
Abstract
FlexRay will very likely become the de-facto standard for in-vehicle
communications. Its main advantage is the combination of high speed
static and dynamic transmission of messages. In our previous work we
have shown that not only the static but also the dynamic segment can
be used for hard-real time communication in a deterministic manner. In
this paper, we propose techniques for optimising the FlexRay bus ac-
cess mechanism of a distributed system, so that the hard real-time
deadlines are met for all the tasks and messages in the system. We have
evaluated the proposed techniques using extensive experiments.

1. Introduction
Currently, more and more real-time systems are implemented on dis-
tributed architectures in order to meet reliability, functional, and
performance constraints. Communication in such systems can be trig-
gered either dynamically, in response to an event (event-driven), or
statically, at predetermined moments in time (time-driven). Therefore,
on one hand, there are protocols that schedule the messages statically,
based on the progression of time, such as the TTCAN [7], and Time-
Triggered Protocol (TTP) [9]. A drawback of such protocols is their
lack of flexibility. On the other hand, there are communication proto-
cols where message scheduling is performed dynamically, such as
CAN [2] or Byteflight [1].

In order to guarantee that real-time requirements are fulfilled, tim-
ing analysis for CAN [11] and TTP based buses [12] has been proposed.

A large consortium of automotive manufacturers and suppliers has
recently proposed a hybrid type of protocol, namely the FlexRay [6].
FlexRay allows the sharing of the bus among event-driven (ET) and
time-driven (TT) messages, thus offering the advantages of both
worlds. FlexRay will very likely become the de-facto standard for in-
vehicle communications. FlexRay is composed of static (ST) and dy-
namic (DYN) segments, which are arranged to form a bus cycle that is
repeated periodically. The ST segment is similar to TTP, and employs
a generalized time-division multiple-access (GTDMA) scheme. The
DYN segment is similar to Byteflight and uses a flexible TDMA (FTD-
MA) bus access scheme. While the importance of FlexRay has been
quickly recognised, neither analysis nor optimisation approaches for the
protocol have been available. In [5], the authors consider the case of a
hard real-time application implemented on a FlexRay bus. However, in
their discussion they restrict themselves exclusively to the static seg-
ment, which means that, in fact, only the classical problem of
communication scheduling over a TDMA bus is considered. The per-

formance analysis of the Byteflight protocol, which is similar to the
DYN segment of FlexRay, is analyzed in [3]. The authors assume a very
restrictive “quasi-TDMA” transmission scheme for time-critical mes-
sages, which basically means that the DYN segment would behave as
an ST (TDMA) segment in order to guarantee timeliness.

In [14] we have proposed timing analysis techniques for FlexRay,
which are able to bound the message transmission times on both the ST
and DYN segments. This was the first step towards enabling the use of
this protocol in a systematic way for time critical applications. The sec-
ond step towards an efficient use of FlexRay is taken in this paper. We
propose an approach for determining a FlexRay bus configuration
which is adapted to the particular features of an application and guaran-
tees that all time constraints are satisfied. Heuristics for solving the bus
access optimisation problem with FlexRay are proposed. While the op-
timisation techniques proposed by us can also be applied to other
heterogeneous distributed applications, solving the particular problem
of analysis and optimisation of Flexray-based systems is, today, of par-
ticular importance for the automotive industry.

The paper is organised in eight sections. Section 2 presents the sys-
tem architecture, and Section 3 introduces the FlexRay media access
control. In Section 4 we present the application model and in Section 5
we briefly introduce our timing analysis for systems with the FlexRay
protocol. In Section 6 we describe the proposed optimisation tech-
niques. Section 7 presents the experimental results followed by
conclusions in Section 8.

2. System Model
We consider architectures consisting of nodes connected by a FlexRay
communication channel (see Fig. 1). Each processing node is com-
posed of a CPU and a communication controller that are interconnected
through a two-way controller-host interface (CHI). The controller runs
independently of the node’s CPU and implements the FlexRay protocol
services.

Each node runs a real-time kernel that contains two schedulers, for
static cyclic scheduling (SCS) and fixed priority scheduling (FPS), re-
spectively. When several tasks are ready on a node, the task with the
highest priority is activated, and preempts the other tasks. SCS tasks
are not preemptable and their start time is off-line fixed in the schedule
table. FPS tasks can only be executed in the slack of the SCS schedule
table. FPS tasks are scheduled based on priorities. SCS activities are
triggered based on a local clock in each processing node. The synchro-
nization of local clocks throughout the system is provided by the
communication protocol [6].

