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Abstract— In this paper we are interested in flow-based mi-
crofluidic biochips, which are able to integrate the necessary func-
tions for biochemical analysis on-chip. In these chips, the flow of
liquid is manipulated using integrated microvalves. By combin-
ing several microvalves, more complex units, such as micropumps,
mixers, and multiplexers, can be built. In this paper we propose,
for the first time to our knowledge, a top-down control synthe-
sis framework for the flow-based biochips. Starting from a given
biochemical application and a biochip architecture, we synthesize
the control logic that is used by the biochip controller to automat-
ically execute the biochemical application. We also propose a con-
trol pin count minimization scheme aimed at efficiently utilizing
chip area, reducing macro-assembly around the chip and enhanc-
ing chip scalability. We have evaluated our approach using both
real-life applications and synthetic benchmarks.

1. INTRODUCTION

Microfluidics-based biochips (also referred to as lab-on-
a-chip) integrate different biochemical analysis functionali-
ties (e.g., mixers, filters, detectors) on-chip, miniaturizing
the macroscopic chemical and biological processes to a sub-
millimetre scale [1]. These microsystems offer several advan-
tages over the conventional biochemical analyzers, e.g., re-
duced sample and reagent volumes, faster biochemical reac-
tions, ultra-sensitive detection and higher system throughput,
with several assays being integrated on the same chip [2].
Microfluidics-based biochips have become an actively re-
searched area in recent years. These chips can readily facilitate
clinical diagnostics, offer exciting application opportunities in
the realm of massively parallel DNA analysis, enzymatic and
proteomic analysis, cancer and stem cell research, and auto-
mated drug discovery [1, 2].

There are several types of biochip platforms, each having its
own advantages and limitations [3]. In this paper, we focus on
the flow-based biochips in which the microfluidic channel cir-
cuitry on the chip is equipped with chip-integrated microvalves
that are used to manipulate the fluid flow [1]. A valve, shown
in Fig. la, is the basic building block of these chips. Physi-
cally, the biochip can have multiple layers, but the layers are
logically divided into two types: flow layer (depicted in blue in
Fig. 1a) and the control layer (depicted in red). The liquid in
the flow layer is manipulated using the control layer [1].

A valve is used to manipulate the fluid in the flow layer as the
valves restrict/ permit the fluid flow. The control layer (red) is
connected to an external air pressure source through a control
pinz; (see Fig. 1a). The flow layer (blue) is connected to a fluid
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reservoir through a pump that generates the fluid flow. When
the pressure source is not active, the fluid is permitted to flow
freely (open valve). When the pressure source is activated, high
pressure causes the elastic control layer to pinch the underlying
flow layer (point a in Fig. 1a) blocking the fluid flow (closed
valve). Because of their small size (6x6 um?), a biochip can
casily accommodate hundreds of thousands of valves.

By combining several microvalves, more complex units such
as mixers, micropumps, multiplexers can be built, with hun-
dreds of units being accommodated on a single chip [3]. Analo-
gous to its microelectronics counterpart, this approach is called
microfluidic Large Scale Integration (mLSI) [1].

A. Related Work

Although biochips are becoming more complex everyday
(e.g., there is a commercially available chip with more than
25,000 valves [2]), Computer-Aided Design (CAD) tools for
these chips are still in their infancy. We have recently pro-
posed a modeling and application mapping framework for these
chips [4]. We have also proposed a top-down approach for syn-
thesizing an application-specific biochip architecture, includ-
ing the placement and routing approach for the physical syn-
thesis of the flow layer [5]. A CAD tool for the control layer
placement and routing has also been proposed in [6].

In this paper we target the control synthesis problem. There
are two steps of control synthesis: (i) control logic generation
and (ii) control pin count minimization. Control logic gener-
ation means determining which valves need to be opened or
closed, in what sequence and for how long, in order to exe-
cute the application on the chip. Currently, this is done man-
ually by the designers [7]. Generating control logic manually
is inefficient, error-prone and requires the biologist (applica-
tion designer) to have detailed knowledge and understanding
of the chip architecture (similar to exposing the gate-level de-
tails in microelectronics). Moreover, as the chips become more
complex and the assays more concurrent, the manual method-
ologies will not scale becoming highly inadequate.

