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Abstract

e present an approach to the analysis and optimization of heterogeneous
distributed embedded systems for hard real-time applications. The systems
are heterogeneous not only in terms of hardware components, but also in
terms of communication protocols and scheduling policies. When several
scheduling policies share a resource, they are organized in a hierarchy. In
this paper, we address design problems that are characteristic to such hier-
archically scheduled systems: assignment of scheduling policies to tasks,
mapping of tasks to hardware components, and the scheduling of the activ-
ities. We present algorithms for solving these problems. Our heuristics are
able to find schedulable implementations under limited resources, achiev-
ing an efficient utilization of the system.

1. Introduction

There hasbeen along debatein thereal -time and embedded systems commu-
nities concerning the advantages and disadvantages of different scheduling
approaches [1, 7, 9, 21]. Satic cyclic scheduling (SCS) has the advantage of
predictability and testability [9]. However, such static approaches|ack the flex-
ibility offered by event-driven approaches such as fixed priority scheduling
(FPS) and earliest deadlinefirst (EDF). EDF isoptimal on single processor sys-
tems, and in general leads to a high, and thus efficient, resource utilization [7].
In addition, advancesin the area of priority-based preemptive scheduling show
that predictable applicationswith hard real-time guarantees can also be handled
with FPS and EDF gtrategies[1, 18].

Aninteresting comparison of scheduling approaches, from amoreindustrid,
in particular automotive perspective, can be found in [12]. Their conclusion is
that one has to choose the right scheduling approach depending on the particu-
larities of the scheduled processes. This means not only that there is no single
“best” approach to be used, but dso that inside a certain application several
scheduling approaches should be used together. When several scheduling pol-
iciessharearesource, they can beorganized inahierarchy, whereahigher level
scheduler controls the activation of alower level scheduler [10].

Thesameistruefor the communicationinfrastructure. A survey and compar-
ison of communication protocols for safety-critica embedded systems is
available in [17]. On one hand, there are protocols that schedule the messages
satically, at predetermined momentsin time, for example, the Time-Triggered
Protocol (TTP) [9]. On the other hand, there are communication protocols
where message scheduling is performed dynamically, in response to an event,
such as Controller Area Network (CAN) [3]. However, there is dso a hybrid
type of communication protocols, such as the one suggested in [14]. A mixed
protocol (FlexRay) has been proposed by a consortium, to be used in automo-
tive applications [6], allowing the sharing of the bus by event-driven and time-
driven messages. In [5], the authors describe the “Universal Communication
Mode” (UCM), aframework for modelling at a high level of abstraction the
communication infrastructure in automotive applications.

Thereisalarge quantity of research [2, 18] related to scheduling and sched-
ulability analysis, but few approaches have been proposed that can
systematically handle heterogeneous scheduling policies on distributed sys-
tems. Some researchers have shown how two distinct scheduling policies can
be combined in a system. Tindell provides an analysis for FPS processes com-
municating over a time-divison multiple access (TDMA) bus [19]. When
severa scheduling policies are used together, they can also share the same re-
source. Our previous research has shown how SCS and FPS can be analyzed
together in asystem [16]. Gonzaléz Harbour has recently shown how FPS and
EDF can be analyzed together when sharing the same processor [13].

Although analysis approaches exist for many protocols[17], few of them can
handle hybrid protocols. Almeidahas analyzed event- and time-driven trafficin
FTT-CAN [14]. Our previous research has provided an analysis and optimiza-
tion for the UCM [16].

In this paper, we areinterested in the analysis and optimization of distributed
embedded systems where several scheduling palicies can be used for tasks and
messages. Hence, in this paper we support combinations of SCS, FPS and EDF
scheduling policies on the same node or on different nodes. Our focusin this
paper ison design optimization problems characterigtic to such systems. Our d-
gorithms derive optimized implementations such that the timing constraints of
thefinal implementation are guaranteed.

« First, we have extended our previous anaysis approach [16] to handle hi-
erarchically scheduled systems. We have proposed a holistic scheduling
agorithm that builds the SCS tables and determines the FPS priorities,
and provides aglobal analysis of the system.

» Once we can evaluate the schedulability of an implementation, we have
developed an optimization approach to the assignment of scheduling pol-
icies to tasks and the mapping of tasks to the hardware nodes of the
architecture.

Thispaper isorganized in several sections. The next two sections present the
hardware and software architectures considered, and the abstract model of the
application. Section 4 presents the design optimization problems addressed,
while Section 5 proposes optimization and scheduling agorithms for solving
these problems. The optimization techniques are evaluated in Section 6, where
we aso discuss areal-life example. The last section presents our conclusions.