Figure 1.  FlexRay Communication Cycle Example
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3. The FlexRay Communication Protocol
Let us consider the example in Fig. 1 where we have three nodes, N1 to
N3 sending messages ma, mb,... mh using a FlexRay bus.

In FlexRay, the communication takes place in periodic cycles
(Fig. 1.b depicts two cycles of length gdCycle). Each cycle contains a
static (ST) segment and a dynamic (DYN) segment. The ST and DYN
segment lengths can differ, but are fixed over the cycles. We denote
with STbus and DYNbus the length of these segments. Both the ST and
DYN segments are composed of several slots. In the ST segment, the
slots number is fixed, and the slots have constant and equal length, re-
gardless of whether ST messages are sent or not over the bus in that
cycle. The length of an ST slot is specified by the FlexRay global con-
figuration parameter gdStaticSlot [6]. In Fig. 1 there are three static
slots for the ST segment. 

The length of the DYN segment is specified in number of “minis-
lots”, and is equal to gNumberOfMinislots. Thus, during the DYN
segment, if no message is to be sent during a certain slot, then that slot
will have a very small length (equal to the length gdMinislot of a so
called minislot), otherwise the DYN slot will have a length equal with
the number of minislots needed for transmitting the whole message [6].
This can be seen in Fig. 1.b, where DYN slot 2 has 3 minislots (4, 5, and
6) in the first bus cycle, when message me is transmitted, and one minis-
lot (denoted with “MS” and corresponding to the minislot counter 2) in
the second bus cycle when no message is sent.

During any slot, only one node is allowed to send on the bus, and that
is the node which holds the message with the frame identifier (FrameID)
equal to the current value of the slot counter. There are two slot counters,
corresponding to the ST and DYN segments, respectively. The assign-
ment of frame identifiers to nodes is static and decided offline, during the
design phase. Each node that sends messages has one or more ST and/or
DYN slots associated to it. The bus conflicts are solved by allocating off-
line one slot to at most one node, thus making it impossible for two nodes
to send during the same ST or DYN slot. 

In Fig. 1, node N1 has been allocated ST slot 2 and DYN slot 3, N2
transmits through ST slots 1 and 3 and DYN slots 2 and 4, while node N3
has DYN slots 1 and 5. For each of these slots, the CHI reserves a buffer
that can be written by the CPU and read by the communication controller
(these buffers are read by the communication controller at the beginning
of each bus slot, in order to prepare the transmission of frames). 

For ST messages, we consider that the CPU in each node holds a
schedule table with their transmission times. When the time comes for an
ST message to be transmitted, the CPU will place that message in its as-
sociated ST buffer of the CHI. For example, ST message mb sent from
node N1 has an entry “2/2” in the schedule table, specifying that it should
be sent in the second slot of the second ST cycle. 

For the DYN messages, the designer specifies their FrameID. For ex-
ample, message me has the frame identifier “2”, while messages mg and
mf have both FrameID 4. If two messages with the same frame identifier
are ready to be sent in the same bus cycle, a priority scheme is used to de-
cide which one will be sent first. Each DYN message mi has associated a
priority, prioritymi

. Messages with the same FrameID will be placed in an
output queue ordered by their priorities.

At the beginning of each communication cycle, the communication
controller of a node resets the slot and minislot counters. At the begin-
ning of each communication slot, the controller verifies if there are
messages ready for transmission (present in the CHI send buffers). In
the example in Fig. 1 we assume that all messages are ready for trans-
mission before the first bus cycle.

Messages packed into ST frames will be transmitted according to
the schedule table. For example, in Fig. 1, messages ma and mc are
placed into the associated ST buffers in the CHI in order to be transmit-

ted in the first bus cycle. However, messages selected and packed into
DYN frames will be transmitted during the DYN segment of the bus cy-
cle only if there is enough time until the end of the DYN segment. This
is verified by comparing if, in the moment the DYN slot counter reaches
the value of the FrameID for that message, the value of the minislot
counter is smaller than a given value pLatestTx. The value pLatestTx is
fixed for each node during the design phase, depending on the size of
the largest DYN frame that node will have to send during run-time. For
example, in Fig. 1, message mh is ready for transmission before the first
bus cycle starts, but, after message mf is transmitted, there is not enough
room left in the DYN segment. This will delay the transmission of mh
for the next bus cycle. 

