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Abstract: An approach to schedulability analysis for the synthesis of multi-cluster distributed
embedded systems consisting of time-triggered and event-triggered clusters, interconnected via
gateways, is presented. A buffer size and worst case queuing delay analysis for the gateways,
responsible for routing inter-cluster traffic, is also proposed. Optimisation heuristics for the priority
assignment and synthesis of bus access parameters aimed at producing a schedulable system with
minimal buffer needs have been proposed. Extensive experiments and a real-life example show the

efficiency of the approaches.

1 Introduction

Depending on the particular application, an embedded
system has certain requirements for performance, cost,
dependability, size etc. For hard real-time applications the
timing requirements are extremely important. Hence, in
order to function correctly, an embedded system imple-
menting such an application has to meet its deadlines.

Process scheduling and schedulability analysis have been
intensively studied for the past decades [1, 2]. There are two
basic approaches for handling tasks in real-time applications
[3]. In the event-triggered approach (ET), activities are
initiated whenever a particular event is noted. In the time-
triggered (TT) approach, activities are initiated at prede-
termined points in time. There has been a long debate in the
real-time and embedded systems communities concerning
the advantages of each approach [3-5]. Several aspects
have been considered in favour of one or the other approach,
such as flexibility, predictability, jitter control, processor
utilisation, testability etc.

The same duality is reflected at the level of the
communication infrastructure, where communication
activities can be triggered either dynamically, in response
to an event, as with the controller area network (CAN) bus
[6], or statically, at predetermined moments in time, as in
the case of time-division multiple access (TDMA) protocols
and, in particular, the time-triggered protocol (TTP) [3].

A few approaches have been proposed for the schedul-
ability analysis of distributed real-time systems, taking into
consideration both process and communication scheduling.
In [7, 8] Tindell et al. provided a framework for the analysis
of ET process sets interconnected through an infrastructure
based on either the CAN protocol or a generic TDMA
protocol. In [9, 10] we have developed an analysis allowing
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for either TT or ET process sets communicating over the
TTP.

An interesting comparison of the ET and TT approaches,
from a more industrial, in particular automotive, perspec-
tive, can be found in [11]. The conclusion there is that one
has to choose the right approach depending on the
particularities of the processes. This means not only that
there is no single ‘best’ approach to be used, but also that
inside a certain application the two approaches can be used
together, some tasks being TT and others ET. The fact that
such an approach is suitable for automotive applications is
demonstrated by the following two trends, which are
currently considered to be of foremost importance not
only for the automotive industry, but also for other
categories of industrial applications:

1 The development of bus protocols that support both static
and dynamic communication [12]. This allows for ET and
TT processes to share the same processor as well as dynamic
and static communications to share the same bus. In [13] we
have addressed the problem of timing analysis for such
systems.

2 Complex systems are designed as interconnected clusters
of processors. Each such cluster can be either TT or ET. In a
time-triggered cluster (TTC), processes and messages are
scheduled according to a static cyclic policy, with the bus
implementing the TTP. In an event-triggered cluster (ETC),
the processes are scheduled according to a priority based
pre-emptive approach, while messages are transmitted using
the priority-based CAN protocol. Depending on their
particular nature, certain parts of an application can be
mapped on processors belonging to an ETC or a TTC. The
critical element of such an architecture is the gateway,
which is a node connected to both types of clusters, and is
responsible for the inter-cluster routing of hard real-time
traffic.

In this paper we propose an approach to schedulability
analysis for the synthesis of multi-cluster distributed
embedded systems, including also buffer need analysis
and worst case queuing delays of inter-cluster traffic. We
have also developed optimisation heuristics for the
synthesis of bus access parameters as well as process and
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message priorities aimed at producing a schedulable system
such that buffer sizes are minimised.

Efficient implementation of new, highly sophisticated
automotive applications entails the use of TT process sets
together with ET sets implemented on top of complex
distributed architectures. In this context, this paper is the
first to address the analysis and optimisation of hetero-
geneous TT and ET systems implemented on multi-cluster
embedded networks.

2 Application model and system architecture

2.1 Application model

We model an application I as a set of process graphs G; € I"
(Fig. 1). Nodes in the graph represent processes and arcs
represent dependency between the connected processes.
The communication time between processes mapped on the
same processor is considered to be part of the process worst
case execution time and is not modelled explicitly.
Communication between processes mapped to different
processors is preformed by message passing over the buses
and, if needed, through the gateway. Such message passing
is modelled as a communication process inserted on the arc
connecting the sender and the receiver process (the black
dots in Fig. 1).

Each process P; is mapped on a processor processorp,
(mapping represented by shading in Fig. 1), and has a worst
case execution time C; on that processor (depicted to the left
of each node). The size of each message is known (in bytes,
indicated to its left), and also its period, which is identical to
that of the sender process. Processes and messages activated
based on events also have a uniquely assigned priority,
priorityp for processes and priority,, for messages.