The second step is the control pin count minimization. A
control pin is a punch hole on the chip providing access to
the control layer. In order to activate a valve, it needs to be
connected to a pressure source through a control pin (e.g., in
Fig. la, valve v, is connected to the pressure source through
control pin z;). A valve is pressurized (closed valve) or de-
pressurized (open valve) by the pressure source connected to
the control pin. The number of valves on the chip is increas-
ing since the manufacturing technology, soft lithography, used
for the flow-based biochips has advanced faster than Moore’s
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law [8]. Having a separate control pin for every valve directly
translates to a large pin-count for the chip, resulting in (i) high
consumption of the chip area, and (ii) requirement of large, ex-
pensive and complex macro-assembly around the chip (each
valve requiring its own pressure source). High pin-count is a
bottleneck to the scalability of these chips.

Microfluidic multiplexers [1] have previously been used to
minimize the control pin count. Consider that there are N flow
channels on the chip requiring N valves to close them. If ev-
ery valve gets a separate pin and therefore a separate pressure
source, N pressure sources will be required. However, if it is
known that only one of the N flow channels needs to be open
at a time (all others need to be closed), then a microfluidic
multiplexer can be used. Such a multiplexer will require only
2log,N control pins for controlling N such flow channels, e.g.,
10 pins will control 32 such flow channels. In order to per-
form this optimization, the user is asked to manually specify
which flows on the chip will be used and if they will be used
in parallel or not [6]. Once the flows have been specified, then
the multiplexer is used for sharing the control pins between
flow channels that satisfy the above criteria. Manual flow spec-
ification requires the user to have complete understanding of
the chip as well as the application requirements. The man-
ual input provided by the user can also easily result in under
or over-constrained specifications, resulting in inefficient min-
imization. Moreover, the multiplexers-based minimization is
only applicable if the criteria of “only one out of N flow chan-
nels needs to be open at a time” is fulfilled. The control pin
count minimization problem has been shown to be NP-hard [6]
but no solution or experimental results have been proposed.

B. Contribution

We propose a top-down control synthesis framework for im-
plementing biochemical applications on flow-based biochips.
Given a biochemical application modeled as a sequencing
graph and a biochip architecture, control synthesis consists of
the following two steps: (i) control logic generation and, (ii)
control pin count minimization. We utilize the output of control
logic generation step and perform the minimization by sharing

the control pins between multiple valves, provided that those
valves operate in unison throughout the entire application ex-
ecution. Pin count minimization using multiplexers and our
proposed approach can be performed one after the other in or-
der to reach a good solution. In this paper, we do not perform
multiplexing but consider that this may already have been done
in the given biochip architecture.

Considering the computational complexity of the problem,
we propose a Tabu Search [9] based optimization in order to
minimize the pin count. Our framework does not require man-
ual flow specifications from the user, decoupling the applica-
tion design from control synthesis. To the best of our knowl-
edge, we are the first to present an approach for the control
logic generation for the flow-based microfluidic biochips.

II. SysTEm MoODEL

A. Biochip Architecture

Fig. 1b shows the schematic view of a flow-based biochip
with 4 input ports and 3 output ports, 1 mixer, 1 filter and 1 de-
tector. Fig. 1c shows the functional view of the same chip. The
biochip is manufactured using multilayer soft lithography [1].
A cheap, rubber-like elastomer (e.g., PDMS) with good bio-
compatibility and optical transparency is used as the fabrication
substrate. The path of the fluid flow is established using the mi-
crofluidic valves (e.g., for /n; to the Mixer in Fig. 1b, {v;, vs,
v4, vs} need to be closed and {v;, vg, v7} need to be opened)
and the flow is generated using off-chip or on-chip pumps.

A.1 Architecture Model

We use our previously proposed topology graph-based
model [4] in order to capture the biochip architecture. The
biochip architecture shown in Fig. 2b is captured by A = (N,
S, D, ¥, K, ¢), where N is a finite set of vertices, S is a
set of switches (switches are formed where the channels in-
tersect [4]), S € N, D is a finite set of directed edges, F is
a finite set of flow paths and K is a finite set of routing con-
straints. Switches represent a set of valves combined together
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and placed at the channel junctions in order to control the path
of the fluid entering from different sides. A vertex N € N
has two types: a vertex S € S represents a switch (e.g., S in
Fig. 2b), whereas a vertex M € N, ¢ S, represents a component
or an input/output node (e.g., Mixer; and In; in Fig. 2b).

