
Timing Analysis of Mixed-Criticality Hard Real-Time Applications
Implemented on Distributed Partitioned Architectures

Sorin Ovidiu Marinescu, Domiţian Tămaş–Selicean, Vlad Acretoaie, Paul Pop
Technical University of Denmark, Kongens Lyngby, Denmark

dota@imm.dtu.dk

Abstract

In this paper we are interested in the timing anal-
ysis of mixed-criticality embedded real-time applications
mapped on distributed heterogeneous architectures. Mixed-
criticality tasks can be integrated onto the same architec-
ture only if there is enough spatial and temporal separa-
tion among them. We consider that the separation is pro-
vided by partitioning, such that applications run in separate
partitions, and each partition is allocated several time slots
on a processor. Each partition can have its own schedul-
ing policy. We are interested to determine the worst-case
response times of tasks scheduled in partitions using fixed-
priority preemptive scheduling. We have extended the state-
of-the-art algorithms for schedulability analysis to take into
account the partitions. The proposed algorithm has been
evaluated using several synthetic and real-life benchmarks.

1 Introduction
The current trend in mixed-criticality systems is to-

wards “partitioned architectures”, where several safety-
critical functions, of different criticalities, are integrated into
the same platform. Safety-Integrity Levels (SILs) capture
the criticality level, and will dictate the development and cer-
tification procedures that have to be followed. In avionics,
the proposed partitioning solution is based on “Integrated
Modular Avionics” (IMA) [13], which allows the integra-
tion of mixed-criticality functions as long as there is enough
spatial and temporal partitioning [13].

There are two basic approaches for handling hard real-
time applications [7]. In the Event-Triggered (ET) approach,
activities are initiated whenever a particular event is noted.
In the Time-Triggered (TT) approach, activities are initiated
at predetermined points in time. There has been a long de-
bate in the real-time and embedded systems communities
concerning the advantages of each approach, and the consen-
sus is that the right approach depends on the particularities
of the application [8]. Hence, in this paper, we assume that
applications can be scheduled either using a TT approach,
e.g., static-cyclic scheduling (SCS) or an ET approach, such
as fixed-priority preemptive scheduling (FPS).

There is a large amount of research on hard real-time sys-
tems [7]. Researchers have addressed systems with mixed
time-criticality requirements, showing how TT/ET tasks [10]
can be integrated onto the same platform. Researchers
have also started to address the integration of mixed safety-
criticality tasks onto the same architecture [2, 14]. In [14],
we have proposed an optimization approach to determine the

mapping of tasks to PEs, the assignment of tasks to parti-
tions, the sequence and size of the time slots on each PE and
the schedule tables, such that all the applications are schedu-
lable and the development costs are minimized.

In this paper we are interested in the timing analysis of ap-
plications which are running in partitions that use FPS. There
is a large amount of research on scheduling and schedulabil-
ity analysis [7, 3]. In this paper we use a response-time anal-
ysis [3] to calculate the worst-case response timeRi of every
task τi, which is then compared to its deadlineDi. The basic
response-time analysis presented in [3] has been extended
over the years [5]. For example, the state-of-the-art analy-
sis from [9] considers arbitrary arrival times and deadlines,
offsets and synchronous inter-task communication (where a
receiving task has to wait for the input of the sender task).

Audsley and Wellings [1] have proposed a schedulability
analysis for FPS tasks in the context of temporal partitioning
(let us denote this analysis with “SA”, from Schedulability
Analysis), which, when analyzing a FPS task in a certain par-
tition, considers the other time-partitions as higher priority
tasks. This analysis assumes that the deadlines are smaller
or equal to the periods, that the tasks are independent, and
that the start times of partition slices within a major frame
are periodic. Pop et al. [10] have proposed a schedulability
analysis for ET tasks, which extends the schedulability anal-
ysis in [9] to consider the influence of the TT tasks on the
worst-case response times of the ET tasks. Such an analysis
can be extended to consider that the TT tasks are “partitions”
which can interfere with the ET tasks.

In this paper we have decided to extend the WCDOPS+
algorithm from [12], which extends the Worst Case Dy-
namic Offsets with Priority Schemes (WCDOPS) schedu-
laiblity analysis algorithm from [9]. Our proposed analy-
sis, denoted with “SA+”, takes into account the influence of
time-partitions on the schedulability of the FPS tasks, and
does not assume that the partition slices have to be periodic,
as in [1]. Section 5 presents WCDOPS+, and our approach is
presented in Section 5.1. The proposed schedulability analy-
sis algorithm has been evaluated using several synthetic and
real-life benchmarks, and has been compared to the analysis
from [1].