All processes and messages belonging to a process graph
G; have the same period T; = T, which is the period of the
process graph. A deadline Dg < Tg is imposed on
each process graph G;. Deadlines can also be placed locally
on processes. If communicating processes are of different
periods, they are combined into a hypergraph capturing all
process activations for the hyperperiod (lowest common
multiple of all periods).

2.2 Hardware architecture

We consider architectures consisting of several clusters,
interconnected by gateways (Fig. 2 depicts a two-cluster
example). A cluster is composed of nodes which share a
broadcast communication channel. Every node consists,
among others, of a communication controller and a CPU.
The gateways, connected to both types of clusters, have two
communication controllers, for TTP and CAN. The
communication controllers implement the protocol services,
and run independently of the node’s CPU. Communication
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with the CPU is performed through a message base interface
(MBI), which is usually implemented as a dual ported RAM
(Fig. 3).

Communication between the nodes on a TTC is based on
the TTP [3]. The bus access scheme is TDMA, where each
node W;, including the gateway node, can transmit only
during a predetermined time interval, the so-called TDMA
slot S;. In such a slot, a node can send several messages
packed in a frame. A sequence of slots corresponding to all
the nodes in the TTC is called a TDMA round. A node can
have only one slot in a TDMA round. Several TDMA
rounds can be combined together in a cycle that is repeated
periodically. The TDMA access scheme is imposed by a
message descriptor list (MEDL) that is located in every TTP
controller. The MEDL serves as a schedule table for the
TTP controller, which has to know when to send/receive a
frame to/from the communication channel.

On an ETC the CAN [6] protocol is used for
communication. The CAN bus is a priority bus that employs
a collision avoidance mechanism, whereby the node that
transmits the message with the highest priority wins the
contention. Message priorities are unique and are encoded
in the frame identifiers, which are the first bits to be
transmitted on the bus.

2.3 Software architecture

A real-time kernel is responsible for the activation of
processes and transmission of messages on each node. On a
TTC, the processes are activated based on the local schedule
tables, and messages are transmitted according to the
MEDL. On an ETC, we have a scheduler that decides on the
activation of ready processes and transmission of messages,
based on their priorities.

Figure 3 illustrates the message passing mechanism. Here
we concentrate on the communication between processes
located on different clusters. For message passing details
within a TTC the reader is directed to [14], while the
infrastructure needed for communications on an ETC has
been detailed in [7].

Consider the example in Fig. 3, where the process graph
G, from Fig. 1 is mapped on to the two clusters. Processes
P, and P, are mapped on node N, of the TTC, while P, and
P5 are mapped on node N, of the ETC. Process P; sends
messages m; and m, to processes P, and Pj, respectively,
while P, sends message ms3 to Py.

The transmission of messages from the TTC to the ETC
takes place in the following way (see Fig. 3). Py, which is
statically scheduled, is activated according to the schedule
table, and when it finishes it calls the send kernel function
in order to send m; and m,, indicated in the Figure by a
circled number ©. Messages m; and m, have to be sent from
node N; to node N,. At a certain time, known from the
schedule table, the kernel transfers m; and m, to the TTP
controller by packaging them into a frame in the MBI
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Later on, the TTP controller knows from its MEDL when it
has to take the frame from the MBI, in order to broadcast it
on the bus. In our example, the timing information in the
schedule table of the kernel and the MEDL is determined in
such a way that the broadcasting of the frame is done in the
slot Sy of round two @. The TTP controller of the gateway
node N knows from its MEDL that it has to read a frame
from slot S of a round two and to transfer it into its MBI ®.
Invoked periodically, having the highest priority on node
Ng, and with a period which guarantees that no messages
are lost, the gateway process T copies messages m; and m,
from the MBI to the TTP-to-CAN priority-ordered message
queue Outcyy @. The highest priority message in the queue,
in our case m;, will tentatively be broadcast on the CAN bus
®. Whenever message m; is the highest priority message on
the CAN bus, it will be successfully broadcast and will be
received by the interested nodes, in our case node N, ®. The
CAN communication controller of node N, receiving m
will copy it in the transfer buffer between the controller and
the CPU, and raise an interrupt that will activate a delivery
process, responsible for activating the corresponding
receiving process, in our case P,, and hand over message
my that finally arrives at the destination @.