The set of flow paths F is the set of permissible flow routes
on the biochip. A directed edge D; ; € O represents a directed
communication channel from the vertex N; to vertex N;, with
N;, N; € N. For example, in Fig. 2b, Dyeqrer, 5, represents a
directed link from vertex Heater| to vertex ;. A flow path,
F; € ¥, is either a single directed edge or a subset of two
or more directed edges of D, F; C D, representing a directed
communication link between any two vertices € N. In Fig. 2b,
Fia_x = (Dheater,.5,» Ds,.mixer;) T€presents a directed link from
vertex Heater, to vertex Mixer;. Column 1 in Table I shows
the flow paths for the biochip in Fig. 2b. A shorter notation
is used for describing the flow paths, i.e., instead of writing
Fra-x = (DHeater 51> Ds, Mixery)s F12-x = (Heatery, S1, Mixers)
is written. The x in F,_, can have two possible values, 1 and
2. F1p-; represents moving the fluid from Heater; to the up-
per half of Mixer; and F,_, represents moving the fluid from
Heater, to the lower half of Mixer; (see next subsection for
more details on the mixer). A routing constraint, K; € K, is a
set of flow paths that are mutually exclusive with the flow path
F; € ¥, i.e., none of the flow paths in the set can be activated
in parallel. For example, Fs_, and Fi,_, in Fig 2b are mutu-
ally exclusive as they share the vertices S| and Mixer;. Last
column in Table I shows the routing constraints for the biochip
in Fig. 2b. The function c¢(y), where y is either a directed edge
D € D or aflow path F; € , represents its routing latency.

Each flow path has an associated control layer model that
contains the details required for its utilization, i.e., the switch
and the pump activation details. Fig. 2c shows the schematic
view for the area marked as Region A4 in Fig. 2b. For the flow
path Fy_; (1 for referring to the upper half of the mixer) that
goes from /n; to Mixer|, the valve set {4, 7} needs to be closed
and the valve set {1, 2, 3, 8, 9, 10, 5, 6} needs to be opened (see
Fig. 2¢). A pumping action then moves the fluid from /n; to

the Mixer; upper half. For the biochip architecture in Fig. 2b,
we consider that all the flow paths have their own dedicated
off-chip pumps. The pumps can, however, be easily shared
between flow paths. In that case, the flow paths that share a
pump will become mutually exclusive and will be listed as such
under the routing constraints. Table I shows the list of flow
paths, their routing latencies and the flow path control layer
models for the architecture in Fig. 2b.

A.2 Component Model

The component modeling framework is also dual-layer [4],
consisting of a flow layer model and a control layer model. The
flow layer model (P, C, H) of each component M is character-
ized by a set of operational phases #, execution time C and
the component geometrical dimensions . The control layer
model captures the valve actuation details required for the on-
chip execution of the component operation. Table II shows the
flow layer model library £ = M(P, C, H) of seven commonly
utilized microfluidic components [10].

Mixers used are pneumatic [11]. For example, Mixer; in
Fig. 2¢ is a pneumatic mixer implemented using nine microflu-
idic valves, numbered 2 to 10. The valve set {8, 9, 10} acts as
an on-chip pump. The valve set {2, 3, 4} and the valve set {5,
6, 7} act as switches. The two switches facilitate the inputs and
outputs, and the pump is used to perform the mixing.

As shown in Table II, the mixer has five operational phases.
The first two phases (Ip1, Ip2) represent the input of two fluid
samples that need to be mixed (filling the upper and lower
half of the mixer), followed by the mixing phase (Mix). The
mixed sample is then transported out of the mixer in the last
two phases (Opl and Op2, emptying the two halves).

In order to perform mixing (once both halves are filled), the
mixer input and output valves {2, 6} are closed while valves
{3, 4, 5, 7} are opened and the mixing operation is initiated
(Fig. 2¢). Valve set {8, 9, 10} acts as a peristaltic pump. Clos-
ing valve 8 inserts some pressure on the fluid inside the mixer,
closing valve 9 creates further pressure, then as valve 10 is



TABLE I
: Biochip Flow Path Set (7), Control Layer Model and Routing Constraints (K)

Flow Paths Control Layer Model Routing Constraints
Flow Path | Closed Valves | Open Valves

