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Abstract In this paper, we are interested in the analysis and optimization of distributed

We present an approach to the analysis and optimization of heterogeneous
distributed embedded systems for hard real-time applications. The systems
are heterogeneous not only in terms of hardware components, but also in
terms of communication protocols and scheduling policies. When several
scheduling policies share a resource, they are organized in a hierarchy. In
this paper, we address design problems that are characteristic to such hier-
archically scheduled systems: assignment of scheduling policies to tasks,
mapping of tasks to hardware components, and the scheduling of the activ-
ities. We present algorithms for solving these problems. Our heuristics are
able to find schedulable implementations under limited resources, achiev-
ing an efficient utilization of the system.

1. Introduction
There has been a long debate in the real-time and embedded systems commu-

nities concerning the advantages and disadvantages of different scheduling
approaches [1, 7, 9, 21]. Static cyclic scheduling (SCS) has the advantage of
predictability and testability [9]. However, such static approaches lack the flex-
ibility offered by event-driven approaches such as fixed priority scheduling
(FPS) and earliest deadline first (EDF). EDF is optimal on single processor sys-
tems, and in general leads to a high, and thus efficient, resource utilization [7].
In addition, advances in the area of priority-based preemptive scheduling show
that predictable applications with hard real-time guarantees can also be handled
with FPS and EDF strategies [1, 18].

An interesting comparison of scheduling approaches, from a more industrial,
in particular automotive perspective, can be found in [12]. Their conclusion is
that one has to choose the right scheduling approach depending on the particu-
larities of the scheduled processes. This means not only that there is no single
“best” approach to be used, but also that inside a certain application several
scheduling approaches should be used together. When several scheduling pol-
icies share a resource, they can be organized in a hierarchy, where a higher level
scheduler controls the activation of a lower level scheduler [10].

The same is true for the communication infrastructure. A survey and compar-
ison of communication protocols for safety-critical embedded systems is
available in [17]. On one hand, there are protocols that schedule the messages
statically, at predetermined moments in time, for example, the Time-Triggered
Protocol (TTP) [9]. On the other hand, there are communication protocols
where message scheduling is performed dynamically, in response to an event,
such as Controller Area Network (CAN) [3]. However, there is also a hybrid
type of communication protocols, such as the one suggested in [14]. A mixed
protocol (FlexRay) has been proposed by a consortium, to be used in automo-
tive applications [6], allowing the sharing of the bus by event-driven and time-
driven messages. In [5], the authors describe the “Universal Communication
Model” (UCM), a framework for modelling at a high level of abstraction the
communication infrastructure in automotive applications.

There is a large quantity of research [2, 18] related to scheduling and sched-
ulability analysis, but few approaches have been proposed that can
systematically handle heterogeneous scheduling policies on distributed sys-
tems. Some researchers have shown how two distinct scheduling policies can
be combined in a system. Tindell provides an analysis for FPS processes com-
municating over a time-division multiple access (TDMA) bus [19]. When
several scheduling policies are used together, they can also share the same re-
source. Our previous research has shown how SCS and FPS can be analyzed
together in a system [16]. Gonzaléz Harbour has recently shown how FPS and
EDF can be analyzed together when sharing the same processor [13].

Although analysis approaches exist for many protocols [17], few of them can
handle hybrid protocols. Almeida has analyzed event- and time-driven traffic in
FTT-CAN [14]. Our previous research has provided an analysis and optimiza-
tion for the UCM [16].

embedded systems where several scheduling policies can be used for tasks and
messages. Hence, in this paper we support combinations of SCS, FPS and EDF
scheduling policies on the same node or on different nodes. Our focus in this
paper is on design optimization problems characteristic to such systems. Our al-
gorithms derive optimized implementations such that the timing constraints of
the final implementation are guaranteed.
• First, we have extended our previous analysis approach [16] to handle hi-

erarchically scheduled systems. We have proposed a holistic scheduling
algorithm that builds the SCS tables and determines the FPS priorities,
and provides a global analysis of the system.

• Once we can evaluate the schedulability of an implementation, we have
developed an optimization approach to the assignment of scheduling pol-
icies to tasks and the mapping of tasks to the hardware nodes of the
architecture.
This paper is organized in several sections. The next two sections present the

hardware and software architectures considered, and the abstract model of the
application. Section 4 presents the design optimization problems addressed,
while Section 5 proposes optimization and scheduling algorithms for solving
these problems. The optimization techniques are evaluated in Section 6, where
we also discuss a real-life example. The last section presents our conclusions.

