
Recent	
 Research	
 and	
 Emerging	
 Challenges	
 	

in	
 the	
 System-­‐Level	
 Design	
 of	
 	

Digital	
 Microfluidic	
 Biochips	

Paul	
 Pop,	
 Elena	
 Ma-ei,	
 Jan	
 Madsen	

Technical	
 University	
 of	
 Denmark	

2	

Outline	

 Digital	
 microfluidic	
 biochips	

  Architecture	
 model:	
 module	
 vs.	
 rouEng-­‐based	

  ApplicaEon	
 model	

 System	
 level	
 design	

 Module-­‐based	
 synthesis	

  RouEng-­‐based	
 synthesis	

 Challenges	

  Fault-­‐tolerant	
 design	

  Pin-­‐constrained	
 design	

  ApplicaEon-­‐specific	
 architectures	

3	

Architecture	
 model	

Biochip	
 from	
 Duke	
 University	

2.1 Biochip Architecture 13

(a) Cell architecture (b) Biochip: array of cells

Figure 2.2: Biochip architecture

The change in the contact angle leads to a change in the wettability of the
droplet, which returns to its hydrophobic state when the voltage is removed.
If the voltage is applied to only one side of the droplet, the gradient in the
contact angle at the two edges of the liquid will cause a surface stress in the
direction of the applied voltage, leading to the movement of the droplet [43].
For example, turning off the middle control electrode and turning on the right
control electrode in Figure 2.2a will force the droplet to move to the right. To
avoid the unexpected mixing of liquids, fluidic constraints must be enforced,
ensuring that a minimum distance is kept between droplets executing on the
microfluidic array. Consider for example droplets d1 and d2 in Figure 2.3a. If
the two droplets are situated on adjacent electrodes (as shown in the figure),
they will tend to merge and form a single large droplet. If merging of the liquids
is to be avoided, a spacing of at least one electrode must be kept between the
two droplets, at any time. A similar situation is presented in Figure 2.3b,
where droplets d1 and d2 are to be transported in the directions shown by the
arrows. Let us consider that the electrodes denoted in the figure by c1 and c2

are activated. Since droplet d2 has two adjacent activated electrodes (c1 and c2)
it will not move significantly, resulting in a merging with droplet d1. In order to
avoid such a situation, there must be only one activated neighboring electrode
for each droplet on the microfluidic array.

A DMB is typically composed of an array of electrodes, together with reservoirs
for storing the samples and reagents. The architecture of the biochip proposed in
Figure 1.2 is optimized for the protocol specific to malaria detection, containing
a general bus used for transporting droplets between the different components
of the chip (e.g., reservoirs, mixer, detector). However, as biochips are expected

4	

ElectroweBng	
 on	
 Dielectric	

5	

OperaCons,	
 cont.	

Transport	
 on	
 3-­‐phase	

inner	
 bus	
 Droplet	
 dispensing	

Reservoir	
 loading	

(0.1M	
 KCL	
 with	
 dye)	

6	

Reconfigurability	

	

	
 	
 	
 	
 	

S2	

R2	

B	

S3	

S1	
 W	

R1	

	

  Dispensing	

  DetecEon	

	

	

  SpliSng/Merging	

  Storage	

  Mixing/DiluEon	

Non-­‐reconfigurable	

Reconfigurable	

7	

OperaCon	
 execuCon:	
 Module	
 based	

	

	
 	
 	
 	
 	

S2	

R2	

B	

S3	

S1	
 W	

R1	

OperaEon	
 Area	
 (cells)	
 Time	
 (s)	

Mix	
 2	
 x	
 4	
 3	

Mix	
 2	
 x	
 2	
 4	

DiluEon	
 2	
 x	
 4	
 4	

DiluEon	
 2	
 x	
 2	
 5	

Module	
 library	

2 x 4
module

8	

OperaCons:	
 Mixing	

 Droplets	
 can	
 move	
 anywhere	

 Fixed	
 area:	
 	

module-­‐based	
 	

operaEon	
 execuEon	

 Unconstrained:	

rouCng-­‐based	

operaEon	
 execuEon	

9	

OperaCon	
 execuCon:	
 RouCng	
 based	

 Droplets	
 can	
 move	
 anywhere	

	

 Constrained	
 to	
 a	
 module	

 We	
 know	
 the	
 compleEon	
 Eme	
 from	

the	
 module	
 library.	

 Unconstrained,	
 any	
 route	

 How	
 can	
 we	
 find	
 out	
 the	
 	

operaEon	
 compleEon	
 Emes?	

10	

ApplicaCon	
 model:	
 	

from	
 this…	

Architectural-Level Synthesis

21

the patient’s blood can signal organ damage or dysfunction prior to observable micro-
scopic cellular damages or other symptoms. Protocols for enzyme-kinetic measure-
ments of metabolites are suitable for droplet-based microfluidics implementation. The
feasibility of performing a colorimetric glucose assay on a digital microfluidic biochip
has been successfully demonstrated in experiments [6,31].

The glucose assay performed on the biochip is based on Trinder’s reaction, a
colorimetric enzyme-based method. The enzymatic reactions involved in the assay:

In the presence of glucose oxidase, glucose can be enzymatically oxidized to
gluconic acid and hydrogen peroxide. Then, in the presence of peroxidase, the
hydrogen peroxide reacts with 4-amino antipyrine (4-AAP) and N-ethyl-N-sulfo-
propyl-m-toluidine (TOPS) to form violet-colored quinoneimine, which has an
absorbance peak at 545 nm. Based on this colorimetric reaction, a complete glucose
assay can be performed following three steps, namely, transportation, mixing, and
optical detection, as shown in Figure 2.1. Sample droplets containing glucose and
reagent droplets containing glucose oxidase, peroxidase, 4-AAP, and TOPS are
dispensed into the microfluidic array from droplet reservoirs. They are then trans-
ported toward a mixer, where droplets of the sample and the reagent are mixed
together, and the enzymatic reaction happens during the mixing. A droplet of the
product is moved to the location of the optical detector. The optical detection is
performed using a green LED and a photodiode. The glucose concentration can be
detected from the absorbance, which is related to the concentration of colored
quinoneimine. Experiments have shown that the results from the digital microfluidic
biochip match well with the reference values obtained from conventional measure-
ments [6].

In addition to glucose assays, the detections of other metabolites such as lactate,
glutamate, and pyruvate in a digital microfluidic biochip have also been demonstrated
recently [6]. Furthermore these assays can be integrated together to form a multi-
plexed

in vitro

 diagnostics on different human physiological fluids, which can be
performed concurrently on a microfluidic biochip.

FIGURE

 2.1

Photos of different steps of a glucose assay carried out on a digital microfluidic
biochip [6].

Glucose H O O Gluconic2 2
Glucose Oxidase+ +  → AAcid H O

2H O -AAP TOPS Qu

2 2

2 2
Peroxidase

+

+ +  →4 iinoneimine H O2+ 4

9009_C002.fm Page 21 Monday, July 24, 2006 7:07 PM

Glucose	
 assay	
 steps	
 on	
 the	
 biochip	

Architectural-Level Synthesis

21

the patient’s blood can signal organ damage or dysfunction prior to observable micro-
scopic cellular damages or other symptoms. Protocols for enzyme-kinetic measure-
ments of metabolites are suitable for droplet-based microfluidics implementation. The
feasibility of performing a colorimetric glucose assay on a digital microfluidic biochip
has been successfully demonstrated in experiments [6,31].