2. System Architecture

We consider architectures consisting of nodes connected by a unique broad-
cast communication channel (see Figure 1.a).

For the systems we are studying, we have designed a software architecture
which runs on the CPU of each node. The main component of the software ar-
chitecture is areal-time kernel. The real-time kerndl contains three schedulers,
for SCS, FPS, and EDF, organized hierarchically (Figure 1.c).

1.The top-level scheduler is a SCS scheduler, which is responsible for the

activation of SCS tasks and transmission of SCS messages based on a

schedule table, and for the activation of the FPS scheduler. Thus, SCS

tasks and messages are time-triggered (TT), i.e,, activated at predetermined
pointsin time, and non preemptable.

2.The FPS scheduler activates FPS tasks and transmits FPS messages based
on their priorities, and activates the EDF scheduler. Tasks and messages
scheduled using FPS are event-triggered (ET), i.e., initiated whenever apar-
ticular event is noted, and are pre-emptable.

3.The EDF scheduler activates EDF tasks and sends EDF messages based
on their deadlines. EDF tasks and messages are ET and pre-emptable.

When severd tasks are ready on anode, the task with the highest priority is
activated, and pre-empts the other tasks. Let us consider the example in
Figure 1.d, where we have six tasks sharing the same node. Tasks 11 and 1 are
scheduled using SCS, 1, and 15 are scheduled using FPS, while tasks 3 and T
are scheduled with EDF. The priorities of the FPS and EDF tasks are indi cateé
inthefigure. The arrival time of these tasks is depicted with an upwards point-
ing arow. Under these assumptions, Figurel.d presents the worst-case
response times of each task. The SCStasks, T, and 1, will never competefor a
resource because their synchronization is performed based on the schedule ta-
ble. Moreover, since SCS tasks are non preemptable and their start timeis off-
linefixed inthe scheduletable, they aso havethe highest priority (denoted with
priority level “0” in thefigure). FPS and EDF tasks can only be executed inthe
dack of the SCS schedule table.

FPS and EDF tasks are scheduled based on their priorities. Thus, ahigher pri-
ority task such as 1, will interrupt alower priority task such as 3. In order to
integrate EDF tasks with FPS, we use the approach in [13], by assuming that
FPS prioritiesare not unique, and that agroup of tasks having the sasme FPS pri-
ority on a processor are to be scheduled with EDF. Thus, whenever the FPS
scheduler noticesready tasksthat sharethe samepriority leve, it will invokethe
EDF scheduler which will schedule those tasks based on their deadlines. Such
asituationispresent in Figure 1.d for tasks 13 and 1,4. There can be several such
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Figurel. System Architecture



EDF priority levelswithin atask set on a processor. Higher priority EDF tasks
can interrupt lower priority FPS tasks (asis the case with 153 and 1,4 which pre-
empt 15) and EDF tasks. Lower priority EDF tasks will be interrupted by both
higher priority FPS and EDF tasks, and SCStasks.

Wemode the busaccess scheme using the Universal Communication Model
[5]. The bus access is organized as consecutive cycles, each with the duration
Thus We consider that the communication cycle is partitioned into static (ST)
and dynamic (DY N) phases (Figure 1.b).

ST phases consist of time slots, and during aslot only the node associated
tothat particular ot is alowed to transmit SCSm es. Thetransmis-
sion times of SCSm es are stored in a schedule table.

» DuringaDY N phase, al nodesare allowed to send m es and the con-
flicts between nodes trying to send simultaneously are solved by an
arbitration mechanism which allows the transmission of the messagewith
the highest priority. Hence, the ET messagesare organized in aprioritized
ready queue. The integration of EDF m&ag% within such a priority-
based arbitration mechanism has been detailed in 11}.

TT activitiesaretriggered based on alocd clock availablein each processing
node. Thesynchronization of local clocksthroughout the systemisprovided by
the communication protocol .

3. Application Model

We model an application A as a set of directed, acyclic graphs G;(V;, E;) O
A. A nodet;; UV, represents the j-th task in G;. An edge g U E; from 1;;
to Ty indicates that the output of T;; istheinput of T;,. A task becomes ready
after al itsinputs have arrived and it issues its outputs when it terminates.
The communication time between tasks mapped on the same processor is
considered to be part of the task worst-case execution time and is not mod-
eded explicitly. Communication between tasks mapped to different
processors is performed by message passing over the bus. Such message
passing is modeled as a communication tasks inserted on the arc connecting
the sender and the receiver task.

