
Abstract1

We present an approach to schedulability analysis for the synthesis
of multi-cluster distributed embedded systems consisting of time-
triggered and event-triggered clusters, interconnected via gateways.
We have also proposed a buffer size and worst case queuing delay
analysis for the gateways, responsible for routing inter-cluster traf-
fic. Optimization heuristics for the priority assignment and synthesis
of bus access parameters aimed at producing a schedulable system
with minimal buffer needs have been proposed. Extensive experi-
ments and a real-life example show the efficiency of our approaches.

1. Introduction
There are two basic approaches for handling tasks in real-time appli-
cations [8]. In the event-triggered approach (ET), activities are initi-
ated whenever a particular event is noted. In the time-triggered (TT)
approach, activities are initiated at predetermined points in time.
There has been a long debate in the real-time and embedded systems
communities concerning the advantages of each approach [2, 8, 17].
Several aspects have been considered in favour of one or the other
approach, such as flexibility, predictability, jitter control, processor
utilization, testability, etc.

The same duality is reflected at the level of the communication in-
frastructure, where communication activities can be triggered either
dynamically, in response to an event, as with the controller area net-
work (CAN) bus [4], or statically, at predetermined moments in time,
as in the case of time-division multiple access (TDMA) protocols
and, in particular, the time-triggered protocol (TTP) [8].

Process scheduling and schedulability analysis have been inten-
sively studied for the past decades [1, 3]. A few approaches have
been proposed for the schedulability analysis of distributed real-time
systems, taking into consideration both process and communication
scheduling. In [15, 16] Tindell provided a framework for the analysis
of ET process sets interconnected through an infrastructure based on
either the CAN protocol or a generic TDMA protocol. In [5] and [12]
we have developed an analysis allowing for either TT or ET process
sets communicating over the TTP.

An interesting comparison of the ET and TT approaches, from a more
industrial, in particular automotive, perspective, can be found in [9]. The
conclusion there is that one has to choose the right approach depending
on the particularities of the processes. This means not only that there is
no single “best” approach to be used, but also that inside a certain appli-
cation the two approaches can be used together, some tasks being TT
and others ET. The fact that such an approach is suitable for automotive
applications is demonstrated by the following two trends which are cur-
rently considered to be of foremost importance not only for the automo-
tive industry, but also for other categories of industrial applications:
1. The development of bus protocols which support both static and

dynamic communication [6]. This allows for ET and TT processes
to share the same processor as well as dynamic and static
communications to share the same bus. In [11] we have addressed
the problem of timing analysis for such systems.

2. Complex systems are designed as interconnected clusters of
processors. Each such cluster can be either TT or ET. In a time-
triggered cluster (TTC), processes and messages are scheduled
according to a static cyclic policy, with the bus implementing the
TTP. On an event-triggered cluster (ETC), the processes are
scheduled according to a priority based preemptive approach,
while messages are transmitted using the priority-based CAN

protocol. Depending on their particular nature, certain parts of an
application can be mapped on processors belonging to an ETC or
a TTC. The critical element of such an architecture is the gateway,
which is a node connected to both types of clusters, and is
responsible for the inter-cluster routing of hard real-time traffic.
In this paper we propose an approach to schedulability analysis for the

synthesis of multi-cluster distributed embedded systems, including also
buffer need analysis and worst case queuing delays of inter-cluster traf-
fic. We have also developed optimization heuristics for the synthesis of
bus access parameters as well as process and message priorities aimed
at producing a schedulable system such that buffer sizes are minimized.

Efficient implementation of new, highly sophisticated automotive
applications, entails the use of TT process sets together with ET ones
implemented on top of complex distributed architectures. In this con-
text, this paper is the first one to address the analysis and optimiza-
tion of heterogeneous TT and ET systems implemented on multi-
cluster embedded networks.

The paper is organized in 7 sections. The next section presents the
application model as well as the hardware and software architecture of
our systems. Section 3 introduces more precisely the problems that we
are addressing in this paper. Section 4 presents our proposed schedu-
lability analysis for multi-cluster systems, and section 5 uses this anal-
ysis to drive the optimization heuristics used for system synthesis.

2. Application Model and System Architecture
2.1 Application Model
We model an application Γ as a set of process graphs Gi ∈ Γ (see Fi-
gure 1). Nodes in the graph represent processes and arcs represent
dependency between the connected processes. The communication
time between processes mapped on the same processor is considered
to be part of the process worst-case execution time and is not mod-
eled explicitly. Communication between processes mapped to differ-
ent processors is preformed by message passing over the buses and,
if needed, through the gateway. Such message passing is modeled as
a communication process inserted on the arc connecting the sender
and the receiver process (the black dots in Figure 1).

Each process Pi is mapped on a processor processorPi (mapping
represented by hashing in Figure 1), and has a worst case execution
time Ci on that processor (depicted to the left of each node). For each
message we know its size (in bytes, indicated to its left), and its pe-
riod, which is identical with that of the sender process. Processes and
messages activated based on events also have a uniquely assigned
priority, priorityPi for processes and prioritymi

 for messages.
All processes and messages belonging to a process graph Gi have the

same period Ti=TGi which is the period of the process graph. A dead-
line DGi ≤TGi is imposed on each process graph Gi. Deadlines can also
be placed locally on processes. If communicating processes are of dif-
ferent periods, they are combined into a hyper-graph capturing all pro-
cess activations for the hyper-period (LCM of all periods).

