
80 10 × 10 112.98 124.98 112.38 113.4 9 × 10 113.48 139.26 112.43 124.75 9 × 9 114.23 147.86 113.6 133.87
90 11 × 11 139.33 180.64 128.08 127.41 10 × 10 144.23 215.76 131.32 149.68 9 × 10 148.59 227.02 136.94 156.31
100 11 × 11 172.15 325.57 153.06 285.05 10 × 10 172.46 321.87 154.09 255.97 9 × 11 170.17 325.66 153.08 278.63

required for performing other operations. Because of the constraint
on the number of available reservoirs on a given chip, creating a
dispensed droplet at tcurrent is not always possible. In this case, the
input operation is bound using a greedy approach to the reservoir
that will be available at the earliest time. We use the same approach
for determining the binding of detection operations to optical de-
vices.
Due to its randomized nature, the algorithm in Fig. 6 might pro-

duce different results for different runs, with the same inputs. The
algorithm terminates when all operations have been synthetized,
and returns the solution Ψ (line 32). Our route-based synthesis ap-
proach is given a time limit, and runs repeatedly RoutingBasedSyn-
thesis from Fig. 6 until the time limit is reached, collecting the best
solution Ψ in terms of the application completion time δG.

5. EXPERIMENTAL EVALUATION
In order to evaluate our proposed approach, we have used two-

real life examples and ten synthetic benchmarks. The GRASP-
derived algorithm was implemented in Java (JDK 1.6), running on
SunFire v440 computers with UltraSPARC IIIi CPUs at 1,062 GHz
and 8 GB of RAM. The module library used for all the experiments
is shown in Table 1.
In our experiments we were interested to determine the improve-

ment that can be obtained by using Routing-Based Synthesis (RBS)
compared to Module-Based Synthesis (MBS). For MBS, we have
used the Tabu Search-based synthesis approach we have proposed
in [9].
Table 2 presents the results obtained by using RBS and MBS for

two real-life applications: (1) In-vitro diagnosis on human phys-
iological fluids (IVD) [15], which has 28 operations and (2) the
colorimetric protein assay (103 operations) [14], utilized for mea-
suring the concentration of a protein in a solution. Table 2 presents
the best solution (in terms of the application completion time δG),

in columns 3 and 4. The comparison is made for three progres-
sively smaller areas for both approaches, using a time limit of 10
minutes for both synthesis approaches.

As we can see, eliminating the concept of “virtual modules” and
allowing the operations to perform on any route on the microfluidic
array can lead to significant improvements in terms of application
completion time, allowing us to use smaller areas and thus reduce
costs. Using routing-based synthesis is particularly important for
more constrained synthesis problems, when knowing the exact lo-
cation of all droplets on the array, leads to more efficient space us-
age. For example, in the most constrained case for the colorimetric
protein assay, the 10 × 10 array, we have obtained an improvement
of 44.95% in the schedule length.

Moreover, the routing-based approach determines a complete so-
lution for the problem, while for the module-based synthesis a post-
synthesis step is necessary to determine the routing, which means
additional delays.

Both RBS and MBS implementations are stochastic; random de-
cisions during the exploration process can lead to slightly different
results. To determine the quality of the RBS implementation, we
have run RBS and MBS 50 times. The best results for RBS and
MBS, presented in columns 3 and 4 in Table 2, respectively, are
collected after 50 runs. The average and standard deviation over
the 50 runs compared to the best application completion time δG
are also reported in Table 2. As we can see, the difference between
RBS and MBS is larger in the average case, and the standard devi-
ation with RBS is very small, which means that RBS consistently
finds solutions which are very close to the best solution found over
the 50 runs.