The glucose assay performed on the biochip is based on Trinder’s reaction, a
colorimetric enzyme-based method. The enzymatic reactions involved in the assay:

In the presence of glucose oxidase, glucose can be enzymatically oxidized to
gluconic acid and hydrogen peroxide. Then, in the presence of peroxidase, the
hydrogen peroxide reacts with 4-amino antipyrine (4-AAP) and N-ethyl-N-sulfo-
propyl-m-toluidine (TOPS) to form violet-colored quinoneimine, which has an
absorbance peak at 545 nm. Based on this colorimetric reaction, a complete glucose
assay can be performed following three steps, namely, transportation, mixing, and
optical detection, as shown in Figure 2.1. Sample droplets containing glucose and
reagent droplets containing glucose oxidase, peroxidase, 4-AAP, and TOPS are
dispensed into the microfluidic array from droplet reservoirs. They are then trans-
ported toward a mixer, where droplets of the sample and the reagent are mixed
together, and the enzymatic reaction happens during the mixing. A droplet of the
product is moved to the location of the optical detector. The optical detection is
performed using a green LED and a photodiode. The glucose concentration can be
detected from the absorbance, which is related to the concentration of colored
quinoneimine. Experiments have shown that the results from the digital microfluidic
biochip match well with the reference values obtained from conventional measure-
ments [6].

In addition to glucose assays, the detections of other metabolites such as lactate,
glutamate, and pyruvate in a digital microfluidic biochip have also been demonstrated
recently [6]. Furthermore these assays can be integrated together to form a multi-
plexed

in vitro

 diagnostics on different human physiological fluids, which can be
performed concurrently on a microfluidic biochip.

FIGURE

 2.1

Photos of different steps of a glucose assay carried out on a digital microfluidic
biochip [6].

Glucose H O O Gluconic2 2
Glucose Oxidase+ +  → AAcid H O

2H O -AAP TOPS Qu

2 2

2 2
Peroxidase

+

+ +  →4 iinoneimine H O2+ 4

9009_C002.fm Page 21 Monday, July 24, 2006 7:07 PM

Trinder’s	
 reacEon,	
 a	
 colorimetric	
 enzyme-­‐based	
 method	

22

Digital Microfluidic Biochips

2.2.2 S

EQUENCING

 G

RAPH

 M

ODEL

The behavioral description of an example of a multiplexed

in vitro

 diagnostics is
shown in Figure 2.2. Four types of human physiological fluids — plasma, serum,
urine, and saliva — are sampled and dispensed into the microfluidic biochip. Next,
each type of physiological fluid is assayed for glucose, lactate, pyruvate, or glutamate
measurement. For each enzymatic assay, the droplets containing the suitably mod-
ified reagents (e.g., glucose oxidase, peroxidase, 4-AAP, and TOPS for glucose
measurement) are dispensed into the microfluidic array from the relevant reservoirs.
The result of each type of bioassays can be detected using a dedicated optical
absorbance measurement device.

An abstract model of a bioassay behavior at the architectural level can be developed
in terms of operations and the dependencies between them. We use the sequencing
graph model from high-level synthesis [47]. We assume that there are a total of

n

ops

operations. The sequencing graph is acyclic and polar. There are two vertices, called
source

v

0

 and sink

v

k

,

 that present the first and last no-operation task, where

k

=

n

ops

+

 1.
Hence the sequencing graph

G

(

V,

E

) has vertex set

V

=

 {

v

i

:

i

=

 0, 1, …,

k

} in one-to-
one correspondence with the set of assay operations, and edge set

E

=

 {(

v

i

, v

j

):

i,

j

=

 0, 1, …,

k

} representing dependencies. With each node

v

i

,

 we associate a weight

d

(

v

i

), which denotes the time taken for operation

v

i

.

 The details of these operations
and the resources that these operations use are as follows. (We assume that

m

 types
of physiological fluids are assayed for

n

 types of enzymatic measurements.)

2.2.2.1 Input Operations

These operations consists of the generation of the droplets of samples (

S

i

,

i

=

 1, …,

m

)
or reagents (

R

i

,

i

=

 1, …,

n

) from the on-chip reservoir, which are then dispensed
into the microfluidic array. These operations are represented using the nodes shown in
Figure 2.3. There are

m

+

 n

 types of input operations (denoted by

I

i

,

i

=

 1, …,

m

+

 n

),
where

I

j

,

j

=

 1, …,

m,

 represents the generation and dispensing of droplets of sample

S

j

.

Similarly,

I

j

+

m

,

j

=

 1, …,

 n,

 denotes the operation for reagent

R

j

.

Assumption 1:

 We assume that the time required to generate and dispense droplets
from the reservoir is determined mainly by the system parameters, such as the aspect
ratio of the channel gap to electrode gap [58]. The properties of the fluid have little
impact on the operation time. This assumption has been verified by experimental data [58].

FIGURE 2.2

One example of multiplexed

in vitro

 diagnostics.

Sample Reagent Enzymatic Assay

Plasma: S1 Glucose Measurement

Lactate Measurement

Pyruvate Measurement

Glutamate Measurement

R1

R2

R3

R4

Serum: S2

Urine: S3

Saliva: S4

9009_C002.fm Page 22 Monday, July 24, 2006 7:07 PM

Several	
 such	
 reacEons	
 assays	
 in	
 parallel:	

“in-­‐vitro	
 diagnosEcs”	
 applicaEon	

Reconfigurable	

architecture	

2.1 Biochip Architecture 13

(a) Cell architecture (b) Biochip: array of cells

Figure 2.2: Biochip architecture

The change in the contact angle leads to a change in the wettability of the
droplet, which returns to its hydrophobic state when the voltage is removed.
If the voltage is applied to only one side of the droplet, the gradient in the
contact angle at the two edges of the liquid will cause a surface stress in the
direction of the applied voltage, leading to the movement of the droplet [43].
For example, turning off the middle control electrode and turning on the right
control electrode in Figure 2.2a will force the droplet to move to the right. To
avoid the unexpected mixing of liquids, fluidic constraints must be enforced,
ensuring that a minimum distance is kept between droplets executing on the
microfluidic array. Consider for example droplets d1 and d2 in Figure 2.3a. If
the two droplets are situated on adjacent electrodes (as shown in the figure),
they will tend to merge and form a single large droplet. If merging of the liquids
is to be avoided, a spacing of at least one electrode must be kept between the
two droplets, at any time. A similar situation is presented in Figure 2.3b,
where droplets d1 and d2 are to be transported in the directions shown by the
arrows. Let us consider that the electrodes denoted in the figure by c1 and c2

are activated. Since droplet d2 has two adjacent activated electrodes (c1 and c2)
it will not move significantly, resulting in a merging with droplet d1. In order to
avoid such a situation, there must be only one activated neighboring electrode
for each droplet on the microfluidic array.