1. The authors are grateful to the industrial partners at Volvo Technological Development
in Gothenburg, for their close involvement and precious feedback during this work.

P10

P11

P2P3
P12

P14

P7

P9

P8

P13

P6P1

P4

G2G1

27

30
25

24

19

30

22

20 20

Figure 1. An Application Model Example

P5

30

30

8 8

8

4

16
4

8
m2

m1

m3

m4

m6

m5

m7

Schedulability Analysis and Optimization for the
Synthesis of Multi-Cluster Distributed Embedded Systems

Paul Pop, Petru Eles, Zebo Peng
Computer and Information Science Dept., Linköping University, Sweden

{paupo, petel, zebpe}@ida.liu.se

2.2 Hardware Architecture
We consider architectures consisting of several clusters, intercon-
nected by gateways (Figure 2 depicts a two-cluster example). A clus-
ter is composed of nodes which share a broadcast communication
channel. Every node consists, among others, of a communication
controller, and a CPU. The gateways, connected to both types of
clusters, have two communication controllers, for TTP and CAN.
The communication controllers implement the protocol services, and
run independently of the node’s CPU. Communication with the CPU
is performed through a message base interface (MBI) which is usu-
ally implemented as a dual ported RAM (Figure 3).

Communication between the nodes on a TTC is based on the TTP
[8]. The bus access scheme is TDMA, where each node Ni, including
the gateway node, can transmit only during a predetermined time in-
terval, the so called TDMA slot Si. In such a slot, a node can send sev-
eral messages packaged in a frame. A sequence of slots
corresponding to all the nodes in the TTC is called a TDMA round.
A node can have only one slot in a TDMA round. Several TDMA
rounds can be combined together in a cycle that is repeated periodi-
cally. The TDMA access scheme is imposed by a message descriptor
list (MEDL) that is located in every TTP controller. The MEDL
serves as a schedule table for the TTP controller which has to know
when to send/receive a frame to/from the communication channel.

On an ETC the CAN [4] protocol is used for communication. The
CAN bus is a priority bus that employs a collision avoidance mechanism,
whereby the node that transmits the message with the highest priority
wins the contention. Message priorities are unique and are encoded in the
frame identifiers, which are the first bits to be transmitted on the bus.

2.3 Software Architecture
A real-time kernel is responsible for activation of processes and
transmission of messages on each node. On a TTC, the processes are
activated based on the local schedule tables, and messages are trans-
mitted according to the MEDL. On an ETC, we have a scheduler that
decides on activation of ready processes and transmission of messag-
es, based on their priorities.

In Figure 3 we illustrate our message passing mechanism. Here we
concentrate on the communication between processes located on dif-
ferent clusters. For message passing details within a TTC the reader
is directed to [13], while the infrastructure needed for communica-
tions on an ETC has been detailed in [15].

Let us consider the example in Figure 3, where we have the process
graph G1 from Figure 1 mapped on the two clusters. Processes P1 and
P4 are mapped on node N1 of the TTC, while P2 and P3 are mapped
on node N2 of the ETC. Process P1 sends messages m1 and m2 to pro-
cesses P2 and P3, respectively, while P2 sends message m3 to P4.

The transmission of messages from the TTC to the ETC takes place
in the following way (see Figure 3). P1, which is statically scheduled,
is activated according to the schedule table, and when it finishes it calls
the send kernel function in order to send m1 and m2, indicated in the
figure by number (1). Messages m1 and m2 have to be sent from node
N1 to node N2. At a certain time, known from the schedule table, the
kernel transfers m1 and m2 to the TTP controller by packaging them
into a frame in the MBI. Later on, the TTP controller knows from its
MEDL when it has to take the frame from the MBI, in order to broad-
cast it on the bus. In our example, the timing information in the sched-
ule table of the kernel and the MEDL is determined in such a way that
the broadcasting of the frame is done in the slot S1 of round 2 (2). The
TTP controller of the gateway node NG knows from its MEDL that it
has to read a frame from slot S1 of round 2 and to transfer it into its
MBI (3). Invoked periodically, having the highest priority on node NG,

and with a period which guarantees that no messages are lost, the gate-
way process T copies messages m1 and m2 from the MBI to the TTP-
to-CAN priority-ordered message queue OutCAN (4). The highest pri-
ority message in the queue, in our case m1, will tentatively be broad-
cast on the CAN bus (5). Whenever message m1 will be the highest
priority message on the CAN bus, it will successfully be broadcast and
will be received by the interested nodes, in our case node N2 (6). The
CAN communication controller of node N2 receiving m1 will copy it
in the transfer buffer between the controller and the CPU, and raise an
interrupt which will activate a delivery process, responsible to activate
the corresponding receiving process, in our case P2, and hand over
message m1 that finally arrives at the destination (7).

Message m3 (depicted in Figure 3 as a hashed rectangle) sent by
process P2 from the ETC will be transmitted to process P4 on the TTC.
The transmission starts when P2 calls its send function and enqueues
m3 in the priority-ordered OutN2 queue (8). When m3 has the highest
priority on the bus, it will be removed from the queue (9) and broad-
cast on the CAN bus (10), arriving at the gateway’s CAN controller
where it raises an interrupt. Based on this interrupt, the gateway trans-
fer process T is activated, and m3 is placed in the OutTTP FIFO queue
(11). The gateway node NG is only able to broadcast on the TTC in the
slot SG of the TDMA rounds circulating on the TTP bus. According to
the MEDL of the gateway, a set of messages not exceeding sizeSG

of
the slot SG will be removed from the front of the OutTTP queue in ev-
ery round, and packed in the SG slot (12). Once the frame is broadcast
(13) it will arrive at node N1 (14), where all the messages in the frame
will be copied in the input buffers of the destination processes (15).
Process P4 is activated according to the schedule table, which has to
be constructed such that it accounts for the worst-case communication
delay of message m3, bounded by the analysis in section 4, and thus
when P4 starts executing it will find m3 in its input buffer.