Message m; (depicted in Fig. 3 as a hashed rectangle) sent
by process P, from the ETC will be transmitted to process
P, on the TTC. The transmission starts when P, calls its
send function and enqueues mj; in the priority-ordered
Outy, queue ®. When mj has the highest priority on the bus,
it will be removed from the queue ® and broadcast on the
CAN bus @, arriving at the gateway’s CAN controller
where it raises an interrupt. Based on this interrupt, the
gateway transfer process 7 is activated, and ms is placed in
the Outrrp FIFO queue ©@. The gateway node Ng is only
able to broadcast on the TTC in the slot S; of the TDMA
rounds circulating on the TTP bus. According to the MEDL
of the gateway, a set of messages not exceeding sizeg,, of the
slot S will be removed from the front of the Out;p queue
in every round, and packed in the S; slot ®. Once the frame
is broadcast @ it will arrive at node N; @, where all the
messages in the frame will be copied in the input buffers of
the destination processes ®. Process P, is activated
according to the schedule table, which has to be constructed
so that it accounts for the worst-case communication delay
of message mjs, bounded by the analysis in Section 4, and
thus when P, starts executing it will find my in its input
buffer.

As part of our timing analysis and synthesis approach, all
the local schedule tables and MEDLs are generated on the
TTC, and the message and process priorities for the
activities are generated on the ETC, as well as buffer sizes
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and bus configurations so that the global system is
schedulable.

3 Problem formulation

As input to our problem we have an application I" given as a
set of process graphs mapped on an architecture consisting
of a TTC and an ETC interconnected through a gateway.

We are interested first in finding a system configuration
denoted by a 3-tuple ¥ = (¢, 3, ) such that the application
I' is schedulable. Determining a system configuration ¥
means deciding on:

e The set ¢ of the offsets corresponding to each process and
message in the system (see Section 4). The offsets of
processes and messages on the TTC practically represent the
local schedule tables and MEDLs.

e The TTC bus configuration (3, indicating the sequence and
size of the slots in a TDMA round on the TTC.

e The priorities of the processes and messages on the ETC,
captured by .

Once a configuration leading to a schedulable application is
found, we are interested in finding a system configuration
that minimises the total queue sizes needed to run a
schedulable application. The approach presented in this
paper can be easily extended to cluster configurations where
there are several ETCs and TTCs interconnected by
gateways.

Consider the example in Fig. 4, where there is shown
the process graph G; from Fig. 1 mapped on the two-
cluster system, as indicated in Fig. 3. In the system
configuration of Fig. 4a we consider that, on the TTP
bus, the gateway transmits in the first slot (S;) of the
TDMA round, while node N, transmits in the second slot
(S}). The priorities inside the ETC have been set such
that priority,, > priority,, and priorityp, > priorityp,. In
such a setting, G; will miss its deadline, which was set at
200 ms. However, changing the system configuration as in
Fig. 4b, so that slot S; of N; comes first, we are able to
send m; and m, sooner, and thus reduce the response
time and meet the deadline. The response times and
resource usage do not, of course, depend only on the
TDMA configuration. In Fig. 4c¢, for example, we have
modified the priorities of P, and P; so that P, is the
higher priority process. In such a situation, P, is not
interrupted when the delivery of message m, is supposed
to activate P; and, thus, eliminating the interference, we
are able to meet the deadline, even with the TTP bus
configuration of Fig. 4a.
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Fig. 4 Scheduling examples

a G, misses its deadline

b S, is the first slot, m,m, are sent sooner, G| meets its deadline
¢ P, is the high priority process on N,, G| meets its deadline

4 Multi-cluster scheduling

In this Section we propose an analysis for hard real-time
applications mapped on multi-cluster systems. The aim of
such an analysis is to find out if a system is schedulable,
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i.e. if all the timing constraints are met. In addition, we are
also interested in bounding the queue sizes.

In a TTC an application is schedulable if it is possible
to build a schedule table such that the timing require-
ments are satisfied. In a ETC, the answer to whether or
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not a system is schedulable is given by a schedulability
analysis.

In this paper, for the ETC we use a response time
analysis, where the schedulability test consists of the
comparison between the worst-case response time r; of a
process P; and its deadline D;. Response time analysis of
data dependent processes with static priority pre-emptive
scheduling has been proposed in [15—17], and has been also
extended to consider the CAN protocol [7]. The authors use
the concept of offset to handle data dependencies. Thus each
process P; is characterised by an offset O;, measured from
the start of the process graph, that indicates the earliest
possible start time of P;. For example, in Fig. 4a, O, = 80,
as process P, cannot start before receiving m;, which is
available at the end of slot S| in round two. The same is true
for messages, their offset indicating the earliest possible
transmission time.

Determining the schedulability of an application mapped
on a multi-cluster system cannot be addressed separately for
each type of cluster, as the inter-cluster communication
creates a circular dependency: the static schedules deter-
mined for the TTC influence through the offsets the response
times of the processes on the ETC, which in their turn
influence the schedule table construction in the TTC. In
Fig. 4a placing m; and m, in the same slot leads to equal
offsets for P, and P5. Because of this, P; will interfere with P,
(which would not be the case if m, sent to P5 to be scheduled in
round four) and thus the placement of P, in the schedule table
has to be accordingly delayed to guarantee the arrival of m;.