A DMB is typically composed of an array of electrodes, together with reservoirs
for storing the samples and reagents. The architecture of the biochip proposed in
Figure 1.2 is optimized for the protocol specific to malaria detection, containing
a general bus used for transporting droplets between the different components
of the chip (e.g., reservoirs, mixer, detector). However, as biochips are expected

11	

ApplicaCon	
 model:	
 	

…to	
 this—an	
 acyclic	
 directed	
 graph	

24 Biochip Architecture and System Model

Figure 2.8: Mixing Stage of the Polymerase Chain Reaction Assay

Figure 2.9: In-Vitro Diagnostics on Physiological Fluids

“in-­‐vitro	
 diagnosEcs”	

applicaEon	

12	

Another	
 applicaCon	
 example:	

“Colorimetric	
 protein	
 assay”	

2.4 Case Studies 25

Figure 2.10: Colorimetric Protein Assay

13	

Operation Area (cells) Time (s)
Mixing 2x2 6
Mixing 2x3 5
Mixing 2x4 4

Dilution 2x2 6
Dilution 2x3 5
Dilution 2x4 3
Storage 1x1 –

System-­‐level	
 design	
 tasks	

	

	

Scheduling	

Binding	

Placement	
 &	
 rouCng	

AllocaCon	

S1

S2

S3 B

R1

R2

W

Store

Mixer1

Mixer2

D
ilu
te
r

Detector

Mixer1

Mixer2

Diluter

Store

Detector

O7

O9

O3
O11
O10 O4

1 2

3

4

5 6

7

10

8

9

In S1 In R 1

Mix

Detect

In S2 In B

Dilute
In R 2

Mix

Detect

Source

Sink

14	

My	
 moCvaCon:	
 	

adapt	
 familiar	
 design	
 methods	
 to	
 a	
 new	
 area	

FPGA	
 Digital	
 biochip	

Transistors	

Net	
 Wires	

Clock	
 lines	

Control	
 electrodes	

Reservoirs	

Transparent	
 cells	

RAM	

MulEplexer	

CLBs	

Mixers	

Transport	
 bus	

OpEcal	
 detectors	

Basic	

Devices	

Configured	
 FPGA	
 Configured	
 biochip	

Tiles	

Systems	

15	

Module-­‐Based	
 Synthesis	

16	

Module-­‐Based	
 Synthesis	

O7

O8

O9

17	

Module-­‐Based	
 Synthesis	

O7

O8

O9

18	

Module-­‐Based	
 Synthesis	

O7 1x4

O8 1x4

19	

Module-­‐Based	
 Synthesis	

O9 2x4

O10 1x4

20	

Module-­‐Based	
 Synthesis	

O9 2x4

O10 1x4

21	

Module-­‐Based	
 Synthesis	

22	

Problem	
 FormulaCon	

 Given	

  ApplicaEon:	
 graph	

  Biochip:	
 array	
 of	
 electrodes	

  Library	
 of	
 modules	

 Determine	

 AllocaCon	
 of	
 modules	
 from	
 modules	
 library	

  Binding	
 of	
 modules	
 to	
 operaEons	
 in	
 the	
 graph	

  Scheduling	
 of	
 operaEons	

  Placement	
 of	
 modules	
 on	
 the	
 array	

 Such	
 that	
 	

  the	
 applicaEon	
 execuEon	
 Eme	
 is	
 minimized	

23	

Reconfigurability	

24	

Reconfigurability	

25	

Reconfigurability	

26	

Reconfigurability	

27	

Reconfigurability	

28	

Reconfigurability	

29	

Reconfigurability	

30	

Reconfigurability	

31	

Reconfigurability	

32	

Reconfigurability	

33	

Reconfigurability	

34	

Reconfigurability	

35	

Reconfigurability	

36	

Reconfigurability	

37	

Reconfigurability	

Without	
 dynamic	
 	

reconfiguraCon:	
 t+18	

38	

SoluCon	

 Binding	
 of	
 modules	
 to	
 operaEons	

 Schedule	
 of	
 the	
 operaEons	

  Placement	
 of	
 modules	
 performed	
 	

inside	
 scheduling	

 Placement	
 of	
 the	
 modules	

  Free	
 space	
 manager	
 based	
 on	
 [Bazargan	
 et	
 al.	

2000]	
 that	
 divides	
 free	
 space	
 on	
 the	
 chip	
 into	

overlapping	
 rectangles	

 Other	
 soluEons	
 proposed	
 in	
 the	
 literature:	

  Integer	
 Linear	
 Programming	

  Simulated	
 Annealing	
 	
 	

Tabu	
 Search	

List	
 Scheduling	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Maximal	
 Empty	
 Rectangles	
 	

39	

Dynamic	
 Placement	
 Algorithm	

OperaEon	
 Module	

O7	
 (mix)	
 M1	
 (2x2)	

O1	
 (diluter)	
 D2	
 (2x5)	

40	

Dynamic	
 Placement	
 Algorithm	

41	

Dynamic	
 Placement	
 Algorithm	

42	

Dynamic	
 Placement	
 Algorithm	

43	

Dynamic	
 Placement	
 Algorithm	

44	

RouCng-­‐Based	
 Synthesis	

45	

RouCng-­‐Based	
 Synthesis	

O7

O8

O9

46	

RouCng-­‐Based	
 Synthesis	

47	

RouCng-­‐Based	
 Synthesis	

48	

RouCng-­‐Based	
 Synthesis	

49	

RouCng-­‐Based	
 Synthesis	

50	

RouCng-­‐Based	
 Synthesis	

51	

RouCng-­‐Based	
 Synthesis	

52	

RouCng-­‐Based	
 Synthesis	

53	

RouCng-­‐Based	
 Synthesis	

54	

RouCng-­‐Based	
 Synthesis	

55	

RouCng-­‐Based	
 Synthesis	

56	

When	
 will	
 the	
 operaCons	
 complete?	

  For	
 module-­‐based	
 synthesis	
 we	
 know	
 the	

comple'on	
 'me	
 from	
 the	
 module	
 library.	

  But	
 now	
 there	
 are	
 no	
 modules,	
 	

the	
 droplets	
 can	
 move	
 anywhere:	

  How	
 can	
 we	
 find	
 out	
 the	
 	

operaEon	
 comple'on	
 'mes?	

57	

Characterizing	
 operaCons	

  If	
 the	
 droplet	
 does	
 not	
 move:	
 	

very	
 slow	
 mixing	
 by	
 diffusion	

  If	
 the	
 droplet	
 moves,	
 how	
 long	

does	
 it	
 take	
 to	
 complete?	

 Mixing	
 percentages:	

p0, p90, p180 ?

58	

Characterizing	
 operaCons	

 We	
 know	
 how	
 long	
 an	

operaEon	
 takes	
 on	
 modules	

 StarEng	
 from	
 this,	
 can	

determine	
 the	
 percentages?	

59	

Decomposing	
 modules	

Safe,	
 conservaEve	
 esEmates	

p90 = 0.1%, p180 = -0.5%,
p0 = 0.29% and 0.58%

Moving	
 a	
 droplet	
 one	
 cell	
 takes	
 0.01	
 s.	

60	

RouCng-­‐Based	
 Synthesis	

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

61	

RouCng-­‐Based	
 Synthesis	

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

(a) Schedule (b) Placement at t = 0.03 (c) t ∈ (0.03, 2.20] (d) t = 2.28 (e) t ∈ (2.28, 4.34]

Figure 5: Routing-based synthesis example

Another reason for the reduction of δG is the increase in the num-
ber of electrodes used for forward movement. As discussed in Sec-
tion 2.3, forward movement reduces flow reversibility inside the
droplet, leading to a faster completion of the reconfigurable opera-
tions, such as mixing and dilution.