As part of our timing analysis and synthesis approach, we generate
all the local schedule tables and MEDLs on the TTC, the message and
process priorities for the activities on the ETC, as well as buffer sizes
and bus configurations such that the global system is schedulable.

3. Problem Formulation
As input to our problem we have an application Γ given as a set of
process graphs mapped on an architecture consisting of a TTC and
an ETC interconnected through a gateway.

We are interested first to find a system configuration denoted by a
3-tuple ψ=<φ, β, π>such that the application Γ is schedulable. De-
termining a system configuration ψ means deciding on:
• The set φof the offsets corresponding to each process and message in

the system (see section 4). The offsets of processes and messages on
the TTC practically represent the local schedule tables and MEDLs.

• The sequence and size of the slots in a TDMA round on the TTC (β).
• The priorities of the processes and messages on the ETC (π).

Once a configuration leading to a schedulable application is found,
we are interested to find a system configuration that minimizes the to-
tal queue sizes needed to run a schedulable application. The approach
presented in this paper can be easily extended to cluster configurations
where there are several ETCs and TTCs interconnected by gateways.

Let us consider the example in Figure 4, where we have the process
graph G1 from Figure 1 mapped on the two-cluster system as indicated
in Figure 3. In the system configuration of Figure 4a we consider that,

Figure 2. A System Architecture Example

...

...

TTC

ETC

Gateway
TTP Controller

CAN Controller

P1 P4

MBI

CPU

TTP controller

CPU

TTP Controller
SG S1 SG

m1

Figure 3. A Message Passing Example

N1 NG

Round 2

m2

T

O
ut

C
A

N

CAN controller

O
ut

T
T

P

P3P2

CPUN2

CAN controller

T

O
ut

N
2

S1

1

2 3

4

5

6

7

8

9

10

11

12

13

14

15

TTP bus

CAN bus

TTP bus schedule

on the TTP bus, the gateway transmits in the first slot (SG) of the TDMA
round, while node N1 transmits in the second slot (S1). The priorities in-
side the ETC have been set such that prioritym1 > prioritym2

and
priorityP3

> priorityP2. In such a setting, G1 will miss its deadline, which
was set at 200 ms. However, changing the system configuration as in Fi-
gure 4b, so that slot S1 of N1 comes first, we are able to send m1 and m2
sooner, and thus reduce the response time and meet the deadline. The re-
sponse times and resource usage do not, of course, depend only on the
TDMA configuration. In Figure 4c, for example, we have modified the
priorities of P2 and P3 so that P2 is the higher priority process. In such a
situation, P2 is not interrupted when the delivery of message m2 was sup-
posed to activate P3 and, thus, eliminating the interference, we are able
to meet the deadline, even with the TTP bus configuration of Figure 4a.

4. Multi-Cluster Scheduling
In this section we propose an analysis for hard real-time applications
mapped on multi-cluster systems. The aim of such an analysis is to find
out if a system is schedulable, i.e. all the timing constraints are met. In
addition to this, we are also interested in bounding the queue sizes.

On the TTC an application is schedulable if it is possible to build
a schedule table such that the timing requirements are satisfied. On
the ETC, the answer wether or not a system is schedulable is given
by a schedulability analysis.

In this paper, for the ETC we use a response time analysis, where the
schedulability test consists of the comparison between the worst-case
response time ri of a process Pi and its deadline Di. Response time anal-
ysis of data dependent processes with static priority preemptive sched-
uling has been proposed in [10, 14, 18], and has been also extended to
consider the CAN protocol [15]. The authors use the concept of offset
in order to handle data dependencies. Thus, each process Pi is charac-
terized by an offset Oi, measured from the start of the process graph, that
indicates the earliest possible start time of Pi. For example, in Figure 4a,
O2=80, as process P2 cannot start before receiving m1 which is available
at the end of slot S1 in round 2. The same is true for messages, their off-

set indicating the earliest possible transmission time.
Determining the schedulability of an application mapped on a

multi-cluster system cannot be addressed separately for each type of
cluster, since the inter-cluster communication creates a circular de-
pendency: the static schedules determined for the TTC influence
through the offsets the response times of the processes on the ETC,
which on their turn influence the schedule table construction on the
TTC. In Figure 4a placing m1 and m2 in the same slot leads to equal
offsets for P2 and P3. Because of this, P3 will interfere with P2
(which would not be the case if m2 sent to P3 would be scheduled in
round 4) and thus the placement of P4 in the schedule table has to be
accordingly delayed to guarantee the arrival of m3.

In our response time analysis we consider the influence between
the two clusters by making the following observations:
• The start time of process Pi in a schedule table on the TTC is its offset Oi.
• The worst-case response time ri of a TT process is its worst case

execution time, i.e. ri=Ci (TT processes are not preemptable).
• The response times of the messages exchanged between two

clusters have to be calculated according to the schedulability
analysis described in section 4.1.