4. Application Model
We model an application A as a set of directed, acyclic, polar graphs
Gi(Vi, Ei) ∈ A. A node τij ∈ Vi represents the j-th task or message in Gi.
An edge eijk ∈ Ei from τij to τik indicates that the output of τij is the in-
put of τik. A task becomes ready after all its inputs have arrived and it
issues its outputs when it terminates. The communication time between
tasks mapped on the same processor is considered to be part of the task
worst-case execution time and is not modeled explicitly. Communica-
tion between tasks mapped to different processors is by message
passing over the bus and is modeled as a communication task inserted
on the arc connecting the sender and the receiver task. 

We consider that the scheduling policy for each task is known (ei-
ther SCS or FPS), and we also know which messages are ST and which
are DYN. For a task τij ∈ Vi,  is the node to which τij is assigned
for execution. When executed on , a task τij has a known worst-
case execution time . We also consider that the size of each message
m is given, which can be directly converted into communication time
Cm on the particular bus, knowing the speed of the bus and the size of
the frame that stores the message:

Cm = Frame_size(m) / bus_speed. (1)
Tasks and messages activated based on events also have a priority,

. All tasks and messages belonging to a task graph Gi have the
same period  =  which is the period of the task graph. A deadline

 is imposed on each task graph Gi. In addition, tasks can have asso-
ciated individual release times and deadlines. If communicating tasks
are of different periods, they are combined into a larger graph capturing
all task activations for the hyper-period (LCM of periods).

5. Timing Analysis
Given a system as described in the previous sections, the tasks and
messages have to be scheduled. For SCS tasks and ST messages, this
means building the schedule tables, while for the FPS tasks and DYN
messages we have to determine their worst case response times.

Two aspects have to be considered during such a timing analysis:
 1. When performing the schedulability analysis for the FPS tasks and

DYN messages, one has to take into consideration the interference
from the SCS activities.

 2. Among the possible correct schedules for SCS activities, it is im-
portant to build one which favours as much as possible the
schedulability of FPS activities.
Fig. 2 presents the global scheduling and analysis algorithm, in

which the main loop consists of a list-scheduling [4] based algorithm
that iteratively builds the static schedule table with start times for SCS
tasks and ST messages. A ready list (TT_ready_list) contains all SCS
tasks and ST messages which are ready to be scheduled (they have no
predecessors or all their predecessors have already been scheduled).
From the ready list, tasks and messages are extracted one by one (line
2) to be scheduled on the processor they are mapped to (line 4), or into
a static bus-slot associated to that processor on which the sender of the
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message is executed (line 6), respectively. The priority function which
is used to select among ready tasks and messages is a modified critical
path metric [12]. Let us consider a particular task τij selected from the
ready list to be scheduled. We consider that  is the earliest time
moment which satisfies the condition that all preceding activities (tasks
or messages) of τij are finished (line 10). With only the SCS tasks in the
system, the straightforward solution would be to schedule τij at the first
time moment after  when  is free. Similarly, an ST mes-
sage will be scheduled in the first available ST slot associated with the
node that runs the sender task for that message.

As presented by us in [13], when scheduling SCS tasks, one has to
take into account the interference they produce on FPS tasks. The func-
tion schedule_TT_task places a SCS task in the static schedule in such
a way that the increase of worst-case response times for FPS tasks is
minimised. This increase is determined by comparing the worst-case re-
sponse times of FPS tasks obtained with our holistic schedulability
analysis before and after inserting the new SCS task in the schedule.

In [14] we presented the holistic schedulability analysis for
FlexRay-based systems (which is called in line 11 of the algorithm in
Figure 2). In the next subsection we only outline a small part of the anal-
ysis which is concerned with the delay of DYN messages.
5.1 Schedulability Analysis of DYN Messages
The worst case response time Rm of a message m transmitted in the
DYN segment of a FlexRay bus is given by the following equation:

(2)
where Jm is the message jitter inherited from the sender task, Cm is the
message communication time (see Section 4), and wm represents the
worst case delay caused by the transmission of ST frames and higher
priority DYN messages during a given time interval t. 