Let P bethe set of tasksin A. The scheduling policy to be applied to each task
isgiven by afunction S: P — {SCS FPS EDF}. The mapping of atask t;; O P
isgivenby afunctionM: P — N, whereN isthe set of nodesin the architecture.
For atask 1;; P, M(t;;) isthenodeto which 1;; isassigned for execution. Each
task T;; can potentially be mapped on severa nodes. Let N, O N be the set of
nodes to which Tj; can potentially be mapped. We consider'that for each Ny, [J
N¢., we know the worst-case executiontime  C ¢ of task T;;, when executed
on'N,. We aso consider that the size of the meséages is given (which can be
directly converted into communication time on the particular bus],?. Tasks
and messages activated based on events also have a priority, Prio;i~.

All tasksand messagesin atask graph G; havethesameperiod T;; = J1’Gi which
isthe period of the task graph. We consider that adeedline D, isgivenfor each
task graph G;. In addition, tasks can have associated individua releasetimesand
deadlines. If communicating tasks are of different periods, they are combined
into a merged graph capturing all tasks activations for the hyper-period (LCM
of al periods).

4. Design Optimization Problems
Considering the type of applications and systems described in the previous
section, several design optimization problems can be addressed. In this pa-
per, we address problems which are characteristic to hierarchically
scheduled distributed applications. In particular, we are interested in the fol-
lowing issues:
« assignment of scheduling policies to tasks;
* mapping of tasks to the nodes of the architecture;
« optimization of the access to the communication infrastructure;
« scheduling of tasks and messages.

The godl is to produce an implementation which meets al the timing con-
straints of the application.

In this paper, by scheduling policy assignment (SPA) we denote the decision
whether a certain task should be scheduled with SCS, FPS or EDF. Mapping a
task means assigning it to a particular hardware node.

4.1 Scheduling Policy Assignment

Very often, the SPA and mapping decisions are taken based on the experi-
ence and preferences of the designer considering aspects like the
functionality implemented by the task, the hardness of the constraints, sen-
sSitivity to jitter, etc. Moreover, due to legacy constraints, the mapping and
scheduling policy of certain processes might be fixed.

Thus, we denote with Pg~g [ P the subset of tasks for which the designer has
assigned SCS, PepgO P contains tasks to which FPS is assigned, while
Pepr O P contains those tasks for which the designer has decided to use the
EDF scheduling policy. There are tasks, however, which do not exhibit certain
particular features or requirements which obvioudly lead to their scheduling as
SCS, FPSor EDF ectivities. Thesubset P* =P\ (Pgg 0 Pepg 0 Pepp) Of tasks
could be assigned any scheduling policy. Decisions concerning the SPA to this
set of activities can lead to various trade-offs concerning, for example, the

1.Asnoted previously, ET tasks sharing the same priority are scheduled with EDF.
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Figure 2. Scheduling Policy Assignment Example

schedulability properties of the system, the size of the schedule tables, the uti-
lization of resources, etc.

Figure 2 shows an optimization examplefor the assignment of FPSand EDF
policies. The application is composed of four tasks running on two nodes.
Tasks 14, T, and T3 are mapped on node N,, and have the same priority “1”,
whiletask T4 runson N,. Task 1, is data dependent of task 14. All tasksin the
system have the same worst case-execution times (20 ms), deadlines (60 ms)
and periods (80 ms). Tasks T, and 13 are scheduled with EDF, T, with FPS, and
we have to decide the scheduling policy for 14, between EDF and FPS.

If 14 is scheduled according to EDF, thus sharing the same priority level “1”
with thetaskson node N, then task T, missesitsdeadline (Figure 2.8). Notethat
in the time line for node N, in Figure 2 we depict several worst-case scenarios:
each EDF task on node N, is depicted considering the worst-case interference
from the other EDF tasks on N;. However, the situation changes if on node Ny
weuse FPSfor 14 (i.e.,, changing the priority levelsof T, and 13 from“ 1" to“2”).
Figure 2.b showsthe response timeswhen task 1, hasthe highest priority on Ny
(T4 retains priority “1") and the other tasks are running under EDF at a lower
priority level (1, and T3 sharelower priority “2"). Becausein thissituation there
is no interference from tasks T, and T3, the worst-case response time for task 1,
decreases considerably, alowing task T4 to finish beforeits deadline, so that the
systemn becomes schedulable.

4.2 Mapping and Bus Access Optimization

The designer might have already decided the mapping for a part of the tasks.
For example, certain tasks, dueto constraints such as having to be closeto sen-
sorgactuators, haveto be physically located in aparticular hardware unit. They
represent the set PM 00 P of aready mapped tasks. Consequently, we denote
with P" = P\ PM the tasks for which the mapping has not yet been decided.