In a second set of experiments we have compared RBS with
MBS on ten synthetic applications. We have generated a set of
synthetic graphs using Task Graphs For Free (TGFF) [5]. We have
manually modified the graphs in order to capture the characteristics
of biochemical applications. The graphs are composed of 10 up to
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  rouEng	
  step	
  between	
  the	
  modules;	
  
RouEng-­‐based	
  performs	
  unified	
  synthesis	
  and	
  rouEng	
  

 Module-­‐based	
  wastes	
  space:	
  only	
  one	
  module-­‐cell	
  is	
  used;	
  
RouEng-­‐based	
  exploits	
  beler	
  the	
  applicaEon	
  parallelism	
  

 Module-­‐based	
  can	
  contain	
  the	
  contaminaEon	
  to	
  a	
  fixed	
  area;	
  
 We	
  have	
  extended	
  rouEng-­‐based	
  to	
  address	
  contaminaEon	
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Droplet	
  RouCng	
  
	
  

 A	
  key	
  physical	
  design	
  problem	
  for	
  digital	
  microfluidic	
  biochips	
  

 Given	
  the	
  results	
  from	
  architectural-­‐level	
  synthesis	
  and	
  module	
  
placement:	
  
 Determine	
  droplet	
  pathways	
  using	
  the	
  available	
  cells	
  in	
  the	
  
microfluidic	
  array;	
  these	
  routes	
  are	
  used	
  to	
  transport	
  droplets	
  
between	
  modules,	
  or	
  between	
  modules	
  and	
  fluidic	
  I/O	
  ports	
  (i.e.,	
  
boundary	
  on-­‐chip	
  reservoirs)	
  	
  

 To	
  find	
  droplet	
  routes	
  with	
  minimum	
  lengths	
  
  	
  Analogous	
  to	
  the	
  minimizaEon	
  of	
  the	
  total	
  wirelength	
  in	
  VLSI	
  rouEng	
  	
  

 Need	
  to	
  saEsfy	
  criEcal	
  constraints	
  
  A	
  set	
  of	
  fluidic	
  constraints	
  
  Timing	
  constraints:	
  (delay	
  for	
  each	
  droplet	
  route	
  does	
  not	
  exceed	
  
some	
  maximum	
  value,	
  e.g.,	
  10%	
  of	
  a	
  Eme-­‐slot	
  used	
  in	
  scheduling)	
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Challenge:	
  
Design	
  of	
  Pin-­‐Constrained	
  Biochips	
  

Direct	
  Addressing	
  
  Each	
  electrode	
  connected	
  to	
  an	
  independent	
  pin	
  	
  

  For	
  large	
  arrays	
  (e.g.,	
  >	
  100	
  x	
  100	
  electrodes)	
  
  Too	
  many	
  control	
  pins	
  ⇒	
  high	
  fabricaEon	
  cost	
  
  Wiring	
  plan	
  not	
  available	
  

	
  	
  	
  	
  PCB	
  design:	
  250	
  um	
  via	
  hole,	
  500	
  um	
  x	
  500	
  um	
  electrode	
  

	
  

Via Holes 
Wires 

Nevertheless,	
  we	
  need	
  high-­‐throughput	
  and	
  low	
  cost:	
  
	
  	
  	
  	
  DNA	
  sequencing	
  (106	
  base	
  pairs),	
  Protein	
  crystallizaEon	
  (103	
  candidate	
  condiEons)	
  

	
  	
  	
  	
  Disposable,	
  marketability,	
  $1	
  per	
  chip	
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Challenge:	
  	
  
Fault-­‐tolerant	
  design	
  

Electrode	
  degradaEon	
  

Electrode	
  short	
  

Hindered	
  transportaEon	
  Imperfect	
  spliSng	
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•  Verify correctness of fluidic operations in bioassay 
–  Monitor bioassay status to find errors 
–  Parameters for monitoring: volume of product droplet, sample 

concentration, others?  
•  Correct errors as soon as possible  

–  Re-execute only the erroneous part of bioassay 

•  Drawback of current synthesis tools  
–  Only provide a “data path”, no control or feedback mechanism 
–  Monitor bioassay result at the end and re-execute the entire assay 

to correct errors 

Motivation for Error Recovery 

O0 	

O1 	


O2 	


Error 
detected 	


No error 	


No error 	
 Need control-path design for 
error detection and recovery	
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Droplet Detection Mechanisms 
  Capacitive-sensing circuit for 

volumetric test 
  Optical detection for 

concentration test 

Capacitive-sensing circuit 
(M. G. Pollack, PhD Thesis 2001)�

Photo-diode detector (Srinivasan et al., 
MicroTAS’03) 