For the calculation of wm, we start from the observations that the
transmission of a ready DYN message m during the DYN slot
FrameIDm can be delayed because of the following causes:
• local messages with higher priority, that use the same frame iden-

tifier as m. We will denote this set of higher priority local mes-
sages with hp(m). For example, in Fig. 1.a, messages mg and mf
share FrameID 4, thus hp(mg) = {mf}.

• any messages in the system that can use DYN slots with lower
frame identifiers than the one used by m. We will denote this set of
messages having lower frame identifiers with lf(m). In Fig. 1.a,
lf(mg) = {md, me}.

• unused DYN slots with frame identifiers lower than the one used
for sending m (though such slots are unused, each of them still
delays the transmission of m for an interval of time equal with the
length gdMinislot of one minislot); we will denote the set of such
minislots with ms(m). Thus, in the example in Fig. 1.a, ms(mg) =
{1, 2, 3}, and ms(mf) = {3}.

We next focus on determining the delay wm(t) in Eq. (2). The delay
produced by the elements in hp(m), lf(m) and ms(m) can extend to one
or more bus cycles. Hence, the delay wm has the following expression:

(3)
where σm is the longest delay suffered during one bus cycle if the mes-
sage is generated by its sender task after its slot has passed.
BusCyclesm(t) is the number of bus periods for which the transmission
of m is not possible because transmission of messages from hp(m) and
lf(m) and because of minislots in ms(m). The delay  denotes the
time, in the last bus cycle, until m is sent, and is measured from the be-
ginning of the bus cycle in which message m is sent until the actual
transmission of m starts.

In order to solve the recurrence Eq. (3), we start from a value of t=
0 and compute wm(t). If wm(t) > t then we assign t = wm(t) and compute
iteratively the solution until wm(t) = t.

To compute the value BusCyclesm we start with the observation that
a message m with FrameIDm cannot be sent by a node Np during a bus
cycle b if at least one of the following conditions is fulfilled:
 1. There is too much interference from elements in lf(m) and ms(m),

so that the minislot counter exceeds the value , mak-
ing impossible for Np to start the transmission of m during b.

 2. The DYN slot FrameIDm in b is used by another local higher pri-
ority message from hp(m).
Whenever a bus cycle satisfies at least one of these two conditions,

it will be called “filled”, since it is unusable for the transmission of the
message m under analysis. In the worst case, the value BusCyclesm(t) is
then the maximum number of bus cycles that can be filled using ele-
ments from hp(m), lf(m) and ms(m).

In [14], we have proposed both exact approaches and polynomial
complexity heuristics to compute all individual components of the delay
wm(t) and, finally, the worst case response times Rm.

6. Bus Access Optimisation
The design of a FlexRay bus configuration for a given system consists
of a collection of solutions for the following subproblems: (1) deter-
mine the length of an ST slot, (2) the number of STslots, and (3) their
assignment to nodes; (4) determine the length of the DYN segment, (5)
assign DYN slots to nodes, and (6) FrameIDs to DYN messages.

The choice of a particular bus configuration is extremely important
when designing a specific system, since its characteristics heavily influ-
ence the global timing properties of the application. 

For example, notice in Fig. 3 how the structure of the ST segment
influences the response time of message m3 (for this example we ig-
nored the DYN segment). The figure considers a system with two
nodes, N1 that sends message m1 and N2 that sends messages m2 and m3.
The message sizes are depicted in the figure. In a first scenario, the ST
segment consists of two slots, slot1 used by N1 and slot2 used by N2. In
this situation, message m3 can be scheduled only during the second bus
cycle, with a response time of 16. If the ST segment consists of 3 slots
(Fig. 3.b), with N2 being allocated slot2 and slot3, then N2 is able to send
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Figure 2.  Global Scheduling Algorithm

GlobalSchedulingAlgorithm()
1 while TT_ready_list is not empty
2 select τij from TT_ready_list 
3 if τij is a SCS task then
4 schedule_TT_task(τij, Nodeτij

)
5 else // τij is a ST message
6 schedule_ST_msg(τij, Nodeτij

)
7 end if
8 update TT_ready_list
9 end while

end StaticScheduling

schedule_TT_task(τij, Nodeτij
)

10 find first available time t moment after ASAPτij
 on Nodeτij11 schedule τij after t on Nodeτij,

 so that holistic analysis produces
minimal worst-case response times for FPS tasks and DYN messages
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both its messages during the first bus cycle. The configuration in
Fig. 3.c consists of only two slots, like in Fig. 3.a. However, in this case
the slots are longer, such that several messages can be transmitted dur-
ing the same frame, producing a faster response time for m3 (one should
notice, however, that, by extending the size of the ST slots, we delay the
reception of message m1 and m2).