The configuration of the bus access cycle has a strong impact on the global
performance of the system. The parameters of this cycle have to be optimized
such that they fit the particular application and the timing requirements. Param-
etersto be optimized are the number of Static (ST) and dynamic (DY N) phases
during acommunication cycle, aswell asthe length and order of these phases.
Consdering the stetic phases, parametersto be fixed are the order, number, and
length of dots assigned to the different nodes. L et us denote such abus config-
uration with B.

4.3 Exact Problem Formulation

As an input we have an application A given as a set of task graphs
(Section 3) and a system architecture consisting of a set N of nodes
(Section 2). As introduced previously, Pgg, Peps and Pepe are the sets of
tasks for which the designer has aready assigned SCS, FPS or EDF sched-
uling policy, respectively. Also, PMisthe set of aready mapped tasks.

As part of our problem, we are interested to:

find a SPA Sfor tasksin P™ =P\ (P P opP ;

decide amapping for tasksin P* =( Pg%H res H Peor)

determine abus configuration B;

find ascheduletablefor the SCStasksand prioritiesof FPSand EDF tasks;
such that imposed deadlines are guaranteed to be satisfied.

In this paper, we will consider the assignment of scheduling policies &t the
same time with the mapping of tasks to processors. Moreover, to smplify the
presentation we will not discuss the optimization of the communication chan-
nel. Such an optimization can be performed with the techniques we have

proposed in [16].

5. Design Optimization Strategy

The design problem formulated in the previous section is NP-compl ete (the

scheduling subproblem, in asimpler context, is already NP-complete [20]).

Therefore, our strategy, outlined in Figure 3, is to divide the problem into

several, more manageable, subproblems. Our OptimizationStrategy has

three steps:

L.In the first step (lines 1-3) we decide on an initial bus access configura:
tion BO (function InitialBusAccess), and an initial policy assignment 0
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Figure 3. The General Strategy

and mapping M? (function InitialMSPA). The initial bus access configu-
ration (line 1) isdetermined, for the ST dots, by assigning in order nodes
to thedots (§ = N;) and fixing the slot length to the minimal allowed val-
ue, which is equal to the length of the largest message in the application.
Then, we add at the end of the TT slots an equal length single ET phase.
The initial scheduling policy assignment and mapping agorithm (line 2
in Figure 3) maps tasks so that the amount of communication is mini-
mized. Theinitial scheduling policy of tasksin P* is set to FPS. Once an
initial mapping, scheduling policy assignment and bus configuration are
obtained, the application is scheduled using the HolisticScheduling algo-
rithm (line 3) outlined in Section 5.1.

2.1f the application is schedulable the optimization strategy stops. Other-
wise, it continues with the second step by using an iterative improvement
mapping and policy assignment heuristic, MSPAHeuristic (line 4), pre-
sented in Section 5.2, to improve the partitioning and mapping obtained
in the first step.

3.If the application is still not schedulable, we use, in the third step, the al-
gorithm BusAccessOptimization presented in [16], which optimizesthe
access to the communication infrastructure (line 6). If the application is
still unschedulable, we conclude that no satisfactory implementation
could be found with the available amount of resources.

5.1 Halistic Scheduling

Once a partitioning and amapping is decided, and acommunication config-
uration is fixed, the tasks and messages have to be scheduled. For the SCS
tasks this means building the schedule tables, while for the FPS tasks and
EDF task groups, the priorities have to be determined and their schedul abil-
ity has to be analyzed.

The basic idea is that SCS tasks are schedulable if it is possible to build a
schedule table such that thetiming requirements are satisfied. For FPSand EDF
tasks, the answer whether or not they are schedulable is given by a schedulabil-
ity analysis. In this paper, we use a response time analysis, where the
schedulability test consists of the comparison between the wordt-case response
timeR; of atask T;; and its deadline Dj;. In order to drive the process of finding
aschedul able wstem which is presented in the next sections, it is not sufficient
totestif thetask set is schedulable or not, but we need ametric that capturesthe
“degree of schedulability” of the application. For this purpose we use a cost
function similar to the one described in [16].

The problem of finding a schedulable system has to consider two aspects:

1.When performing the schedulability analysis for the FPS and EDF tasks
and messages, one hasto take into consideration the interference from the
statically scheduled activitiesin the system.

2.Among the possible correct schedules for SCS activities, it is important
to build one which favours as much as possible the schedul ability degree
of FPS and EDF activities.

In Section 5.1.1 we present the schedulability analysis for a set of FPS and

EDF tasks and messages, considering a fixed given static schedule for SCS

activities. In Section 5.1.2 we present the actual holistic scheduling algo-

rithm which constructs the static schedule and is driven by the objective of

achieving agloba schedulability of the system.