• The offsets have to be set by a scheduling algorithm such that the
precedence relationships are preserved. This means that, if process PB
depends on process PA, the following condition must hold: OB ≥
OA+rA. Note that for the processes on a TTC receiving messages from
the ETC this translates to setting the start times of the processes such
that a process is not activated before the worst-case arrival time of the
message from the ETC. In general, offsets on the TTC are set such
that all the necessary messages are present at the process invocation.
The MultiClusterScheduling algorithm in Figure 5 receives as input

the application Γ, the TTC bus configuration β and the ET process and
message priorities π, and produces the offsets φand response times ρ.
The algorithm starts by assigning to all offsets an initial value ob-
tained by a static scheduling algorithm applied on the TTC without
considering the influence from the ETC. The response times of all
processes and messages in the ETC are then calculated according to
the analysis in section 4.1 by using the ResponseTimeAnalysis func-
tion. Based on the response times, offsets of the TT processes can be
defined such that all messages received from the ETC cluster are
present at process invocation. Considering these offsets as con-
straints, a static scheduling algorithm can derive the schedule tables
and MEDLs of the TTC cluster. For this purpose we use a list sched-
uling based approach presented in [5]. Once new values have been de-
termined for the offsets, they are fed back to the response time
calculation function, thus obtaining new, tighter (i.e., smaller, less
pessimistic) values for the worst-case response times. The algorithm
stops when the response times cannot be further tightened and, con-
sequently, the offsets remain unchanged. Termination is guaranteed if
processor and bus loads are smaller than 100% (see section 4.2) and
deadlines are smaller than the periods.

4.1 Schedulability and Resource Analysis
The analysis in this section is used in the ResponseTimeAnalysis func-
tion in order to determine the response times for processes and messag-
es on the ETC. It receives as input the application Γ, the offsets φand
the priorities π, and it produces the set ρ of worst case response times.

We have extended the framework provided by [14, 15] for an ETC.
Thus, the response time of a process Pi on the ETC is ri=Ji+wi+Ci,
where Ji is the jitter of process Pi (the worst case delay between the

Figure 4. Scheduling Examples

P1(C1=30) P4(C4=30)

P2(C2=20)

P3(C3=20)

m1 m2(Cm1
=Cm2

=S1)

m1 m2 m3

m3(Cm3
=SG)

N1

TTP

NG

CAN

N2

SG=20 S1=20

Round=40

O2=80

O3=80

J2=15

J3=25

I2=20

r2=55

r3=45

rΓ1=210

TΓ1
=240

wm2 =10 wm3
=10

DΓ1
=200

Deadline missed!

SG S1

T

P1 P4

P2

P3

m1 m2

m1 m2 m3

m3

T

S1 SG

rΓ1 Deadline met!

S1 SG

T

P1 P4

P2

P3

m1 m2

m1 m2 m3

m3

T

SG S1

rΓ1 Deadline met!

S1 SG

T

a) G1 misses its deadline

b) S1 is the first slot, m1, m2 are sent sooner, G1 meets its deadline

c) P2 is the high priority process on N2, G1 meets its deadline

O4=1800 50 100 150 200 240

bus

bus

N1

TTP

NG

CAN

N2

bus

bus

N1

TTP

NG

CAN

N2

bus

bus

CAN
TTP

(Cm1
=Cm2

=Cm3
=10)

T(CT=5)

MultiClusterScheduling(Γ, β, π)
-- assign initial values to offsets
for each Oi ∈ φ do Oi =initial value end for
-- iteratively improve the offsets and response times
repeat

-- determine the response times based on the current values for the offsets
ρ=ResponseTimeAnalysis(Γ, φ, π)
-- determine the offsets based on the current values for the response times
φ=StaticScheduling(Γ, ρ, β)

until φnot changed
return φ, ρ

end MultiClusterScheduling
Figure 5. The MultiClusterScheduling Algorithm

activation of the process and the start of its execution), and Ci is its
worst case execution time. The interference wi from other processes
running on the same processor is given by:

.

In the previous equation, the blocking factor Bi represents interfer-
ence from lower priority processes that are in their critical section
and cannot be interrupted. The second term captures the interference
from higher priority processes Pj ∈ hp(Pi), where Oij is a positive
value representing the relative offset of process Pj to Pi.

The same analysis can be applied for messages on the CAN bus:
rm=Jm+wm+Cm, where Jm is the jitter of message m which in the
worst case is equal to the response time rS(m) of the sender process
PS(m), wm is the worst-case queuing delay experienced by m at the
communication controller, and Cm is the worst-case time it takes for
a message m to reach the destination controller. On CAN, Cm de-
pends on the frame configuration and message size sm, while on TTP
it is equal to the slot size where m is transmitted.

The response time analysis for processes and messages are com-
bined by realizing that the jitter of a destination process depends on
the communication delay between sending and receiving a message.
Thus, for a process PD(m) that receives a message m from a sender
process PS(m), the release jitter is JD(m)=rm.

The worst-case queueing delay for a message is calculated differ-
ently depending on the type of message passing employed:
1. From an ETC node to another ETC node (in which case

wm
Ni represents the worst-case time a message m has to spend in

the OutNi queue on ETC node Ni),
2. From a TTC node to an ETC node (wm

CAN is the worst-case time a
message m has to spend in the OutCAN queue).

3. From an ETC node to a TTC node (where wm
TTP captures the time

m has to spend in the OutTTP queue).
The messages sent from a TTC node to another TTC node are tak-

en into account when determining the offsets (StaticScheduling, Fi-
gure 5), and thus are not involved directly in the ETC analysis.

