Schedulability Analysis and Optimization for the
Synthesis of Multi-Cluster Distributed Embedded Systems

Paul Pop, Petru Eles, Zebo Peng
Computer and Information Science Dept., Linkdping University, Sweden
{paupo, petel, zebpe}@ida.liu.se

Abstract?!

e present an approach to schedulability analysis for the synthesis
of multi-cluster distributed embedded systems consisting of time-
triggered and event-triggered clusters, interconnected via gateways.
e have also proposed a buffer size and worst case queuing delay
analysis for the gateways, responsible for routing inter-cluster traf-
fic. Optimization heuristicsfor the priority assignment and synthesis
of bus access parameters aimed at producing a schedulable system
with minimal buffer needs have been proposed. Extensive experi-
ments and a real-life example show the efficiency of our approaches.

1. Introduction

There are two basic approaches for handling tasksin real-time appli-

cations [8]. In the event-triggered approach (ET), activities are initi-

ated whenever a particular event is noted. In the time-triggered (TT)
approach, activities are initiated at predetermined points in time.

There has been along debate in the real -time and embedded systems

communities concerning the advantages of each approach [2, 8, 17].

Several aspects have been considered in favour of one or the other

approach, such as flexibility, predictability, jitter control, processor

utilization, testability, etc.

The same dudlity isreflected at the level of the communicationin-
frastructure, where communication activities can be triggered either
dynamically, in response to an event, as with the controller area net-
work (CAN) bus[4], or statically, at predetermined momentsin time,
as in the case of time-division multiple access (TDMA) protocols
and, in particular, the time-triggered protocol (TTP) [8].

Process scheduling and schedulability analysis have been inten-
sively studied for the past decades [1, 3]. A few approaches have
been proposed for the schedul ability analysis of distributed real-time
systems, taking into consideration both process and communication
scheduling. In[15, 16] Tindell provided aframework for theanalysis
of ET process setsinterconnected through an infrastructure based on
either the CAN protocol or ageneric TDMA protocol. In[5] and [12]
we have developed an analysis allowing for either TT or ET process
sets communicating over the TTP.

Aninteresting comparison of the ET and TT approaches, fromamore
industrial, in particular automotive, perspective, canbefoundin[9]. The
conclusion there is that one has to choose the right approach depending
on the particularities of the processes. This means not only that thereis
no single“best” approach to be used, but also that inside acertain appli-
cation the two approaches can be used together, some tasks being TT
and others ET. The fact that such an approach is suitable for automotive
applicationsis demonstrated by the following two trendswhich are cur-
rently considered to be of foremost importance not only for the automo-
tiveindustry, but also for other categories of industrial applications:

1. The development of bus protocols which support both static and
dynamic communication [6]. Thisallowsfor ET and TT processes
to share the same processor as well as dynamic and static
communications to share the same bus. In [11] we have addressed
the problem of timing analysis for such systems.

2.Complex systems are designed as interconnected clusters of
processors. Each such cluster can be either TT or ET. In atime-
triggered cluster (TTC), processes and messages are scheduled
according to a static cyclic policy, with the bus implementing the
TTP. On an event-triggered cluster (ETC), the processes are
scheduled according to a priority based preemptive approach,
while messages are transmitted using the priority-based CAN

1. Theauthorsaregrateful totheindustrial partnersat VVolvo Technological Development
in Gothenburg, for their close involvement and precious feedback during this work.

protocol. Depending on their particular nature, certain parts of an

application can be mapped on processors belonging to an ETC or

aTTC. Thecritical element of such an architecture is the gateway,
which is a node connected to both types of clusters, and is
responsible for the inter-cluster routing of hard real-time traffic.

Inthis paper we propose an approach to schedul ability analysisfor the
synthesis of multi-cluster distributed embedded systems, including aso
buffer need analysis and worst case queuing delays of inter-cluster traf-
fic. We have aso devel oped optimization heuristics for the synthesis of
bus access parameters as well as process and message priorities aimed
at producing a schedulable system such that buffer sizesare minimized.

Efficient implementation of new, highly sophisticated automotive
applications, entailsthe use of TT process setstogether with ET ones
implemented on top of complex distributed architectures. Inthiscon-
text, this paper is the first one to address the analysis and optimiza-
tion of heterogeneous TT and ET systems implemented on multi-
cluster embedded networks.

The paper is organized in 7 sections. The next section presents the
application model aswell asthe hardware and software architecture of
our systems. Section 3 introduces more precisely the problemsthat we
are addressing in this paper. Section 4 presents our proposed schedu-
lability analysisfor multi-cluster systems, and section 5 usesthisanal-
ysisto drive the optimization heuristics used for system synthesis.

2. Application Model and System Architecture

2.1 Application M odéel

We model an application I asaset of processgraphs G; [I" (see Fi-
gure 1). Nodes in the graph represent processes and arcs represent
dependency between the connected processes. The communication
time between processes mapped on the same processor is considered
to be part of the process worst-case execution time and is not mod-
eled explicitly. Communication between processes mapped to differ-
ent processors is preformed by message passing over the buses and,
if needed, through the gateway. Such message passing is modeled as
a communication process inserted on the arc connecting the sender
and the receiver process (the black dotsin Figure 1).