5.1.1. Response Time Analysis

In order to keep the presentation reasonably simple and given the spacelim-
itations, we present here the analysis for arestricted model in the sense that
SCStasks are communicating only through TT phases, while the communi-
cation among FPS and EDF tasks is only through ET phases. Thisisnot an
inherent limitation of our approach and the analysis we have developed and
implemented supports the general model .

A FPS or EDF task is activated by an associated event. Each task 1;; hasan
offset ¢; which specifies the earliest activation time of 1;; relative to'the oc-
currence of the triggering event. The delay between the earliest possible
activation time of t;; and its actual activation timeis modelled as ajitter Jj;
(Figure 3). Offsets and jitters are the means by which dependencies among
tasks are modelled for the schedulability analysis. The responsetime R;; of
atask Tj; is the time measured from the occurrence of the associated event
until the completlon of r,] Each task 1j; has a best case response time Ry ;.

TI]+1 4Q_J><—L Tij Tij+1
(ﬂﬁl 1 Jij1
Figure 3. Taskswith Offsets
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In order to determine if ahierarchically scheduled system is schedulable, we
used as a starting point the schedulability analysis algorithm for EDF-within-
FPS systems, developed in [13]. In this section, we present our extensionto this
agorithm, which alows us to compute the worst case response times for the
FPS and EDF activities when they are interfered by the SCS activities.

In [13], the authors have developed a schedulability analysis algorithm for
ET tasks running under a hierarchical FPS/EDF scheduling policy. Response
timesfor the tasks are obtained using workload equations:

* For FPStasks, the worst case response times are influenced only by high-
er priority tasks, so the completion time of an activation p of task T, is
given by the followi ng recursion: (p)+J

wit 1(p) = B+ p T, + (—“”p gy (D)

Ot |Prio; 2 Prio, T

where p is the number of ex:tlvatlons of T4 iN the busy period, By, is the
blocking time for 1, (see[13] for adiscussion regarding the blocking time),
and J; and Tj; are the maximum release jitter and the period of Tj;, respec-
tively. The worst case response time Ry, IS then computed as the maximum

for all possible values of

ab(P) ab(P) (P_I)Tab+Jab (2)

For EDF tasks, the worst case response times are influenced by higher pri-

ority tasks and by EDF tasks running at the same priority levél asthe task

under anaysis:

Wab(P) =B, ,+plC + Wjj(Wab(P): D (p))+ (3)

U

Prio,, = Prio

Wi(wi,(p))

Inthe previous equation, the third term repr&ents {ieinterference from EDF
tasks with the same priority, while the last term captures the interference from
higher priority FPS and EDF tasks. Furthermore,

t+J..
Wit) = Iy

and DA(p) isthe deadline of activation ngmber p, when thefirgt activation of
T4p OCCUrS &t ti meA

D, (p) =A4-J,+(p-1)T,,+D,. 4

Theanalyzed instants A are extracted from situationsin which the task under

analysis T,y has the deadline larger or equal than the deadline of the other tasks

in the system. The worst case response time R, for atask running under EDF-
within-FPSisthen computed as the maximum for all possible vaues of
ub(P) w ab(P) (P_l)Tab"'Ja;,_A (5)

A similar techniqueisusedin the more complex case of offset-based analysis.
However, regardless of the andysis used, the technique has to be enhanced to
take into consideration an existing static schedule, dlowing us to analyze hier-
archicdly scheduled systems that use a combination of SCS, FPS and EDF
scheduling policies.

Our extension takesinto consideration the interference produced by an exist-
ing static schedule when computing the worst-case response times of FPS and
EDF activities scheduled using EDF-within-FPS.

First we introduce the notion of ET demand associated with an FPS or EDF
activity Tj; onatimeinterval t asthe maximum amount of CPU time or bustime
which can be demanded by higher or equal priority ET ectivitiesand by T;; dur-
ingthetimeinterva t. In Figure 4, the ET demand of thetask T;; during the busy
window t is denoted with H;;(t), and it isthe sum of worst case execution times
for task 7; and two other hi gher priority tasks T4, and Teg. During the samein-
terval t, we define the availability as the processing time which is not used by
statically scheduled activities. In Figure 4, the CPU availability for the analyzed
interval isobtained by substracting from t the amount of processing time need-
ed for the SCS activities.