4. ROUTING-BASED SYNTHESIS
The problem presented in the previous section is NP-complete [4].

Our strategy is derived from GRASP [7] and decides the routes R
taken by droplets during the execution of reconfigurable operations.
The allocation, binding and scheduling for non-reconfigurable op-
erations are decided using a greedy approach when these operations
are needed by the synthesis of reconfigurable operations.
The proposed algorithm is presented in Fig. 6 and takes as input

the application graph G, the biochip array C and the percentages of
mixing during droplet movement µ = {p01, p

0
2, p

90, p180}, and pro-
duces an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG.
Let us first discuss the synthesis of routes R for the reconfig-

urable operations. At each time t, a set of droplets corresponding
to currently executing reconfigurable operations are present on the
microfluidic array. A droplet can be in one of the two states: (1)
merge — when it needs to come into contact with another droplet;
and (2) mix — when it performs a mixing or dilution operation.
For example, the droplets corresponding to operations O3 and O4

in Fig. 5b are in the merge state, as they need to be routed to a
common location on the array in order to form the droplet corre-
sponding to the operation O8. Once it is formed, the O8 droplet
is routed on a sequence of electrodes until the mixing operation is
completed. Thus, we say that in Fig. 5c the droplet corresponding
to operation O8 is in the mix state.
We use two lists, Lmerge and Lmix, to capture the operations that

are performed on the microfluidic array at time t and are in the
merge and mix states, respectively. Lmerge is initialized by consid-
ering the operations in the graph that are ready to be scheduled
(line 4). The list Lmix is initially empty (line 5).
The main part of the algorithm is the while loop, lines 6–32,

which terminates when all operations have finished. In each iter-
ation, we increment the current time tcurrent (line 31) and perform
the following three steps: (1) We decide the new positions of the
droplets present on the chip at tcurrent, i.e.,Oi ∈ Lmerge∪Lmix (lines 7–
10); (2) In the second step, we introduce droplets on the array in
the mix state, in case their predecessor droplets have merged on the
chip (lines 11–19); (3) Finally, when the reconfigurable operations
have finished executing (the droplets are mixed or diluted), we re-
member the finishing time (line 22) and put the resulting droplets
in the merge state (line 29).

RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 t
f inish

Oi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅

6 while ∃Oi ∈ G ∧ t
f inish

Oi
= 0 do

7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)
10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧ Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧ Oi is mixed do
22 t

f inish

Oi
= tcurrent

23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 6: Routing-based synthesis for DMBs

Let us present each step in more detail. In step 1, for each droplet
present on the microfluidic array, we have to decide the next posi-
tion (line 9). There is a large number of position combinations
that has to be considered. We take the decision individually for
each droplet, using the PerformMove function which takes as in-
put the reconfigurable operation Oi, the biochip array C and the
current routes R. We use a randomized greedy approach similar
to GRASP: for each droplet we construct a Restricted Candidate
List (RCL), containing the three best feasible moves to be per-
formed. Then, a move from the RCL is randomly selected and the

62	

RouCng-­‐	
 vs.	
 Module-­‐Based	
 Synthesis	

63	

RouCng-­‐	
 vs.	
 Module-­‐Based	
 Synthesis	

Module-­‐Based	
 Synthesis	
 RouCng-­‐Based	
 Synthesis	

64	

Problem	
 FormulaCon	

 Given	

  ApplicaEon:	
 graph	

  Biochip:	
 array	
 of	
 electrodes	

  Library	
 of	
 non-­‐reconfigurable	
 devices	

 Determine	

 Droplet	
 routes	
 for	
 all	
 reconfigurable	
 operaEons	

 AllocaCon	
 and	
 binding	
 of	
 non-­‐reconfigurable	
 modules	
 from	
 a	
 library	

  Scheduling	
 of	
 operaEons	

 Such	
 that	

  the	
 applicaEon	
 compleEon	
 Eme	
 is	
 minimized	

65	

Proposed	
 SoluCon	

66	

Proposed	
 SoluCon	

Meet

Execute

67	

Proposed	
 SoluCon	

Meet

Execute

Minimize the time
until the droplet(s)
arrive at destination

Minimize the completion
time for the operation

68	

GRASP-­‐Based	
 HeurisCc	

 Greedy	
 Randomized	
 AdapEve	
 Search	
 Procedure	

 	
 For	
 each	
 droplet:	

  Determine	
 possible	
 moves	

  Evaluate	
 possible	
 moves	

  Make	
 a	
 list	
 of	
 	

best	
 N	
 possible	
 moves	

  Perform	
 a	
 randomly	
 	

chosen	
 possible	
 move	

69	

GRASP-­‐Based	
 HeurisCc	

  Greedy	
 Randomized	
 AdapEve	
 Search	
 Procedure	

 	
 For	
 each	
 droplet:	

  Determine	
 possible	
 moves	

  Evaluate	
 possible	
 moves	

  Make	
 a	
 list	
 of	
 	

best	
 N	
 possible	
 moves	

  Perform	
 a	
 randomly	
 	

chosen	
 possible	
 move	

70	

GRASP-­‐Based	
 HeurisCc	

  Greedy	
 Randomized	
 AdapEve	
 Search	
 Procedure	

 	
 For	
 each	
 droplet:	

  Determine	
 possible	
 moves	

  Evaluate	
 possible	
 moves	

  Make	
 a	
 list	
 of	
 	

best	
 N	
 possible	
 moves	

  Perform	
 a	
 randomly	
 	

chosen	
 possible	
 move	

71	

GRASP-­‐Based	
 HeurisCc	

  Greedy	
 Randomized	
 AdapEve	
 Search	
 Procedure	

 	
 For	
 each	
 droplet:	

  Determine	
 possible	
 moves	

  Evaluate	
 possible	
 moves	

  Make	
 a	
 list	
 of	
 	

best	
 N	
 possible	
 moves	

  Perform	
 a	
 randomly	
 	

chosen	
 possible	
 move	

72	

GRASP-­‐Based	
 HeurisCc	

  Greedy	
 Randomized	
 AdapEve	
 Search	
 Procedure	

 	
 For	
 each	
 droplet:	

  Determine	
 possible	
 moves	

  Evaluate	
 possible	
 moves	

  Make	
 a	
 list	
 of	
 	

best	
 N	
 possible	
 moves	

  Perform	
 a	
 randomly	
 	

chosen	
 possible	
 move	

73	

Experimental	
 EvaluaCon	

RouEng-­‐Based	
 Synthesis	
 (RBS)	
 vs.	
 to	
 Module-­‐Based	
 Synthesis	
 (MBS)	

	

	

	

	

	

	

	

	

Table 2: Results for the real-life applications

Application Area Best Average Standard dev.
RBS MBS RBS MBS RBS MBS

8 × 9 68.43 72.94 68.77 77.81 0.16 2.12
In-vitro 8 × 8 68.87 82.12 69.13 102.37 0.14 13.58

(28 operations) 7 × 8 69.12 87.33 69.46 111.18 0.17 12.26
11 × 11 113.63 184.06 117.51 205.30 4.65 8.38

Proteins 11×10 114.33 185.91 119.62 202.14 6.63 8.84
(103 operations) 10 × 10 115.65 208.90 120.65 219.17 7.73 7.89

Table 3: Results for synthetic benchmarks

Operations Area1 Average1 Best1 Area2 Average2 Best2 Area3 Average3 Best3
RBS MBS RBS MBS RBS MBS RBS MBS RBS MBS RBS MBS