The next sections show how the worst queueing delays and the bounds
on the queue sizes are calculated for each of the previous three cases.
4.1.1 From ETC to ETC and from TTC to ETC
The analyses for wm

Ni and wm
CAN are similar. Once m is the highest

priority message in the OutCAN queue, it will be sent by the gate-
way’s CAN controller as a regular CAN message, therefore the same
equation for wm can be used:

.

The intuition is that m has to wait, in the worst case, first for the largest
lower priority message that is just being transmitted (Bm) as well as for
the higher priority j ∈ hp(m) messages that have to be transmitted ahead
of m (the second term). In the worst case, the time it takes for the largest
lower priority message k ∈ lp(m) to be transmitted to its destination is:

.

Note that in our case, lp(m) and hp(m) also include messages pro-
duced by the gateway node, transferred from the TTC to the ETC.

We are also interested to bound the size sm
CAN of the OutCAN and

sm
Ni of the OutNi queue. In the worst case, message m, and all the

messages with higher priority than m will be in the queue, awaiting
transmission. Summing up their sizes, and finding out what is the
most critical instant we get the worst-case queue size:

where sm and sj are the sizes of message m and j, respectively.
4.1.2 From ETC to TTC
The time a message m has to spend in the OutTTP queue in the worst
case depends on the total size of messages queued ahead of m
(OutTTP is a FIFO queue), the size SG of the gateway slot responsible
for carrying the CAN messages on the TTP bus, and the frequency
TTDMA with which this slot SG is circulating on the bus:

,

where Im is the total size of the messages queued ahead of m. Those
messages j ∈ hp(m) are ahead of m, which have been sent from the
ETC to the TTC, and have higher priority than m:

where the message jitter Jm is in the worst case the response time of
the sender process, Jm=rS(m).

The blocking factor Bm is the time interval in which m cannot be
transmitted because the slot SG of the TDMA round has not arrived
yet, and is determined as TTDMA-Om mod TTDMA+OSG

, where OSG is
the offset of the gateway slot in a TDMA round.

Determining the size of the queue needed to accommodate the
worst case burst of messages sent from the CAN cluster is done by
finding out the worst instant of the following sum:

.

4.2 Response Time Analysis Example
Figure 6 presents the equations for our system in Figure 4a. The jitter
of P2 depends on the response time of the gateway transfer process T
and the response time of message m1, J2=rm1. Similarly, J3=rm2. We
have considered that Jm1

=Jm2
=rT. The response time rm3

denotes the re-
sponse time of m3 sent from process P2 to the gateway process T, while
rm3’ is the response time of the same message m3 sent now from T to P4.

The equations are recurrent, and they will converge if the proces-
sor and bus utilization are under 100% [16]. Considering a TDMA
round of 40 ms, with two slots each of 20 ms as in Figure 4a, rT=5
ms, 10 ms for the transmission times on CAN for m1 and m2, and us-
ing the offsets in the figure, the equations will converge to the values
indicated in Figure 4a (all values are in milliseconds). Thus, the re-
sponse time of graph G1 will be rG1=O4+r4=210, which is greater
than DG1=200, thus the system is not schedulable.

5. Scheduling and Optimization Strategy
Once we have a technique to determine if a system is schedulable, we
can concentrate on optimizing the total queue sizes. Our problem is
to synthesize a system configuration ψ such that the application is
schedulable, i.e. the condition1

rGj
≤ DGj, ∀ Gj ∈ Γ i,

holds, and the total queue size stotal is minimized2:

.

Such an optimization problem is NP complete, thus obtaining the
optimal solution is not feasible. We propose a resource optimization
strategy based on a hill-climb heuristic that uses an intelligent set of
initial solutions in order to efficiently explore the design space.

5.1 Scheduling and Buffer Optimization Heuristic
Our optimization heuristic is outlined in Figure 7. The basic idea of
our OptimizeResources heuristic is to find, as a first step, a solution
with the smallest possible response times, without considering the
buffer sizes, in the hope of finding a schedulable system. This is
achieved through the OptimizeSchedule function. Then, a hill-climb-

wi Bi
wi J j Oij–+

T j
------------------------------- C j

j∀ hp Pi()∈
∑+=

wm Bm
wm J j Omj–+

T j
----------------------------------- C j

j∀ hp m()∈
∑+=

Bm
max

k∀ lp m()∈
Ck()=

sOut
max

m∀
sm

wm J j Omj–+

T j
----------------------------------- s j

j∀ hp m()∈
∑+ 

 =

1. The worst-case response time a process graph Gi is calculated based on its sink node
as rGi

= Osink+rsink. If local deadlines are imposed, they will also have to be tested in
the schedulability condition.

