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Abstract—In this paper we are interested in deriving a
distributed platform, composed of heterogeneous processing ele-
ments, targeted to applications that have strict timing constraints.
We consider that the platform may use multiple Application
Specific Instruction Set Processors (ASIPs). An ASIP is synthe-
sized and tuned for a specific set of tasks (i.e., a task cluster).
During design space exploration (DSE), we evaluate each platform
solution visited in terms of its cost and performance, i.e., its
ability to execute the applications such that they meet their timing
constraints. To determine if the applications are schedulable, we
have to know the worst-case execution time (WCET) of each
task. However, we can determine the WCETs only after the
ASIPs are synthesized, which is time consuming and therefore
cannot be done during DSE. To address this circular dependency
(the ASIPs depend on the task clustering, and the WCETs of
tasks, used to determine schedulability, depend on how ASIPs are
synthesized), we propose an uncertainty model for the WCETs,
which captures the range of possible ASIP implementations.
Based on this model, we synthesize a multi-ASIP platform, such
that the applications have a high chance of being schedulable
and the cost constraints imposed on the platform are fulfilled. We
propose an Evolutionary Algorithm-based approach, which uses a
novel stochastic schedulability analysis to solve this optimization
problem. The proposed approach has been evaluated using several
benchmarks.

I. INTRODUCTION

Current embedded platforms are increasingly executing
a wide variety of applications from the automotive, multi-
media and networking domains. Flexibility and performance
are the key design constraints for these platforms. General
Purpose Processors (GPPs) are flexible platforms and run
applications from various domains, but they fall behind on
performance in comparison to Application Specific Integrated
Circuits (ASICs). On the other hand, ASICs are designed to
run specific applications and therefore lack flexibility. ASIPs
combine the best of both worlds by incorporating application
specific custom instructions, thereby giving more flexibility
than ASICs and better performance than GPPs. ASIPs are
designed such that they are optimized to run a specific set of
functions. Increasingly, multiple ASIPs are used in distributed
embedded platforms together with heterogeneous processing
elements (PEs) for the implementation of real-time systems
(especially image/video processing systems) [1]-[4].

Platform synthesis is challenging for real-time applications
when we consider multiple ASIPs in the platform solution
(Fig. 1a). During DSE, we can evaluate the schedulability of
the candidate platform solutions only if the WCETs of the
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Fig. 1. (a) Multi-ASIP Platform Example, (b) ASIP Microarchitectural Design
Space, and (c) Example of ASIP Microarchitecture Synthesis Flow [5]

tasks are known. However, it is possible to know the WCETs
only after all the ASIPs are synthesized. The synthesis of an
ASIP (Fig. lc) starts with the decision on which tasks have
to be implemented by the ASIP also called fask clustering.
Depending on the number of tasks and ASIPs included in the
platform, a very large number of task clusters have to be evalu-
ated during platform DSE. The microarchitecture synthesis of a
single ASIP [5] involves a number of steps as shown in Fig lc.
Further, the design space of ASIP microarchitecture is very
large (see Fig. 1b) depending on the number and data widths
of registers (RF) and memory blocks (MEM) and number of
functional units (FU). Hence, platform synthesis with multiple
ASIPs is non-trivial as it needs to take the design space
of ASIP microarchitecture into consideration when exploring
various platform solutions.

There has been a significant effort in the development of
platform synthesis methods.

1)  Firstly, there are platform synthesis approaches that
do not consider ASIPs. There is a large body of work
in this category [6]—[8] and the assumption is that the
details of each component are known.

2)  Secondly, there are platform synthesis approaches,
which consider multiple ASIPs. Most of these ap-
proaches [9]-[11] assume that the ASIPs have been
synthesized, whereas in [3], [12], a small set of mi-
croarchitectural configurations is considered. Hence,
these approaches severely limit the design space,
disregarding very good solutions because they do not



take into account the ASIP microarchitecture design
space during platform synthesis.

3) To the best of our knowledge, there is no work on
platform synthesis with multiple ASIPs, where the
ASIPs are not synthesized beforehand.