In our response time analysis we consider the influence
between the two clusters by making the following
observations:

e The start time of process P; in a schedule table on the TTC
is its offset O;.

e The worst-case response time r; of a TT process is its
worst-case execution time, i.e. r; = C; (TT processes are not
pre-emptable).

e The response times of the messages exchanged between
two clusters have to be calculated according to the
schedulability analysis described in Section 4.1.

e The offsets have to be set by a scheduling algorithm so
that the precedence relationships are preserved. This means
that, if process Pp depends on process P, the following
condition must hold: Og > O, + r,. Note that, for the
processes on a TTC receiving messages from the ETC, this
translates to setting the start times of the processes so that a
process is not activated before the worst-case arrival time of

MultiClusterScheduling(T’, 8, 7)

1 -- assign initial values to offsets

2 foreach O,e¢do

3 O =initial value

4 end for

5

6 - iteratively improve the offsets and response times
7 repeat

8 -- determine the response times based on
9 -- the current values for the offsets

10 p = ResponseTimeAnalysis(T, ¢, )

1" -- determine the offsets based on

12 -- the current values for the response times

13 ¢ = StaticScheduling(T, p, )
14 until ¢ not changed

15

16 return ¢, p

end MultiClusterScheduling

Fig. 5 MultiClusterScheduling algorithm
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the message from the ETC. In general, offsets on the TTC
are set such that all the necessary messages are present at the
process invocation.

The MultiClusterScheduling algorithm in Fig. 5
receives as input the application I', the TTC bus
configuration 8 and the ET process and message priorities
7, and produces the offsets ¢ and response times p. The
algorithm starts by assigning to all offsets an initial value
obtained by a static scheduling algorithm applied on the
TTC without considering the influence from the ETC (lines
2—4). The response times of all processes and messages in
the ETC are then calculated according to the analysis in
Section 4.1 by using the ResponseTimeAnalysis
function (line 10). Based on the response times, offsets of
the TT processes can be defined such that all messages
received from the ETC cluster are present at process
invocation. Considering these offsets as constraints, a static
scheduling algorithm can derive the schedule tables and
MEDLSs of the TTC cluster (line 13). For this purpose we
use the list scheduling based approach presented in [9].
Once new values have been determined for the offsets, they
are fed back to the response time calculation function, thus
obtaining new, tighter (i.e. smaller, less pessimistic) values
for the worst-case response times. The algorithm stops when
the response times cannot be further tightened and
consequently the offsets remain unchanged. Termination is
guaranteed if processor and bus loads are smaller than 100%
(see Section 4.2) and deadlines are smaller than the periods.

4.1 Schedulability and resource analysis

The analysis in this Section is used in the ResponseTi-
meAnalysis function in order to determine the response
times for processes and messages on the ETC. It receives as
input the application I', the offsets ¢ and the priorities r,
and it produces the set p of worst case response times.

We have extended the framework provided by [7, 16] for
an ETC. Thus the response time of a process P; on the ETC
is:

ri=Ji+wi+GC (1)
where J; is the jitter of process P; (the worst-case delay
between the activation of the process and the start of its
execution), and C; is its worst-case execution time. The

interference w; from other processes running on the same
processor is given by:

W,‘ + J - Oi'
a3 [0 g
Vi €hp(Fi) j 0

(2)
In (2), the blocking factor B; represents interference from
lower priority processes that are in their critical section and
cannot be interrupted. The second term captures the
interference from higher priority processes P; € hp(P;),
where O; is a positive value representing the relative offset
of process P; to P;. The [x], operator is the positive ceiling,
which returns the smallest integer greater than x, or 0 if x is
negative.

The same analysis (1) and (2) can be applied for messages
on the CAN bus:

rm = Jm + Wm + Cﬂl (3)

where J,, is the jitter of message m, which in the worst case
is equal to the response time g, of the sender process
Py, Wiy 1s the worst-case queuing delay experienced by m
at the communication controller, and C,, is the worst-case
time it takes for a message m to reach the destination
controller. In CAN, C,, depends on the frame configuration
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and message size s,,, while in TTP it is equal to the slot size
where m is transmitted.

The response time analysis for processes and messages
are combined by realising that the jitter of a destination
process depends on the communication delay between
sending and receiving a message. Thus, for a process Pp,,
that receives a message m from a sender process Pg,,, the
release jitter is Jp(,) = ry-

The worst-case queueing delay for a message (w,, in (3))
is calculated differently depending on the type of message
passing employed:

1 From an ETC node to another ETC node (in which case
wh represents the worst-case time a message m has to spend
in the Outy. queue on ETC node N;). An example of such a
message is ms in Fig. 4a, which is sent from the ETC node
N3 to the gateway node Ng.