Fo_x=([n|,Mixer1),2s F()_l 4, 7, 67 1,2,3, 5,6, 8, 9, 10, 68 K3_x . F]o_x

F\_y = (Mixer,, Filtery), 2 s Fo, 3,5,67 1,2,4,6,7,68,8,9, 10 Kg vt Fro_y

F, = (Filter,, Heater), 2 s Kio—x : F3_

Fe_y 30,33,71 27,28,29,34,35,36,31,32,72 || Kip—x : Fs_x

Fo—x = (Iny, Mixery), 2 s Fe 29,31, 71 27,28, 30, 33, 32, 72, 34, 35, 36

Fy1 = (Ins, Heater), 2 s Fy 64 42,43,44, 63

Fio_x = (Heatery, S, Mixer;),3 s

closed valve 8 is opened again. This forces the liquid to rotate
clockwise in the mixer. The valves are closed and opened in a
sequence such that the liquid rotates at a certain speed accom-
plishing the mixing operation. The control layer of the mixing
phase is a part of the component model. Table III shows the
control layer model for all components in the biochip in Fig. 2b.
The control layer details are only for the functional phase of the
component. For example for Mixer, the control details are for
the Mix operation for which the valve set {2, 6} is closed, {3,
4,5, 7} is opened and {8, 9, 10} is in the mixing state (opening
and closing in a predefined sequence). Valve sequences for the
heaters, filters and detectors are also given. In addition to these
valve activations, the relevant component also needs to be acti-
vated, e.g., optical sensor present in the detector needs to start
operation as soon as the associated valves have been activated.

The input and output phases of the components are modeled
using flow paths (and their associated control layers) in the ar-
chitecture model. For example, the input to Mixer; from In;
in Fig. 2c is modeled by the flow path F_, (see Table I) and
its activation is done using the associated control layer. Note
that the mix valves (e.g., valve set {8, 9, 10} for Mixer|) need
to stay open for the input and output phases of the mixer. Mix
valves are active only when the mixing is intended and need to
be kept open after the mixing is done, until the desired mixed
fluid has been taken out emptying the mixer.

B. Biochemical Application Model

We model a biochemical application using a sequencing
graph. The graph G(O, &) is directed, acyclic and polar. Fig. 2a
shows an example of a biochemical application. Each vertex

TABLE I
: Component Library (£): Flow Layer Model

Exec.
Component Phases (P) Time (C)
Mixer Ipl/ Ip2/ Mix/ Opl/ Op2 0.5s
Filter Ip/ Filter/ Op1/ Op2 20s
Detector Ip/ Detect/ op 5s
Separator | Ipl/Ip2/ Separate/ Opl/ Op2 140 s
Heater Ip/ Heat/ Op 20C/s
Metering Ip/ Met/ Opl/ Op2 -
Storage Ip or Op -

TABLE III
: Component Control Layer Model for Fig. 2b

Component Open Closed | Mixing
Valves Valves Valves
Mixer, 3,4,5,7 2,6 8,9,10
Mixer, 29,30,31,33 | 28,32 | 34,35,36
Mixer; 49,50,51,53 | 48,52 | 54,55,56
Mixer, 19,20, 21,23 | 18,22 | 37,38, 39
Heater, - 43,44 -
Heater, - 13, 14 -
Filter, - 11,12 -
Filter, - 57, 58 -
Detector; - 40, 41 -
Detector, - 24,25 -

O; € O represents an operation that can be bound to a com-
ponent. Each vertex has an associated weight C;(M;), which
denotes the execution time required for the operation O; to be
completed on component M;. The execution times provided in
Table II are the typical execution times for the particular com-
ponent types, i.e., typical mixing time is 0.5 s but a biochemical
application description may specify a longer time (e.g., 5 s) if
required for a certain operation. The edge set & models the de-
pendency constraints in the assay, i.e., an edge ¢;; € & from
O; to O; indicates that the output of O; is the input of O;. An
operation can start when all its inputs have arrived.

III. Brocuip CONTROL SYNTHESIS

The following subsections explain the tasks involved in the
biochip control synthesis using Fig. 2 as an illustrative exam-
ple. Our proposed solution is discussed in Section 4.