All prior works address the circular dependency between
the ASIP microarchitecture and WCET values by considering
that the ASIPs or a limited set of microarchitectural configura-
tions of the ASIP are given. However, this discards potentially
very good solutions. In this paper, we address this circular
dependency using a WCET uncertainty model that captures
a wide range of ASIP microarchitectural configurations. We
propose a platform synthesis approach that uses the WCET
uncertainty model to derive a platform with heterogeneous
processing elements (PEs) including multiple ASIPs, such
that the applications have a high probability of meeting their
timing constraints under given cost requirements. We use
an Evolutionary Algorithm (EA) based approach to solve
this optimization problem. Our platform synthesis decides the
clustering of tasks into ASIPs and, after DSE, when this
clustering is decided, we use existing ASIP synthesis tool
flows [5] (see Fig. 1c¢) to derive the microarchitecture of each
ASIP.

The paper is organized as follows: Section II describes the
system model and the WCET uncertainty model (UM), Section
III defines the platform synthesis problem and highlights
the main challenges using a motivational example. The EA
implemented for performing the DSE and its evaluation, using
several benchmarks, are respectively presented in Sections IV
and V, while the conclusions are in Section VI.

II. SYSTEM MODEL

In this paper we are targeting heterogeneous platforms,
in which several hardware components are interconnected
through a bus! (Fig. 1a). The platform may contain PEs such
as GPPs, ASICs, digital signal processors (DSPs) or ASIPs.
Some of these might be legacy components. We consider the
specific case in which the platform includes multiple ASIPs.
The k-th PE is denoted by PE;. We denote the frequency of
PE; as fpg,. We explore different types of buses during the

platform synthesis. A bus is defined as b{i’? , where w is the bus
width and f} is its frequency. We use a non-preemptive static
scheduling policy for the execution of tasks on the platform.

A. ASIP Synthesis

Fig. 1c highlights the main steps for the synthesis of
a single ASIP, according to [5]. Other ASIP synthesis ap-
proaches, e.g., using LISATek Toolkit are [13]-[15]. To be
able to perform ASIP synthesis, we need to know which
tasks are assigned to it. After the analysis of the code of
these tasks, a microarchitectural DSE is performed in order
to synthesize an ASIP compliant with the input constraints
(e.g., performance, power, cost). The starting point for this
exploration is an ASIP template (selected from a library) that
most likely will satisfy the tasks’ characteristics (according to
the designer and an application profiling). The definition of a
specific ASIP microarchitecture includes the identification of

'Network-on-Chip will be considered in our future work.
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the appropriate number/type of functional units, memory, issue
slot, etc., in order to satisfy the functionalities required by the
tasks assigned to the ASIP. After an initial microarchitecture
is defined, the instruction set is generated, which can include
custom instructions. The next steps are the generation of the
code and the HW synthesis of the ASIP. This design flow is
not fully automated and it can take one or several days to
complete.

B. Application Model

We assume that we have multiple applications A;, each of
them modeled as a task graph A;(V;,E;) similar to [16] where
each vertex in V; represents a task T; (block of partitioned
code) and the edges in E; represent data dependencies. The data
dependencies are modeled by messages m, € E;. With static
scheduling, a task can start only after all its input messages
have arrived. Fig. 2a shows a task graph example. The task
graph captures the task-level parallelism in the application.
Each application has a deadline d; and a period T;.

C. Evaluation of task clustering solutions

Consider the example with three tasks T;, T» and 13 for
which a multi-ASIP bus-based platform has to be synthesized.
We define the set of tasks, used at the input of the flow in
Fig. lc to synthesize an ASIP PEy, as the task cluster Sk.
Let us now consider two different ways of clustering the three
tasks: case (a) and (b). In case (a), tasks are assigned to three
different ASIPs, PE;, PE, and PEs, with the corresponding
clusters S; = {11}, S2 = {12} and S3 = {73}. The single ASIP
synthesis flow (Fig. 1c) can be followed and each ASIP micro-
architecture can be optimized to satisfy the particular task.
Now that we have each ASIP synthesized for case (a), we can
determine the WCET of each task. Let us denote with C2%*
the WCET of task T; on ASIP PEj. Although an ASIP PE;
has been synthesized and tuned for a certain set of tasks S,
it could also run a task T; ¢ S (if binaries are compatible).
Let us consider that we run T, on PEj, tuned for t;. The
microarchitecture of PE; has not been specifically tuned for
the functionality of Tp, as a consequence we can expect that
C¥2 < c8®1 (note that the increase in C3*' also depends on
the similarity between T; and Ty).