2 From a TTC node to an ETC node (wS*" is the worst-case
time a message m has to spend in the Outc,y queue). In
Fig. 4a, message m, is sent from the TTC node N; to the
ETC node N,.

3 From an ETC node to a TTC node (where w’* captures
the time m has to spend in the Out;7p queue). Such message
passing happens in Fig. 4a, where message m5 is sent from
the ETC node N; to the TTC node N; through the gateway
node N where it has to wait for a time wl!” in the Out;7p
queue.

The messages sent from a TTC node to another TTC node
are taken into account when determining the offsets
(StaticScheduling, Fig. 5), and hence are not
involved directly in the ETC analysis.

We next show how the worst queueing delays and the
bounds on the queue sizes are calculated for each of the
previous three cases.

4.1.1 From ETC to ETC and from TTC to
ETC: The analyses for wh' and wi*" are similar. Once
m is the highest priority message in the Outq4y queue, it will
be sent by the gateway’s CAN controller as a regular CAN
message, therefore the same equation for w,, can be used:

w,, =B, + Z

Vim; € hp(m)

W +J; — Oy
R

;

4)

Intuition tells us that m has to wait, in the worst case, first for
the largest lower priority message that is just being
transmitted (B,,) as well as for the higher priority m; €
hp(m) messages that have to be transmitted ahead of m (the
second term). In the worst case, the time it takes for the
largest lower priority message m; € Ip(m) to be transmitted
to its destination is:

B, = max (Cy). (5)

Vmy, € Ip(m)

Note that in our case, Ip(m) and hp(m) also include messages
produced by the gateway node, transferred from the TTC to
the ETC.

We are also interested to bound the size sV of the
Outcyy and soi of the Outy, queuve. In the worst case,
message m, all the messages with higher priority than m will
be in the queue, awaiting transmission. Summing up their
sizes, and finding out what is the most critical instant, we get
the worst-case queue size:
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f 5;
J 0 (6)

where s,, and s; are the sizes of message m and m;,
respectively.

Sour = max | s, + E
Vm
Vim; € hp(m)

4.1.2 FromETCto TTC: The time a message m has
to spend in the Outrp queue in the worst case depends on
the total size of messages queued ahead of m (Outrpp is a
FIFO queue), the size S of the gateway slot responsible for
carrying the CAN messages on the TTP bus, and the
frequency Trpy4 With which this slot S is circulating on the
bus:

SITL + Im

S

WnT;TP:Bm‘f‘{ w TDMA

(7)
where I, is the total size of the messages queued ahead of m.
Those messages m; € hp(m) are ahead of m, which have
been sent from the ETC to the TTC, and have higher priority

than m:
TTP
Wi, +J m Omj
W= 2 {TW o

Vm; € hp(m) J

G

(8)

where the message jitter J,, is in the worst case the response
time of the sender process, J,, = rs(n)-

The blocking factor B,, is the time interval in which m
cannot be transmitted because the slot S; of the TDMA
round has not arrived yet, and is determined as:

Trpya — Oy mod Trpyp + Os, )

where Oy, is the offset of the gateway slot in a TDMA
round.

Determining the size of the queue needed to accommo-
date the worst case burst of messages sent from the CAN
cluster is done by finding out the worst instant of the
following sum:

Sgll;f = I\Zflnx(sm + Im) (10)

4.2 Response time analysis example

Figure 6 presents the equations for the system in Fig. 4a.
The jitter of P, depends on the response time of the gateway
transfer process T and the response time of message m,
J, = r,,. Similarly, J3 = r,,. We have noted that J,, =
Jm, = rr. The response time r,,, denotes the response time
of mj sent from process P, to the gateway process 7, while
Iy 1s the response time of the same message m; sent now
from T to Py.

The equations are recurrent, and they will converge if
the processor and bus utilisation are under 100% [8].

w, +dJ, — O
— — 2 3 2,3
r,=4J,+ w2+Cz, w,=B,+| 22 28 C3
T
r3=J3+ W3+C3, W3=53
r =Jd +w*+C ,w=B
my my mq mq my mq
CAN CAN sz + J"H B Omz mq
Fop = sz +w sz, w = Bm2 + = C,

r =J +w"2 +C
m3 m3 m3

mg —

ro=Jd +w™+C ,w™=B +|_|T
mg m3 mg mg mg mg

B

my Toma

OmS modT__ + O

oMAT g
Fig. 6 Response time analysis example
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Considering a TDMA round of 40 ms, with two slots each of
20ms as in Fig. 4a, ry = Sms, 10ms for the transmission
times on CAN for m; and m,, and using the offsets in the
Figure, the equations will converge to the values indicated
in Fig. 4a (all values are in milliseconds). Thus, the response
time of graph G, will be r; = O4 +ry = 210, which is
greater than Dg = 200, hence the system is not
schedulable.