Similar optimisations can be performed with regard to the DYN
segment. Let us consider the example in Fig. 4, where we have two
nodes N1 and N2. Node N1 is transmitting messages m1 and m3, while
N2 sends m2. Fig. 4 depicts three configuration scenarios, a-c. Table A
depicts the frame identifiers for the scenario in Fig. 4.a, while Table B
corresponds to Fig. 4.b-c. The length of the ST slot has been set to 8. In
Fig. 4.a, the length of the DYN segment is not able to accommodate
both m1 and m2, thus m2 will be sent during the second bus cycle, after
the transmission of m3 ends. Fig. 4.b and 4.c depict the same system but
with a different allocation of DYN slots to messages (Table B). In
Fig. 4.b we notice that m3, which now does not share the same frame
identifier with m1, can be sent during the first bus cycle, thus m2 will be
transmitted earlier during the second cycle. Moreover, if we enlarge the
size of the DYN segment as in Fig. 4.c, then the worst-case response
time of m2 will considerably decrease since it will be sent during the
first bus cycle (notice that in this case m3, having a greater frame iden-
tifier than that of m2, will be sent only during the second cycle).
6.1 The Basic Bus Configuration (BBC)
In this section we construct a basic bus configuration which results
from analyzing the minimal bandwidth requirements of the applica-
tion. The BBC algorithm is presented in Fig. 5 and it starts by assigning
a FrameID to each of the DYN messages (implicitly DYN slots are as-
signed to the nodes that generate the message). This assignment (line
1) is performed under the following guidelines:
• Each DYN message receives an unique FrameID; this is recom-

mended in order to avoid delays due to messages in the set hp(m),
as discussed in Section 5.1. For example, in Fig. 4, we notice that
message m3 has to wait for an entire gdCycle when it shares a
frame identifier with the higher priority message m1 (Fig. 4.a),
which is not the case when it has its own FrameID (Fig. 4.b).

• DYN messages with a higher criticality receive smaller
FrameIDs.; this is required in order to reduce, for a given mes-
sage, the delay produced by lpf(m) and ms(m) (see Section 5.1).
We capture the criticality of a message m as:

, (4)

where Dm is the deadline of the message and LPm is the longest path
in the task graph from the root to the node representing the communica-
tion of message m. A small value of CPm (higher criticality) indicates
that the message should be assigned a smaller FrameID.

In the next step, the algorithm sets the number of ST slots in a bus
cycle (line 2). Since each node that generates ST messages needs at least
one ST slot, the minimum number of ST slots is nodesST, the number of
nodes that send ST messages. Next, the size of an ST slot is set so that
it can accommodate the largest ST message in the system (line 3). In
line 4, the configuration of the ST segment is completed by assigning in
a round robin fashion one ST slot to each node that requires one (i.e. in
a system with four nodes, the ST segment will contain four slots: node
1 will use slot 1, node 2 will use ST slot 2, etc.).

In order to determine the size of the DYN segment, we have to con-
sider the fact that such a size is restricted by the protocol specifications
(there can be at most 7994 minislots in a DYN segment) and by the ap-
plication characteristics (the DYN segment should be large enough in
order to accommodate the transmission of the largest DYN message; in
addition, since we assumed that each DYN message has an unique
FrameID, the DYN segment should have a number of minislots greater
or equal than the number of DYN messages in the system). We denote
with  and  the limits of this interval (line 5).

Since the sizes of the ST and DYN segments are now fixed, the bus
period can be easily computed (line 6). Line 7 introduces a restriction
imposed by the FlexRay specification, which limits the maximum bus
cycle length to 16 ms.