2. On the TTC, the synchronization between processes and the TDMA bus configuration is
solved through the proper synthesis of schedule tables, thus no output queues are needed.
Input buffers on both TTC and ETC nodes are local to processes. There is one buffer per
input message and each buffer can store one message instance (see explanation to Figure 3).

wm
TTP

Bm
Sm I m+

SG
------------------- T TDMA+=

I m
wm

TTP
J m Omj–+

T j
--

j∀ hp m()∈
∑ s j=

sOut
TTP max

m∀
Sm I m+()=

GSTDMAmTDMAmTDMA
m

m
TTP
mm

TTP
mmm

m
N
mmm

mmm
CAN
m

m
CAN
mm

CAN
mmm

m
CAN
mm

CAN
mmm

OTOTBT
T

s
BwCwJr

CwJr

C
T

OJw
BwCwJr

BwCwJr

BwCwJr

C
T

OJw
BwCwJr

+−=







+=++=

++= 









 −+
+=++=

=++=
=++=








 −+
+=++=

mod,,

,

,

,

,

33

3

333333

3

2

333

1212

222222

111111

'''''''

3

,

333333

3

3,232

222222

Figure 6. Response Time Analysis Example

stotal sOut
CAN

sOut
TTP

sOut
N i

N i ETC∈()∀
∑+ +=

ing heuristic iteratively performs moves intended to minimize the to-
tal buffer size while keeping the resulted system schedulable.

The OptimizeSchedule function outlined in Figure 8 is a greedy
approach which determines an ordering of the slots and their lengths,
as well as priorities of messages and processes in the ETC, such that
the degree of schedulability of the application is maximized. The de-
gree of schedulability [12] is calculated as:

where n is the number of process graphs in the application. If the ap-
plication is not schedulable, the term f1 will be positive, and in this
case the cost function is equal to f1. However, if the process set is
schedulable, f1 = 0 and we use f2 as a cost function, as it is able to
differentiate between two alternatives, both leading to a schedulable
process set. For a given set of optimization parameters leading to a
schedulable process set, a smaller f2 means that we have improved
the response times of the processes.

As an initial TTC bus configuration β, OptimizeSchedule assigns in
order nodes to the slots and fixes the slot length to the minimal allowed
value, which is equal to the length of the largest message generated by
a process assigned to Ni, Si=<Ni, sizesmallest>. Then, the algorithm
starts with the first slot and tries to find the node which, when trans-
mitting in this slot, will maximize the degree of schedulability δΓ.

Simultaneously with searching for the right node to be assigned to
the slot, the algorithm looks for the optimal slot length. Once a node
was selected for the first slot and a slot length fixed (Si=Sbest), the algo-
rithm continues with the next slots, trying to assign nodes (and to fix
slot lengths) from those nodes which have not yet been assigned. When
calculating the length of a certain slot we consider the feedback from
the MultiClusterScheduling algorithm which recommends slot sizes to
be tried out. Before starting the actual optimization process for the bus
access scheme, a scheduling of the initial solution is performed which
generates the recommended slot lengths. We refer the reader to [5] for
details concerning the generation of the recommended slot lengths.

In the OptimizeSchedule function the degree of schedulability δΓ
is calculated based on the response times produced by the MultiClus-
terScheduling algorithm. For the priorities used in the response time
calculation we use the “heuristic optimized priority assignment”
(HOPA) approach in [7], where priorities for processes and messages
in a distributed real-time system are determined, using knowledge of
the factors that influence the timing behaviour, such that the degree
of schedulability is improved.

The OptimizeSchedule function also records the best solutions in
terms of δΓ and stotal in the seed_solutions list in order to be used as the
starting point for the second step of our OptimizeResources heuristic.

Once a schedulable system is obtained, our goal is to minimize the
buffer space. Our design space exploration in the second step of Op-
timizeResources is based on successive design transformations (gen-
erating the neighbors of a solution) called moves. For our heuristics,
we consider the following types of moves:
• moving a process or a message belonging to the TTC inside its

[ASAP, ALAP] interval calculated based on the current values for

the offsets and response times;
• swapping the priorities of two messages transmitted on the ETC,

or of two processes mapped on the ETC;
• increasing or decreasing the size of a TDMA slot with a certain value;
• swapping two slots inside a TDMA round.

The second step of the OptimizeResources heuristic start from the seed
solutions produced in the previous step, and iteratively preforms moves
in order to reduce the total buffer size, stotal. The heuristic tries to improve
on the total queue sizes, without producing un-schedulable systems. The
neighbors of the current solution are generated in the GenerateNeigh-
bours functions, and the move with the smallest stotal is selected using the
SelectMove function. Finally, the move is performed, and the loop reiter-
ates. The iterative process ends when there is no improvement achieved
on stotal, or a limit imposed on the number of iterations has been reached.

In order to improve the chances to find good values for stotal, the algo-
rithm has to be executed several times, starting with a different initial so-
lution. The intelligence of our OptimizeResources heuristic lies in the
selection of the initial solutions, recorded in the seed_solutions list. The
list is generated by the OptimizeSchedule function which records the
best solutions in terms of δΓ and stotal. Seeding the hill climbing heuristic
with several solutions of small stotal will guarantee that the local optima
are quickly found. However, during our experiments, we have observed
that another good set of seed solutions are those that have high degree of
schedulability δΓ. Starting from a highly schedulable system will permit
more iterations until the system degrades to an un-schedulable configu-
ration, thus the exploration of the design space is more efficient.

6. Experimental Results
For evaluation of our algorithms we first used process graphs gener-
ated for experimental purpose. We considered two-cluster architec-
tures consisting of 2, 4, 6, 8 and 10 nodes, half on the TTC and the
other half on the ETC, interconnected by a gateway. 40 processes
were assigned to each node, resulting in applications of 80, 160, 240,
320 and 400 processes. Message sizes were randomly chosen be-
tween 8 and 32 bytes. 30 examples were generated for each applica-
tion dimension, thus a total of 150 applications were used for
experimental evaluation. Worst-case execution times and message
lengths were assigned randomly using both uniform and exponential
distribution. All experiments were run on a SUN Ultra 10.