2. System Architecture
We consider architectures consisting of nodes connected by a unique broad-
cast communication channel (see Figure 1.a).

For the systems we are studying, we have designed a software architecture
which runs on the CPU of each node. The main component of the software ar-
chitecture is a real-time kernel. The real-time kernel contains three schedulers,
for SCS, FPS, and EDF, organized hierarchically (Figure 1.c).
 1.The top-level scheduler is a SCS scheduler, which is responsible for the

activation of SCS tasks and transmission of SCS messages based on a
schedule table, and for the activation of the FPS scheduler. Thus, SCS
tasks and messages are time-triggered (TT), i.e., activated at predetermined
points in time, and non preemptable.

 2.The FPS scheduler activates FPS tasks and transmits FPS messages based
on their priorities, and activates the EDF scheduler. Tasks and messages
scheduled using FPS are event-triggered (ET), i.e., initiated whenever a par-
ticular event is noted, and are pre-emptable.

 3.The EDF scheduler activates EDF tasks and sends EDF messages based
on their deadlines. EDF tasks and messages are ET and pre-emptable.
When several tasks are ready on a node, the task with the highest priority is

activated, and pre-empts the other tasks. Let us consider the example in
Figure 1.d, where we have six tasks sharing the same node. Tasks τ1 and τ6 are
scheduled using SCS, τ2 and τ5 are scheduled using FPS, while tasks τ3 and τ4
are scheduled with EDF. The priorities of the FPS and EDF tasks are indicated
in the figure. The arrival time of these tasks is depicted with an upwards point-
ing arrow. Under these assumptions, Figure 1.d presents the worst-case
response times of each task. The SCS tasks, τ1 and τ6, will never compete for a
resource because their synchronization is performed based on the schedule ta-
ble. Moreover, since SCS tasks are non preemptable and their start time is off-
line fixed in the schedule table, they also have the highest priority (denoted with
priority level “0” in the figure). FPS and EDF tasks can only be executed in the
slack of the SCS schedule table.

FPS and EDF tasks are scheduled based on their priorities. Thus, a higher pri-
ority task such as τ2 will interrupt a lower priority task such as τ3. In order to
integrate EDF tasks with FPS, we use the approach in [13], by assuming that
FPS priorities are not unique, and that a group of tasks having the same FPS pri-
ority on a processor are to be scheduled with EDF. Thus, whenever the FPS
scheduler notices ready tasks that share the same priority level, it will invoke the
EDF scheduler which will schedule those tasks based on their deadlines. Such
a situation is present in Figure 1.d for tasks τ3 and τ4. There can be several such

Figure 1.  System Architecture
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EDF priority levels within a task set on a processor. Higher priority EDF tasks
can interrupt lower priority FPS tasks (as is the case with τ3 and τ4 which pre-
empt τ5) and EDF tasks. Lower priority EDF tasks will be interrupted by both
higher priority FPS and EDF tasks, and SCS tasks.

We model the bus access scheme using the Universal Communication Model
[5]. The bus access is organized as consecutive cycles, each with the duration
Tbus. We consider that the communication cycle is partitioned into static (ST)
and dynamic (DYN) phases (Figure 1.b).
• ST phases consist of time slots, and during a slot only the node associated

to that particular slot is allowed to transmit SCS messages. The transmis-
sion times of SCS messages are stored in a schedule table.

• During a DYN phase, all nodes are allowed to send messages and the con-
flicts between nodes trying to send simultaneously are solved by an
arbitration mechanism which allows the transmission of the message with
the highest priority. Hence, the ET messages are organized in a prioritized
ready queue. The integration of EDF messages within such a priority-
based arbitration mechanism has been detailed in [11].
TT activities are triggered based on a local clock available in each processing

node. The synchronization of local clocks throughout the system is provided by
the communication protocol.

3. Application Model
We model an application A as a set of directed, acyclic graphs Gi(Vi, Ei) ∈
A. A node τij ∈ Vi represents the j-th task in Gi. An edge eijk ∈ Ei from τij
to τik indicates that the output of τij is the input of τik. A task becomes ready
after all its inputs have arrived and it issues its outputs when it terminates.
The communication time between tasks mapped on the same processor is
considered to be part of the task worst-case execution time and is not mod-
eled explicitly. Communication between tasks mapped to different
processors is performed by message passing over the bus. Such message
passing is modeled as a communication tasks inserted on the arc connecting
the sender and the receiver task.