2 Application Model
We consider a set of mixed-criticality applications. Each

application has a SIL-level, from SIL4 (most critical) to
SIL0 (non-critical) and is developed according to the cer-
tification requirements for the particular SIL. This section
presents the application model of applications scheduled
with FPS. For the full model the reader is referred to [14].



Figure 1: Partitioned architecture

We consider that the mapping of tasks to processing el-
ements (PEs) and the assignment of tasks to partitions is
given, and can be determined using our approach from [14].
We model an application A as a directed, acyclic graph
Γ(V, E). Each node τi ∈ V represents one task. An edge
eij ∈ E represents a precedence relationship between τi and
τj , and indicates that τi must complete its execution before
τj . Each task τi is characterized by a worst-case execution
time (WCET) Ci (on the PE that is assigned to for execu-
tion), a best-case execution time Cmin

i , and in case the task
uses shared resources, a maximum blocking time Bi. Ad-
ditionally, τi has an unique priority denoted by prio(τi), an
offset Φi and a maximum release time jitter Ji. Thus, con-
sidering that the graph Γ to which τi belongs is triggered by
an external event arriving at t0, τi arrives at time t0 + Φi

and is released after an additional maximum delay of Ji. For
each application we have a deadline DA and a period TA.

3 System Model

We consider architectures composed of a set N of PEs
connected by a broadcast communication channel. We as-
sume that the hardware and software architecture imple-
ments a temporal- and space-partitioning scheme similar to
IMA [14].

Each application Ai is allowed to execute only within its
defined partition Pj . Each partition can use its own schedul-
ing policy. On a processing element Ni, a partition Pj is
defined as the sequence Pij of k partition slices pkij , k ≥ 1.
A partition slice pkij is a predetermined time interval in which
the tasks of application Aj mapped to Ni are allowed to use
the PE. All the slices on a processor are grouped within a
Major Frame (MF), that is repeated periodically. The period
TMF of the major frame is given by the designer and is the
same on each node. Several MFs are combined together in
a system cycle that is repeated periodically, with a period
Tcycle.

In Fig. 1 we have 3 applications, A1, A2 and A3, im-
plemented on 2 PEs, N1 and N2, with TMF = 10 and
Tcycle = 20. The tasks of A1, for example, can execute
only in partition P1 on PE N1, composed of the partition
slice p11,1, and in partition P1 on PE N2, composed of the
slice p12,1. The sequence and length of the partition slices
in a MF are the same (on a given PE), but the contents of
the slices can differ. An application can extend its execution
over several MFs.

For simplicity, in this paper we ignore the communica-
tion. However, researchers have shown how realistic bus
protocols, e.g., FlexRay [11], can be integrated into the anal-
ysis.

Figure 2: Motivational example

4 Motivational Example
Let us illustrate the importance of accurately taking the

partitions into account during the analysis using the exam-
ple in Fig. 2. We consider a system with 2 PEs and 6 tasks.
The partition table is given in Fig. 2a, where two consecu-
tive MFs with TMF = 20 are presented. The details of the
application are given in Fig. 2b (the tasks are sorted accord-
ing to their priorities–highest on the top–and the deadlines
are equal to the periods).

The mapping and the partitioning are given, and we as-
sume they are derived with our approach from [14]. The
hashed partition slices represent partitions on which the ap-
plication A1 is not allowed to execute. The partition slices
corresponding to the application A1 are coloured in green.

We are interested to determine the worst-case response
times of the tasks in Fig. 2b considering the partitions in
Fig. 2a. We have compared the SA analysis from [1] with
our proposed analysis, SA+. To facilitate the comparison, we
consider the assumptions from [1], i.e., deadlines are equal
to the periods, and we ignore the dependencies. The SA
results are presented in column 5 in Fig. 2b, and the SA+ re-
sults are in column 6. As we can see, SA is much more pes-
simistic (the application is considered unschedulable) com-
pared to our proposed analysis, SA+.