In case (b), T; is clustered with T, such that S} = {7/,72}
and S, = {13}. Since the task clustering has changed, we need
to re-synthesize all the ASIPs from case (a), otherwise the
WCET of 1, may increase too much. This will again impact
the WCETs of the tasks. In our case, the WCET of 1, will
decrease and that of T; might increase, depending on how
much the ASIP synthesis will satisfy the functionality required
by one task compared to the other.

This example shows that every time a task clustering
changes, the WCETs will change. For every WCET change, we
need to evaluate again the schedulability of the applications.
However, we cannot know the WCET of a task before we
have synthesized the corresponding ASIP. Therefore, after
each re-clustering decision we would have to run a complete
ASIP synthesis flow, as described in Section II-A, for each
affected ASIP. As mentioned, an ASIP synthesis takes days,
so it cannot be done during the DSE at the platform level.
Hence, to perform DSE during platform synthesis, we need the



WCETs to evaluate the schedulability, and WCETs can only
be known after the platform has been fully synthesized. This
circular dependency drastically limits the number of platform
alternatives that can be considered during DSE. To address this
dependency, and thus enable a fast evaluation of more platform
alternatives, we propose an Uncertainty Model for the WCETsS,
presented in the next subsection.

D. Modeling WCET uncertainties

As mentioned in the previous section, the WCET value
depends on the ASIP microarchitecture, which is synthesized
depending on how tasks are clustered. In this paper we
propose a model to capture the design space of possible
ASIP microarchitecture implementations: the WCET of each
T; is modeled as a stochastic variable C; and the associated
probability distribution function. Such uncertainty models are
used in practice in the early design stages [17].

Note that the variability of the worst-case execution time
C; of a task T; is due to the variation among the possible
ASIP implementations on which task t; will run, and does
not reflect the variation in execution time, which is due to
variation in the input data and modern architectural features,
e.g., pipelines, branch prediction. The final implementation
of the ASIP running t; will only be available after the
time-consuming ASIP microarchitecture synthesis. We use the
probability distribution of C; during DSE in order to avoid
synthesizing every ASIP microarchitecture resulting from a
change in task clustering.

We assume that the designer captures the probability dis-
tribution function of the WCET C; of a task T; using two
bounds: the smallest WCET value Cj (lower bound) and the
largest value C}; (upper bound). The designer can arrive at these
two values based on his or her knowledge of the functionality
of the task and the possible range of ASIP microarchitectures.
These values can also be estimated; the lower WCET bound
can correspond to the expected WCET when 7; is executed on
an ideal processor according to an as soon as possible (ASAP)
scheduling without architectural constraints. Instead, the upper
WCET bound can correspond to a sequential execution of T; on
the slowest ASIP as possible. Within these two values, we use
a normal distribution for C; that models the WCETSs of the task
executing on an undefined ASIP that has not been synthesized
yet. Section III-B shows an example of uncertainty model.

More formally, the cumulative distribution function (CDF)
F; of C; is denoted as F; = P(C; < x), which is the probability
of how many ASIP configurations lead to the task WCET
C; smaller than a value x. The distribution is built such that
P(C; <CY) ~ 1. This means that task t; will finish in C time
units or less on all possible ASIP microarchitecture configura-
tions. At the same time, we also assume that P(C ;< Cﬁ) ~ 02,
This means that according to the designer’s evaluation, none of
the possible microarchitecture configurations will finish faster
than C’ time units. Fig. 7(a) shows an example of CDFs for
three different tasks. Regarding messages, we assume that we
know the size (in bits) of each message m,. In this paper, we
consider bus-based systems, and our DSE can explore different
types of buses (for frequency and data width). Hence, we know

2The CDF of the normal distribution does not reach the one and zero values,
therefore we use values that approximate them.
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Fig. 2. Comparison between UM and SS approaches

the worst-case transmission time Cmg of each message m,. Cmg
is a single value and not a stochastic variable: for each type
of bus that we want to explore, we have a different Cmg.

III. PROBLEM FORMULATION

Given a set of applications A; (see Section II-B), a set
of legacy components (ASICs, DSPs) and a platform cost
constraint PCpgy, the problem is to synthesize a system-level
multi-ASIP platform, such that the probability of having a
schedulable implementation is maximized under the specified
cost constraint PC,,.