Let P be the set of tasks in A. The scheduling policy to be applied to each task
is given by a function S: P → {SCS, FPS, EDF}. The mapping of a task τij ∈ P
is given by a function M: P → N, where N is the set of nodes in the architecture.
For a task τij ∈ P , M(τij) is the node to which τij is assigned for execution. Each
task τij can potentially be mapped on several nodes. Let Nτij

⊆ N be the set of
nodes to which τij can potentially be mapped. We consider that for each Nk ∈
Nτij

, we know the worst-case execution time of task τij, when executed
on Nk. We also consider that the size of the messages is given (which can be
directly converted into communication time on the particular bus). Tasks
and messages activated based on events also have a priority, Prioij

1.
All tasks and messages in a task graph Gi have the same period Tij = TGi which

is the period of the task graph. We consider that a deadline DGi is given for each
task graph Gi. In addition, tasks can have associated individual release times and
deadlines. If communicating tasks are of different periods, they are combined
into a merged graph capturing all tasks activations for the hyper-period (LCM
of all periods).

4. Design Optimization Problems
Considering the type of applications and systems described in the previous
section, several design optimization problems can be addressed. In this pa-
per, we address problems which are characteristic to hierarchically
scheduled distributed applications. In particular, we are interested in the fol-
lowing issues:
• assignment of scheduling policies to tasks;
• mapping of tasks to the nodes of the architecture;
• optimization of the access to the communication infrastructure;
• scheduling of tasks and messages.

The goal is to produce an implementation which meets all the timing con-
straints of the application.

In this paper, by scheduling policy assignment (SPA) we denote the decision
whether a certain task should be scheduled with SCS, FPS or EDF. Mapping a
task means assigning it to a particular hardware node.

4.1 Scheduling Policy Assignment
Very often, the SPA and mapping decisions are taken based on the experi-
ence and preferences of the designer considering aspects like the
functionality implemented by the task, the hardness of the constraints, sen-
sitivity to jitter, etc. Moreover, due to legacy constraints, the mapping and
scheduling policy of certain processes might be fixed.

Thus, we denote with PSCS ⊆ P the subset of tasks for which the designer has
assigned SCS, PFPS ⊆ P contains tasks to which FPS is assigned, while
PEDF ⊆ P contains those tasks for which the designer has decided to use the
EDF scheduling policy. There are tasks, however, which do not exhibit certain
particular features or requirements which obviously lead to their scheduling as
SCS, FPS or EDF activities. The subset P+ = P \ (PSCS ∪ PFPS ∪ PEDF) of tasks
could be assigned any scheduling policy. Decisions concerning the SPA to this
set of activities can lead to various trade-offs concerning, for example, the

schedulability properties of the system, the size of the schedule tables, the uti-
lization of resources, etc.

Figure 2 shows an optimization example for the assignment of FPS and EDF
policies. The application is composed of four tasks running on two nodes.
Tasks τ1, τ2 and τ3 are mapped on node N1, and have the same priority “1”,
while task τ4 runs on N2. Task τ4 is data dependent of task τ1. All tasks in the
system have the same worst case-execution times (20 ms), deadlines (60 ms)
and periods (80 ms). Tasks τ2 and τ3 are scheduled with EDF, τ4 with FPS, and
we have to decide the scheduling policy for τ1, between EDF and FPS.

If τ1 is scheduled according to EDF, thus sharing the same priority level “1”
with the tasks on node N1, then task τ4 misses its deadline (Figure 2.a). Note that
in the time line for node N1 in Figure 2 we depict several worst-case scenarios:
each EDF task on node N1 is depicted considering the worst-case interference
from the other EDF tasks on N1. However, the situation changes if on node N1
we use FPS for τ1 (i.e., changing the priority levels of τ2 and τ3 from “1” to “2”).
Figure 2.b shows the response times when task τ1 has the highest priority on N1
(τ1 retains priority “1”) and the other tasks are running under EDF at a lower
priority level (τ2 and τ3 share lower priority “2”). Because in this situation there
is no interference from tasks τ2 and τ3, the worst-case response time for task τ1
decreases considerably, allowing task τ4 to finish before its deadline, so that the
system becomes schedulable.

4.2 Mapping and Bus Access Optimization
The designer might have already decided the mapping for a part of the tasks.
For example, certain tasks, due to constraints such as having to be close to sen-
sors/actuators, have to be physically located in a particular hardware unit. They
represent the set PM ⊆ P of already mapped tasks. Consequently, we denote
with P* = P \ PM the tasks for which the mapping has not yet been decided.