5 Scheduling and optimisation strategy

Once we have a technique to determine if a system is
schedulable, we can concentrate on optimising the total
queue sizes. Our problem is to synthesise a system
configuration ¢ such that the application is schedulable,
i.e. the condition [Note 1]

}"Gj SDGJ_7 VGJGFZ (11)

holds, and the total queue size s,,,,; is minimised [Note 2]:

CAN TTP 2 : N;
Stotal = SOut + SOut + SOut (12)
V(N; € ETC)

Such an optimisation problem is NP-complete, hence
obtaining the optimal solution is not feasible. We propose
a resource optimisation strategy based on a hill-climb
heuristic that uses an intelligent set of initial solutions in
order to explore the design space efficiently.

5.1 Scheduling and buffer optimisation
heuristic

The optimisation heuristic is outlined in Fig. 7. The basic
idea of the OptimizeResources heuristic is to find, as a
first step, a solution with the smallest possible response
times, without considering the buffer sizes, in the hope of
finding a schedulable system. This is achieved through the
OptimizeSchedule function. Then, a hill-climbing
heuristic iteratively performs moves intended to minimise
the total buffer size while keeping the resultant system
schedulable.

The OptimizeSchedule function outlined in Fig. 8 is
a greedy approach that determines an ordering of the slots
and their lengths, as well as priorities of messages and
processes in the ETC, so that the degree of schedulability of
the application is maximised. The degree of schedulability
[10] is calculated as:

fi =>_ max(0,R, — D;), if fi >0
61_ _ iil

fHh= Z(Ri

i=1

—D,), iffi=0

where n is the number of process graphs in the application.
If the application is not schedulable, the term f; will be
positive, and in this case the cost function is equal to f;.
However, if the process set is schedulable, f; = 0 and we
use f> as a cost function, as it is able to differentiate between
two alternatives, both leading to a schedulable process set.

Note 1: The worst-case response time for a process graph G; is calculated
based on its sink node as g, = Oy + Fyipi- If local deadlines are imposed,
they will also have to be tested in the schedulability condition.

Note 2: In the TTC, the synchronisation between processes and the TDMA
bus configuration is solved through the proper synthesis of schedule tables,
hence no output queues are needed. Input buffers on both TTC and ETC
nodes are local to processes. There is one buffer per input message and each
buffer can store one message instance (see explanation to Fig. 3).
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OptimizeResources(I')

1
2 -~ Step 1: try to find a schedulable system

3 seed solutions = OptimizeSchedule()

4 - if no schedulable configuration has been found,

5 -- modify mapping and/or architecture

6 if ' is not schedulable for v, then

7 modify mapping

8 go to Step 1

9 endif

10

11

12 -- Step 2: try to reduce the resource need, minimize s,
13 for each yin seed_solutions do

14 repeat

15 -- find moves with highest potential to minimize s,
16 move_set = GenerateNeighbors(y)

17 -- select move which minimizes s,

18 -- and does not result in an un-schedulable system
19 move = SelectMove(move_setl)

20 Perform(move)

21 until s,,,,;has not changed or limit reached

22 end for

23

24 return system configuration y, queue sizes
end OptimizeResources

Fig. 7 OptimizeResources Algorithm

For a given set of optimisation parameters leading to a
schedulable process set, a smaller f, means that we have
improved the response times of the processes.

As an initial TTC bus configuration (B, Optimi-
zeSchedule assigns in order nodes to the slots and
fixes the slot length to the minimal allowed value, which is
equal to the length of the largest message generated by a
process assigned to N;, S; = (N;, sizegpa11est) (line 5 in
Fig. 8). Then the algorithm starts with the first slot (line 8)
and tries to find the node which, when transmitting in
this slot, will maximise the degree of schedulability op
(lines 9-33).

Simultaneously with searching for the right node to be
assigned to the slot, the algorithm looks for the optimal slot
length. Once a node is selected for the first slot and a slot
length fixed (S; = Syect, line 32), the algorithm continues
with the next slots, trying to assign nodes (and to fix slot
lengths) from those nodes that have not yet been assigned.
When calculating the length of a certain slot we consider the
feedback from the MultiClusterScheduling algor-
ithm, which recommends slot sizes to be tried out. Before
starting the actual optimisation process for the bus access
scheme, a scheduling of the initial solution is performed,
which generates the recommended slot lengths. We refer the
reader to [9] for details concerning the generation of the
recommended slot lengths.