Thin-film MSM detector (S.-W. Seo, PhD 
Thesis 2003) 
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Fault-­‐tolerant	
  graph:	
  	
  
captures	
  fault	
  scenarios	
  due	
  to	
  split	
  operaCons	
  

  A	
  sensing	
  operaEon	
  is	
  introduced	
  a-er	
  each	
  split	
  
  If	
  the	
  split	
  was	
  OK,	
  the	
  graph	
  conEnues	
  
  If	
  the	
  split	
  was	
  NOT	
  OK,	
  we	
  retry:	
  insert	
  a	
  merge	
  
operaEon	
  followed	
  by	
  another	
  split	
  
AssumpEon:	
  at	
  most	
  two	
  consecuEve	
  errors	
  

of volumes divided by the mean, is ±2% for microdialysis
applications and ±10% in drug discovery applications. We
consider that a split operation is faulty if it results in droplets
with volumes below a given threshold. The threshold is given
by the designer and depends on the application.

Our fault model assumes a maximum of k faults, given
a biochip architecture and a biochemical application. These
faults can appear in any split operation and have to be tolerated.
The error is detected using on-chip volume sensors. The
sensors have to be placed on the top of existing electrodes.
One of the resulted droplets, after a split, has to be routed to
the sensor. The sensing operation can take up to five seconds,
depending on the sensor type [15].

If an error is detected (the volume is below or above the
given threshold), the resulted droplets are merged back. They
have to be routed to the same place on the chip, and the
merging is instantaneous. The split operation will have to be
performed again, followed by sensing and, in case of error,
by merge. In the worst-case, a split will have to be performed
k + 1 times, to tolerate the maximum k faults that can happen
in the application. The last split does not have to be followed
by a sensing operation, since we know it will not experience
an error: all faults have already happened. Note, however, that
these k faults can happen in any of the split operations of the
application.

B. Biochemical Application Model

A biochemical application is modeled using a sequential
directed acyclic graph G(V,E) [13], where each node Oi ∈ V
represents an operation. The binding of operations to modules
in the architecture is captured by the function B : V → A ,
where A is the set of the allocated modules from the given
library L . An edge ei j ∈ E from Oi to O j indicates that the

Fig. 2: Biochemical application model example

Fig. 3: Fault-Tolerant Sequencing Graph (FTSG)

output droplet obtained after Oi finishes, will be used as input
for O j. An operation can be activated after all its inputs have
arrived and it issues its outputs when it terminates. We assume
that, for each operation Oi, we know the execution time C

Mk
i on

module Mk = B (Oi), where it is assigned for execution. Fig. 2
depicts part of an application, which consists of 15 operations
O1–O15, and it involves a series of mixing operations (O1, O2,
O3, O5, O6) followed by split operations (O4, O7). Operations
O10–O15 are input operations. In operation O8 one of the
resulted droplets after the O7 split is routed to a waste reservoir
and in O9 we perform a detection operation on the other
droplet. Each operation has a predecessor and a successor, thus
we have introduced two NOP nodes, as source and sink nodes
(i.e., the graph is polar). Let us consider that the operation
O1 is bound to a 2× 4 mixing module denoted by M1 (i.e.,
B (O1) = M1). Then, according to Table I, the execution time
for O1 will be 3 s. We consider routing as part of an operation
time. In this paper we use the data from [14], which allows us
to approximate that the time required to route the droplet one
cell is 0.01 s, an order of magnitude smaller than operation
times, see Table I.

Such a model does not capture the fault occurrences during
split operations. In this paper, we propose a fault-tolerant
sequencing graph G (V ,E ∪EC), see Fig. 3. In G , each split
operation is followed by a sensing operation which detects if
a fault has occurred. For example, operation O16 in Fig. 3 is a
sensing operation for split operation O4. Note that operations
O8–O15 from Fig. 2 are depicted in Fig. 3 as “...” due to
space constraints. During a sensing operation, one of the
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of volumes divided by the mean, is ±2% for microdialysis
applications and ±10% in drug discovery applications. We
consider that a split operation is faulty if it results in droplets
with volumes below a given threshold. The threshold is given
by the designer and depends on the application.

Our fault model assumes a maximum of k faults, given
a biochip architecture and a biochemical application. These
faults can appear in any split operation and have to be tolerated.
The error is detected using on-chip volume sensors. The
sensors have to be placed on the top of existing electrodes.
One of the resulted droplets, after a split, has to be routed to
the sensor. The sensing operation can take up to five seconds,
depending on the sensor type [15].