Once we have defined the structure of the bus cycle, we can analyse
the entire system (line 8) by performing the global static scheduling and
schedulability analysis described in Section 5. The resulted system is
then evaluated using a cost function that captures the schedulability de-
gree of the system (line 9):

(5)

where Rij and Dij are the worst case response times and respectively the
deadlines for all the activities τij in the system. The function is strict pos-
itive if at least one task or message in the system misses its deadline, and
negative if the whole system is schedulable. Its value is used in line 10,
when deciding whether the current configuration is the best so far.
6.2 Heuristic for Optimised Bus Configuration (OBC)
The Basic Bus Configuration (BBC) generated as in the previous sec-
tion can result in an unschedulable system (the cost function in Eq. (5)
is positive). In this case, additional points in the solution space have to
be explored. In Fig. 6 we present the OBC heuristic that further ex-
plores the design space in order to find a schedulable solution.

While for the BBC the number and size of ST slots has been set to
the minimum (gdNumberOfStaticSlotsmin = nodesST, gdStaticSlotmin =
max(Cm)), the proposed heuristic explores different alternatives be-
tween these minimal values and the maxima imposed by the protocol
specification (the for loops over lines 2 - 9 and 4 - 8). Thus, during a bus
cycle there can be at most gdNumberOfStaticSlotsmax = 1023 ST slots (line

Figure 4.  Optimisation of the DYN Segment
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1 Assign FrameIDs to DYN messages
2 gdNumberOfStaticSlots = nodesST
3 gdStaticSlot = max (Cm), m is an ST message
4 assign one ST slot to each node (round robin)
5 for  =  to  step gdMinislot do
6 gdCycle = STbus + DYNbus
7 if gdCycle < 16000 µs then
8 GlobalSchedulingAlgorithm()
9 Compute cost function Cost
10 if Cost < BestCost then save current solution
11 endif
12 end for
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3), while the size of an ST slot can take at most gdStaticSlotmax = 661 ma-
croticks. In addition, the payload for a FlexRay frame can increase only
in 2-byte increments, which according to the FlexRay specification
translates into 20 gdBit, where gdBit is the time needed for transmitting
one bit over the bus (line 4).

The assignment of ST slots (line 5) to nodes is performed, like for
the BBC, in a round robin fashion, with the difference that each node
can have not only one but a quota of ST slots, determined by the ratio
of ST messages that it transmits (i.e. a node that sends more ST messag-
es will be allocated more ST slots)

For each alternative configuration of the ST segment, the algorithm
searches for that size of the DYN segment that allows the DYN messag-
es to meet their deadlines and the cost function in Eq. (5) to be
minimised (line 6). A straight forward alternative to perform this would
be to evaluate all possible sizes of the DYN segment inside a for loop,
like in the BBC algorithm (lines 5-12, Fig. 5). However, as opposed to
the BBC, in the proposed heuristic the selection of the DYN segment
length is nested inside two for loops (lines 2 and 4, Fig. 6). Moreover,
the estimation of each individual solution alternative implies a com-
plete scheduling and schedulability analysis of the systems (like in line
8, Fig. 5). Therefore, in the context of the heuristic in Fig. 6, such a
straight forward approach is not affordable, due to excessively long run
times. This is important, since, in the context of a system-level design
framework, the bus access optimisation heuristic can be placed inside
other optimisation loops, e.g. for task mapping. Thus, instead of evalu-
ating the cost function in (Eq. (5)) for all possible lengths of the DYN
segment, the evaluation should be performed for only a reduced num-
ber of points while, at the same time, obtaining a close to optimal
result. The proposed solution is presented in the next subsection.