In order to provide a basis for the evaluation of our heuristics we
have developed two simulated annealing (SA) based algorithms. Both
are based on the moves presented in the previous section. The first
one, named SA Schedule (SAS), was set to preform moves such that
δΓ is minimized. The second one, SA Resources (SAR), uses stotal as
the cost function to be minimized. Very long and expensive runs have
been performed with each of the SA algorithms, and the best ever so-

δΓ =
f2 = , if f1 = 0RGi

DGi
–()

i 1=

n

∑

f1 = , if f1 > 0max 0 R, Gi
DGi

–()
i 1=

n

∑

OptimizeResources(Γ)
-- Step 1: try to find a schedulable system
seed_solutions=OptimizeSchedule(Γ)
-- if no schedulable configuration has been found, modify mapping and/or architecture
if Γ is not schedulable for ψbest then modify mapping; go to step 1; end if
-- Step 2: try to reduce the resource need, minimize stotal
for each ψ in seed_solutions do

repeat
-- find moves with highest potential to minimize stotal
move_set=GenerateNeighbors(ψ)
-- select move which minimizes stotal
-- and does not result in an un-schedulable system
move = SelectMove(move_set); Perform(move)

until stotal has not changed or limit reached
end for
return system configuration ψ, queue sizes

end OptimizeResources
Figure 7. The OptimizeResources Algorithm

OptimizeSchedule(Γ)
-- given an application Γ produces the configuration ψ=<φ, β, π>leading to the smallest δΓ
-- start by determining an initial TTC bus configuration β
for each slot Si ∈β do Si=<Ni, sizesmallest> end for
-- find the best allocation of slots, the TDMA slot sequence
for each slot Si ∈ β do

for each node Nj ∈ TTC do
Si=<Nj, sizeSj>; Sj=<Ni, sizeSi> -- allocate Nj tentatively to Si, Ni gets slot Sj
-- determine best size for slot Si
for each slot size ∈ recomended_lengths(Si) do

π=HOPA -- calculate the priorities according to the HOPA heuristic
-- determine the offsets φ, thus obtaining a complete system configuration ψ
Si=<Nj, size>; φ=MultiClusterScheduling(Γ, β, π); ψcurrent=<φ, β, π>
-- remember the best configuration so far, add it to the seed configurations
if δΓ(ψcurrent) is best so far then

ψbest = ψcurrent; Sbest=Si;
add ψbest to seed_solutions

end if
determine stotal for ψcurrent
if stotal is best so far and Γ is schedulable
then add ψcurrent to seed_solutions end if

end for
end for
-- make binding permanent, use the Sbest corresponding to ψbest
if a Sbest exists then Si=Sbest end if

end for
return ψbest, δΓ(ψbest), seed_solutions

end OptimizeSchedule
Figure 8. The OptimizeSchedule Algorithm

lution produced has been considered a close to the optimum value.
The first result concerns the ability of our heuristics to produce

schedulable solutions. We have compared the degree of schedulabil-
ity δΓ obtained from our OptimizeSchedule (OS) heuristic (Figure 8)
with the near-optimal values obtained by SAS. Figure 9a presents the
average percentage deviation of the degree of schedulability pro-
duced by OS from the near-optimal values obtained with SAS. To-
gether with OS, a straightforward approach (SF) is presented. For SF
we considered a TTC bus configuration consisting of a straightfor-
ward ascending order of allocation of the nodes to the TDMA slots;
the slot lengths were selected to accommodate the largest message
sent by the respective node, and the scheduling has been performed
by the MultiClusterScheduling algorithm in Figure 5.

Figure 9a shows that when considering the optimization of the ac-
cess to the communication channel, and of priorities, the degree of
schedulability improves dramatically compared to the straightfor-
ward approach. The greedy heuristic OptimizeSchedule performs
well for all the graph dimensions, having run-times which are more
than two orders of magnitude smaller than with SAS. In the figure,
only the examples where all the algorithms have obtained schedula-
ble systems were presented. The SF approach failed to find a sched-
ulable system in 26 out of the total 150 applications.

Next, we are interested to evaluate the heuristics for minimizing the
buffer sizes needed to run a schedulable application. Thus, we com-
pare the total buffer need stotal obtained by the OptimizeResources
(OR) function with the near-optimal values obtained when using sim-
ulated annealing, this time with the cost function stotal. To find out how
relevant the buffer optimization problem is, we have compared these
results with the stotal obtained by the OS approach, which is interested
only to obtain a schedulable system, without any other concern. As
shown in Figure 9b, OR is able to find schedulable systems with a buff-
er need half of that needed by the solutions produced with OS. The
quality of the solutions obtained by OR is also comparable with the
one obtained with simulated annealing (SAR).

Another important aspect of our experiments was to determine the
difficulty of resource minimization as the number of messages ex-
changed over the gateway increases. For this, we have generated appli-
cations of 160 processes with 10, 20, 30, 40, and 50 messages
exchanged between the TTC and ETC clusters. 30 applications were
generated for each number of messages. Figure 9c shows the average
percentage deviation of the buffer sizes obtained with OR and OS from
the near-optimal results obtained by SAR. As the number of inter-clus-
ter messages increases, the problem becomes more complex. The OS
approach degrades very fast, in terms of buffer sizes, while OR is able
to find good quality results even for intense inter-cluster traffic.