10 6 × 6 39.92 42.61 39.12 42.61 5 × 7 39.95 76.1 39.55 76.1 5 × 6 40.97 102.9 40.46 102.9
20 8 × 8 50.18 52.71 49.73 52.71 7 × 8 50.95 53.62 50.5 49.01 7 × 7 51.74 60.06 51.19 49.81
30 8 × 8 65.96 72.84 64.73 67 7 × 8 67.79 84.08 66.92 76.4 7 × 7 69.68 95.54 68.42 82.49
40 8 × 8 61.93 102.69 61.18 91.97 7 × 8 63.74 111.47 63.01 98.25 7 × 7 65.85 131.63 64.75 99.29
50 9 × 10 83.89 86.99 83.27 82.4 9 × 9 84.76 93.5 84.02 87.21 8 × 9 86.34 101.59 85.37 87.03
60 9 × 9 94.98 100.44 93.82 89.90 8 × 10 95.15 104.80 94.34 95.70 8 × 9 95.85 122.42 94.39 106.7
70 10 × 10 179.97 194.91 140.4 153.8 9 × 11 197.05 182.99 155.93 164.01 9 × 10 186.02 233.57 147.39 162.41
80 10 × 10 112.98 124.98 112.38 113.4 9 × 10 113.48 139.26 112.43 124.75 9 × 9 114.23 147.86 113.6 133.87
90 11 × 11 139.33 180.64 128.08 127.41 10 × 10 144.23 215.76 131.32 149.68 9 × 10 148.59 227.02 136.94 156.31
100 11 × 11 172.15 325.57 153.06 285.05 10 × 10 172.46 321.87 154.09 255.97 9 × 11 170.17 325.66 153.08 278.63

required for performing other operations. Because of the constraint
on the number of available reservoirs on a given chip, creating a
dispensed droplet at tcurrent is not always possible. In this case, the
input operation is bound using a greedy approach to the reservoir
that will be available at the earliest time. We use the same approach
for determining the binding of detection operations to optical de-
vices.
Due to its randomized nature, the algorithm in Fig. 6 might pro-

duce different results for different runs, with the same inputs. The
algorithm terminates when all operations have been synthetized,
and returns the solution Ψ (line 32). Our route-based synthesis ap-
proach is given a time limit, and runs repeatedly RoutingBasedSyn-
thesis from Fig. 6 until the time limit is reached, collecting the best
solution Ψ in terms of the application completion time δG.

5. EXPERIMENTAL EVALUATION
In order to evaluate our proposed approach, we have used two-

real life examples and ten synthetic benchmarks. The GRASP-
derived algorithm was implemented in Java (JDK 1.6), running on
SunFire v440 computers with UltraSPARC IIIi CPUs at 1,062 GHz
and 8 GB of RAM. The module library used for all the experiments
is shown in Table 1.
In our experiments we were interested to determine the improve-

ment that can be obtained by using Routing-Based Synthesis (RBS)
compared to Module-Based Synthesis (MBS). For MBS, we have
used the Tabu Search-based synthesis approach we have proposed
in [9].
Table 2 presents the results obtained by using RBS and MBS for

two real-life applications: (1) In-vitro diagnosis on human phys-
iological fluids (IVD) [15], which has 28 operations and (2) the
colorimetric protein assay (103 operations) [14], utilized for mea-
suring the concentration of a protein in a solution. Table 2 presents
the best solution (in terms of the application completion time δG),

in columns 3 and 4. The comparison is made for three progres-
sively smaller areas for both approaches, using a time limit of 10
minutes for both synthesis approaches.

As we can see, eliminating the concept of “virtual modules” and
allowing the operations to perform on any route on the microfluidic
array can lead to significant improvements in terms of application
completion time, allowing us to use smaller areas and thus reduce
costs. Using routing-based synthesis is particularly important for
more constrained synthesis problems, when knowing the exact lo-
cation of all droplets on the array, leads to more efficient space us-
age. For example, in the most constrained case for the colorimetric
protein assay, the 10 × 10 array, we have obtained an improvement
of 44.95% in the schedule length.

Moreover, the routing-based approach determines a complete so-
lution for the problem, while for the module-based synthesis a post-
synthesis step is necessary to determine the routing, which means
additional delays.

Both RBS and MBS implementations are stochastic; random de-
cisions during the exploration process can lead to slightly different
results. To determine the quality of the RBS implementation, we
have run RBS and MBS 50 times. The best results for RBS and
MBS, presented in columns 3 and 4 in Table 2, respectively, are
collected after 50 runs. The average and standard deviation over
the 50 runs compared to the best application completion time δG
are also reported in Table 2. As we can see, the difference between
RBS and MBS is larger in the average case, and the standard devi-
ation with RBS is very small, which means that RBS consistently
finds solutions which are very close to the best solution found over
the 50 runs.

In a second set of experiments we have compared RBS with
MBS on ten synthetic applications. We have generated a set of
synthetic graphs using Task Graphs For Free (TGFF) [5]. We have
manually modified the graphs in order to capture the characteristics
of biochemical applications. The graphs are composed of 10 up to

74	

Conclusions	

 Module-­‐based	
 vs.	
 rouCng-­‐based	

 Module-­‐based	
 needs	
 an	
 extra	
 rouEng	
 step	
 between	
 the	
 modules;	

RouEng-­‐based	
 performs	
 unified	
 synthesis	
 and	
 rouEng	

 Module-­‐based	
 wastes	
 space:	
 only	
 one	
 module-­‐cell	
 is	
 used;	

RouEng-­‐based	
 exploits	
 beler	
 the	
 applicaEon	
 parallelism	

 Module-­‐based	
 can	
 contain	
 the	
 contaminaEon	
 to	
 a	
 fixed	
 area;	

 We	
 have	
 extended	
 rouEng-­‐based	
 to	
 address	
 contaminaEon	

75	

Droplet	
 RouCng	

	

 A	
 key	
 physical	
 design	
 problem	
 for	
 digital	
 microfluidic	
 biochips	

 Given	
 the	
 results	
 from	
 architectural-­‐level	
 synthesis	
 and	
 module	

placement:	

 Determine	
 droplet	
 pathways	
 using	
 the	
 available	
 cells	
 in	
 the	

microfluidic	
 array;	
 these	
 routes	
 are	
 used	
 to	
 transport	
 droplets	

between	
 modules,	
 or	
 between	
 modules	
 and	
 fluidic	
 I/O	
 ports	
 (i.e.,	

boundary	
 on-­‐chip	
 reservoirs)	
 	

 To	
 find	
 droplet	
 routes	
 with	
 minimum	
 lengths	

  	
 Analogous	
 to	
 the	
 minimizaEon	
 of	
 the	
 total	
 wirelength	
 in	
 VLSI	
 rouEng	
 	

 Need	
 to	
 saEsfy	
 criEcal	
 constraints	

  A	
 set	
 of	
 fluidic	
 constraints	

  Timing	
 constraints:	
 (delay	
 for	
 each	
 droplet	
 route	
 does	
 not	
 exceed	

some	
 maximum	
 value,	
 e.g.,	
 10%	
 of	
 a	
 Eme-­‐slot	
 used	
 in	
 scheduling)	
 	

76	

Challenge:	

Design	
 of	
 Pin-­‐Constrained	
 Biochips	

Direct	
 Addressing	

  Each	
 electrode	
 connected	
 to	
 an	
 independent	
 pin	
 	

  For	
 large	
 arrays	
 (e.g.,	
 >	
 100	
 x	
 100	
 electrodes)	

  Too	
 many	
 control	
 pins	
 ⇒	
 high	
 fabricaEon	
 cost	

  Wiring	
 plan	
 not	
 available	

	
 	
 	
 	
 PCB	
 design:	
 250	
 um	
 via	
 hole,	
 500	
 um	
 x	
 500	
 um	
 electrode	

	

Via Holes
Wires

Nevertheless,	
 we	
 need	
 high-­‐throughput	
 and	
 low	
 cost:	

	
 	
 	
 	
 DNA	
 sequencing	
 (106	
 base	
 pairs),	
 Protein	
 crystallizaEon	
 (103	
 candidate	
 condiEons)	

	
 	
 	
 	
 Disposable,	
 marketability,	
 $1	
 per	
 chip	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