A. Control Logic Generation

Generating the control logic 7 means deciding which valves
to close/ open, in what sequence, at what time and for how
long, in order to implement a biochemical application G on the
chip architecture ‘A. It consists of the following two steps:

A.1 Application Mapping

This step consists of performing the binding and scheduling of
the biochemical operations O onto the chip components M as
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well as the fluid routing, i.e., binding and scheduling of the
edges & onto the biochip flow paths . Fig. 3b shows the
schedule X after mapping the application in Fig. 2a on the
biochip in Fig. 2b. The schedule is depicted as a Gantt chart,
where we represent the operations and fluid routing phases as
rectangles, with the lengths corresponding to their execution
times. The start time and the end time for the flow paths and
operations in the schedule are called time steps, i.e.,0 sand 2 s
in Fig. 3b are considered time steps since they mark the start/
end time of the flow paths, whereas, 1 s is not a time step.

A.2 Schedule Translation

The control logic 7 is represented in a tabular form and contains
the activation status of all valves on the chip, for all time steps
of the schedule. Consider the example in which the application
in Fig. 2a is executed on the biochip in Fig. 2b (the schedule for
this example is shown in Fig. 3b). The control logic presented
in Table IV gives the activation status of the valves shown in
Fig. 2¢ for the schedule duration 0 to 8 s.

Each row in the Table IV represents the activation status of a
valve. First column contains the valve number and the remain-
ing columns represent the activation status of the valve for the
time steps present in the schedule. For example, the first row in
Table IV represents the activation status of valve 1. A 0 as ac-
tivation status represents an open valve, 1 a closed valve and X
represents a don’t-care, i.e., the valve may be opened or closed
without having any influence on the application execution. For
example, valve 1 (row 1 in Table IV), is opened at time O s,
stays open at 2 s and then its status changes to a don’t-care
at 4 s. This is because from 0 to 4 s, Fy_; and F_, are exe-
cuted, as shown in the schedule in Fig. 3b, filling the upper and
lower halves of Mixer; (see Table I). At 4 s, both fluid samples
are inside the mixer, therefore valve 2 closes in order to start
the mixing operation (valve 2 status changes to 1 at 4 s in Ta-
ble IV). Once valve 2 is closed, the status of valve 1 switches
to a don’t-care. This is because valve 1 and valve 2 are placed
in series on the flow channel (see Fig. 2¢) and once valve 2
is closed, opening or closing of valve 1 has no impact on the
application execution. The mix valves (e.g., valve 8, 9, 10 in
Mixer)) act as a pump in order to achieve mixing [1]. This

pumping is also included in 77 and for simplicity, it is shown as
“Mix” in Table IV. The mix valves are opened and closed at a
certain frequency in order to achieve mixing, and this opening
and closing continues even between time steps.

B. Pin Count Minimization

The biochip architecture may contain some valves that are
never closed during the application execution. These valves
are redundant and can be removed reducing the pin count, e.g.,
valve 1 in Table IV is never closed and is therefore redundant.
Connecting each valve to a separate control pin results in too
many pin-outs from the chip limiting the chip scalability. In
order to minimize the pin count, a strategy is needed to share
the control pins between different valves that perform in unison
with each other throughout the application execution schedule.
For example in Table IV, valve 2 and valve 6 have identical ac-
tivation sequence in all time steps and therefore, can share the
same control pin. Similarly, valve 1 and 2 also have the same
sequence (X for valve 1 at time steps 4 and 5 means that valve 1
can be switched to 1 or 0 without affecting the application exe-
cution) and can share the control pins.

C. Problem Formulation

Given (1) a biochemical application modeled as sequenc-
ing graph G, (2) a biochip architecture modeled as a topol-
ogy graph A, and (3) a characterized component library £ ,
we are interested in performing the control synthesis for the
given chip. Control synthesis consists of the following steps:
(1) generating the control logic n needed to execute the applica-
tion on the chip, while minimizing the application completion
time and satisfying the dependency, resource and routing con-
straints, and (2) minimizing the control pin count of the chip.

IV. SYNTHESIS STRATEGY

Fig. 3a shows our proposed design methodology. In this pa-
per we focus on the “Control Synthesis” block. We consider
that the biochip is given, i.e., the component and valve place-
ment has already been done using a previously proposed tech-