Each process P; is mapped on a processor processorp, (mapping
represented by hashing in Figure 1), and has a worst case execution
time C; on that processor (depicted to theleft of each node). For each
message we know its size (in bytes, indicated to its left), and its pe-
riod, which isidentical with that of the sender process. Processesand
messages activated based on events also have a uniquely assigned
priority, priorityp, for processes and prioritymi for messages.

All processes and messages belonging to aprocess graph G; havethe
same period T=Tg; which is the period of the process graph. A dead-
line Dg; <Tg; isimposed on each process graph G;. Deadlines can aso
be placed locally on processes. If communicating processes are of dif-
ferent periods, they are combined into a hyper-graph capturing al pro-
cess activations for the hyper-period (LCM of al periods).

Gy G, /56\
30 A
8 my @ >
20®) 20(R) 06 30?
\ 8ems
\ 30(Py) 24 164m, 22‘
s 2

\’\P;t\,
Figure 1. An Application Model Exanflple

2.2 Hardware Architecture

We consider architectures consisting of several clusters, intercon-
nected by gateways (Figure 2 depicts atwo-cluster example). A clus-
ter is composed of nodes which share a broadcast communication
channel. Every node consists, among others, of a communication
controller, and a CPU. The gateways, connected to both types of
clusters, have two communication controllers, for TTP and CAN.
The communication controllersimplement the protocol services, and
run independently of the node’s CPU. Communication with the CPU
is performed through a message base interface (MBI) which is usu-
ally implemented as a dua ported RAM (Figure 3).

Communication between the nodeson a TTC isbased onthe TTP
[8]. The bus access scheme is TDMA, where each node N;, including
the gateway node, can transmit only during a predetermined timein-
terval, the so called TDMA dlot §. In such aslot, anode can send sev-
erad messages packaged in a frame. A sequence of dots
corresponding to al the nodesin the TTC is called a TDMA round.
A node can have only one dot in a TDMA round. Several TDMA
rounds can be combined together in a cycle that is repeated periodi-
cally. The TDMA access scheme isimposed by a message descriptor
liss (MEDL) that is located in every TTP controller. The MEDL
serves as a schedule table for the TTP controller which has to know
when to send/receive a frame to/from the communication channel.

On an ETC the CAN [4] protocol is used for communication. The
CAN husisapriority busthat employs a collison avoidance mechanism,
whereby the node that tranamits the message with the highest priority
winsthe contention. Message priorities are unique and are encoded inthe
frame identifiers, which are thefirgt bitsto be transmitted on the bus.

2.3 Software Architecture

A real-time kernel is responsible for activation of processes and
transmission of messages on each node. On aTTC, the processes are
activated based on the local schedule tables, and messages are trans-
mitted according to the MEDL. On an ETC, we have a scheduler that
decides on activation of ready processes and transmission of messag-
es, based on their priorities.

In Figure 3weillustrate our message passing mechanism. Herewe
concentrate on the communication between processes | ocated on dif-
ferent clusters. For message passing details within a TTC the reader
is directed to [13], while the infrastructure needed for communica-
tions on an ETC has been detailed in [15].

Let usconsider theexamplein Figure 3, where we have the process
graph G, from Figure 1 mapped on the two clusters. Processes P; and
P, are mapped on node N, of the TTC, while P, and P53 are mapped
on node N, of the ETC. Process P, sends messages my and my, to pro-
cesses P, and P, respectively, while P, sends message my to P.

The transmission of messagesfrom the TTC to the ETC takes place
in the following way (see Figure 3). P4, which is statically scheduled,
isactivated according to the scheduletable, and when it finishesit cals
the send kernel function in order to send m; and my, indicated in the
figure by number (1). Messages my and m, have to be sent from node
N; to node N,. At a certain time, known from the schedule table, the
kernel transfers m; and my, to the TTP controller by packaging them
into aframe in the MBI. Later on, the TTP controller knows from its
MEDL when it has to take the frame from the MBI, in order to broad-
cast it on the bus. In our example, the timing information in the sched-
uletable of the kernel and the MEDL is determined in such away that
the broadcasting of the frameisdonein thedot S; of round 2 (2). The
TTP controller of the gateway node Ng knows from its MEDL that it
has to read a frame from dot S; of round 2 and to transfer it into its
MBI (3). Invoked periodically, having the highest priority on node Ng,

7] Gateway
TTP Controller |

TTC //l/ /|/
ETC
CAN Controller

Figure 2. A System Architecture Example

CAN bus
P

Outrrp
Out,

TTP bus schedule

Figure 3. A Message Passing Example

and with a period which guarantees that no messages arelost, the gate-
way process T copies messages my and m, from the MBI to the TTP-
to-CAN priority-ordered message queue Outcay (4). The highest pri-
ority message in the queue, in our case my, will tentatively be broad-
cast on the CAN bus (5). Whenever message my will be the highest
priority message onthe CAN bus, it will successfully be broadcast and
will be received by the interested nodes, in our case node N, (6). The
CAN communication controller of node N, receiving my will copy it
in the transfer buffer between the controller and the CPU, and raise an
interrupt which will activate a delivery process, responsibleto activate
the corresponding receiving process, in our case P,, and hand over
message my that finally arrives at the destination (7).