77	

Challenge:	
 	

Fault-­‐tolerant	
 design	

Electrode	
 degradaEon	

Electrode	
 short	

Hindered	
 transportaEon	
 Imperfect	
 spliSng	

78

•  Verify correctness of fluidic operations in bioassay
–  Monitor bioassay status to find errors
–  Parameters for monitoring: volume of product droplet, sample

concentration, others?
•  Correct errors as soon as possible

–  Re-execute only the erroneous part of bioassay

•  Drawback of current synthesis tools
–  Only provide a “data path”, no control or feedback mechanism
–  Monitor bioassay result at the end and re-execute the entire assay

to correct errors

Motivation for Error Recovery

O0 	

O1 	

O2 	

Error
detected 	

No error 	

No error 	
 Need control-path design for
error detection and recovery	

79

Droplet Detection Mechanisms
  Capacitive-sensing circuit for

volumetric test
  Optical detection for

concentration test

Capacitive-sensing circuit
(M. G. Pollack, PhD Thesis 2001)�

Photo-diode detector (Srinivasan et al.,
MicroTAS’03)

Thin-film MSM detector (S.-W. Seo, PhD
Thesis 2003)

80	

Fault-­‐tolerant	
 graph:	
 	

captures	
 fault	
 scenarios	
 due	
 to	
 split	
 operaCons	

  A	
 sensing	
 operaEon	
 is	
 introduced	
 a-er	
 each	
 split	

  If	
 the	
 split	
 was	
 OK,	
 the	
 graph	
 conEnues	

  If	
 the	
 split	
 was	
 NOT	
 OK,	
 we	
 retry:	
 insert	
 a	
 merge	

operaEon	
 followed	
 by	
 another	
 split	

AssumpEon:	
 at	
 most	
 two	
 consecuEve	
 errors	

of volumes divided by the mean, is ±2% for microdialysis
applications and ±10% in drug discovery applications. We
consider that a split operation is faulty if it results in droplets
with volumes below a given threshold. The threshold is given
by the designer and depends on the application.

Our fault model assumes a maximum of k faults, given
a biochip architecture and a biochemical application. These
faults can appear in any split operation and have to be tolerated.
The error is detected using on-chip volume sensors. The
sensors have to be placed on the top of existing electrodes.
One of the resulted droplets, after a split, has to be routed to
the sensor. The sensing operation can take up to five seconds,
depending on the sensor type [15].

If an error is detected (the volume is below or above the
given threshold), the resulted droplets are merged back. They
have to be routed to the same place on the chip, and the
merging is instantaneous. The split operation will have to be
performed again, followed by sensing and, in case of error,
by merge. In the worst-case, a split will have to be performed
k + 1 times, to tolerate the maximum k faults that can happen
in the application. The last split does not have to be followed
by a sensing operation, since we know it will not experience
an error: all faults have already happened. Note, however, that
these k faults can happen in any of the split operations of the
application.

B. Biochemical Application Model

A biochemical application is modeled using a sequential
directed acyclic graph G(V,E) [13], where each node Oi ∈ V
represents an operation. The binding of operations to modules
in the architecture is captured by the function B : V → A ,
where A is the set of the allocated modules from the given
library L . An edge ei j ∈ E from Oi to O j indicates that the

Fig. 2: Biochemical application model example

Fig. 3: Fault-Tolerant Sequencing Graph (FTSG)

output droplet obtained after Oi finishes, will be used as input
for O j. An operation can be activated after all its inputs have
arrived and it issues its outputs when it terminates. We assume
that, for each operation Oi, we know the execution time C

Mk
i on

module Mk = B (Oi), where it is assigned for execution. Fig. 2
depicts part of an application, which consists of 15 operations
O1–O15, and it involves a series of mixing operations (O1, O2,
O3, O5, O6) followed by split operations (O4, O7). Operations
O10–O15 are input operations. In operation O8 one of the
resulted droplets after the O7 split is routed to a waste reservoir
and in O9 we perform a detection operation on the other
droplet. Each operation has a predecessor and a successor, thus
we have introduced two NOP nodes, as source and sink nodes
(i.e., the graph is polar). Let us consider that the operation
O1 is bound to a 2× 4 mixing module denoted by M1 (i.e.,
B (O1) = M1). Then, according to Table I, the execution time
for O1 will be 3 s. We consider routing as part of an operation
time. In this paper we use the data from [14], which allows us
to approximate that the time required to route the droplet one
cell is 0.01 s, an order of magnitude smaller than operation
times, see Table I.

Such a model does not capture the fault occurrences during
split operations. In this paper, we propose a fault-tolerant
sequencing graph G (V ,E ∪EC), see Fig. 3. In G , each split
operation is followed by a sensing operation which detects if
a fault has occurred. For example, operation O16 in Fig. 3 is a
sensing operation for split operation O4. Note that operations
O8–O15 from Fig. 2 are depicted in Fig. 3 as “...” due to
space constraints. During a sensing operation, one of the

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

of volumes divided by the mean, is ±2% for microdialysis
applications and ±10% in drug discovery applications. We
consider that a split operation is faulty if it results in droplets
with volumes below a given threshold. The threshold is given
by the designer and depends on the application.

Our fault model assumes a maximum of k faults, given
a biochip architecture and a biochemical application. These
faults can appear in any split operation and have to be tolerated.
The error is detected using on-chip volume sensors. The
sensors have to be placed on the top of existing electrodes.
One of the resulted droplets, after a split, has to be routed to
the sensor. The sensing operation can take up to five seconds,
depending on the sensor type [15].

If an error is detected (the volume is below or above the
given threshold), the resulted droplets are merged back. They
have to be routed to the same place on the chip, and the
merging is instantaneous. The split operation will have to be
performed again, followed by sensing and, in case of error,
by merge. In the worst-case, a split will have to be performed
k + 1 times, to tolerate the maximum k faults that can happen
in the application. The last split does not have to be followed
by a sensing operation, since we know it will not experience
an error: all faults have already happened. Note, however, that
these k faults can happen in any of the split operations of the
application.

B. Biochemical Application Model

A biochemical application is modeled using a sequential
directed acyclic graph G(V,E) [13], where each node Oi ∈ V
represents an operation. The binding of operations to modules
in the architecture is captured by the function B : V → A ,
where A is the set of the allocated modules from the given
library L . An edge ei j ∈ E from Oi to O j indicates that the

Fig. 2: Biochemical application model example

Fig. 3: Fault-Tolerant Sequencing Graph (FTSG)

output droplet obtained after Oi finishes, will be used as input
for O j. An operation can be activated after all its inputs have
arrived and it issues its outputs when it terminates. We assume
that, for each operation Oi, we know the execution time C

Mk
i on

module Mk = B (Oi), where it is assigned for execution. Fig. 2
depicts part of an application, which consists of 15 operations
O1–O15, and it involves a series of mixing operations (O1, O2,
O3, O5, O6) followed by split operations (O4, O7). Operations
O10–O15 are input operations. In operation O8 one of the
resulted droplets after the O7 split is routed to a waste reservoir
and in O9 we perform a detection operation on the other
droplet. Each operation has a predecessor and a successor, thus
we have introduced two NOP nodes, as source and sink nodes
(i.e., the graph is polar). Let us consider that the operation
O1 is bound to a 2× 4 mixing module denoted by M1 (i.e.,
B (O1) = M1). Then, according to Table I, the execution time
for O1 will be 3 s. We consider routing as part of an operation
time. In this paper we use the data from [14], which allows us
to approximate that the time required to route the droplet one
cell is 0.01 s, an order of magnitude smaller than operation
times, see Table I.