If an error is detected (the volume is below or above the
given threshold), the resulted droplets are merged back. They
have to be routed to the same place on the chip, and the
merging is instantaneous. The split operation will have to be
performed again, followed by sensing and, in case of error,
by merge. In the worst-case, a split will have to be performed
k + 1 times, to tolerate the maximum k faults that can happen
in the application. The last split does not have to be followed
by a sensing operation, since we know it will not experience
an error: all faults have already happened. Note, however, that
these k faults can happen in any of the split operations of the
application.

B. Biochemical Application Model

A biochemical application is modeled using a sequential
directed acyclic graph G(V,E) [13], where each node Oi ∈ V
represents an operation. The binding of operations to modules
in the architecture is captured by the function B : V → A ,
where A is the set of the allocated modules from the given
library L . An edge ei j ∈ E from Oi to O j indicates that the

Fig. 2: Biochemical application model example

Fig. 3: Fault-Tolerant Sequencing Graph (FTSG)

output droplet obtained after Oi finishes, will be used as input
for O j. An operation can be activated after all its inputs have
arrived and it issues its outputs when it terminates. We assume
that, for each operation Oi, we know the execution time C

Mk
i on

module Mk = B (Oi), where it is assigned for execution. Fig. 2
depicts part of an application, which consists of 15 operations
O1–O15, and it involves a series of mixing operations (O1, O2,
O3, O5, O6) followed by split operations (O4, O7). Operations
O10–O15 are input operations. In operation O8 one of the
resulted droplets after the O7 split is routed to a waste reservoir
and in O9 we perform a detection operation on the other
droplet. Each operation has a predecessor and a successor, thus
we have introduced two NOP nodes, as source and sink nodes
(i.e., the graph is polar). Let us consider that the operation
O1 is bound to a 2× 4 mixing module denoted by M1 (i.e.,
B (O1) = M1). Then, according to Table I, the execution time
for O1 will be 3 s. We consider routing as part of an operation
time. In this paper we use the data from [14], which allows us
to approximate that the time required to route the droplet one
cell is 0.01 s, an order of magnitude smaller than operation
times, see Table I.

Such a model does not capture the fault occurrences during
split operations. In this paper, we propose a fault-tolerant
sequencing graph G (V ,E ∪EC), see Fig. 3. In G , each split
operation is followed by a sensing operation which detects if
a fault has occurred. For example, operation O16 in Fig. 3 is a
sensing operation for split operation O4. Note that operations
O8–O15 from Fig. 2 are depicted in Fig. 3 as “...” due to
space constraints. During a sensing operation, one of the
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Straighaorward	
  scheduling	
  

Adding	
  worst-­‐case	
  slack	
  a-er	
  each	
  split	
  to	
  allow	
  for	
  recovery	
  

Fig. 5: FTS schedule for two faults in O7

Fig. 6: SS schedule

C. Fault-tolerant Scheduling

However, the presented schedule does not take in account
the possibility of fault occurrence during a split operation.
Let us consider a maximum number k of faults that can
occur during the application execution. The faults are detected
using sensors. The sensors differ from the modules described
above, as they are real devices, so their placement is not
reconfigurable. For the application in Fig. 2, we use one sensor,
placed as in Fig. 6a–d, where it occupies 1 cell (3×3 with
protection borders) at the top right corner of the chip.

The straightforward way to adapt the schedule from Fig. 4a
is to introduce after each split operation enough slack (idle
time) that allows the application to fully recover in case of
faults. The fault-tolerance is achieved through error detection
(sensing) and recovery (merging back the droplets, followed
again by a split). Considering the worst-case, in which all k

faults happen in the same split operation, the required slack
time is calculated as:

tslack = k× (tsensing+ tmerge + tsplit). (1)

We assume that merge and split operations are instantaneous
and we use a sensing time of 5 s, see Table. I. Thus, for
k = 2, the slack required for recovering the split operation
O4 is 2× 5 = 10 s, as depicted in Fig. 6e, with a rectangle

Fig. 7: FTS schedule for faults in O4 and O7

labeled “O4 slack”. A similar slack is introduced for O7, thus
obtaining the fault-tolerant schedule from Fig. 6e, with a worst-
case application completion time δG = 24 s. We call such a
fault tolerant strategy Straightforward Scheduling (SS). The
schedule obtained by using SS wastes a lot of unnecessary
time for recovery. For example, for the schedule in Fig. 6e, if
both faults happened during the split operation O4, then the
maximum number of faults (k = 2) is reached, and hence there
is not need in allocating slack time after split operation O7.