Synthesizing a system-level platform means performing
DSE to decide the clustering of tasks and the interconnection.
Our uncertainty model takes as input the task graphs of the
applications, their deadlines and the cost constraint PC,,,, that
is defined as the maximum number® of ASIPs that can be
included in the platform. Moreover we can consider a library
of buses with different speed and bandwidth, from where
the DSE selects the appropriate bus. There can be a set of
legacy components that have to be used in the architecture
and it is also possible that some tasks might be clustered
on some specific PEs by the designer. Our optimization takes
these constraints into account. The designer, based on his/her
knowledge or an analysis of the task code, provides the upper
and lower bounds for the WCET as presented in Section II-D.
Given the size in bytes of each message and the library
of buses, it is possible to estimate the communication time
for each message. The DSE evaluates different clustering
solutions as presented in Section IV-A and selects the one
which maximize the probability of having a schedulable im-
plementation. After DSE, we use ASIP synthesis flow (Fig. 1¢c)
to synthesize an ASIP for each task cluster. At the output of
our multi-ASIP platform synthesis approach, we get a platform
architecture, consisting of several ASIPs and possibly also
legacy components, and their interconnection. For each ASIP,
we have its microarchitecture, and the interconnection consists
of a bus with a certain speed and bandwidth. This synthesis
is performed under the platform cost constraint PCp,,. Fig. 3
shows our flow for the synthesis of a multi-ASIP platform.

A. Motivational Example

Given an application task graph (as in Fig. 2a), we want to
synthesize the platform architecture with multiple ASIPs such
that the probability of having a schedulable implementation is
maximized under the platform cost constraint. Two extreme

3We will consider the ASIP area cost in our future work.
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Fig. 3.  Multi-ASIP platform synthesis flow

possibilities for clustering of tasks are having one ASIP for
each task or having a single ASIP for all tasks. These two
extremes are infeasible as the latter has a small likelihood
to meet the performance requirements, whereas the former
it may be a better solution performance wise (if the overall
communication overhead does not exceed the task execution
overhead), but it is too costly. Our problem is to determine
that clustering solution, which maximizes the probability of
having a schedulable implementation, under a given platform
cost constraint.

In our approach, we use the uncertainty model (from
Section II-D) to break the circular dependency between ASIP
microarchitecture and the WCET of a task. We denote our
proposed synthesis approach, which uses this Uncertainty
Model as UM.

Without such an uncertainty model, the only option for a
designer would be to characterize the WCET of each task T;

with a reference value denoted with C*/ in Table 1. This value
can be obtained executing the task on a template processor.
We denote this straightforward solution as SS. We use the SS
approach as a reference to compare the results obtained with
our UM approach. We have used the following approach to
derive the values in Table I for the example in Fig. 2a. We
have considered a simple functionality, consisting of a loop and
operations such as multiplication and addition, for the tasks in
Fig. 2a. We have used the Silicon Hive ASIP synthesis tool
flow [18] (now part of Intel Corp.) to synthesize the ASIPs.
We have synthesized a three-issue slot Very Long Instruction
Word (VLIW) ASIP, and we have analyzed the tasks to
obtain their WCETs. We have considered this WCET value
as the reference WCET C*/. Furthermore, we have varied the
microarchitecture of this ASIP to obtain two extremes. The
WCETs on the slowest ASIP thus obtained were considered
the upper bound C%, whereas the WCETSs on the fastest ASIP
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synthesized were considered the lower bound C’. The obtained
values are presented in Table I. We consider the platform
to use at most two ASIPs (platform cost PCy,, = 2). Each
platform solution (consisting of a certain clustering of tasks)
is evaluated using the schedulability analysis from Section IV,
which gives the probability p; of a solution to be schedulable,
once it is implemented. We perform an exhaustive DSE and
the best clustering solution obtained with UM is shown in
Fig. 2b, having a p; = 59%. Then, we perform an exhaustive
DSE of all possible clustering solutions with the SS approach,
aiming at minimizing the schedule length, considering the
given C]r-ef . The clustering obtained with SS is shown in Fig. 2c.
In order to compare the solutions obtained with the UM and SS
approaches, we calculate the probability p; of the SS solution
to be schedulable using the WCET uncertainty model, as in
the UM approach. Thus p; for the solution with SS approach
is 24%.