Such a model does not capture the fault occurrences during
split operations. In this paper, we propose a fault-tolerant
sequencing graph G (V ,E ∪EC), see Fig. 3. In G , each split
operation is followed by a sensing operation which detects if
a fault has occurred. For example, operation O16 in Fig. 3 is a
sensing operation for split operation O4. Note that operations
O8–O15 from Fig. 2 are depicted in Fig. 3 as “...” due to
space constraints. During a sensing operation, one of the

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

81	

Straighaorward	
 scheduling	

Adding	
 worst-­‐case	
 slack	
 a-er	
 each	
 split	
 to	
 allow	
 for	
 recovery	

Fig. 5: FTS schedule for two faults in O7

Fig. 6: SS schedule

C. Fault-tolerant Scheduling

However, the presented schedule does not take in account
the possibility of fault occurrence during a split operation.
Let us consider a maximum number k of faults that can
occur during the application execution. The faults are detected
using sensors. The sensors differ from the modules described
above, as they are real devices, so their placement is not
reconfigurable. For the application in Fig. 2, we use one sensor,
placed as in Fig. 6a–d, where it occupies 1 cell (3×3 with
protection borders) at the top right corner of the chip.

The straightforward way to adapt the schedule from Fig. 4a
is to introduce after each split operation enough slack (idle
time) that allows the application to fully recover in case of
faults. The fault-tolerance is achieved through error detection
(sensing) and recovery (merging back the droplets, followed
again by a split). Considering the worst-case, in which all k

faults happen in the same split operation, the required slack
time is calculated as:

tslack = k× (tsensing+ tmerge + tsplit). (1)

We assume that merge and split operations are instantaneous
and we use a sensing time of 5 s, see Table. I. Thus, for
k = 2, the slack required for recovering the split operation
O4 is 2× 5 = 10 s, as depicted in Fig. 6e, with a rectangle

Fig. 7: FTS schedule for faults in O4 and O7

labeled “O4 slack”. A similar slack is introduced for O7, thus
obtaining the fault-tolerant schedule from Fig. 6e, with a worst-
case application completion time δG = 24 s. We call such a
fault tolerant strategy Straightforward Scheduling (SS). The
schedule obtained by using SS wastes a lot of unnecessary
time for recovery. For example, for the schedule in Fig. 6e, if
both faults happened during the split operation O4, then the
maximum number of faults (k = 2) is reached, and hence there
is not need in allocating slack time after split operation O7.

Therefore, in this paper, we propose an improved fault-
tolerant scheduling (FTS) technique, which can take into
account the actual fault-occurrence pattern during the execu-
tion. By taking into account fault-occurrence information, FTS
produces shorter schedules, leading to a reduced worst-case
application completion time δG. FTS relies on the fault-tolerant
sequencing graph G , proposed in Section II, which captures
all the possible fault-scenarios. The FTSG from Fig. 3 is build
starting from the application graph from Fig. 2 and captures all
alternative scenarios for k = 2. Starting from the FTSG G our
FTS algorithm generates a table S where, for each operation,
we have the activation condition (the particular combination
of faults) and the corresponding start time. For example, the
merge operation O20 will be activated at time t = 7 if a fault
has occurred in the split operation O4.1 (see Fig. 7e).

During runtime, depending on the detected fault occur-
rences, a scheduler will activate the corresponding operations.
For example, for the fault scenario captured by the shaded
subgraph in Fig. 3 (first fault in O4 and the second in O7),
the operations in Fig. 7e will be activated at the depicted start
times. For the case when two faults happen in O7 we have
the start times depicted in Fig. 5e. The worst-case application
completion time δG is 19 s for FTS, compared to 24 s for SS.
The difference between FTS and SS results from the sensing
operation time: unnecessary sensing operations are avoided by
FTS. We have considered that a sensing operation takes 5 s.
However, there are capacitance sensor implementations that
can detect a droplet volume in shorter time [15]. In this case,
SS is preferable over FTS due to its simplicity.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

82	

Scheduling	
 the	
 fault-­‐tolerant	
 graph:	

backup	
 schedules	
 for	
 fault	
 scenarios	

Fault-­‐tolerant	
 schedule	
 for	
 two	
 faults	
 in	
 O7	

Fig. 5: FTS schedule for two faults in O7

Fig. 6: SS schedule

C. Fault-tolerant Scheduling

However, the presented schedule does not take in account
the possibility of fault occurrence during a split operation.
Let us consider a maximum number k of faults that can
occur during the application execution. The faults are detected
using sensors. The sensors differ from the modules described
above, as they are real devices, so their placement is not
reconfigurable. For the application in Fig. 2, we use one sensor,
placed as in Fig. 6a–d, where it occupies 1 cell (3×3 with
protection borders) at the top right corner of the chip.

The straightforward way to adapt the schedule from Fig. 4a
is to introduce after each split operation enough slack (idle
time) that allows the application to fully recover in case of
faults. The fault-tolerance is achieved through error detection
(sensing) and recovery (merging back the droplets, followed
again by a split). Considering the worst-case, in which all k

faults happen in the same split operation, the required slack
time is calculated as:

tslack = k× (tsensing+ tmerge + tsplit). (1)

We assume that merge and split operations are instantaneous
and we use a sensing time of 5 s, see Table. I. Thus, for
k = 2, the slack required for recovering the split operation
O4 is 2× 5 = 10 s, as depicted in Fig. 6e, with a rectangle

Fig. 7: FTS schedule for faults in O4 and O7

labeled “O4 slack”. A similar slack is introduced for O7, thus
obtaining the fault-tolerant schedule from Fig. 6e, with a worst-
case application completion time δG = 24 s. We call such a
fault tolerant strategy Straightforward Scheduling (SS). The
schedule obtained by using SS wastes a lot of unnecessary
time for recovery. For example, for the schedule in Fig. 6e, if
both faults happened during the split operation O4, then the
maximum number of faults (k = 2) is reached, and hence there
is not need in allocating slack time after split operation O7.

Therefore, in this paper, we propose an improved fault-
tolerant scheduling (FTS) technique, which can take into
account the actual fault-occurrence pattern during the execu-
tion. By taking into account fault-occurrence information, FTS
produces shorter schedules, leading to a reduced worst-case
application completion time δG. FTS relies on the fault-tolerant
sequencing graph G , proposed in Section II, which captures
all the possible fault-scenarios. The FTSG from Fig. 3 is build
starting from the application graph from Fig. 2 and captures all
alternative scenarios for k = 2. Starting from the FTSG G our
FTS algorithm generates a table S where, for each operation,
we have the activation condition (the particular combination
of faults) and the corresponding start time. For example, the
merge operation O20 will be activated at time t = 7 if a fault
has occurred in the split operation O4.1 (see Fig. 7e).