Therefore, in this paper, we propose an improved fault-
tolerant scheduling (FTS) technique, which can take into
account the actual fault-occurrence pattern during the execu-
tion. By taking into account fault-occurrence information, FTS
produces shorter schedules, leading to a reduced worst-case
application completion time δG. FTS relies on the fault-tolerant
sequencing graph G , proposed in Section II, which captures
all the possible fault-scenarios. The FTSG from Fig. 3 is build
starting from the application graph from Fig. 2 and captures all
alternative scenarios for k = 2. Starting from the FTSG G our
FTS algorithm generates a table S where, for each operation,
we have the activation condition (the particular combination
of faults) and the corresponding start time. For example, the
merge operation O20 will be activated at time t = 7 if a fault
has occurred in the split operation O4.1 (see Fig. 7e).

During runtime, depending on the detected fault occur-
rences, a scheduler will activate the corresponding operations.
For example, for the fault scenario captured by the shaded
subgraph in Fig. 3 (first fault in O4 and the second in O7),
the operations in Fig. 7e will be activated at the depicted start
times. For the case when two faults happen in O7 we have
the start times depicted in Fig. 5e. The worst-case application
completion time δG is 19 s for FTS, compared to 24 s for SS.
The difference between FTS and SS results from the sensing
operation time: unnecessary sensing operations are avoided by
FTS. We have considered that a sensing operation takes 5 s.
However, there are capacitance sensor implementations that
can detect a droplet volume in shorter time [15]. In this case,
SS is preferable over FTS due to its simplicity.
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Scheduling	
  the	
  fault-­‐tolerant	
  graph:	
  
backup	
  schedules	
  for	
  fault	
  scenarios	
  

Fault-­‐tolerant	
  schedule	
  for	
  two	
  faults	
  in	
  O7	
  

 

Fig. 5: FTS schedule for two faults in O7

Fig. 6: SS schedule

C. Fault-tolerant Scheduling

However, the presented schedule does not take in account
the possibility of fault occurrence during a split operation.
Let us consider a maximum number k of faults that can
occur during the application execution. The faults are detected
using sensors. The sensors differ from the modules described
above, as they are real devices, so their placement is not
reconfigurable. For the application in Fig. 2, we use one sensor,
placed as in Fig. 6a–d, where it occupies 1 cell (3×3 with
protection borders) at the top right corner of the chip.

The straightforward way to adapt the schedule from Fig. 4a
is to introduce after each split operation enough slack (idle
time) that allows the application to fully recover in case of
faults. The fault-tolerance is achieved through error detection
(sensing) and recovery (merging back the droplets, followed
again by a split). Considering the worst-case, in which all k

faults happen in the same split operation, the required slack
time is calculated as:

tslack = k× (tsensing+ tmerge + tsplit). (1)

We assume that merge and split operations are instantaneous
and we use a sensing time of 5 s, see Table. I. Thus, for
k = 2, the slack required for recovering the split operation
O4 is 2× 5 = 10 s, as depicted in Fig. 6e, with a rectangle

Fig. 7: FTS schedule for faults in O4 and O7

labeled “O4 slack”. A similar slack is introduced for O7, thus
obtaining the fault-tolerant schedule from Fig. 6e, with a worst-
case application completion time δG = 24 s. We call such a
fault tolerant strategy Straightforward Scheduling (SS). The
schedule obtained by using SS wastes a lot of unnecessary
time for recovery. For example, for the schedule in Fig. 6e, if
both faults happened during the split operation O4, then the
maximum number of faults (k = 2) is reached, and hence there
is not need in allocating slack time after split operation O7.

Therefore, in this paper, we propose an improved fault-
tolerant scheduling (FTS) technique, which can take into
account the actual fault-occurrence pattern during the execu-
tion. By taking into account fault-occurrence information, FTS
produces shorter schedules, leading to a reduced worst-case
application completion time δG. FTS relies on the fault-tolerant
sequencing graph G , proposed in Section II, which captures
all the possible fault-scenarios. The FTSG from Fig. 3 is build
starting from the application graph from Fig. 2 and captures all
alternative scenarios for k = 2. Starting from the FTSG G our
FTS algorithm generates a table S where, for each operation,
we have the activation condition (the particular combination
of faults) and the corresponding start time. For example, the
merge operation O20 will be activated at time t = 7 if a fault
has occurred in the split operation O4.1 (see Fig. 7e).