To validate the conclusions of the comparison between UM
and SS, we have synthesized the platform solutions in Fig. 2b
and 2c, produced by UM and SS, respectively. Next, we have
determined the WCETSs C; of each task T; on their respective
ASIP. Then, we have obtained the optimal schedule lengths
for the two cases. The schedule length in the case of the UM
platform solution is 1,955 us, whereas for SS is 2,275 us.
For a deadline of 2,000 us, UM solution is schedulable, while
SS solution is not. This confirms that if a UM solution has
higher chances to be schedulable compared to a SS solution
according to our evaluation (Section IV-A), this is also true
in the final implementation, as our synthesis using the Silicon
Hive tools has shown. The comparison of the two approaches
shows that with our UM approach, we are able to identify a
solution that has a higher probability to be schedulable, once
it is implemented.



TABLE 1. C VALUES FOR THE MOTIVATION EXAMPLE (IN us)

C T T2 T3 T4 Ts T6 7
Ci 702 3437 8801 702 702 702 3437
Cj- 450 180 300 450 450 450 180
C;ef 602 3237 400 602 602 602 3237
TABLE II. MICRO-ARCHITECTURE FEATURES EXPLORED
Dat. Data
Issue num. num. RF Ca'(;t Cache | Load| Store
Task width | ALU | MUL | size 4Nel Line slot slot
(KB)
(bytes)
16,
mp3 41&%2’ 4,5,6, g’g’;" 32, | 4,8, 32, 4 5
decoder e 7.8 W | 64 16 64,
7.8 8
128
. 2,34, 4, 1,23, 16, 48 16,
aopee 5678| 567.| 456, | 32, | N> | 32 4 2
ecoder 8 78 | 64 64

B. WCET Uncertainty Example

We have validated the proposed WCET uncertainty model
through several experiments. Here, we show the results for
two tasks of different size and complexity: a mp3 decoder,
part of the MAD library [19] and a jpeg decoder [20] task.
We are interested to determine how the WCET of these tasks
varies depending on the micro-architecture features, and if our
WCET uncertainty model proposed in Section II-D is able to
capture this variation.

Hence, we have run these tasks on a VLIW architecture
similar to the ASIP architectures considered in this paper. We
have used the VLIW Example (VEX) [21], which is a VLIW
compiler and simulator developed at HP Laboratories. VEX
is highly configurable; we have used a set of configurations
which captures the variability of a microarchitecture design,
considering the features of VLIW processors available on
the market and the characteristics of the tasks considered.
Table II presents the microarchitecture design space used for
the experiments. Thus, we varied the number of arithmetic
and logic units (ALU), multipliers (MUL), registers in the
register file (RF), the issue, load and store slots, the data cache
size and the data cache line size. Within the parameters in
Table II we considered a large number of micro-architecture
configurations: 1,632 for the mp3 decoder task and 1,068 for
the jpeg decoder task.

For each micro-architecture configuration, we compiled
and ran the respective task. VEX returns a number of cycles,
and considering the microarchitecture explored, we assumed a
frequency of 100 MHz in order to calculate the execution time
in ms. For a particular microarchitecture, we have considered
as WCET the largest value of the execution time, after exten-
sive simulations with multiple input files. We know that such
a value does not represent the WCET, which is a theoretical
upper bound determined through analysis, but we believe this
value is a good approximation for our experiments. The results
for the mp3 decoder are presented in Fig. 4a and 4b and those
for jpeg in Fig. 4c and 4d. Fig. 4a and 4c present with bars the
probability distribution function of the WCET of mp3 and jpeg
tasks, respectively, obtained after our experiments. We used
a fitting function of MATLAB to determine the probability
distribution type that better approximates these WCET values:
it is possible to observe that a Normal distribution is a rea-
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TABLE III. MICROARCHITECTURES ASSOCIATED TO THE WCET
UPPER AND LOWER BOUNDS
Data Data
Issue num. | num. | RF Cache | Load| Store
WCET| . . Cache| .
Task width | ALU | MUL | size Line slot slot
(KB)
(bytes)
mp3 C 8 8 8 64 16 128 4 2
decoder C, 1 4 2 32 4 16 4 2
jpeg C 8 8 8 64 16 64 4 2
decoder C, 2 4 1 32 4 16 4 2