The configuration of the bus access cycle has a strong impact on the global
performance of the system. The parameters of this cycle have to be optimized
such that they fit the particular application and the timing requirements. Param-
eters to be optimized are the number of static (ST) and dynamic (DYN) phases
during a communication cycle, as well as the length and order of these phases.
Considering the static phases, parameters to be fixed are the order, number, and
length of slots assigned to the different nodes. Let us denote such a bus config-
uration with B.

4.3 Exact Problem Formulation
As an input we have an application A given as a set of task graphs
(Section 3) and a system architecture consisting of a set N of nodes
(Section 2). As introduced previously, PSCS, PFPS and PEDF are the sets of
tasks for which the designer has already assigned SCS, FPS or EDF sched-
uling policy, respectively. Also, PM is the set of already mapped tasks.

As part of our problem, we are interested to:
• find a SPA S for tasks in P+ = P \ (PSCS ∪ PFPS ∪ PEDF);
• decide a mapping for tasks in P* = P \ PM;
• determine a bus configuration B;
• find a schedule table for the SCS tasks and priorities of FPS and EDF tasks;
such that imposed deadlines are guaranteed to be satisfied.

In this paper, we will consider the assignment of scheduling policies at the
same time with the mapping of tasks to processors. Moreover, to simplify the
presentation we will not discuss the optimization of the communication chan-
nel. Such an optimization can be performed with the techniques we have
proposed in [16].

5. Design Optimization Strategy
The design problem formulated in the previous section is NP-complete (the
scheduling subproblem, in a simpler context, is already NP-complete [20]).
Therefore, our strategy, outlined in Figure 3, is to divide the problem into
several, more manageable, subproblems. Our OptimizationStrategy has
three steps:
 1.In the first step (lines 1–3) we decide on an initial bus access configura-

tion B0 (function InitialBusAccess), and an initial policy assignment S0

1.As noted previously, ET tasks sharing the same priority are scheduled with EDF.
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and mapping M0 (function InitialMSPA). The initial bus access configu-
ration (line 1) is determined, for the ST slots, by assigning in order nodes
to the slots (Si = Ni) and fixing the slot length to the minimal allowed val-
ue, which is equal to the length of the largest message in the application.
Then, we add at the end of the TT slots an equal length single ET phase.
The initial scheduling policy assignment and mapping algorithm (line 2
in Figure 3) maps tasks so that the amount of communication is mini-
mized. The initial scheduling policy of tasks in P+ is set to FPS. Once an
initial mapping, scheduling policy assignment and bus configuration are
obtained, the application is scheduled using the HolisticScheduling algo-
rithm (line 3) outlined in Section 5.1.

 2.If the application is schedulable the optimization strategy stops. Other-
wise, it continues with the second step by using an iterative improvement
mapping and policy assignment heuristic, MSPAHeuristic (line 4), pre-
sented in Section 5.2, to improve the partitioning and mapping obtained
in the first step.

 3.If the application is still not schedulable, we use, in the third step, the al-
gorithm BusAccessOptimization presented in [16], which optimizes the
access to the communication infrastructure (line 6). If the application is
still unschedulable, we conclude that no satisfactory implementation
could be found with the available amount of resources.

5.1 Holistic Scheduling
Once a partitioning and a mapping is decided, and a communication config-
uration is fixed, the tasks and messages have to be scheduled. For the SCS
tasks this means building the schedule tables, while for the FPS tasks and
EDF task groups, the priorities have to be determined and their schedulabil-
ity has to be analyzed.

The basic idea is that SCS tasks are schedulable if it is possible to build a
schedule table such that the timing requirements are satisfied. For FPS and EDF
tasks, the answer whether or not they are schedulable is given by a schedulabil-
ity analysis. In this paper, we use a response time analysis, where the
schedulability test consists of the comparison between the worst-case response
time Rij of a task τij and its deadline Dij. In order to drive the process of finding
a schedulable system, which is presented in the next sections, it is not sufficient
to test if the task set is schedulable or not, but we need a metric that captures the
“degree of schedulability” of the application. For this purpose we use a cost
function similar to the one described in [16].

The problem of finding a schedulable system has to consider two aspects:
 1.When performing the schedulability analysis for the FPS and EDF tasks

and messages, one has to take into consideration the interference from the
statically scheduled activities in the system.

 2.Among the possible correct schedules for SCS activities, it is important
to build one which favours as much as possible the schedulability degree
of FPS and EDF activities.