6.2.1 Curve-fitting Based Heuristic for DYN Segment Length
Let us go back to the schedulability analysis in Section 5.1. One can
notice in Eq. (3) that the dominant part of the message delay is repre-
sented by the product between BusCyclesm (number of bus cycles that
the message under analysis has to wait) and gdCycle (length of the bus
cycle). If we consider a time interval t on which a fixed set of messages
S is generated, then a shorter size for the bus cycle means that fewer
messages will be served during such a cycle; consequently, several
such bus cycles are needed to transmit all the messages in S (a shorter
gdCycle results in larger BusCyclesm). A longer bus cycle generally
means that more messages can be sent during the same bus period, re-
sulting in a lower number of bus cycles required for the transmission
of all messages (a larger gdCycle results in smaller BusCyclesm). This
trade-off is illustrated in Fig. 7, where we consider a system composed
of 45 tasks which communicate through 10 static and 20 dynamic mes-
sages. We have performed the response time analysis for this system,
assuming the length of the dynamic segment between 2285.4 and
13000 µs. The static segment size is fixed at 1286 and, consequently,
the total size of the bus cycle is varying between 3571.4 and 14286µs.
Fig. 7 shows the response time for several dynamic messages in this
system. The curves confirm the trade-off outlined above. Large sizes
of the bus cycle lead to increased response times. However, very short
bus cycles will also lead to large response times due to the fact that the
number of cycles to wait (BusCyclesm in Eq. (3)) increases. This phe-

nomenon has been confirmed by a large number of experiments similar
to those illustrated in Fig. 7. This regularity of the dependence re-
sponse time vs. size of the dynamic segment is at the foundation of our
heuristic presented in Fig. 8 (which is invoked in line 6 of the OBC al-
gorithm in Fig. 6). Instead of exhaustively perform the scheduling and
schedulability analysis for all possible values of the DYN segment
length, we will evaluate response times for only a small number of
points and use a curve fitting approach to extrapolate the response time
corresponding to all other points.

The algorithm in Fig. 8 stores, in the set Points, the characteristics
(DYN segment length, message response times, cost function) for a re-
duced set of bus configurations, The set initially contains only a small
number (in our experiments we used five) of DYN segment sizes in the
interval [ , ] (line 1). For each alternative configuration
in this initial set, our heuristic will run the global scheduling and analy-
sis algorithm, in order to determine the worst-case response times of all
tasks and messages and the corresponding values of the cost function
(line 3). For all possible values of the size of the DYN segment (line 6),
the response times of messages in the system are then interpolated1,
based on the response times computed for the configurations stored in
the set Points (lines 8-10). Next, the point DYNbus with the best sched-
ulability degree Costmin (i.e. minimum cost function) is investigated
(line 11). The following alternatives have to be considered:

Figure 6.  OBC Heuristic

1 Assign FrameIDs to DYN messages (similar to BBC, Fig. 5, line 1)
2 for gdNumberOfStaticSlots = 
3  gdNumberOfStaticSlotsmin to gdNumberOfStaticSlotsmax do
4 for gdStaticSlot = gdStaticSlotmin to gdStaticSlotmax step 20 * gdBit do
5 Assign ST slots to nodes in round-robin fashion
6 DYNbus = Determine_DYN_segment_length()
7 End optimisation if feasible DYNbus and 
8 end for
9 end for

Cost 0≤

1. For curve fitting, we use a Newton polynomial, which is extremely 
fast, in particular when recalculating the values after a new point has 
been added to the set Points.

Figure 7.  Influence of DYN Segment Length on 
Message Response Times
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Figure 8.  Determining the Size of the DYN segment

Determine_DYN_segment_length()
1 Points = { , , ,..., }
2 for DYNbus in Points do
3 GlobalSchedulingAlgorithm()
4 Store message response times Rm(DYNbus) and cost function Cost
5 end for
6 for DYNbus =  to  step gdMinislot do
7 if DYNbus is in Points then continue;
8 foreach DYN msg m interpolate Rm(DYNbus) based on Rm(Points)
9 Compute and store Cost(interpolated response times)
10 end for
11  select DYNbus with minimum stored Costmin
12  if and then return DYNbus
13  if and then
14 GlobalSchedulingAlgorithm(); if schedulable then return DYNbus;
15 if not termination condition then Add DYNbus to Points; goto 6 

else return infeasible DYNbus 16 end if
17 if then GlobalSchedulingAlgorithm(); Add DYNbus to Points
18 else select (DYNbus’, Cost’min) for which response times are interpolated;
19 GlobalSchedulingAlgorithm(); Add DYNbus’ to Points
20 endif
21 if not termination condition then goto 6 else return infeasible DYNbus

DYNbus
min

DYNbus
1

DYNbus
2

DYNbus
max

DYNbus
min

DYNbus
max

Costmin 0≤ DYNbus Points∈
Costmin 0≤ DYNbus Points∉

DYNbus Points∉

DYNbus
min

DYNbus
max



•  and  (the system is schedulable and
the cost function is based on exact schedulability analysis): we
have found the result (line 12).