TABLE IV
: Control Logic (1) Table - For Valves in Fig. 2¢

Valve Time Steps (s) Color
No. 0|2 4 5 8
1 010 X X 0 -
2 010 1 1 0 Color - 0
3 0|1 0 0 1 Color - 11
4 110 0 0 0 Color - 1
5 011 0 0 1 Color - 11
6 010 1 1 0 Color - 0
7 110 0 0 0 Color - 1
8 0| 0 | Mix | Mix 0 Color - 14
9 0| 0 | Mix | Mix 0 Color - 8
10 0 | 0| Mix | Mix 0 Color - 2
27 010 X X X -
28 0|0 1 1 1 Color -3
29 0|1 0 0 0 Color - 6
30 110 0 0 0 Color - 1
31 0|1 0 0 0 Color - 6
32 010 1 1 1 Color - 3
33 110 0 0 0 Color - 1
34 0 | 0 | Mix | Mix | Mix Color -9
35 0 | 0 | Mix | Mix | Mix Color - 4
36 0| 0 | Mix | Mix | Mix Color -7
42 0 X | X X X -
43 0|1 1 X X Color - 13
44 0|1 1 X X Color - 13
89 X | X X X X Color -4

nique (e.g., [5]). The number of control pins (punch holes in
the chip providing access to the control layer) and their sharing
between the valves is decided during control synthesis. The
output of the “Control Synthesis” block is therefore given to
the “Architectural Synthesis” block, as shown in Fig. 3a, for
performing the control pin placement and control channel rout-
ing, connecting the valves to the control pins. Fig. 4 shows our
control synthesis algorithm.

A. Control Logic Generation
A.1 Application Mapping

We use our previously proposed approach in [4] for this task
(line 2 in Fig. 4). Our approach uses List Scheduling to perform
the binding and scheduling of operations and to perform the
fluid routing. Schedule X in Fig. 3b has been obtained by map-
ping the application in Fig. 2a on to the architecture in Fig. 2b
using our proposed approach [4]. In our design methodology in
Fig. 3a, this is done in a separate block “Application Mapping”
and then the output is given to the “Control Synthesis” block.

A.2 Schedule Translation

Control logic 7 is generated by fetching the control layer model
of the biochip flow paths # and components M (part of the
biochip architecture model A), and utilizing them to translate

ControlSynthesis(G, A, L, maxlter)

1 /) Map application to generate schedule

2 X = MapApplication(G, A, L)

3 /| Generate control logic

4 n = GenCtrlLogic(F, M, X)

5 /| Algorithm for pin count minimization

6 Gc = GenGraph(r)

7 k =|Gc|, klterate = 1

8 while f(s) > 0 and klterate = 1 do

9 /| Generate initial solution
10 s = Random(Gc)
11 Initialize TL to ¢, nriter =0, sx = s
12 while f(s) > 0 and nrlter < maxIter do
13 BestMove(s’) = GenNbrSelectMove(s, TL)
14 Update TL
15 if f(s%) > f(s") then

16 s = s, nrlter = 0
17 else

18 nriter++

19 end if

20 PerformMove {s = 5"}

21 end while

22 (k, klterate) = BSearch(f(s), k)
23 end while

24 return <n, Gc, s*, k>

Fig. 4.: Synthesis Algorithm

the schedule X into the valve activation sequence (line 4 in
Fig. 4). At every time step of the schedule X (generated in
the previous step), we look at the active flow paths and oper-
ations, fetch the associated control layer models and populate
the table representing the control logic. The valves that need to
be opened are given a status 0, the ones that need to be closed
1 and to the set of valves that are mixing the status “Mix” is
allotted. All other valves are set as X (don’t-care) for this time
step and then the algorithm moves on to the next time step.
For example at time step 2, operation O3 and flow paths F_»,
F¢_; are active, as shown in the schedule in Fig. 3b. Operation
O; is bound to Heater;, so we fetch the control layer model
for Heater, from Table III according to which valves 43, 44
should be closed. The status for these valves is thus set to 1 at
time step 2 in the control logic (Table IV). Similarly the con-
trol layer models for the flow paths F_, and F_, are fetched
from Table I and the valves involved are set to either 1 or 0,
depending on whether they needed to be closed or opened. All
other valves (except the mix valves) are set to the status X.

The mix valves are assigned a don’t care status X only when
either both halves of the mixer are empty, or when the mixed
fluid in only one half of the mixer was required for the appli-
cation and that half has been emptied. When mix valves (e.g.,
{8,9, 10} for Mixer)) are set to X, the input and output valves
of the respective mixer ({2, 6} for Mixer;) need to be closed.
This ensures that if these mix valves (e.g., {8, 9, 10} of Mixer)
share control pins with other mix valves (e.g., {34, 35, 36} for
Mixer;) and a pumping action is performed because of this,
the pumping affect is contained inside the mixer and does not
affect the rest of the chip operation.