In the OptimizeSchedule function the degree of
schedulability dr is calculated based on the response times
produced by the MultiClusterScheduling algor-
ithm (line 18). For the priorities used in the response time
calculation we use the ‘heuristic optimised priority assign-
ment” (HOPA) approach (line 15) from [18], where
priorities for processes and messages in a distributed real-
time system are determined, using knowledge of the factors
that influence the timing behaviour, so that the degree of
schedulability is improved.

The OptimizeSchedule function also records the
best solutions in terms of ér and s,,,,; in the seed_solu-
tions list in order to be used as the starting point for the
second step of our OptimizeResources heuristic.

Once a schedulable system is obtained, our goal is to
minimise the buffer space. Our design space exploration in
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OptimizeSchedule(T)

1 - given an application I" produces the configuration y = <@, f, 7>
2 --leading to the smallest &

3

4 - start by determining an initial TTC bus configuration 8

5 foreachslotS; e fdo S; = <N, size,,,;.> end for

6

7  --find the best allocation of slots, the TDMA slot sequence

8 for each slot ;e fdo

9 for each node N;e TTC do

10 -- allocate N;tentatively to S, N; gets slot S;

11 8;= <N, sizeg>; §;= <N, sizeg>

12 -- determine best size for slot S;

13 for each slot size € recomended_lengths(S;) do

14 -- calculate the priorities according to HOPA heuristic
15 7 = HOPA

16 -- determine the offsets ¢, thus obtaining a complete system configuration y
17 S;= <Nj, size>

18 ¢ = MultiClusterScheduling(T’, 8, @)

19 Vourent = <6, B, 7>

20 -- remember the best configuration so far, add it to the seed configurations
21 if 8- (Weyprend IS best so far then

22 Yoest = Yourrent

23 Spest = S

24 add .., to seed_solutions

25 end if

26 determine Sy, for W, ent

27 if 5, is best so far and I' is schedulable

28 then add v, to seed_solutions end if

29 end for

30 end for

31 -- make binding permanent, use the S, corresponding t0 ¥,
32 ifa S, exists then S;= S, end if

33 end for

34

35 return v, S (W), SEA_Solutions
end OptimizeSchedule

Fig. 8 OptimizeSchedule Algorithm

the second step of OptimizeResources (lines 12-22 in
Fig. 7) is based on successive design transformations
(generating the neighbours of a solution) called moves.
For our heuristics, we consider the following types of
moves:

e moving a process or a message belonging to the TTC
inside its [ASAP, ALAP ] interval calculated based on the
current values for the offsets and response times

e swapping the priorities of two messages transmitted on
the ETC, or of two processes mapped on the ETC

e increasing or decreasing the size of a TDMA slot with a
certain value

e swapping two slots inside a TDMA round.

The second step of the OptimizeResources heuristic
starts from the seed solutions (line 13) produced in the
previous step, and iteratively preforms moves to reduce the
total buffer size, s,,,, (12). The heuristic tries to improve on
the total queue sizes, without producing unschedulable
systems. The neighbours of the current solution are
generated in the GenerateNeighbours functions (line
16), and the move with the smallest s,,,; is selected using
the SelectMove function (line 19). Finally the move is
performed, and the loop reiterates. The iterative process
ends when there is no improvement achieved on s,,,,, or a
limit imposed on the number of iterations has been reached
(line 21).
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To improve the chances to find good values for s,,,,;, the
algorithm has to be executed several times, starting with a
different initial solution. The intelligence of our
OptimizeResources heuristic lies in the selection of
the initial solutions, recorded in the seed_solutions
list. The list is generated by the OptimizeSchedule
function, which records the best solutions in terms of 61 and
Siorat- Seeding the hill-climbing heuristic with several
solutions of small s,,,,; will guarantee that the local optima
are quickly found. However, during our experiments, we
have observed that another good set of seed solutions are
those that have a high degree of schedulability ér. Starting
from a highly schedulable system will permit more
iterations until the system degrades to an unschedulable
configuration, thus the exploration of the design space is
more efficient.

6 Experimental results

For evaluation of our algorithms we first used process
graphs generated for experimental purpose. We considered
two-cluster architectures consisting of 2, 4, 6, 8 and 10
nodes, half on the TTC and the other half on the ETC,
interconnected by a gateway. Forty processes were assigned
to each node, resulting in applications of 80, 160, 240, 320
and 400 processes. Message sizes were randomly chosen
between 8 and 32 bytes. Thirty examples were generated for
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each application dimension; thus a total of 150 applications
were used for experimental evaluation. Worst-case
execution times and message lengths were assigned
randomly using both uniform and exponential distribution.
All experiments were run on a Sun Ultra 10 computer.