•  and  (the systems is schedulable but
the cost function is based on interpolated values): schedulability
analysis is performed for the point DYNbus; if the system is sched-
ulable, we have found the result (line 14), otherwise DYNbus is
included into the set Points and the process is continued with a
more exact interpolation (line 15).

•  (the system is not schedulable): the process is contin-
ued with a more exact interpolation, by adding one more point
into the set Points. If , DYNbus will be added to
Points for the next iteration (line 17); if this is not the case, then
the point  will added, which is the interpolated point cor-
responding to the smallest cost function (lines 18-19).
The algorithm stops if a schedulable solution is found or if a certain

termination condition is met. This condition is that a certain number
Nmax of iterations have been performed without finding a schedulable
solution and without any improvement of the cost function (in our ex-
periments we had Nmax=10).

7. Experimental Results
In order to evaluate our optimisation algorithms we generated 7 sets of
25 applications representing systems of 2 to 7 nodes respectively. We
considered 10 tasks mapped on each node, leading to applications with
a number of 20 to 70 tasks. Depending on the mapping of tasks, each
such system had up to 60 additional nodes in the application task graph
due to the communication tasks. The tasks were grouped in task graphs
of 5 tasks each. Half of the tasks in each system were time triggered and
half were event triggered. The execution times were generated in such
a way that the utilisation on each node was between 30% and 60%
(similarly, the message transmission times were generated so that the
bus utilisation was between 10% and 70%). All experiments were run
on an AMD Athlon 2400+ PC.

We have performed the bus optimisation using four approaches: (1)
BBC (Section 6.1), (2) OBCCF - the OBC heuristic with the curve fit-
ting procedure (Section 6.2), (3) OBCEE - the OBC heuristic with an
exhaustive exploration of the sizes for the DYN segment, and (4) SA -
a Simulated Annealing [8] based design space exploration, which we
implemented with the goal to provide a base-line for evaluation of the
proposed heuristics. In order to produce close to optimal results we have
performed extremely long runs (several hours) using the SA-based al-
gorithm with moves concerning not only the number and size of static
slots and size of the DYN segment, but also the assignment of slots to
nodes and FrameIDs to messages.

Fig. 9 shows the results obtained after running our algorithms on the
generated applications. On the left side of the figure one can see the av-
erage percentage deviation for the cost function obtained with BBC,
OBCCF and OBCEE respectively, relative to the cost function obtained
with SA. On the right side we present the computation times required

by each algorithm. One can notice that the BBC approach runs in almost
zero time, but it fails to find any schedulable configurations for systems
with more than 3 processors. On the other hand, the other approaches
continue to find schedulable solutions even for larger systems. Compar-
ing OCCF and OBCEE, we can observe that both produce results which
are very close to the reference values produced by SA (max. 4-5% de-
viation). OBCCF generates results which are less than 0.5% away from
those produced by OBCEE, but with a run time that is up to 2 orders of
magnitude smaller. This confirms the high efficiency of our curve fit-
ting based optimisation.

Finally, we considered a real-life example implementing a vehicle
cruise controller that consists of 54 tasks and 26 messages grouped in 4
task graphs that are mapped over 5 nodes. Two of the task graphs were
time triggered and the other two were event triggered. Configuring the
system using the BBC approach took less than 5 seconds but resulted in
an unschedulable system. Using the OBCCF approach took 137 sec-
onds, while the OBCEE required 29 minutes. The cost function
obtained by OBCCF was 1.2% larger in the solution obtained with OB-
CEE. In both cases the selected bus configuration resulted in a
schedulable system.

8. Conclusions
FlexRay is rapidly becoming the de-facto standard for automotive elec-
tronics. The performance of systems based on such a protocol can be
improved by carefully adapting the bus cycle to the particular require-
ments of the application. In this paper, we have presented bus
optimisation approaches for systems based on FlexRay and we evalu-
ated them through extensive experiments. Together with the timing
analysis proposed by us in [14], this constitutes an important step to-
wards a systematic and efficient use of FlexRay for time critical
applications.
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Figure 9.  Evaluation of Bus Optimisation Algorithms
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