In Section 5.1.1 we present the schedulability analysis for a set of FPS and
EDF tasks and messages, considering a fixed given static schedule for SCS
activities. In Section 5.1.2 we present the actual holistic scheduling algo-
rithm which constructs the static schedule and is driven by the objective of
achieving a global schedulability of the system.

5.1.1. Response Time Analysis
In order to keep the presentation reasonably simple and given the space lim-
itations, we present here the analysis for a restricted model in the sense that
SCS tasks are communicating only through TT phases, while the communi-
cation among FPS and EDF tasks is only through ET phases. This is not an
inherent limitation of our approach and the analysis we have developed and
implemented supports the general model .
A FPS or EDF task is activated by an associated event. Each task τij has an
offset φij which specifies the earliest activation time of τij relative to the oc-
currence of the triggering event. The delay between the earliest possible
activation time of τij and its actual activation time is modelled as a jitter Jij
(Figure 3). Offsets and jitters are the means by which dependencies among
tasks are modelled for the schedulability analysis. The response time Rij of
a task τij is the time measured from the occurrence of the associated event
until the completion of τij. Each task τij has a best case response time Rb,ij.

In order to determine if a hierarchically scheduled system is schedulable, we
used as a starting point the schedulability analysis algorithm for EDF-within-
FPS systems, developed in [13]. In this section, we present our extension to this
algorithm, which allows us to compute the worst case response times for the
FPS and EDF activities when they are interfered by the SCS activities.

In [13], the authors have developed a schedulability analysis algorithm for
ET tasks running under a hierarchical FPS/EDF scheduling policy. Response
times for the tasks are obtained using workload equations:
• For FPS tasks, the worst case response times are influenced only by high-

er priority tasks, so the completion time of an activation p of task τab is
given by the following recursion:

(1)

where p is the number of activations of τab in the busy period, Bab is the
blocking time for τab (see [13] for a discussion regarding the blocking time),
and Jij and Tij are the maximum release jitter and the period of τij, respec-
tively. The worst case response time Rab is then computed as the maximum
for all possible values of

. (2)
• For EDF tasks, the worst case response times are influenced by higher pri-

ority tasks and by EDF tasks running at the same priority level as the task
under analysis:

(3)

In the previous equation, the third term represents the interference from EDF
tasks with the same priority, while the last term captures the interference from
higher priority FPS and EDF tasks. Furthermore,

and DA(p) is the deadline of activation number p, when the first activation of
τab occurs at time A:

. (4)
The analyzed instants A are extracted from situations in which the task under

analysis τab has the deadline larger or equal than the deadline of the other tasks
in the system. The worst case response time Rab for a task running under EDF-
within-FPS is then computed as the maximum for all possible values of

(5)
A similar technique is used in the more complex case of offset-based analysis.

However, regardless of the analysis used, the technique has to be enhanced to
take into consideration an existing static schedule, allowing us to analyze hier-
archically scheduled systems that use a combination of SCS, FPS and EDF
scheduling policies.

Our extension takes into consideration the interference produced by an exist-
ing static schedule when computing the worst-case response times of FPS and
EDF activities scheduled using EDF-within-FPS.

First we introduce the notion of ET demand associated with an FPS or EDF
activity τij on a time interval t as the maximum amount of CPU time or bus time
which can be demanded by higher or equal priority ET activities and by τij dur-
ing the time interval t. In Figure 4, the ET demand of the task τij during the busy
window t is denoted with Hij(t), and it is the sum of worst case execution times
for task τij and two other higher priority tasks τab and τcd. During the same in-
terval t, we define the availability as the processing time which is not used by
statically scheduled activities. In Figure 4, the CPU availability for the analyzed
interval is obtained by substracting from t the amount of processing time need-
ed for the SCS activities.

During a busy window t, the ET demand Hij associated with the task under
analysis τij is equal with the length of the busy window which would result
when considering only ET activity on the system:

. (6)
During a time interval t, the availability Aij associated with task τij is:

, , (7)
where is the total available CPU-time on processor M(τij) in the in-
terval [φab, φab + t], and φab is the start time of task τab as recorded in the
static schedule table.