To provide a basis for the evaluation of our heuristics, we
have developed two simulated annealing (SA) based
algorithms. Both are based on the moves presented in the
previous section. The first one, named SA schedule (SAS),
was set to preform moves such that 6r is minimised.
The second one, SA resources (SAR), uses s,,,, as the cost
function to be minimised. Very long and expensive runs
have been performed with each of the SA algorithms, and
the best ever solution produced has been considered to be
close to the optimum value.

The first result concerns the ability of our heuristics to
produce schedulable solutions. We have compared the
degree of schedulability ér- obtained from our Optimize-
Schedule (OS) heuristic (Fig. 8) with the near-optimal
values obtained by SAS. Figure 9 presents the average
percentage deviation of the degree of schedulability
produced by OS from the near-optimal values obtained
with SAS. Together with OS, a straightforward approach
(SF) is presented. For SF we considered a TTC bus
configuration consisting of a straightforward ascending
order of allocation of the nodes to the TDMA slots; the slot
lengths were selected to accommodate the largest message
sent by the respective node, and the scheduling has been
performed by the MultiClusterScheduling
algorithm (Fig. 5).

Figure 9 shows that, when considering the optimisation of
the access to the communication channel, and of priorities,
the degree of schedulability improves dramatically com-
pared with the straightforward approach. The greedy
heuristic OptimizeSchedule performs well for all the
graph dimensions, having run-times that are more than two
orders of magnitude smaller than with SAS. In the Figure,
only the examples in which all the algorithms have obtained
schedulable systems were presented. The SF approach
failed to find a schedulable system in 26 out of the total 150
applications.

Next, we are interested in evaluating the heuristics for
minimising the buffer sizes needed to run a schedulable
application. We compare the total buffer need s,,,,; obtained
by the OptimizeResources (OR) function with the
near-optimal values obtained when using simulated anneal-
ing, this time with the cost function s,,,,;. To find out how
relevant the buffer optimisation problem is, we have
compared these results with the s,,,, obtained by the OS
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Fig. 9 Comparison of the scheduling optimisation heuristics
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Fig. 10 Comparison of the buffer size minimisation heuristics

a Bounds on total buffer size obtained with OS, OR, SAS
b Percentage deviations for OS, OR from SAR

approach, which is concerned only with obtaining a
schedulable system, without any other concern. As shown
in Fig. 10a, OR is able to find schedulable systems with a
buffer need half that of the solutions produced with OS. The
quality of the solutions obtained by OR is also comparable
with the one obtained with simulated annealing (SAR).

Another important aspect of our experiments was to
determine the difficulty of resource minimisation as the
number of messages exchanged over the gateway increases.
For this, we generated applications of 160 processes with
10, 20, 30, 40 and 50 messages exchanged between the TTC
and ETC clusters. Thirty applications were generated for
each number of messages. Fig. 100 shows the average
percentage deviation of the buffer sizes obtained with OR
and OS from the near-optimal results obtained by SAR. As
the number of inter-cluster messages increases, the problem
becomes more complex. The OS approach degrades very
fast, in terms of buffer sizes, while the OR approach is able
to find good quality results even for intense inter-cluster
traffic.

When deciding on which heuristic to use for design space
exploration or system synthesis, an important issue is the
execution time. On average, our optimisation heuristics
needed a couple of minutes to produce results, and hence
they can be used inside a design space exploration loop.
Although the simulated annealing approaches (SAS and
SAR) had an execution time of up to three hours, they
produced new-optimal results, and hence are suited for the
final stages of the synthesis process.
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Finally, we considered a real-life example implementing
a vehicle cruise controller. The process graph that models
the cruise controller has 40 processes, and it was mapped on
to an architecture consisting of a TTC and an ETC, each
with two nodes, interconnected by a gateway. The ‘speedup’
part of the model has been mapped on the ETC while the
other processes were mapped on the TTC. We considered
one mode of operation with a deadline of 250 ms. The
straightforward approach SF produced an end-to-end
response time of 320 ms, greater than the deadline, while
both the OS and SAS heuristics produced a schedulable
system with a worst-case response time of 185 ms. The total
buffer need of the solution determined by OS was
1020 bytes. After optimisation with OR a still schedulable
solution with a buffer need reduced by 24% has been
generated, which is only 6% worse than the solution
produced with SAR.

7 Conclusions

This paper has presented an approach to schedulability
analysis for the synthesis of multi-cluster distributed
embedded systems consisting of time-triggered and event-
triggered clusters, interconnected via gateways. The main
contribution is the development of a schedulability analysis
for such systems, including determining the worst-case
queuing delays at the gateway and the bounds on the buffer
size needed for running a schedulable system.

Optimisation heuristics for system synthesis have been
proposed, together with simulated annealing approaches
tuned to find near-optimal results. The first heuristic, OS,
was concerned with obtaining a schedulable system by
maximising the degree of schedulability. Our second
heuristic, OR, was aimed at producing schedulable systems
with a minimal required buffer size.
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