During runtime, depending on the detected fault occur-
rences, a scheduler will activate the corresponding operations.
For example, for the fault scenario captured by the shaded
subgraph in Fig. 3 (first fault in O4 and the second in O7),
the operations in Fig. 7e will be activated at the depicted start
times. For the case when two faults happen in O7 we have
the start times depicted in Fig. 5e. The worst-case application
completion time δG is 19 s for FTS, compared to 24 s for SS.
The difference between FTS and SS results from the sensing
operation time: unnecessary sensing operations are avoided by
FTS. We have considered that a sensing operation takes 5 s.
However, there are capacitance sensor implementations that
can detect a droplet volume in shorter time [15]. In this case,
SS is preferable over FTS due to its simplicity.
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  fault-­‐tolerant	
  graph:	
  
backup	
  schedules	
  for	
  fault	
  scenarios	
  

Fault-­‐tolerant	
  schedule	
  for	
  faults	
  in	
  O4	
  and	
  O7	
  Fig. 5: FTS schedule for two faults in O7

Fig. 6: SS schedule

C. Fault-tolerant Scheduling

However, the presented schedule does not take in account
the possibility of fault occurrence during a split operation.
Let us consider a maximum number k of faults that can
occur during the application execution. The faults are detected
using sensors. The sensors differ from the modules described
above, as they are real devices, so their placement is not
reconfigurable. For the application in Fig. 2, we use one sensor,
placed as in Fig. 6a–d, where it occupies 1 cell (3×3 with
protection borders) at the top right corner of the chip.

The straightforward way to adapt the schedule from Fig. 4a
is to introduce after each split operation enough slack (idle
time) that allows the application to fully recover in case of
faults. The fault-tolerance is achieved through error detection
(sensing) and recovery (merging back the droplets, followed
again by a split). Considering the worst-case, in which all k

faults happen in the same split operation, the required slack
time is calculated as:

tslack = k× (tsensing+ tmerge + tsplit). (1)

We assume that merge and split operations are instantaneous
and we use a sensing time of 5 s, see Table. I. Thus, for
k = 2, the slack required for recovering the split operation
O4 is 2× 5 = 10 s, as depicted in Fig. 6e, with a rectangle

Fig. 7: FTS schedule for faults in O4 and O7

labeled “O4 slack”. A similar slack is introduced for O7, thus
obtaining the fault-tolerant schedule from Fig. 6e, with a worst-
case application completion time δG = 24 s. We call such a
fault tolerant strategy Straightforward Scheduling (SS). The
schedule obtained by using SS wastes a lot of unnecessary
time for recovery. For example, for the schedule in Fig. 6e, if
both faults happened during the split operation O4, then the
maximum number of faults (k = 2) is reached, and hence there
is not need in allocating slack time after split operation O7.

Therefore, in this paper, we propose an improved fault-
tolerant scheduling (FTS) technique, which can take into
account the actual fault-occurrence pattern during the execu-
tion. By taking into account fault-occurrence information, FTS
produces shorter schedules, leading to a reduced worst-case
application completion time δG. FTS relies on the fault-tolerant
sequencing graph G , proposed in Section II, which captures
all the possible fault-scenarios. The FTSG from Fig. 3 is build
starting from the application graph from Fig. 2 and captures all
alternative scenarios for k = 2. Starting from the FTSG G our
FTS algorithm generates a table S where, for each operation,
we have the activation condition (the particular combination
of faults) and the corresponding start time. For example, the
merge operation O20 will be activated at time t = 7 if a fault
has occurred in the split operation O4.1 (see Fig. 7e).