During a busy window t, the ET demand H;; associated with the task under
analysis T;; is equal with the length of the busy window which would result
when considering only ET activity on the system:

H (1) = wi(r) . (6)
During atimeinterval t, theavalebllltyA1 associated with task Tj; is:
4;,(1) = mln[A (t)] DrabDTT‘M(rab) = M(t;), @)

where A‘;”(t) |sthetota| available CPU-time on processor M(T )inthein-
terval [cpakJ @ + 1], and @y is the start time of task T4, as recorded in the
static schedule table.
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The discussion above is, in principle, vaid for both types of ET tasks (i.e,
FPS and EDF tasks) and messages. However, there exist two important differ-
ences. Firgt, messages do not preempt each other, therefore, in the demand
equation the blocking term will be non-zero, equal with thelargest transmission
time of any ET mi e. Second, the availability for amessage is computed by
substracting from t the length of the ST dots which appear during the consid-
ered interval; moreover, because an ET message will not be sent unlessthereis
enough time before the current dynamic phase ends, the availability is further
decreased with Cy for each dynamic phasein the busy window (where C, isthe
transmission time of the longest ET message).

Our schedulability analysis agorithm determines the length of a busy win-
dow wj; for FPSand EDFF tasks and messages by identifying the appropriate size
of w;; for whichthe ET demand is satisfied by the availability: Hj;(wi) < Ayj(w).
This procedure for the calculation of the busy window isincluded in the'itera
tive process for caculation of response times presented in Section 5.1.2. It is
important to notice that this processincludes both tasks and messages and, thus,
the resulted response times of the FPS and EDF tasks are computed by taking
into consideration the delay induced by the bus communication.

5.1.2. Satic Scheduling

As mentioned in the beginning of Section 5.1, building the static cyclic
schedule for the SCS activities in the system has to be performed in such a
way that the interference imposed on the FPS and EDF activities is mini-
mum. The holistic scheduling algorithm is presented in Figure 6. For the
construction of the schedule table with start times for SCS tasks and mes-
sages, we adopted a list scheduling-based algorithm [4] which iteratively
sel ects tasks and schedules them appropriately

A ready list containsall SCStasksand messageswhich areready to be sched-
uled (they have no predecessors or dl their predecessors have been schedul ed).
From the ready list, tasks and messages are extracted one by one (Figure 6, line
2) to be scheduled on the processor they are mapped to, or into astatic bus-dot
associated to that processor on which the sender of the messageis executed, re-
spectively. The priority function which is used to select among ready tasksand
messagesisacritical path metric, modified for the particular goal of scheduling
tasks mapped on distributed systems. Lt usconsider aparticular task 1j; select-
ed from the ready list to be scheduled. We consider that ASAP;; is the earliest
time moment which satisfies the condition that all preceding activities (tasks or
messages) of T;; are finished and processor M(ty) is free. The moment ALAP;;
isthe latest time when T;; can be scheduled. With only the SCStasksin the sys:
tem, the straightforward solution would beto schedule tj; at ASAP;;. In our case,
however, such a solution could have negative effects on the schedulability of
FPS and EDF tasks. What we have to do is to place task T;; in such a position
inside the interval [ASAP;;, ALAP;] o that the chance to finally get a globally
schedulable system is maximized.

In order to consider only alimited number of possible positions for the start
time of a SCStask T;;, we take into account the information obtained from the
schedulability analys's described in Section 5.1.1, which alows us to compute
the responsetimes of ET (i.e., FPS and EDF) tasks. We started from the obser-
vation that statically scheduling a SCStask T;; so that the length of busy-period
of an ET activity is not modified will consequently lead to unchanged worst-
case response time for that ET task. This can be achieved by providing for
enough available processing time between statically scheduled tasks so that the
busy period of the ET task does not increase. For example, in Figure 5.awe can
see how statically scheduling two SCStasks T4 and t,, influences the busy peri-
od w; of aFPS (or EDF) task 13. Figure 5.al, presents the system with only 14
scheduled, situation for which the busy-period ws is computed. Figure 5.82
shows how scheduling another SCStask T, too early decreases the availability
during theinterval [<p}l1, ¢ +Ws], and consequently leadsto anincrease of ws and
Rs, respectively. Such asituation isavoided if the two SCStasksare scheguled
likein Figure 5.a3, where no extrainterference isintroduced in the busy period
ws. However, during the static scheduling, we have to consider two aspects:

HolisticScheduling(A, M, B, S)
while TT_ready_list is not empty
select T from TT_ready_list
if T is a'task then
schedule_task(t, M(Tij))
else // 1 is a message
ASAP schedule T in sIot(M(rij))
end if
end while
procedure schedule_task(T;, M(Tij))
schedule T in the middle of the slack on M(Tij)
11 compute ET respose times and W55
12 . move T;; earlier without increasing W'max
end HolisticScheduling
Figure 6. Holistic Scheduling Algorithm
1.The interference with the FPS and EDF activities should be minimized;
2.Thedeadlines of TT activities should be satisfied.