Message my (depicted in Figure 3 as a hashed rectangle) sent by
process P, from the ETC will betransmitted to process P, onthe TTC.
The transmission starts when P, calls its send function and enqueues
mg in the priority-ordered Outy, queue (8). When my has the highest
priority on the bus, it will be removed from the queue (9) and broad-
cast on the CAN bus (10), arriving at the gateway’s CAN controller
whereit raises an interrupt. Based on thisinterrupt, the gateway trans-
fer process T is activated, and my is placed in the Outp FIFO queue
(11). The gateway node Ng isonly ableto broadcast onthe TTCinthe
dot &; of the TDMA rounds circulating on the TTP bus. According to
the MEDL of the gateway, a set of messages not exceeding sizesG of
the slot S will be removed from the front of the Outrrp queuein ev-
ery round, and packed in the Sg slot (12). Once the frameis broadcast
(13) it will arrive at node N, (14), where all the messagesin the frame
will be copied in the input buffers of the destination processes (15).
Process P, is activated according to the schedule table, which has to
be constructed such that it accounts for the worst-case communication
delay of message mg, bounded by the analysis in section 4, and thus
when P, starts executing it will find mg in itsinput buffer.

Aspart of our timing analysis and synthesis approach, we generate
all thelocal scheduletablesand MEDLsonthe TTC, the message and
process priorities for the activities on the ETC, aswell as buffer sizes
and bus configurations such that the global system is schedulable.

3. Problem Formulation

As input to our problem we have an application I given as a set of
process graphs mapped on an architecture consisting of a TTC and
an ETC interconnected through a gateway.

We are interested first to find a system configuration denoted by a
3-tuple Y=<@ B, Tt>such that the application I is schedulable. De-
termining a system configuration Y means deciding on:

* The set @of the offsets corresponding to each process and messagein
the system (see section 4). The offsets of processes and messages on
the TTC practically represent the local schedule tablesand MEDLSs.

* The sequence and size of thedotsina TDMA round onthe TTC (B).

* The priorities of the processes and messages on the ETC ().
Once a configuration leading to a schedulable application is found,

we are interested to find a system configuration that minimizesthe to-
tal queue sizes needed to run a schedulable application. The approach
presented in this paper can be easily extended to cluster configurations
where there are several ETCs and TTCs interconnected by gateways.

Let us consider the example in Figure 4, where we have the process
graph G, from Figure 1 mapped on the two-cluster system as indicated
in Figure 3. In the system configuration of Figure 4a we consider that,

r,=210 Deadlijne missed!
1Y 50 04:180 100 150 | 00
Ny P1(C1=30) —|Pa(Cy=30)
P My Mp(Cryy =Cry=S1) My(Crrg=Sc)
bus 11 WEHT 1T T T N0 1| [1]
S5=20 §,=20 S S
Ng “Rond=a0" T(Cr=5)[] Wi Y10 T WTE10
m My
Cﬁlﬂ\ls (Cm=Cony=Cr=10) I []
J=15 1,220
& T=55
N2 05780 Ex:zsz Py(C4=20)
Tr =240 T
Dg =200
a) G; missesits deadline
'y Deadline met!
T — F
[1 [T T 1 [] [1]
bus s S %
Ng il il
my mp mg
CAN [| | [|
Cer—1r
N, z
P3
b) S, isthefirst slot, my, m, are sent sooner, G; meetsits deadline
Ty Ddadline met!
Ny [[
m; my my
LS I N | 1 1]
bus e S
Ng T|:| T|:|
mm, Mg
ChN [| I |
P
N, =

P3
¢) P, isthe high priority process on N,, G, meetsits deadline

Figure 4. Scheduling Examples
onthe TTPbus, the gateway transmitsin thefirst ot (Sg) of the TDMA
round, while node N, transmitsin the second dot (S;). Theprioritiesin-
sde the ETC have been set such that priority,, > prioritymz and
priori'[yp3 > priorityp,,. Insuch asetting, G, will missitsdeadline, which
was set at 200 ms. However, changing the system configuration asin Fi-
gure4b, so that dot S; of N; comesfirst, we are ableto send my and my,
sooner, and thus reduce the responsetime and meet the deadline. There-
sponse times and resource usage do not, of course, depend only on the
TDMA configuration. In Figure 4c, for example, we have modified the
priorities of P, and Pz so that P, isthe higher priority process. Insuch a
situation, P, isnot interrupted when the delivery of message m, was sup-
posed to activate P3 and, thus, eliminating the interference, we are able
to meet the deadline, even with the TTP bus configuration of Figure 4a.

4. Multi-Cluster Scheduling

In this section we propose an analysis for hard real-time applications
mapped on multi-cluster systems. The aim of such an analysisistofind
out if asystem is schedulable, i.e. al the timing constraints are met. In
addition to this, we are dso interested in bounding the queue sizes.

On the TTC an application is schedulable if it is possible to build
a schedule table such that the timing requirements are satisfied. On
the ETC, the answer wether or not a system is schedulable is given
by a schedulability analysis.

In this paper, for the ETC we use aresponsetime analysis, wherethe
schedulability test consists of the comparison between the worst-case
responsetimer; of aprocess P; and its deadline D;. Response time anal -
ysis of data dependent processes with static priority preemptive sched-
uling has been proposed in [10, 14, 18], and has been also extended to
consider the CAN protocol [15]. The authors use the concept of offset
in order to handle data dependencies. Thus, each process P; is charac-
terized by an offset O;, measured from the start of the processgraph, that
indicatesthe earliest possible start time of P;. For example, in Figure 4a,
0,=80, as process P, cannot start beforereceiving my whichisavailable
at theend of dot S; inround 2. The sameistrue for messages, their off-

MultiClusterScheduling(l, B, 1)
-- assigniinitia valuesto offsets
for each O; p do O; =initial value end for
-- iteratively improve the offsets and response times
repeat
-- determine the response times based on the current values for the offsets
p=ResponseTimeAnalysis(I", @, 17
-- determine the offsets based on the current values for the response times
@=StaticScheduling(T", p, B)
until ¢ not changed
return @, p
end MultiClusterScheduling
Figure 5. The MultiClusterScheduling Algorithm

set indicating the earliest possible transmission time.