The pessimism of SA comes from its limiting assump-
tions that the partition slices have to be periodic within a
MF. This assumption is not true in practice, but it simpli-
fies the analysis. When analyzing the tasks in a partition
Pj on a PE Ni, SA merges all the other partition slices into
a “higher priority task” with WCET Cp

0 (the length of the
other slices) and period T p

0 . In order to apply SA in the gen-
eral context of Fig. 2a, we have to consider Cp

0 as the longest
time-interval of continuous partition slices /∈ Pj on Ni, and
T p
0 as the shortest inter-arrival time of these intervals. These

values are calculated for each PE. For example, the values of
Cp

0 and T p
0 for N1 and N2 in Fig. 2a are as depicted in the

figure. Our proposed analysis, SA+, does not assume that
the partition slices have to be periodic, and thus reduces the
pessimism of SA by accurately taking into account the exact
position and size of the partition slices.

5 Response Time Analysis
WCDOPS+ [12] is an algorithm that performs worst-case

response time analysis on fixed priority scheduled tasks dis-
posed in tree-shaped transactions taking into consideration



the precedence constraints between them, which later was
extended to consider graphs [6].

The WCDOPS+ response time analysis for a certain task
τab is based on finding the contributions from each transac-
tion in the system to a busy period of τab. The busy period
(also called busy window) of τab is defined as the longest
interval of time during which tasks with priority greater or
equal than τab are executed continuously [5].

When studying the contribution of a transaction Γi to the
worst case response time of a task τab, it may be useful to
somehow group the tasks of Γi and treat each group as if it
were a single task. The creation of these groups of tasks is
accomplished by defining the concepts of H sections and H
segments. Two tasks of a transaction Γi belong to the same
H section for the analysis of τab if they belong to hpi(τab)
and there is no intermediate task in the transaction that be-
longs to lpi(ab). Similarly, two tasks of a transaction Γi

belong to the same H segment for the analysis of τab if they
belong to hpi(τab) and there is no intermediate task in the
transaction that does not belong to hpi(ab). The set of tasks
hpi(ab) represents the tasks belonging to a transaction Γi

that are executed on the same PE as τab and have a priority
greater or equal than τab. The set lpi(τab) contains tasks be-
longing to Γi and executed on the same PE as τab that have
lower priorities than τab.

H segments are more restrictive than H sections in the
sense that if two tasks belong to the same H section with
respect to a task τab, then they may belong to the same τab
busy period, while if two tasks belong to the same H seg-
ment with respect to a task τab, then they must belong to the
same τab busy period.

WCDOPS+ analyzes separately the contributions to the
τab busy period: first, the contributions made by all the trans-
actions to which the task τab doesn’t belong to; secondly, the
contribution made by the transaction Γa of which τab is a
part of. For each transaction, two types of contributions are
considered: a non-blocking interference (Wi) and a block-
ing interference (WBi). Since, as shown in [12] only one
blocking H segment can contribute to the busy period, WC-
DOPS+ allows this contribution to the transaction with the
maximum interference increase (∆W = WBi - Wi).

The worst-case response time of an instance of τab with
the index pab is determined by WCDOPS+ based on its com-
pletion time, wabc(pab), which is composed of the follow-
ing: the maximum blocking time from lower priority tasks,
a blocking interference and a non-blocking interference from
the transactions in the system. The blocking interference is
expressed through the interference increase which has to be
maximized for the calculation of worst case completion time.
Since there can only be one blocking segment executing in
a busy period, the interference increase is chosen to be the
maximum from the interference increases calculated sepa-
rately:

∆W ∗ac(τab, w, pab) = MAX(∆Wac(τab, w, pab),

∆W ∗i (τab, w, pab, τac))
(1)

The non blocking interference is obtained by summing up
the non blocking interferences from all transactions in the

system, so the completion time wabc(pab) is

wabc(pab) = Bab +Wac(τab, w, pab)+∑
∀i 6=a

W ∗i (τab, w, τac) + ∆W ∗ac(τab, w, pab)
(2)

This equation is solved iteratively and because the in-
stance pab of task τab arrives at ϕabc + (pab − 1)Ta, its re-
sponse time is [12]:

Rw
abc(pab) = wabc(pab)− ϕabc − (pab − 1)Ta + φab (3)

The worst-case response timeRw
ab for the task τab is the max-

imum value of the result in Eq. 3, considering all the critical
instants initiated by higher priority tasks and by τab and also
all the job instances.