sonable approximation (represented with a continuous red line
in Fig. 4a and 4c). The corresponding cumulative distribution
functions (CDF) are plotted in Fig. 4b and 4d. Each figure
shows two CDF curves: the CDF resulted after experiments
(depicted with a continuous blue line) and the CDF obtained by
using our model (the green dotted line). Our WCET model (the
green dotted CDF) was obtained as explained in Section II-D,
considering a Normal distribution between a lower bound
C! and a upper bound C* of the WCET. As mentioned,
we assume that these bounds are provided by the designer
by evaluating two extreme microarchitectures from the range
considered for the mp3 and jpeg tasks. The microarchitecture
corresponding to the upper and lower bounds of the WCET
for the two tasks are summarized in Table III. Our WCET
model validation experiments have shown that the WCET
has a Normal distribution and that our proposed uncertainty
model is a good approximation. Note that the CDF of our
model leads to more pessimistic (larger) WCETs compared to
experimental measurements. However, the WCETs produced
by our experiments might be optimistic (smaller), since they
are not a theoretical upper bound obtained through analysis. It
is important to mention that the proposed WCET uncertainty
model is used only for design space exploration, and not for
providing timing guarantees.

IV. PLATFORM SYNTHESIS USING AN EVOLUTIONARY
APPROACH

The design space of all possible clustering solutions can
be huge, so an Evolutionary Algorithm (EA) has been im-
plemented. The objective function guiding the exploration is
the maximization of the probability p; for a certain clustering
solution to meet the deadline, under a platform cost constraint
PCyx. Section IV-A presents how a single clustering solution
is evaluated, while Section IV-B presents the EA used for the
DSE.

A. Schedulability Analysis

We use a non-preemptive static scheduling policy. If the
WCET of each task is known, it is possible to determine
the schedule table and thus perform a schedulability check.
This cannot be done in our case, as the WCET is expressed
by a stochastic variable. Instead, we perform a schedulability
analysis of each clustering solution and use this as the basis
for calculating the objective function during DSE. Note that
the analysis presented in this section is only used to guide the
search, not to provide schedulability guarantees. We assume
that a detailed schedule table will be built during the later de-
sign and development stages (when more accurate information
about WCETs and the ASIP microarchitecture is available) to
check the schedulability of an implementation.
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Fig. 4. Probability density function and cumulative distribution function for mp3 and jpeg decoder tasks

With static cyclic scheduling, SA,. is the length of the
schedule table for A;. As previously mentioned, we cannot
calculate the schedule table of a clustering solution, but we can
perform a schedulability analysis to determine the probability
of having a schedule table length that meet the deadline. Thus,
the probability of A; to meet the deadline d; is defined as
P(84, <d;). The work done in [22] presents how to determine
94, in case of stochastic execution times (WCETs in our case),
using an analytical approach that relies on the assumption of
independence between the starting and finishing time of each
task/message. This assumption in our case does not hold, so we
substitute the analytical method with Monte Carlo simulation
(MCS), which, in addition, is able to take into account the task
dependencies and provide more precise results.

The calculation of &4, is done considering certain fixed
values for the WCETs C;. However, a WCET is a stochastic
variable modeled by the CDF F;. Our approach is to use the
MCS to decide randomly, in each iteration, a new value for
C; based on its CDF F;. We collect all the values of 84, thus
determined, and we calculate the probability p; = P(84, < d;)
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of an application A; to be schedulable. As a MCS is known
for being time consuming, a reduced number of samples has
been used to speed up the execution. The results obtained with
5,000 iterations have then been compared to results obtained
with 50,000 iterations, and the difference in the value of p;
between them was less than 3%. We have also sped up the MCS
by moving the random generation of WCET values outside of
the DSE.