Determining the schedulability of an application mapped on a
multi-cluster system cannot be addressed separately for each type of
cluster, since the inter-cluster communication creates a circular de-
pendency: the static schedules determined for the TTC influence
through the offsets the response times of the processes on the ETC,
which on their turn influence the schedule table construction on the
TTC. In Figure 4aplacing m; and m, in the same slot leads to equal
offsets for P, and P3. Because of this, P3 will interfere with P,
(which would not be the case if m, sent to P53 would be scheduled in
round 4) and thus the placement of P, in the schedule table has to be
accordingly delayed to guarantee the arrival of m.

In our response time analysis we consider the influence between
the two clusters by making the following observations:

* Thedart timeof processP; inascheduletableonthe TTC isitsoffset O;.

* The worst-case response timer; of a TT processis its worst case
execution time, i.e. r;=C; (TT processes are not preemptable).

» The response times of the messages exchanged between two
clusters have to be calculated according to the schedulability
analysis described in section 4.1.

* The offsets have to be set by a scheduling algorithm such that the
precedencerel ationships are preserved. Thismeansthat, if process Pg
depends on process P,, the following condition must hold: Og =
Ot - Notethat for the processeson a TTC receiving messages from
the ETC thistrandates to setting the start times of the processes such
that aprocessisnot activated before the worst-case arrival time of the
message from the ETC. In generd, offsets on the TTC are set such
that all the necessary messages are present at the processinvocation.
The MultiClusterScheduling algorithm in Figure 5 receives as input

theapplication ", the TTC bus configuration 3 and the ET processand
message priorities T, and produces the offsets @ and response times p.
The agorithm starts by assigning to all offsets an initia value ob-
tained by a static scheduling algorithm applied on the TTC without
considering the influence from the ETC. The response times of all
processes and messages in the ETC are then calculated according to
the analysisin section 4.1 by using the ResponseTimeAnalysis func-
tion. Based on the response times, offsets of the TT processes can be
defined such that all messages received from the ETC cluster are
present at process invocation. Considering these offsets as con-
straints, a static scheduling algorithm can derive the schedule tables
and MEDLs of the TTC cluster. For this purpose we use a list sched-
uling based approach presented in[5]. Once new val ues have been de-
termined for the offsets, they are fed back to the response time
calculation function, thus obtaining new, tighter (i.e., smaller, less
pessimistic) values for the worst-case response times. The agorithm
stops when the response times cannot be further tightened and, con-
sequently, the offsets remain unchanged. Termination is guaranteed if
processor and bus loads are smaller than 100% (see section 4.2) and
deadlines are smaller than the periods.

4.1 Schedulability and Resource Analysis
The analysisin this section is used in the ResponseTimeAnalysis func-
tion in order to determine the response timesfor processes and messag-
eson the ETC. It receives as input the application I', the offsets @ and
the priorities 11, and it produces the set p of worst case response times.
We have extended the framework provided by [14, 15] for an ETC.
Thus, the response time of a process P; on the ETC is ri=Jj+w;+C;,
where J; isthejitter of process P; (the worst case delay between the

activation of the process and the start of its execution), and C;j is its
worst case execution time. The interference w; from other processes
running on the same processor is given by:
w, = B,+ DZ (W_”__Ol/ c;.
0j p(P)) TJ

Inthe previous equation, the blocking factor B; representsinterfer-
ence from lower priority processes that are in their critical section
and cannot be interrupted. The second term captures the interference
from higher priority processes P; O hp(P;), where O;; is a positive
value representing the relative offset of process P; to P;.

The same analysis can be applied for messages on the CAN bus:
I i=JdmtWitCr,, Where Jy, is the jitter of message m which in the
worst case is equal to the response time r gy of the sender process
Pgm), Wim is the worst-case queuing delay experienced by m at the
communication controller, and C,, is the worst-case time it takes for
a message m to reach the destination controller. On CAN, C, de-
pends on the frame configuration and message size s, whileon TTP
it isequal to the dot size where mis transmitted.

The response time analysis for processes and messages are com-
bined by realizing that the jitter of a destination process depends on
the communication delay between sending and receiving a message.
Thus, for a process Ppy, that receives a message m from a sender
process Pgy), the releasejitter is Ip(m="m:

The worst-case queueing delay for amessage is calculated differ-
ently depending on the type of message passing employed:
1.From an ETC node to another ETC node (in which case

wi - represents the worst-case time a message m has to spend in

the Outy; queue on ETC node Ny),

2. From aTTC node to an ETC node (WEAN isthe worst-casetime a
message m has to spend in the Outcay queue).

3. From an ETC nodeto aTTC node (wherew!T” capturesthetime

m has to spend in the Outrp queue).

The messages sent from a TTC node to another TTC node are tak-
en into account when determining the offsets (StaticScheduling, Fi-
gure 5), and thus are not involved directly in the ETC analysis.