When deciding on which heuristic to use for design space explo-
ration or system synthesis, an important issue is the execution time.
In average, our optimization heuristics needed a couple of minutes to
produce results, while the simulated annealing approaches (SAS and
SAR) had an execution time of up to three hours.

Finally, we considered a real-life example implementing a vehicle
cruise controller. The process graph that models the cruise controller has
40 processes, and it was mapped on an architecture consisting of a TTC
and an ETC, each with 2 nodes, interconnected by a gateway. The
“speedup” part of the model has been mapped on the ETC while the other

processes were mapped on the TTC. We considered one mode of opera-
tion with a deadline of 250 ms. The straightforward approach SF pro-
duced an end-to-end response time of 320 ms, greater than the deadline,
while both the OS and SAS heuristics produced a schedulable system
with a worst-case response time of 185 ms. The total buffer need of the
solution determined by OS was 1020 bytes. After optimization with OR
a still schedulable solution with a buffer need reduced by 24% has been
generated, which is only 6% worse than the solution produced with SAR.

7. Conclusions
We have presented in this paper an approach to schedulability anal-
ysis for the synthesis of multi-cluster distributed embedded systems
consisting of time-triggered and event-triggered clusters, intercon-
nected via gateways. The main contribution is the development of a
schedulability analysis for such systems, including determining the
worst-case queuing delays at the gateway and the bounds on the buff-
er size needed for running a schedulable system.

Optimization heuristics for system synthesis have been proposed,
together with simulated annealing approaches tuned to find near-op-
timal results. The first heuristic, OS, was concerned with obtaining a
schedulable system, by maximizing the degree of schedulability. Our
second heuristic, OR, aimed at producing schedulable systems with
a minimal buffer size need.

References
[1] N. Audsley, A. Burns, et. al., “Fixed Priority Preemptive Scheduling: An

Historical Perspective”, Real-Time Systems, 8(2/3), 173-198, 1995.
[2] N. Audsley, K. Tindell, A. et. al., “The End of Line for Static Cyclic

Scheduling?”, Euromicro Workshop on Real-Time Systems, 36-41, 1993.
[3] F. Balarin, L. Lavagno, et. al., “Scheduling for Embedded Real-Time

Systems”, IEEE Design and Test of Computers, Jan.-Mar., 71-82, 1998.
[4] R. Bosch GmbH, “CAN Specification Version 2.0”, 1991.
[5] P. Eles et al., “Scheduling with Bus Access Optimization for Distributed

Embedded Systems”, IEEE Trans. on VLSI Systems, 472-491, 2000.
[6] FlexRay Requirements Specification, http://www.flexray-group.com/.
[7] J. J.G. Garcia, M. G. Harbour, “Optimized Priority Assignment for Tasks

and Messages in Distributed Hard Real-Time Systems”, Proc. Workshop
on Parallel and Distributed R-T Systems, 124-132, 1995.

[8] H. Kopetz, “Real-Time Systems - Design Principles for Distributed
Embedded Applications”, Kluwer Academic Publishers, 1997.

[9] H. Lönn, J. Axelsson, “A Comparison of Fixed-Priority and Static Cyclic
Scheduling for Distributed Automotive Control Applications”,
Euromicro Conference on Real-Time Systems, 142-149, 1999.

[10] J. C. Palencia, M. G. Harbour, “Schedulability Analysis for Tasks with
Static and Dynamic Offsets”, Proc. Real-Time Systems Symp., 1998.

[11]T. Pop, P. Eles, Z. Peng, “Holistic Scheduling and Analysis of Mixed
Time/Event-Triggered Distributed Embedded Systems”, Intl.
Symposium on Hardware/Software Codesign, 187-192, 2002.

[12]P. Pop, P. Eles, Z. Peng, "Bus Access Optimization for Distributed
Embedded Systems Based on Schedulability Analysis", Proc. Design
Automation and Test in Europe, 567-574, 2000.

[13] P. Pop, P. Eles, Z. Peng, “Scheduling with Optimized Communication for TT
Embedded Systems”, Intl. Workshop on Hw-Sw Codesign, 178-182, 1999.

[14] K. Tindell, “Adding Time-Offsets to Schedulability Analysis”, Department
of Computer Science, University of York, Report No. YCS-94-221, 1994.

[15]K. Tindell, A. Burns, A. J. Wellings, “Calculating CAN Message
Response Times”, Control Engineering Practice, 3(8), 1163-1169, 1995.

[16] K. Tindell, J. Clark, “Holistic Schedulability Analysis for Distributed Hard Real-
TimeSystems”,Microprocessing&Microprogramming,Vol.50,No.2-3,1994.

[17]J. Xu, D. L. Parnas, “On satisfying timing constraints in hard-real-time
systems”, IEEE Transactions on Software Engineering, 19(1), 1993.

[18]T. Y. Yen, W. Wolf, “Hardware-Software Co-Synthesis of Distributed
Embedded Systems”, Kluwer Academic Publishers, 1997.

Number of Processes Number of Messages
Figure 9. Comparison of the Optimization Heuristics

Number of Processes

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n
[%

]

A
ve

ra
ge

 P
er

ce
nt

ag
e

D
ev

ia
tio

n
[%

]

A
ve

ra
ge

 T
ot

al
 B

uf
fe

r
Si

ze
s t

ot
alSF

OS
SAS

OS
OR
SAR

OS
OR
SAR

80 160 240 320 400
0

20

40

60

80

100

120

80 160 240 320 400

1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

0k
10 20 30 40 50

0

10

20

30

40

50

a) b) c)