B. Pin Count Minimization

The pin count minimization problem has previously been re-
duced to a graph coloring problem (GCP) [6]. In GCP, the
nodes in the graph need to be colored using minimum number
of colors, in such a way that no two adjacent nodes have the
same color. Finding the exact chromatic number (the minimum
number of colors that can be used to color the graph nodes) is
an NP-hard problem [6]. Finding out if the graph can be cov-
ered with k colors is an NP-complete problem [9]. Although
the problem has previously been reduced to a GCP, however,
no solution or experimental results have been proposed.

B.1 Graph Generation

Before we generate the graph, we remove redundant valves, if
any, from the biochip architecture. Redundant valves are the
ones that are never closed during the entire application execu-
tion, e.g., valve 1, 27 and 42 in Table IV are redundant valves
as their status is never set to 1. These valves can be removed
from the chip architecture as their presence has no effect on the
application execution.

Next, we create the graph Go(Ve, Ec¢) (line 6 of Fig. 4) by
considering each valve in Table IV as a separate node V¢ in
the graph (redundant valves are not considered). An edge Ec
is made between two nodes if a time step exists in the schedule
for which the valves (represented by the nodes) have a different
activation status. For example, the nodes representing valve 2
and valve 6 will not have an edge between them as they operate
in unison throughout the schedule as shown in Table IV, but an
edge will be made between valve 2 and 3 since their activation
status vary at time step 2 (valve 2 is open and valve 3 is closed).
The graph is complete once all edges have been drawn. The
graph for Table IV has 83 nodes (total valves were 89, 6 were
found to be redundant and were removed) and 1312 edges.

B.2 Pin Count Minimization Algorithm

The problem for pin count minimization is now represented in
the form of a classical graph coloring problem (GCP). Once the
colors have been assigned, the nodes that have the same color
will share the same control pin.

GCP has been studied extensively and different approaches
have been proposed to find a good quality solution. The sim-
plest approach is the Greedy method [9] which takes the or-
dering of the nodes as input and colors them with the small-
est color number, while satisfying the constraint that no two
adjacent nodes should have the same color. Greedy often per-
forms poorly in practice since a good node ordering is difficult
to decide. DSATUR is another commonly utilized approach
that uses a heuristic to dynamically change the ordering of
the nodes and then uses the Greedy method for coloring [9].
Branch and bound algorithms [9] and semi-definite program-
ming solutions for approximate graph coloring [12] have also
been proposed. Considering the complexity of the problem,
different metaheuristic techniques have also been used exten-
sively for finding good graph coloring solutions, especially
when there is a large number of nodes [9]. We use a Tabu
Search-based optimization scheme in order to perform the pin
count minimization.

Tabu Search (TS) is a metaheuristic based on a neigh-
bourhood search technique which uses design transformations
(moves) applied to the current solution in order to generate a
set of neighbouring solutions that can be further explored by
the algorithm [13, 14]. Our algorithm aims to target a k-GCP,
i.e., finding a graph coloring using k number of colors and then
iterates to find the smallest value of k.

Given the graph Go(Ve, Ec) to be colored, the target of the
algorithm is to partition the nodes into a fixed k number of sub-
sets, such that no two adjacent nodes belong to the same subset.
We start with a random solution s for the k-coloring (line 10 in
Fig. 4), which (typically) contains a high number of edges in a
conflict, i.e., the nodes connected by these edges have the same
color. Using this as an initial solution the algorithm iterates to
explore the solution space S, which is the set of all possible
k-colorings of the graph.

In order to efficiently perform the search, TS uses memory
to record moves that are not allowed at the present iteration
(called tabu list (TL)). The aim is to exclude moves that would
cycle the search back to the local optima that has already been
evaluated. A move remains tabu only for a certain number of
iterations, this is called the size of tabu list. Our algorithm starts
with an empty TL and the best known solution s is initialized
with the initial solution s (line 11).

Next, the algorithm generates neighbourhoods for the cur-
rent solution s and picks the best one from these based on a
certain objective function (line 13). A neighbour s" is gener-
ated by selecting a random node x that is adjacent to an edge
in conflict. Assuming x € V¢;, we choose a random color j # i
and replace i with j to obtain s’. The objective function f(s)
measures the number of edges in conflict:

k
f(s)= D IEci] (1)
i=1

where s € S is the solution under evaluation, and E; is the set
of edges in conflict, having color i. The objective is to deter-
mine a k-coloring such that f(s) = 0. The best move is the one
that is not tabu and has the lowest f{(s) value.