OptimizationStrategy(A)
1 Step 1:B0 = InitialBusAccess(A)
2 (M0, S0) = InitialMSPA(A, B0)
3 if HolisticScheduling(A, M0, B0, S0) == schedulable then stop end if
4 Step 2:(M, S, B) = MSPAHeuristic(A, M0, B0)
5 if HolisticScheduling(A, M, S, B) == schedulable then stop end if
6 Step 3:B = BusAccessOptimization(A, M, S, B)
7 HolisticScheduling(A, M, B, S)
end OptimizationStrategy

Figure 3.  The General Strategy
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The discussion above is, in principle, valid for both types of ET tasks (i.e.,
FPS and EDF tasks) and messages. However, there exist two important differ-
ences. First, messages do not preempt each other, therefore, in the demand
equation the blocking term will be non-zero, equal with the largest transmission
time of any ET message. Second, the availability for a message is computed by
substracting from t the length of the ST slots which appear during the consid-
ered interval; moreover, because an ET message will not be sent unless there is
enough time before the current dynamic phase ends, the availability is further
decreased with CA for each dynamic phase in the busy window (where CA is the
transmission time of the longest ET message).

Our schedulability analysis algorithm determines the length of a busy win-
dow wij for FPS and EDF tasks and messages by identifying the appropriate size
of wij for which the ET demand is satisfied by the availability: Hij(wij) ≤ Aij(wij).
This procedure for the calculation of the busy window is included in the itera-
tive process for calculation of response times presented in Section 5.1.2. It is
important to notice that this process includes both tasks and messages and, thus,
the resulted response times of the FPS and EDF tasks are computed by taking
into consideration the delay induced by the bus communication.

5.1.2. Static Scheduling
As mentioned in the beginning of Section 5.1, building the static cyclic
schedule for the SCS activities in the system has to be performed in such a
way that the interference imposed on the FPS and EDF activities is mini-
mum. The holistic scheduling algorithm is presented in Figure 6. For the
construction of the schedule table with start times for SCS tasks and mes-
sages, we adopted a list scheduling-based algorithm [4] which iteratively
selects tasks and schedules them appropriately

A ready list contains all SCS tasks and messages which are ready to be sched-
uled (they have no predecessors or all their predecessors have been scheduled).
From the ready list, tasks and messages are extracted one by one (Figure 6, line
2) to be scheduled on the processor they are mapped to, or into a static bus-slot
associated to that processor on which the sender of the message is executed, re-
spectively. The priority function which is used to select among ready tasks and
messages is a critical path metric, modified for the particular goal of scheduling
tasks mapped on distributed systems. Let us consider a particular task τij select-
ed from the ready list to be scheduled. We consider that ASAPij is the earliest
time moment which satisfies the condition that all preceding activities (tasks or
messages) of τij are finished and processor M(τij) is free. The moment ALAPij
is the latest time when τij can be scheduled. With only the SCS tasks in the sys-
tem, the straightforward solution would be to schedule τij at ASAPij. In our case,
however, such a solution could have negative effects on the schedulability of
FPS and EDF tasks. What we have to do is to place task τij in such a position
inside the interval [ASAPij, ALAPij] so that the chance to finally get a globally
schedulable system is maximized.

In order to consider only a limited number of possible positions for the start
time of a SCS task τij, we take into account the information obtained from the
schedulability analysis described in Section 5.1.1, which allows us to compute
the response times of ET (i.e., FPS and EDF) tasks. We started from the obser-
vation that statically scheduling a SCS task τij so that the length of busy-period
of an ET activity is not modified will consequently lead to unchanged worst-
case response time for that ET task. This can be achieved by providing for
enough available processing time between statically scheduled tasks so that the
busy period of the ET task does not increase. For example, in Figure 5.a we can
see how statically scheduling two SCS tasks τ1 and τ2 influences the busy peri-
od w3 of a FPS (or EDF) task τ3. Figure 5.a1, presents the system with only τ1
scheduled, situation for which the busy-period w3 is computed. Figure 5.a2
shows how scheduling another SCS task τ2 too early decreases the availability
during the interval [φ1, φ1 + w3], and consequently leads to an increase of w3 and
R3, respectively. Such a situation is avoided if the two SCS tasks are scheduled
like in Figure 5.a3, where no extra interference is introduced in the busy period
w3. However, during the static scheduling, we have to consider two aspects:

 1.The interference with the FPS and EDF activities should be minimized;
 2.The deadlines of TT activities should be satisfied.