The next sections show how the worst queueing delaysand the bounds
on the queue sizes are cal culated for each of the previous three cases.
4.1.1 FromETC to ETC and from TTC to ETC
The analyses for w\i and w&™N are similar. Once mis the highest
priority message in the Outcan queue, it will be sent by the gate-
way’s CAN controller asaregular CAN message, therefore the same
equation for Wmcan be used: ’7Wm+J-—0 '

=B, + D; mj C
p(m) T
Theintuitionisthatm hasto wait,in theworst case, first for thelargest

lower priority message that isjust being transmitted (B,,,) aswell asfor
the higher priority j O hp(m) messagesthat have to be transmitted ahead
of m(the second term). Intheworst case, thetimeit takesfor the largest
lower priority message k [Ip(m) to be transmitted to its destination is:
B, = max - (c,).
Ok O Ip(m)

Note that in our case, Ip(m) and hp(m) aso include messages pro-
duced by the gateway node, transferred from the TTC to the ETC.

We are also interested to bound the size SSAN of the Outcay and
Ni of the Outy; queue. In the worst case, message m, and all the
messages with higher priority than mwill be in the queue, awaiting
transmission. Summing up their sizes, and finding out what is the
most critical instant we get the worst-case qugue sioze:

_ max W, *J =0,
e =

where s, and s; are the sizes of message mand j, respectively.
4.1.2FromETCto TTC
The time amessage m has to spend in the Outp queue in the worst
case depends on the total size of messages queued ahead of m
(Outp isaFIFO queue), the size S of the gateway slot responsible
for carrying the CAN messages on the TTP bus, and the frequency
Ttpma With which this slot S5 is circulating on the bus:

Ow, +J,-0,,0
r=J,+w, +Cw, =B, + 5 ; 2'35:3
r=Jy+w, +Cy,w, =B,
T =, +W:x,4\ +Cm,)W:1‘AN =B, BVLM
r —J +W(.4V+C AN _B +E m, mm,E(j3
r, =J, +w,:2 +C,. = g
_J +WTTP +C rTuTP _B + ru ETTDWA’ my' TTD‘I/IA O mOdTTDwA 05(,
Figure 6. Response Tlme Analysis Example
TTP S +1
= m m
W = Byt S Trppas

G
where |, is the total size of the messages queued ahead of m. Those
messages j [hp(m) are ahead of m, which have been sent from the
ETC to the TTC, and have higher priority than m:

TP
I (#1 .
p(m) J

where the message jitter J,, is in the worst case the response time of
the sender process, Jy=r gm)-

The blocking factor B, is the time interval in which m cannot be
transmitted because the slot S of the TDMA round has not arrived
yet, and is determined aSTTDMA-Om mod TTDMA+OSG' where OSG is
the offset of the gateway dlotin a TDMA round.

Determining the size of the queue needed to accommodate the
worst case burst of messages sent from the CAN cluster is done by
finding out the worst instant of the following sum:

TTP
Sout = max(Sm + Im) :

4.2 Response Time Analy"és Example
Figure 6 presents the equations for our system in Figure 4a. The jitter
of P, depends on the response time of the gateway transfer process T
and the response time of message My, Jo=Ty,,. Similarly, Ja=r,. We
have considered that J, =Jm,=r'- Theresponsetimer ,, denotesthere-
sponse time of mg sent from process P, to the gateway process T, while
I'mg istheresponsetimeof the same message mg sent now from Tto Py,
The equations are recurrent, and they will converge if the proces-
sor and bus utilization are under 100% [16]. Considering a TDMA
round of 40 ms, with two slots each of 20 ms asin Figure 4a, r1=5
ms, 10 msfor the transmission times on CAN for my and my, and us-
ing the offsetsin the figure, the equationswill converge to the values
indicated in Figure 4a (all values are in milliseconds). Thus, the re-
sponse time of graph Gy will be rg,=04+1,=210, which is greater
than D, =200, thus the system is not schedulable.

5. Scheduling and Optimization Strategy
Oncewe have atechniqueto determineif asystemisschedulable, we
can concentrate on optimizing the total queue sizes. Our problem is
to synthesize a system configuration Y such that the application is
schedulable, i.e. the condition®

G < DGJ O G U
holds, and the total queue’size Sy IS m|n| mlzed2

_ CaAN | TTP N,
Stotal = SOut Sout g SOut'
ow,fTerc

Such an optimization problem is NP cdmpl ete, thus obtaining the
optimal solution is not feasible. We propose a resource optimization
strategy based on a hill-climb heuristic that uses an intelligent set of
initial solutionsin order to efficiently explore the design space.

5.1 Scheduling and Buffer Optimization Heuristic

Our optimization heuristic is outlined in Figure 7. The basic idea of
our OptimizeResources heuristic is to find, as afirst step, a solution
with the smallest possible response times, without considering the
buffer sizes, in the hope of finding a schedulable system. This is
achieved through the OptimizeSchedule function. Then, ahill-climb-

1. Theworst-case response time a process graph G; is calculated based on its sink node
asrg; = Ognktrsink. If local deadlines arelmposed they will also haveto be tested in
the schedulablllty condition.