Our algorithm generates the tabu list as follows: whenever
a node x is moved from V¢; to V;, the pair (x, i) becomes
tabu, i.e., node x cannot be returned to V; for a certain num-
ber of iterations. However, in order to not prohibit attractive
moves, our algorithm uses the aspiration criteria of allowing
the tabu moves if they result in a solution s that is better than
the currently known best solution sx. The best move is selected
(line 13) and the tabu list is updated (line 14).

The algorithm starts with the value of k equal to the num-
ber of nodes in the graph (line 7). For this k, the algorithm
continues searching until it finds a solution for which f(s) =0
or until it reaches the maximum number of iterations without
an improvement in the solution (number of iterations, nrlter, is
reset and incremented in line 16 and 18 respectively). Our al-
gorithm uses binary search (half-interval search) to select new
value of k, as it iterates to find the minimum value of k for
which f(s) = 0 (line 22). When the minimum k is found, the
algorithm stops and the control logic  and the pin sharing in-
formation (Gc, s%, k) is returned (line 24). The graph generated
for Table IV has 83 nodes, i.e., 83 valves requiring 83 con-



Fig. 5.: Colored Graph

trol pins and therefore 83 off-chip pressure sources. After per-
forming the pin count minimization, only 15 control pins were
found to be needed to control these 83 valves and to execute the
control logic given in Table IV. Last column in Table IV shows
the colors assigned to the valves (valves with the same color
share the control pin). A small section of the colored graph is
shown in Fig. 5 representing the pin sharing, e.g., valve 2 and
valve 6 do not have an edge between them, hence they share
the same color (and therefore the same control pin).

V. EXPERIMENTAL EVALUATION

We evaluate our proposed approach by synthesizing real-life
assays as well as a set of synthetic benchmarks. The algorithm
was implemented in C++, running on Lenovo T400s ThinkPad
with Core 2 Duo Processors at 2.53 GHz and 4 GB of RAM.

Table V shows the results. Column 1 shows the application
name (for a real-life assay) or the number of operations in the
application (in case of a synthetic benchmark). The second col-
umn gives details of the biochip architecture in the following
format: (Mixers, Heaters, Filters, Detectors). The third col-
umn shows the number of control pins originally needed and
column 4 shows the number of control pins needed once the
redundant valves have been removed (the term NR in the table
means Non-Redundant). Column 5 gives the final pin count
after the minimization has been performed.

The first real-life assay is PCR (polymerase chain reaction)
mixing stage that has 9 mix operations and is used in DNA am-
plification [15]. Next, real-life assay Multiplexed IVD (in-vitro
diagnostics) has a total of 12 operations and is used to test fluid
samples from the human body. The synthetic benchmark ap-
plications are composed of 10 up to 50 operations. In all cases,
the pin count is reduced by more than 70%, e.g., for the 10 node
application it goes down from 87 to 15, an 82% reduction in pin
count. The parameter values were determined by tuning. Size
of TL was set to 7 and the number of neighbours/ sample to 15.

TABLE V
: Experimental Results

Appl./ Allocated Total | NR | Optimized
Nodes Units Pins | Pins Pins
PCR (4,0,0,0) 73 52 12
IVD (6,0,0,06) 65 65 12
10 4,2,2,2) 87 83 15
20 (12,4,3,1) 164 | 145 38
30 (17,6,4,3) | 212 | 201 47
40 (21,9,6,4) | 269 | 197 74
50 (26,12,7,5) | 329 | 240 61

The algorithm execution time depends on the chosen value of
k and the size of the problem. On average, for each value of k,
the algorithm iterates for 2 to 4 minutes. All architectures and
benchmarks can be found here [15].

VI. CoNcLUSIONS

In this paper, for the first time to our knowledge, a top-down
control synthesis framework for implementing the biochemi-
cal applications on the flow-based biochips has been proposed.
Our algorithm generates the control logic needed to execute the
application and uses a Tabu Search-based optimization in order
to minimize the control pin count. The minimization is tar-
geted at efficiently utilizing the chip area, reducing the macro-
assembly around the chip and enhancing scalability of mLSI
biochips. The framework has been evaluated using real-life ap-
plications as well as a set of synthetic benchmarks.
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