We use an approach similar to As Soon As Possible
(ASAP) [23] scheduling to calculate dy,. Let us illustrate how
84, is obtained using the application from Fig. 5a and the
platform implementation solution from Fig. 5b. The clustering
solution in Fig. 5b uses two ASIPs, PE; and PE,. Messages
are assigned to the bus (CU). We start by identifying a layer
subdivision [22] of the task graph, see Fig. 5c. If commu-
nicating tasks are on the same PE, the communication cost
is ignored. Each task/message has a priority assigned (tasks
on the critical path get assigned a higher priority [24]). A
layer identifies the tasks/messages of the applications A; that
can be executed in parallel, i.e. that have no data dependency
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and are clustered on different HW resources (PEs and CUs).
When tasks/messages are clustered on the same HW resource
and there is a contention of the same layer, their execution
order is set according to their priority. Once the layers are
identified (indicated by the dotted lines in Fig. 5c), starting
from the first layer, the starting time 7} (t;‘ng) and finishing

time t}[ (t,],;g) of each task T; (and message m,) are calculated.
They are obtained combining the C; of the tasks and G, of
the messages, as follows. The starting time ¢ of a task T; is
given by the maximum of the finishing times of all the tasks
that T; depends on. If T; has no data dependencies or HW
resource contention, its starting time is zero. The finishing time
tf of 1 ;j is given by the sum of the estimated starting time and
WCET of task 1, i.e., tj +C;. Finally, the maximum finishing
time among the terminal tasks (tasks without successors) in
an application A; corresponds to 5A,-, the end-to-end response
time. In Fig. 5c the computations performed at each layer are
described.

For example, let us consider the task graph in Fig. 6a
with the WCET CDFs from Fig. 7a. Two different clustering
solutions Sol; (Fig. 6b) and Sol, (Fig. 6¢) are evaluated in
term of p;, as presented in this section. The results are shown
in Fig. 7b: Sol; has a probability p; of 2% while Sol, of 93%.
This indicates that the second clustering is much more likely to
meet the application deadline when the platform is synthesized.
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B. Evolutionary Algorithm

We use a Steady State Evolutionary Algorithm (SSEA)
[25] to decide the clustering of tasks. SSEA takes as input
the applications (including the uncertainty model), the legacy
components and task assignment constraints, and the maximum
number of ASIPs allowed, PC,,,. The algorithm returns that
clustering solution, which maximizes the schedulability prob-
ability p for all applications, i.e., p = (¥ p;)/n where n is the
number of applications, under the given cost constraint PCy,,y.
SSEA is inspired from the process of natural evolution, where
a set of solutions is called a population and each solution is
encoded using a string called a chromosome. The population
is evolved by performing recombination and mutation, and the
population is replaced with the offspring population, which has
better fitness according to the cost function. SSEA has been
chosen because it is suitable for the case when the computation
of the cost function is time-consuming (a small portion of the
population is replaced at each new generation). The algorithm
works by adding the offspring of the individuals selected from
each generation to the pre-existing one, so individuals are
retained between generations.

We defined the chromosome (a single clustering solution)
as an array of tasks and messages; the value of each element
(gene) represents the identifier of the PE or CU on which
the tasks and messages are respectively clustered. We defined
a custom crossover operator with the purpose of maximizing
the task level parallelism while generating the new offspring
individuals, i.e. we favor the transmission of the genetic
material of the parent with a higher degree of parallelism.
This is done partitioning the parents’ chromosomes accord-
ing to the layer subdivision presented in IV-A. The parent
chromosome with the higher task level parallelism (number
of tasks/messages in the same layer) is used as starting point
and it is partitioned and distributed among the two offspring
solutions. The offspring solutions are then filled with the other
parent’s genetic material. To complete the generation of the
offspring chromosomes, we identify their layer subdivision and
we perform a rotation of the PE assigned to each task within
the same layer. The mutation operator is used to randomly
vary the PEs and CUs on which the tasks and messages
are clustered. The parameters used for the execution of the



SSEA are: crossover probability P., mutation probability P,
and the population size Pop. SSEA finishes when a given time-
limit has been reached. The tuning of these parameters has
been done running multiple executions of the algorithm with
different synthetic applications.

V. EXPERIMENTAL EVALUATION

For the experimental evaluation of our platform synthesis
approach, we used both realistic and synthetic benchmarks.
Thus, we used two subsets of applications from E3S bench-
marks [26], taken respectively from the telecommunication
(telecom-cords, TLC) and automotive/industrial (auto-indust-
cords, IND) domains and two synthetic case studies (Synth),
which represent a smaller and wider examples. The case study
Synth 1 is the same presented in III-A. The details of the
case studies, in terms of number of applications and tasks
are presented in Table IV, columns 2 and 3, respectively. All
applications have a deadline d (column 4) and a platform
constraint (column 5).