Thetechnique presented in Figure 5.atakes care only of thefirst aspect, while
ignoring the second. One may notice that scheduling a SCS task later increases
the probability that we will not be able to find feasible start times for that par-
ticular task or for the SCS tasks which depend on T, and are not scheduled yet
(for example, in Figure 5.b1, task T, missesits deadline and the resulted sched-
uleis not valid). We reduce such arisk by employing the technique presented
in Figure 5.b2-b3, where wefirst schedule the second task so that we maximize
the continuous slack between the jobs of tasks T, and ty; for this reason, we
place 1, in the middle of the dack between the last SCS task in the first period
of the static schedule (thefirst job of task 1), and thefirst task scheduled in the
second period (the second job of task T4). In such asituation, the maximum busy
period Wi Of the ET tasks may incresse due to interference from task 1,
(Figure 5.b2). However, considering that such an increase is acceptable (in the
sensethat no ET tasksmisstheir deadlines), then we can now improvethe prob-
ability of finding avaid static schedule by scheduling thetask T, earlierintime,
aslong as the maximum ET busy period w5, does not increase (Figure 5.b3)

The scheduling algorithm is presented in Figure 6. If the selected SCS activ-
ity extracted from the ready_list is atask T;;, then the task is first scheduled in
the middle of the dack at the end of the period T of the static schedule (line
10). In order to determine the response times of the ET activities and the maxi-
mum busy period W, in the resulted system, the scheduled gpplication is
analyzed using the technique in Section 5.1.1 (line 11). The vaue obtained for
Wiy IS then used for determining how early the task T;; can be scheduled with-
out Increasing the response times of the ET tasks (line'12). When scheduling a
ST message extracted from the ready list, we placeit into the first bus-dot as-
sociated with the sender node in which there is sufficient space available (line
6). If dl SCS tasks and messages have been scheduled and the schedulability
analysis for the ET tasks indicates that al ET activities meet their deadlines,
then the global system scheduling has succeeded.

Som\lmmbwmp

5.2 Mapping & Scheduling Policy Assignment Heuristic

In Step 2 of our optimization strategy (Figure 3), thefollowing design trans-
formations are performed with the goal to produce a schedulable system
implementation:

* change the scheduling polg of atask;

« change the mapping of atask;

« changethe priority level of a FPS of EDF task.

Our optimization agorithm is presented in Figure 7 and it implements a
greedy approach inwhich every task inthe systemisiteratively mapped on each
node (line 4) and assigned to each scheduling policy (line 8), under the con-
straintsimpaosed by the designer. The next step involves adjustments to the bus
accesscycle (line 10), which are needed for the case when the bus cycle config-
uration cannot handle the minimum requirements of the current internode

MSPAHeuristic(A, M, B, S)

1 for each activity t;;in th?\]ﬁyﬁe do

2 for each progessor INj IN the system do

3 if Tj in then -- can be remapped

4 VI(Ty) = N;

5 end if

6 for policy = §CS, FPS do

7 if Tji In then -- the scheduling policy can be changed
8 (1j}) = policy

9 end if

10 adjust bus cycle(A, M, B, S)

11 recompute FPS priority levels

12 for aSII FPS tasks 1, sharing identical priority levels do
13 () = EDF

14 end for

15 I-fi 'stichched Iingh(A, M, B, S)

16 i < best then

17 '%est_%olicy'i?\z §(Tij)§ best_processor;; = M(Tij)
18 best_Op = 6A

19 end if

20 if <0then

21 return best (M, B, S)

22 end if

23 end for

24 end for

25 end for

end MSPAHeuristic ) ) o
Figure 7. Policy Assignment and Mapping Heuristic



communication. Such adjustments are mainly based on enlargement of the stat-
ic dots or dynamic phasesin the bus cycle, and are required in the case the bus
has to support larger messages than before. New messages may appesar on the
bus due to, for example, remapping of tasks. For more details on the subject of
bus access optimization and adjustment, the reader is referred to [16].

Beforethe system isanayzed for itstiming properties, our heuristicasotries
to optimize the priority assgnment of tasks running under FPS (line 11). The
state of theart approach for such atask isthe HOPA agorithm for assigning pri-
ority levelsto tasksin multiprocessor systems[8]. However, dueto the fact that
HOPA iscompuitationally expensiveto berun inside such adesign optimization
loop, we use a scaled down greedy algorithm, in which we dragtically reduce
the number of iterations needed for determining an optimized priority
assgnment.