2. OntheTTC, the synchronization between processes and the TDMA bus configuration is
solved through the proper synthesis of schedule tables, thus no output queues are needed.
Input buffers on both TTC and ETC nodes are local to processes. Thereis one buffer per
input message and each buffer can store one messageinstance (see explanation to Figure 3).

ing heuristic iteratively performs movesintended to minimize the to-
tal buffer size while keeping the resulted system schedulable.

The OptimizeSchedule function outlined in Figure 8 is a greedy
approach which determines an ordering of the slotsand their lengths,
aswell as priorities of messages and processesin the ETC, such that
the degree of schedulability of the application is maximized. The de-
gree of schedulability [12] is calculated as:

n

fy = Z max(0,R; —Dg),iff; >0
il ! '

n
fy= R--D if f; =
2 IZI(6,~Dg),iff1=0
where n isthe number of process graphsin the application. If the ap-
plication is not schedulable, the term f; will be positive, and in this
case the cost function is equal to f;. However, if the process set is
schedulable, f; = 0 and we use f, as a cost function, asit is able to
differentiate between two alternatives, both leading to a schedulable
process set. For a given set of optimization parameters leading to a
schedulable process set, a smaller f, means that we have improved
the response times of the processes.

Asaninitial TTC bus configuration 3, OptimizeSchedule assignsin
order nodesto the dlotsand fixesthe dlot length to theminimal allowed
value, which isequal to thelength of the largest message generated by
a process assigned to N;, S;i=<N;, sizegmaest> Then, the agorithm
starts with the first dot and tries to find the node which, when trans-
mitting in this slot, will maximize the degree of schedulability &

Simultaneoudly with searching for the right node to be assigned to
the dot, the algorithm looks for the optimal dot length. Once a node
was selected for thefirst dot and adot length fixed (S=Sp.esy), the ago-
rithm continues with the next dots, trying to assign nodes (and to fix
dot lengths) from those nodes which have not yet been assigned. When
calculating the length of a certain dot we consider the feedback from
the MultiClusterScheduling agorithm which recommends dot sizes to
be tried out. Before starting the actual optimization process for the bus
access scheme, ascheduling of the initial solution is performed which
generates the recommended slot lengths. We refer the reader to [5] for
detail s concerning the generation of the recommended dot lengths.

In the OptimizeSchedule function the degree of schedulability o
is calculated based on the response times produced by the MultiClus-
terScheduling algorithm. For the priorities used in the response time
calculation we use the “heuristic optimized priority assignment”
(HOPA) approachin[7], where prioritiesfor processes and messages
in adistributed real-time system are determined, using knowledge of
the factors that influence the timing behaviour, such that the degree
of schedulability isimproved.

The OptimizeSchedule function aso records the best solutions in
termsof dr and S5 iNthe seed_solutions list in order to be used asthe
starting point for the second step of our OptimizeResources heuristic.

Once aschedulable system is obtained, our goa isto minimizethe
buffer space. Our design space exploration in the second step of Op-
timizeResources is based on successive design transformations (gen-
erating the neighbors of a solution) called moves. For our heuristics,
we consider the following types of moves:

e moving a process or a message belonging to the TTC inside its

[ASAP, ALAP] interval calculated based on the current values for

OptimizeResources(I")
-- Step 1: try to find a schedulable system
seed_solutions=OptimizeSchedule(")
-- if no schedulable configuration has been found, modify mapping and/or architecture
if [is not schedulable for Ypegt then modify mapping; go to step 1; end if
-- Step 2: try to reduce the resource need, minimize Sy
for each Y in seed_solutions do
repeat
-- find moves with highest potentia to minimize Sy
move_set=GenerateNeighbors(y)
-- select move which minimizes s
-- and does not result in an un-schedulable system
move = SelectMove(move_set); Perform(move)
until sy, has not changed or limit reached
end for
return system configuration g, queue sizes
end OptimizeResources
Figure 7. The OptimizeResources Algorithm

6|—:

OptimizeSchedule(I")
-- given an gpplication I produces the configuration Y=<q B, Tt>leading to the smallest &
-- gtart by determining an initial TTC bus configuration 3
for each slot S; B do Sj=<N;, sizegmaest> €N for
-- find the best dlocation of dots, the TDMA dot sequence
for each slot S; [P do
for each node N; OTTC do
Si=<N;, sizesj>; Sj=<N;, sizeg;> -- dlocate N; tentatively to §, N; getsslot §
-- determine best sizefor dot §
for each slot size O recomended_lengths(S;) do
T=HOPA -- calculate the priorities according to the HOPA heuristic
-- determine the offsets ¢, thus obtaining a complete system configuration
Si=<N;;, size>; @=MultiClusterScheduling(I’, B, 10; Ycyrren=<@ B, TT>
-- remember the best configuration so far, add it to the seed configurations
if O (Weurrent) is best so far then

Woest = Weurrent: Sbest=Si;
add Ypest to seed_solutions
end if
determine Syq(q) for Weyrrent
if Stotq is best so far and I is schedulable
then add Weyrent to seed_solutions end if
end for
end for
-- make binding permanent, use the § 4 corresponding to Wpey
if & Speg eXists then Sj=Speq end if
end for
return Ypest, Or (WUpest), Se€d_solutions
end OptimizeSchedule
Figure 8. The OptimizeSchedule Algorithm

the offsets and response times;

* swapping the priorities of two messages transmitted on the ETC,
or of two processes mapped on the ETC;

* increasing or decreasing the size of aTDMA dot with acertain value;

* swapping two slotsinside a TDMA round.