The technique presented in Figure 5.a takes care only of the first aspect, while
ignoring the second. One may notice that scheduling a SCS task later increases
the probability that we will not be able to find feasible start times for that par-
ticular task or for the SCS tasks which depend on τ2 and are not scheduled yet
(for example, in Figure 5.b1, task τ2 misses its deadline and the resulted sched-
ule is not valid). We reduce such a risk by employing the technique presented
in Figure 5.b2-b3, where we first schedule the second task so that we maximize
the continuous slack between the jobs of tasks τ1 and τ2; for this reason, we
place τ2 in the middle of the slack between the last SCS task in the first period
of the static schedule (the first job of task τ1), and the first task scheduled in the
second period (the second job of task τ1). In such a situation, the maximum busy
period wmax of the ET tasks may increase due to interference from task τ2
(Figure 5.b2). However, considering that such an increase is acceptable (in the
sense that no ET tasks miss their deadlines), then we can now improve the prob-
ability of finding a valid static schedule by scheduling the task τ2 earlier in time,
as long as the maximum ET busy period wmax does not increase (Figure 5.b3)

The scheduling algorithm is presented in Figure 6. If the selected SCS activ-
ity extracted from the ready_list is a task τij, then the task is first scheduled in
the middle of the slack at the end of the period Tss of the static schedule (line
10). In order to determine the response times of the ET activities and the maxi-
mum busy period wmax in the resulted system, the scheduled application is
analyzed using the technique in Section 5.1.1 (line 11). The value obtained for
wmax is then used for determining how early the task τij can be scheduled with-
out increasing the response times of the ET tasks (line 12). When scheduling a
ST message extracted from the ready list, we place it into the first bus-slot as-
sociated with the sender node in which there is sufficient space available (line
6). If all SCS tasks and messages have been scheduled and the schedulability
analysis for the ET tasks indicates that all ET activities meet their deadlines,
then the global system scheduling has succeeded.

5.2 Mapping & Scheduling Policy Assignment Heuristic
In Step 2 of our optimization strategy (Figure 3), the following design trans-
formations are performed with the goal to produce a schedulable system
implementation:
• change the scheduling policy of a task;
• change the mapping of a task;
• change the priority level of a FPS of EDF task.

Our optimization algorithm is presented in Figure 7 and it implements a
greedy approach in which every task in the system is iteratively mapped on each
node (line 4) and assigned to each scheduling policy (line 8), under the con-
straints imposed by the designer. The next step involves adjustments to the bus
access cycle (line 10), which are needed for the case when the bus cycle config-
uration cannot handle the minimum requirements of the current internode

τ2
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Figure 6.  Holistic Scheduling Algorithm

HolisticScheduling(A, M, B, S)
1 while TT_ready_list is not empty
2 select τij from TT_ready_list
3 if τij is a task then
4 schedule_task(τij, M(τij))
5 else // τij is a message
6 ASAP schedule τij  in slot(M(τij))
7 end if
8 end while
9 procedure schedule_task(τij, M(τij))
10 schedule τij in the middle of the slack on M(τij)
11 compute ET respose times and w’max
12 move τij earlier without increasing w’max
end HolisticScheduling

Figure 7.  Policy Assignment and Mapping Heuristic

MSPAHeuristic(A, M, B, S)
1 for each activity τij in the system do
2 for each processor Ni ∈ N in the system do
3 if τij in P* then -- can be remapped
4 M(τij) = Ni
5 end if
6 for policy = SCS, FPS do
7 if τij in P+ then -- the scheduling policy can be changed
8 S(τij) = policy
9 end if
10 adjust bus cycle(A, M, B, S)
11 recompute FPS priority levels
12 for all FPS tasks τab sharing identical priority levels do
13 S(τab) = EDF
14 end for
15 HolisticScheduling(A, M, B, S)
16 if δA < best_δA then
17 best_policyij = S(τij); best_processorij = M(τij)
18 best_δA = δA
19 end if
20 if δA < 0 then
21 return best (M, B, S)
22 end if
23 end for
24 end for
25 end for
end MSPAHeuristic



communication. Such adjustments are mainly based on enlargement of the stat-
ic slots or dynamic phases in the bus cycle, and are required in the case the bus
has to support larger messages than before. New messages may appear on the
bus due to, for example, remapping of tasks. For more details on the subject of
bus access optimization and adjustment, the reader is referred to [16].

Before the system is analyzed for its timing properties, our heuristic also tries
to optimize the priority assignment of tasks running under FPS (line 11). The
state of the art approach for such a task is the HOPA algorithm for assigning pri-
ority levels to tasks in multiprocessor systems [8]. However, due to the fact that
HOPA is computationally expensive to be run inside such a design optimization
loop, we use a scaled down greedy algorithm, in which we drastically reduce
the number of iterations needed for determining an optimized priority
assignment.