Finally, the resulted system configuration is analyzed (line 15) using the
scheduling and schedul ability analysis algorithm presented in Section 5.1. The
resulted cost function will decide whether the current configuration is better
than the current best one (lines 16-19). Moreover, if al activities meet their
deadlines (&5 < 0), the optimization heuristic stops the exploration process and
returns the current best-so-far configuration (lines 20-22).

6. Experimental Results

For the evaluation of our design optimization heuristic we have used syn-
thetic applications as well as a real-life example consisting of a vehicle
cruise controller. Thus, we have randomly generated applications of 40, 60,
80 and 100 tasks on systems with 4 processors. 56 applications were gener-
ated for each dimension, thus a total of 224 applications were used for
experimental evaluation. An equal number of applications with processor
utilizations of 20%, 40%, 60% and 80% were generated for each application
dimension. All experiments were run on an AMD AthlonX P 2400+ proces-
sor, with 512 MB RAM.

We were firgt interested to determine the quality of our design optimization
approach for hierarchically scheduled systems, the MSPAHeuristic (MSPA);
see Figure 7. We have compared the percentage of schedulable implementa-
tionsfound by M SPA with the number of schedulable solutions obtained by the
InitiaMSPA a gorithm described in Figure 5 (line 2), which derives astraight-
forward system implementation, denoted with SF. The results are depicted in
Figure 8.a. We can see that our MSPA heuristic (the black bars) performs very
well, and finds a number of schedulable systems that is considerably and con-
sistently higher than the number of schedulable systems obtained with the SF
approach (the white bars). On average, MSPA finds 44.5% more schedulable
solutions than SF.

Second, we were interested to determine the impact of the scheduling policy
assignment (SPA) decisions on the number of schedulable applications ob-
tained. Thus, for the same applications, we considered that the task mapping is
fixed by the SF approach, and only the SPA is optimized. Figure 8.a presents
this approach, labelled “MSPA/No mapping”, corresponding to the gray bars.
We can see that most of the improvement over the SF approach is obtained by
carefully optimizing the SPA in our MSPA heuristic.

We were also interested to find out what isthe impact of the processor utili-
zation of an application on the quality of the implementations produced our
optimization heuristic. Figure 8.b presents the percentage of schedulable solu-
tions found by MSPA and SF as we ranged the utilization from 20% to 80%.
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Figure 8. Performance of the Design Optimisation

We can see that SF degrades very quickly with the increased utilization, with
under 10% schedulable solutions for applications with 40% utilization and
without finding any schedulable solution for applications with 80% utilization,
while MSPA is able to find a significant number of schedulable solutions even
for high processor utilizations.

Considering the complex optimization steps performed, our design optimiza-
tion heuristic produces good quality resultsin areasonable amount of time. For
example, the heuristic will finish on average in less than 500 seconds for appli-
cations with 80 tasks that were found schedulable.

Finaly, we considered a red-life example implementing a vehicle cruise
controller (CC). The process graph that modelsthe CC has 32 processes, and
is described in [15]. The CC was mapped on an architecture consisting of
three nodes: Electronic Throttle Module (ETM), Anti-lock Breaking System
(ABS) and Transmission Control Module (TCM). We have considered a
deadline of 250 ms. In this setting, SF failed to produce a schedulable imple-
mentation. Our design optimization heuristic MSPA was considered first
such that the mapping is fixed by SF, and we only alowed reassigning of
scheduling poalicies. After 29.5 seconds, the best scheduling policy alocation
whichwasfound still resulted in an unschedul able system, but with a“ degree
of schedulahility” three times higher than obtained by SF. When mapping
was allowed, and a schedulable system was found after 28.49 seconds.

7. Conclusions

In this paper we have addressed the analysis and optimization of hierarchi-
caly scheduled heterogeneous real-time systems. Several scheduling
policies are used for tasks, such as static cyclic scheduling, fixed-priority
preemptive scheduling and earliest deadline first, organized as a hierarchy.
Messages are transmitted using the Universal Communication Model that
combines both time-triggered and event-triggered slots.

We have proposed a halistic scheduling andysisthat is able to handle the hi-
erarchical scheduling policies. As our main contribution we have proposed a
design optimization heuristic for the assignment of scheduling policiesto tasks,
the mapping of tasks to hardware components, and the scheduling of the activ-
ities such that the timing constraints of the gpplication are guaranteed.

As our experiments have shown, our heuristic is able to find schedulable
implementations under limited resources, achieving an efficient utilization of
the system.
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