The second step of the OptimizeResources heuristic start from the seed
solutions produced in the previous step, and iteratively preforms moves
inorder toreducethetota buffer size, 5414 The heuristictriestoimprove
onthetotal queue sizes, without producing un-schedulable systems. The
neighbors of the current solution are generated in the GenerateNeigh-
bours functions, and themove with the smallest s, IS Selected using the
SelectMove function. Finally, the moveis performed, and theloop reiter-
ates. The iterative process ends when there is no improvement achieved
0N St OF alimit imposed on the number of iterations has been reached.

Inorder to improve the chancesto find good valuesfor 5, the algo-
rithm hasto be executed severa times, starting with adifferent initial so-
Iution. The intelligence of our OptimizeResources heurigtic lies in the
sdlection of theinitia solutions, recorded in the seed_solutions list. The
list is generated by the OptimizeSchedule function which records the
best solutionsintermsof & and 545 . Seeding thehill climbing heuristic
with several solutions of small s, Will guarantee that the local optima
are quickly found. However, during our experiments, we have observed
that another good set of seed solutions are those that have high degree of
schedulability . Starting from ahighly schedulable system will permit
more iterations until the system degrades to an un-schedulable configu-
ration, thus the exploration of the design spaceis more efficient.

6. Experimental Results

For evaluation of our algorithms we first used process graphs gener-
ated for experimental purpose. We considered two-cluster architec-
tures consisting of 2, 4, 6, 8 and 10 nodes, half on the TTC and the
other half on the ETC, interconnected by a gateway. 40 processes
were assigned to each node, resulting in applications of 80, 160, 240,
320 and 400 processes. Message sizes were randomly chosen be-
tween 8 and 32 bytes. 30 examples were generated for each applica-
tion dimension, thus a total of 150 applications were used for
experimental evaluation. Worst-case execution times and message
lengths were assigned randomly using both uniform and exponential
distribution. All experiments were run on a SUN Ultra 10.

In order to provide a basis for the evaluation of our heuristics we
have devel oped two simulated annealing (SA) based algorithms. Both
are based on the moves presented in the previous section. The first
one, named SA Schedule (SAS), was set to preform moves such that
O isminimized. The second one, SA Resources (SAR), USeS Syt 8S
the cost function to be minimized. Very long and expensive runs have
been performed with each of the SA algorithms, and the best ever so-

120 | 10k 50
= -+ SF /‘ || =o0s = = OS
= 1004 #=0s | £ gkf -~ OR A = 0| &= OR A
2 - SAS /‘// g 8T SAR /. : - ¥R /
k&) @ 7K B
B 80
S / g 6k // 2 %
[¢]
a)g 60 b) 2 sk A “» 0gr /
g .// S 4 g 20
3 dof— %’ x A———"/ / B //‘ /}
Q (0]
g 2 -~ /// - g o
E: 1k ./ 2
0< T i T —d T i N 0k T T T T T T 0 T el T i T i T -
80 160 240 320 400 80 160 240 320 400 10 20 30 40 50

Number of Processes

Number of Processes

Number of Messages

Figure 9. Comparison of the Optimization Heuristics

lution produced has been considered a close to the optimum value.

The first result concerns the ability of our heuristics to produce
schedulable solutions. We have compared the degree of schedulabil-
ity dr obtained from our OptimizeSchedule (OS) heuristic (Figure 8)
with the near-optimal values obtained by SAS. Figure 9a presentsthe
average percentage deviation of the degree of schedulability pro-
duced by OS from the near-optimal values obtained with SAS. To-
gether with OS, a strai ghtforward approach (SF) is presented. For SF
we considered a TTC bus configuration consisting of a straightfor-
ward ascending order of allocation of the nodes to the TDMA dlots;
the slot lengths were selected to accommodate the largest message
sent by the respective node, and the scheduling has been performed
by the MultiClusterScheduling algorithm in Figure 5.

Figure 9a shows that when considering the optimization of the ac-
cess to the communication channel, and of priorities, the degree of
schedulability improves dramatically compared to the straightfor-
ward approach. The greedy heuristic OptimizeSchedule performs
well for al the graph dimensions, having run-times which are more
than two orders of magnitude smaller than with SAS. In the figure,
only the examples where all the algorithms have obtained schedula-
ble systems were presented. The SF approach failed to find a sched-
ulable system in 26 out of the total 150 applications.

Next, we are interested to evaluate the heuristics for minimizing the
buffer sizes needed to run a schedulable application. Thus, we com-
pare the total buffer need s Obtained by the OptimizeResources
(OR) function with the near-optimal values obtained when using sim-
ulated annealing, thistimewith the cost function sy . To find out how
relevant the buffer optimization problem is, we have compared these
results with the s obtained by the OS approach, which isinterested
only to obtain a schedulable system, without any other concern. As
shownin Figure 9b, OR isableto find schedul able systemswith a buff-
er need haf of that needed by the solutions produced with OS. The
quality of the solutions obtained by OR is aso comparable with the
one obtained with smulated annealing (SAR).