For each real benchmark, we considered the WCET value
in the benchmark as the reference WCET value Cref and we

have scaled this value to obtain the lower (C%) and upper (C“)
bounds. For Synth 1 we used the values in Tatl)le Iand arbltrary
values for Synth 2. We have run our proposed SSEA platform
synthesis approach, which uses the WCET uncertainty model
from Section II-D (denoted with UM) on each of the three
benchmarks and have obtained a clustering solution. The
probability p of each benchmark to be schedulable with the
obtained clustering is presented in Table IV, column 6, which
also presents the number of ASIPs used (column 7). The
overall schedulability probability p is calculated as an average
of the probability p; of each application A; in the benchmark.

Together with UM, Table IV also presents a Straightforward
Solution (SS) (see Section III-A), which uses a reference value
for WCET (C;ef ) of each task ;. This value is then used
inside the SSEA optimization, and instead of the MCS used
for the evaluation of a platform alternative (Section IV-A), we
use only the calculatlon of the end-to-end response time (84,),
considering C;* as the WCET. This is what a good designer
would do if a <VCET uncertainty model would not be available.
The parameters used for the execution of the SSEA are: P. =
40%, P, =20% and Pop = 100. The execution time limit has
been set to 1 hour.

As we can see from Table IV, UM is able to obtain much
better results in terms of the probability of finding schedulable
implementations compared to SS. This is because, using our
proposed uncertainty model, we can better take into account

TABLE IV. COMPARISON OF UM AND SS
Case No. No. d Max. UM 55

of of
Study Apps. Tasks (ms) cost P ASIPs p ASIPs
TLC 4 10 535 3 71% 3 55% 3
IND 4 13 5.25 4 70% 4 59% 4
Sy}”h 2 7 5 2 | so% | 2 2% | 2
Syg’h 10 2 56 5 | s9% | s 49% | 5

66

the ASIP microarchitecture possibilities during the DSE for
a multi-ASIP system-level platform. Moreover, for case study
Synth 1, it was possible to synthesize the ASIPs and verify
that the difference in the p returned by UM and S is reflected
later in the final schedule table. This proves that our DSE with
UM is able to lead to good final implementations: a scheduling
length of 1.955 ms for the clustering solution found with the
UM versus the 2.275 ms of the one found with the SS. Due to
time constraints it was not possible to perform the synthesis
for larger benchmark and this is left for future work.

Our UM approach assumes that the designer provides
the upper and lower bounds of the WCET of each task.
Additionally, as we scale the values of the WCET to obtain
the bounds in our experiments, it is necessary to observe the
influence of variations of these bounds on the clusters obtalned
Therefore, we performed a sensitivity analysis on C and C
values of each task. For this, we used the case study Synth /
which task graphs are described in Fig. 2. For each task,
we considered variations from +£1% to £5% of Cj- and C;f
values. In particular, we considered a total of 70 cases in
which all tasks or a subset of them are suffering variations.
These changes in the bounds will reflect in slightly different
input CDFs for our DSE. We have run our DSE for each of
these cases, and we have obtained the same clustering solution,
which means that our DSE is not sensitive to small variations
in the WCET estimation provided by the designer.

VI. CONCLUSION

In this paper we have proposed an approach for the
synthesis of multi-ASIP platforms for real-time applications.
The synthesis of an ASIP starts from a cluster of tasks. We
have developed an evolutionary algorithm for deciding the
clustering of tasks to ASIPs, such that the applications have
a high chance of meeting their deadlines, and the imposed
platform cost is satisfied. We have proposed an uncertainty
model for the WCET values to capture the range of the
possible ASIP microarchitectural implementations. Using this
WCET model, we have outlined an architecture evaluation
heuristic based on Monte Carlo Simulation, which calculates
the probability of a platform solution to meet the deadlines.
As the experimental results show, by considering the range of
possible ASIP microarchitectural implementations during the
design space exploration for multi-ASIP platform synthesis,
we can obtain platform solutions that have a high chance of
being schedulable. Moreover for a simple case study, we also
concluded that our design space engine is not sensitive to slight
variations of the upper and lower bounds used as input for our
model.
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