During runtime, depending on the detected fault occur-
rences, a scheduler will activate the corresponding operations.
For example, for the fault scenario captured by the shaded
subgraph in Fig. 3 (first fault in O4 and the second in O7),
the operations in Fig. 7e will be activated at the depicted start
times. For the case when two faults happen in O7 we have
the start times depicted in Fig. 5e. The worst-case application
completion time δG is 19 s for FTS, compared to 24 s for SS.
The difference between FTS and SS results from the sensing
operation time: unnecessary sensing operations are avoided by
FTS. We have considered that a sensing operation takes 5 s.
However, there are capacitance sensor implementations that
can detect a droplet volume in shorter time [15]. In this case,
SS is preferable over FTS due to its simplicity.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

83	

Scheduling	
 the	
 fault-­‐tolerant	
 graph:	

backup	
 schedules	
 for	
 fault	
 scenarios	

Fault-­‐tolerant	
 schedule	
 for	
 faults	
 in	
 O4	
 and	
 O7	
 Fig. 5: FTS schedule for two faults in O7

Fig. 6: SS schedule

C. Fault-tolerant Scheduling

However, the presented schedule does not take in account
the possibility of fault occurrence during a split operation.
Let us consider a maximum number k of faults that can
occur during the application execution. The faults are detected
using sensors. The sensors differ from the modules described
above, as they are real devices, so their placement is not
reconfigurable. For the application in Fig. 2, we use one sensor,
placed as in Fig. 6a–d, where it occupies 1 cell (3×3 with
protection borders) at the top right corner of the chip.

The straightforward way to adapt the schedule from Fig. 4a
is to introduce after each split operation enough slack (idle
time) that allows the application to fully recover in case of
faults. The fault-tolerance is achieved through error detection
(sensing) and recovery (merging back the droplets, followed
again by a split). Considering the worst-case, in which all k

faults happen in the same split operation, the required slack
time is calculated as:

tslack = k× (tsensing+ tmerge + tsplit). (1)

We assume that merge and split operations are instantaneous
and we use a sensing time of 5 s, see Table. I. Thus, for
k = 2, the slack required for recovering the split operation
O4 is 2× 5 = 10 s, as depicted in Fig. 6e, with a rectangle

Fig. 7: FTS schedule for faults in O4 and O7

labeled “O4 slack”. A similar slack is introduced for O7, thus
obtaining the fault-tolerant schedule from Fig. 6e, with a worst-
case application completion time δG = 24 s. We call such a
fault tolerant strategy Straightforward Scheduling (SS). The
schedule obtained by using SS wastes a lot of unnecessary
time for recovery. For example, for the schedule in Fig. 6e, if
both faults happened during the split operation O4, then the
maximum number of faults (k = 2) is reached, and hence there
is not need in allocating slack time after split operation O7.

Therefore, in this paper, we propose an improved fault-
tolerant scheduling (FTS) technique, which can take into
account the actual fault-occurrence pattern during the execu-
tion. By taking into account fault-occurrence information, FTS
produces shorter schedules, leading to a reduced worst-case
application completion time δG. FTS relies on the fault-tolerant
sequencing graph G , proposed in Section II, which captures
all the possible fault-scenarios. The FTSG from Fig. 3 is build
starting from the application graph from Fig. 2 and captures all
alternative scenarios for k = 2. Starting from the FTSG G our
FTS algorithm generates a table S where, for each operation,
we have the activation condition (the particular combination
of faults) and the corresponding start time. For example, the
merge operation O20 will be activated at time t = 7 if a fault
has occurred in the split operation O4.1 (see Fig. 7e).

During runtime, depending on the detected fault occur-
rences, a scheduler will activate the corresponding operations.
For example, for the fault scenario captured by the shaded
subgraph in Fig. 3 (first fault in O4 and the second in O7),
the operations in Fig. 7e will be activated at the depicted start
times. For the case when two faults happen in O7 we have
the start times depicted in Fig. 5e. The worst-case application
completion time δG is 19 s for FTS, compared to 24 s for SS.
The difference between FTS and SS results from the sensing
operation time: unnecessary sensing operations are avoided by
FTS. We have considered that a sensing operation takes 5 s.
However, there are capacitance sensor implementations that
can detect a droplet volume in shorter time [15]. In this case,
SS is preferable over FTS due to its simplicity.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 27,2010 at 09:06:22 UTC from IEEE Xplore. Restrictions apply.

84

Another approach: Control-Path Design
•  Add checkpoints to monitor outcomes of fluidic operations

–  Checkpoint: storage of the intermediate product droplet
–  Add checkpoints based on error-propagation estimates

•  Assign each checkpoint a re-execution subroutine
–  Subroutine: fluidic operations between checkpoints
–  Correct the detected error by re-executing the subroutine

  Status at
checkpoints

  C1: Pass
  C2: Fail
  C3: Pass

  Re-execution
subroutine for C2

  Operations O1
 and O2

85

Control-Path Design
•  Error detection at the checkpoint

–  Performed for intermediate product droplet at the checkpoint
–  Concentration test (using photo-detector)
–  Volumetric test (using capacitive-sensing circuit)

•  Droplet preparation for re-execution subroutine
–  Copy droplets are consumed during re-execution of a subroutine
–  Output droplets of operations (O0, O5) feeding inputs of subroutine

O0 	

O5 	

copy droplets 	

86
86

Control-Path Design
•  Implementation flow for error recovery at checkpoint C2

Input: product droplet from operation O2

Store product droplet at on-chip
storage unit at checkpoint C2

Move to on-chip detector
 for error-detection

 Error ? 	

 Trigger
 rollback recovery

(re-execute O1 and O2)

 Implement
successive operation O4

 Yes
(Fail)	

 No
(Pass) 	

87

Implementation for Rollback Recovery at
Checkpoint C2

Micro-controller

(software programs)

Microfluidic Array

Bioassay Instructions

Bioassay Results

Time: clock cycle 28
Instruction: start 0087 (C2)

Time: clock cycle 33
Result: error detected at C2

Time: clock cycle 33
Instruction:

(1) stop 0090 (O3)
(2) stop time counter

(3) start 0085(O1) to 0087(C2)

Time: clock cycle 33
Result: no error at C2

Time: clock cycle 33
Instruction:

(1) resume following bioassay
(2) resume time counter

88	

System-­‐Level	
 Design	
 of	
 Microfluidic	
 Biochips	

89	

89	

Biochip	
 Design	
 AutomaCon	
 Overview	

	

90	

Challenge:	

Architecture-­‐specific	
 biochip	
 design	

Biochip	
 from	
 Duke	
 University	

2.1 Biochip Architecture 13

(a) Cell architecture (b) Biochip: array of cells

Figure 2.2: Biochip architecture

The change in the contact angle leads to a change in the wettability of the
droplet, which returns to its hydrophobic state when the voltage is removed.
If the voltage is applied to only one side of the droplet, the gradient in the
contact angle at the two edges of the liquid will cause a surface stress in the
direction of the applied voltage, leading to the movement of the droplet [43].
For example, turning off the middle control electrode and turning on the right
control electrode in Figure 2.2a will force the droplet to move to the right. To
avoid the unexpected mixing of liquids, fluidic constraints must be enforced,
ensuring that a minimum distance is kept between droplets executing on the
microfluidic array. Consider for example droplets d1 and d2 in Figure 2.3a. If
the two droplets are situated on adjacent electrodes (as shown in the figure),
they will tend to merge and form a single large droplet. If merging of the liquids
is to be avoided, a spacing of at least one electrode must be kept between the
two droplets, at any time. A similar situation is presented in Figure 2.3b,
where droplets d1 and d2 are to be transported in the directions shown by the
arrows. Let us consider that the electrodes denoted in the figure by c1 and c2

are activated. Since droplet d2 has two adjacent activated electrodes (c1 and c2)
it will not move significantly, resulting in a merging with droplet d1. In order to
avoid such a situation, there must be only one activated neighboring electrode
for each droplet on the microfluidic array.

A DMB is typically composed of an array of electrodes, together with reservoirs
for storing the samples and reagents. The architecture of the biochip proposed in
Figure 1.2 is optimized for the protocol specific to malaria detection, containing
a general bus used for transporting droplets between the different components
of the chip (e.g., reservoirs, mixer, detector). However, as biochips are expected