Another important aspect of our experiments was to determine the
difficulty of resource minimization as the number of messages ex-
changed over the gateway increases. For this, we have generated appli-
cations of 160 processes with 10, 20, 30, 40, and 50 messages
exchanged between the TTC and ETC clusters. 30 applications were
generated for each number of messages. Figure 9c shows the average
percentage deviation of the buffer sizes obtained with OR and OSfrom
the near-optimal results obtained by SAR. Asthe number of inter-clus-
ter messages increases, the problem becomes more complex. The OS
approach degrades very fast, in terms of buffer sizes, while OR is able
to find good quality results even for intense inter-cluster traffic.

When deciding on which heuristic to use for design space explo-
ration or system synthesis, an important issue is the execution time.
In average, our optimization heuristics needed a couple of minutesto
produce results, while the simulated annealing approaches (SAS and
SAR) had an execution time of up to three hours.

Finally, we considered a red-life example implementing a vehicle
cruise controller. The process graph that modelsthe cruise controller has
40 processes, and it was mapped on an architecture consisting of aTTC
and an ETC, each with 2 nodes, interconnected by a gateway. The
“speedup” part of themode has been mapped on the ETC whilethe other

processes were mapped on the TTC. We considered one mode of opera:
tion with a deadline of 250 ms. The straightforward approach SF pro-
duced an end-to-end response time of 320 ms, greater than the deadline,
while both the OS and SAS heurigtics produced a schedulable system
with aworst-case response time of 185 ms. The total buffer need of the
solution determined by OS was 1020 bytes. After optimization with OR
adtill schedulable solution with a buffer need reduced by 24% has been
generated, whichisonly 6% worsethan the solution produced with SAR.

7. Conclusions

We have presented in this paper an approach to schedulability anal-
ysis for the synthesis of multi-cluster distributed embedded systems
consisting of time-triggered and event-triggered clusters, intercon-
nected via gateways. The main contribution is the development of a
schedulability analysis for such systems, including determining the
worst-case queuing delays at the gateway and the bounds on the buff-
er size needed for running a schedul able system.

Optimization heuristics for system synthesis have been proposed,
together with simulated annealing approaches tuned to find near-op-
timal results. Thefirst heuristic, OS, was concerned with obtaining a
schedulable system, by maximizing the degree of schedulability. Our
second heuristic, OR, aimed at producing schedulable systems with
aminimal buffer size need.

References

[1] N.Audsley, A. Burns, et. ., “Fixed Priority Preemptive Scheduling: An
Historical Perspective’, Real-Time Systems, 8(2/3), 173-198, 1995.

[2] N. Audsley, K. Tindell, A. et. d., “The End of Line for Static Cyclic
Scheduling?’, Euromicro Workshop on Real-Time Systems, 36-41, 1993.

[3] F. Bdarin, L. Lavagno, et. a., “Scheduling for Embedded Real-Time
Systems’, |EEE Design and Test of Computers, Jan.-Mar., 71-82, 1998.

[4] R.Bosch GmbH, “CAN Specification Version 2.0", 1991.

[5] P Elesetal.,“Scheduling with Bus Access Optimization for Distributed
Embedded Systems’, |IEEE Trans. on VLS| Systems, 472-491, 2000.

[6] FlexRay Requirements Specification, http://www.flexray-group.com/.

[7] J.J.G. Garcia, M. G. Harbour, “Optimized Priority Assignment for Tasks
and Messagesin Distributed Hard Real-Time Systems”, Proc. Workshop
on Parallel and Distributed R-T Systems, 124-132, 1995.

[8] H. Kopetz, “Real-Time Systems - Design Principles for Distributed
Embedded Applications’, Kluwer Academic Publishers, 1997.

[9] H.L6nn, J. Axelsson, “A Comparison of Fixed-Priority and Static Cyclic
Scheduling for Distributed Automotive Control Applications’,
Euromicro Conference on Real-Time Systems, 142-149, 1999.

[10] J. C. Palencia, M. G. Harbour, “Schedulability Analysis for Tasks with
Static and Dynamic Offsets’, Proc. Real-Time Systems Symp., 1998.

[11] T. Pop, P. Eles, Z. Peng, “Hoalistic Scheduling and Analysis of Mixed
Time/Event-Triggered Distributed Embedded Systems’, Intl.
Symposium on Hardware/Software Codesign, 187-192, 2002.

[12]P. Pop, P. Eles, Z. Peng, "Bus Access Optimization for Distributed
Embedded Systems Based on Schedulability Analysis', Proc. Design
Automation and Test in Europe, 567-574, 2000.

[13] P, Pop, P, Eles, Z. Peng, “Scheduling with Optimized Communication for TT
Embedded Systems”, Intl. Workshop on Hw-Sw Codesign, 178-182, 1999.

[14] K. Tindell, “Adding Time-Offsetsto Schedulability Analysis’, Department
of Computer Science, University of York, Report No. Y CS-94-221, 1994.

[15]K. Tindell, A. Burns, A. J. Wellings, “Calculating CAN Message
Response Times”, Control Engineering Practice, 3(8), 1163-1169, 1995.

[16] K. Tinddl, J. Clark, “Holistic Schedulability Analysisfor Distributed Hard Redl -
TimeSystems’, Microprocessing & Microprogramming, Vol. 50, No. 2-3, 1994.

[17]3. Xu, D. L. Parnas, “On satisfying timing constraints in hard-real-time
systems”, |EEE Transactions on Software Engineering, 19(1), 1993.

[18]T. Y. Yen, W. Wolf, “Hardware-Software Co-Synthesis of Distributed
Embedded Systems’, Kluwer Academic Publishers, 1997.