During runtime, depending on the detected fault occur-
rences, a scheduler will activate the corresponding operations.
For example, for the fault scenario captured by the shaded
subgraph in Fig. 3 (first fault in O4 and the second in O7),
the operations in Fig. 7e will be activated at the depicted start
times. For the case when two faults happen in O7 we have
the start times depicted in Fig. 5e. The worst-case application
completion time δG is 19 s for FTS, compared to 24 s for SS.
The difference between FTS and SS results from the sensing
operation time: unnecessary sensing operations are avoided by
FTS. We have considered that a sensing operation takes 5 s.
However, there are capacitance sensor implementations that
can detect a droplet volume in shorter time [15]. In this case,
SS is preferable over FTS due to its simplicity.
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Another approach: Control-Path Design 
•  Add checkpoints to monitor outcomes of fluidic operations 

–  Checkpoint: storage of the intermediate product droplet 
–  Add checkpoints based on error-propagation estimates 

•  Assign each checkpoint a re-execution subroutine 
–  Subroutine: fluidic operations between checkpoints  
–  Correct the detected error by re-executing the subroutine 

  Status at 
checkpoints 

  C1: Pass  
  C2: Fail 
  C3: Pass 

  Re-execution 
subroutine for C2 

  Operations O1  
    and O2 
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Control-Path Design 
•  Error detection at the checkpoint 

–  Performed for intermediate product droplet at the checkpoint 
–  Concentration test (using photo-detector) 
–  Volumetric test (using capacitive-sensing circuit) 

•  Droplet preparation for re-execution subroutine 
–  Copy droplets are consumed during re-execution of a subroutine 
–  Output droplets of operations (O0, O5) feeding inputs of subroutine 

O0 	


O5 	


copy droplets 	
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Control-Path Design 
•  Implementation flow for error recovery at checkpoint C2 

Input: product droplet from operation O2 

Store product droplet at on-chip 
storage unit at checkpoint C2 

Move to on-chip detector  
      for error-detection 

 Error ? 	


            Trigger 
    rollback recovery  

(re-execute O1 and O2) 

        Implement 
successive operation O4 

 Yes 
(Fail)	


 No 
(Pass) 	
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Implementation for Rollback Recovery at 
Checkpoint C2 

Micro-controller 

(software programs) 

Microfluidic Array 

Bioassay Instructions 

Bioassay Results 

Time: clock cycle 28 
Instruction: start 0087 (C2) 

Time: clock cycle 33 
Result: error detected at C2 

Time: clock cycle 33 
Instruction:  

(1) stop 0090 (O3) 
(2) stop time counter  

(3) start 0085(O1) to 0087(C2) 

Time: clock cycle 33 
Result: no error at C2 

Time: clock cycle 33 
Instruction:  

(1) resume following bioassay 
(2) resume time counter 
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Challenge:	
  
Architecture-­‐specific	
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2.1 Biochip Architecture 13

(a) Cell architecture (b) Biochip: array of cells

Figure 2.2: Biochip architecture

The change in the contact angle leads to a change in the wettability of the
droplet, which returns to its hydrophobic state when the voltage is removed.
If the voltage is applied to only one side of the droplet, the gradient in the
contact angle at the two edges of the liquid will cause a surface stress in the
direction of the applied voltage, leading to the movement of the droplet [43].
For example, turning off the middle control electrode and turning on the right
control electrode in Figure 2.2a will force the droplet to move to the right. To
avoid the unexpected mixing of liquids, fluidic constraints must be enforced,
ensuring that a minimum distance is kept between droplets executing on the
microfluidic array. Consider for example droplets d1 and d2 in Figure 2.3a. If
the two droplets are situated on adjacent electrodes (as shown in the figure),
they will tend to merge and form a single large droplet. If merging of the liquids
is to be avoided, a spacing of at least one electrode must be kept between the
two droplets, at any time. A similar situation is presented in Figure 2.3b,
where droplets d1 and d2 are to be transported in the directions shown by the
arrows. Let us consider that the electrodes denoted in the figure by c1 and c2

are activated. Since droplet d2 has two adjacent activated electrodes (c1 and c2)
it will not move significantly, resulting in a merging with droplet d1. In order to
avoid such a situation, there must be only one activated neighboring electrode
for each droplet on the microfluidic array.

A DMB is typically composed of an array of electrodes, together with reservoirs
for storing the samples and reagents. The architecture of the biochip proposed in
Figure 1.2 is optimized for the protocol specific to malaria detection, containing
a general bus used for transporting droplets between the different components
of the chip (e.g., reservoirs, mixer, detector). However, as biochips are expected