Finally, the resulted system configuration is analyzed (line 15) using the
scheduling and schedulability analysis algorithm presented in Section 5.1. The
resulted cost function will decide whether the current configuration is better
than the current best one (lines 16–19). Moreover, if all activities meet their
deadlines (δA < 0), the optimization heuristic stops the exploration process and
returns the current best-so-far configuration (lines 20-22).

6. Experimental Results
For the evaluation of our design optimization heuristic we have used syn-
thetic applications as well as a real-life example consisting of a vehicle
cruise controller. Thus, we have randomly generated applications of 40, 60,
80 and 100 tasks on systems with 4 processors. 56 applications were gener-
ated for each dimension, thus a total of 224 applications were used for
experimental evaluation. An equal number of applications with processor
utilizations of 20%, 40%, 60% and 80% were generated for each application
dimension. All experiments were run on an AMD AthlonXP 2400+ proces-
sor, with 512 MB RAM.

We were first interested to determine the quality of our design optimization
approach for hierarchically scheduled systems, the MSPAHeuristic (MSPA);
see Figure 7. We have compared the percentage of schedulable implementa-
tions found by MSPA with the number of schedulable solutions obtained by the
InitialMSPA algorithm described in Figure 5 (line 2), which derives a straight-
forward system implementation, denoted with SF. The results are depicted in
Figure 8.a. We can see that our MSPA heuristic (the black bars) performs very
well, and finds a number of schedulable systems that is considerably and con-
sistently higher than the number of schedulable systems obtained with the SF
approach (the white bars). On average, MSPA finds 44.5% more schedulable
solutions than SF.

Second, we were interested to determine the impact of the scheduling policy
assignment (SPA) decisions on the number of schedulable applications ob-
tained. Thus, for the same applications, we considered that the task mapping is
fixed by the SF approach, and only the SPA is optimized. Figure 8.a presents
this approach, labelled “MSPA/No mapping”, corresponding to the gray bars.
We can see that most of the improvement over the SF approach is obtained by
carefully optimizing the SPA in our MSPA heuristic.

We were also interested to find out what is the impact of the processor utili-
zation of an application on the quality of the implementations produced our
optimization heuristic. Figure 8.b presents the percentage of schedulable solu-
tions found by MSPA and SF as we ranged the utilization from 20% to 80%.

We can see that SF degrades very quickly with the increased utilization, with
under 10% schedulable solutions for applications with 40% utilization and
without finding any schedulable solution for applications with 80% utilization,
while MSPA is able to find a significant number of schedulable solutions even
for high processor utilizations.

Considering the complex optimization steps performed, our design optimiza-
tion heuristic produces good quality results in a reasonable amount of time. For
example, the heuristic will finish on average in less than 500 seconds for appli-
cations with 80 tasks that were found schedulable.

Finally, we considered a real-life example implementing a vehicle cruise
controller (CC). The process graph that models the CC has 32 processes, and
is described in [15]. The CC was mapped on an architecture consisting of
three nodes: Electronic Throttle Module (ETM), Anti-lock Breaking System
(ABS) and Transmission Control Module (TCM). We have considered a
deadline of 250 ms. In this setting, SF failed to produce a schedulable imple-
mentation. Our design optimization heuristic MSPA was considered first
such that the mapping is fixed by SF, and we only allowed reassigning of
scheduling policies. After 29.5 seconds, the best scheduling policy allocation
which was found still resulted in an unschedulable system, but with a “degree
of schedulability” three times higher than obtained by SF. When mapping
was allowed, and a schedulable system was found after 28.49 seconds.

7. Conclusions
In this paper we have addressed the analysis and optimization of hierarchi-
cally scheduled heterogeneous real-time systems. Several scheduling
policies are used for tasks, such as static cyclic scheduling, fixed-priority
preemptive scheduling and earliest deadline first, organized as a hierarchy.
Messages are transmitted using the Universal Communication Model that
combines both time-triggered and event-triggered slots.

We have proposed a holistic scheduling analysis that is able to handle the hi-
erarchical scheduling policies. As our main contribution we have proposed a
design optimization heuristic for the assignment of scheduling policies to tasks,
the mapping of tasks to hardware components, and the scheduling of the activ-
ities such that the timing constraints of the application are guaranteed.

As our experiments have shown, our heuristic is able to find schedulable
implementations under limited resources, achieving an efficient utilization of
the system.
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