5.1 Extending WCDOPS+ with Partitioning
We have extended WCDOPS+ to take into account

the partitions by using the concepts of availability and
demand, inspired by the approach presented in [10]. Infor-
mally, the availability associated to a task τij during a time
interval t, denoted as Aij(t), is equal to the processor time
that is not used by other partitions during t. The demand
for a task τij during a time interval t, denoted as Hij(t), is
equal to the sum of the processor times required by τij and
all higher priority tasks mapped to the same processor during
t.

Figure 3: Availability and demand

In more general terms, the demand of a task scheduled
in a partition Pk is equal to the length of its busy period
when there wouldn’t be any time partitions considered or
when Pk would be the only partition on the processor. Fig. 3
shows that the demand of task τi during the busy window wi

is equal to the sum of the worst-case execution time of the
higher priority tasks Ca and Cb and the worst-case execution
time of the task in question, Ci. In the WCDOPS+ analysis,
the length of a τab busy period is called τab’s completion
time and is expressed in Eq. 2. Thus, the demand Habc(pab)
of an instance pab of a task τab during a busy period initiated
by a task τac is equal to pab’s completion time.

Habc(pab) = wabc(pab) (4)

The availability associated to an instance pab of a task
τab, scheduled in a partition Pk, is the processing time avail-
able during wab(pab) for Pk. Because of the time partition-
ing scheme and because task τi can execute only during its
own partition Pk, the availability is calculated by subtracting
from wab(pab) the time reserved for the “other” partitions.



In Fig. 3, the availability is shown as what is left after sub-
tracting from wi the durations of the other partitions, s1 and
s2.

As a consequence of considering the partitioning scheme,
the completion time wabc(pab) of an instance pab of task
τab is replaced by an extended completion time eabc(pab),
computed according to Algorithm 1. The purpose of this
algorithm is to increase a task’s completion time until the
availability is at least as large as the demand during this time
interval. The algorithm starts by initializing the extended
completion time of pab with pab’s original completion time
and the availability and demand with 0 (lines 10–12). It
then proceeds to iteratively re-compute the availability and
demand until the availability is greater or equal to the de-
mand (lines 13–19). At each iteration, the extended comple-
tion time of pab is increased with the difference between the
current values of the availability and demand (lines 16–18).
Finally, the obtained extended completion time is returned
(line 20).

Algorithm 1 EXTENDED COMPLETION TIME

1: Inputs:
2: τab - a task;
3: pab - an instance of τab;
4: τac - a task starting a pab busy period;
5: wabc - completion time of pab;
6: Outputs:
7: eabc - extended completion time of pab;
8:
9: begin

10: eabc ← wabc;
11: demand← 0;
12: availability ← 0;
13: repeat
14: demand ← COMPUTE DEMAND(τab, pab,

τac, eabc);
15: availability ← COMPUTE AV AILABILI −

TY (wabc);
16: if demand > availability then
17: eabc ← eabc + demand− availability;
18: end if
19: until availability ≥ demand
20: return eabc;
21: end

6 Experimental Evaluation and Conclusions
Table 1 presents our experimental evaluation. We have

used seven synthetic benchmarks and one real-life example.
The synthetic benchmarks were generated similar to [14],
and the number of PEs and number of tasks in the FPS ap-
plications are presented in columns 2 and 3, respectively, in
Table 1. The real-life case study is derived from the “auto-
motive” benchmark in the E3S suite [4]. The partition tables
and the mapping have been generated using the “Initial So-
lution” approach from [14]. We have run both SA and SA+
on these tasks sets. Columns 4 and 5 present the number
of tasks found schedulable, i.e., Ri ≤ Di, using SA and
SA+, respectively. To show the reduction in the pessimism
of SA+ over SA, the last column in the table represents the
percentage reduction of worst-case response times obtained

with SA+ compared to SA averaged over all tasks.
As we can see from these results, accurately taking into

account the partitions during the analysis can significantly
reduce the pessimism of the results.

Table 1: Experimental results

Test Case PEs Tasks SA SA+ %
reduction

1 2 4 3 4 59.04
2 3 7 5 7 27.95
3 3 10 6 10 46.82
4 4 16 12 15 41.66
5 4 19 17 19 24.91
6 5 22 20 22 56.67
7 5 25 21 25 30.23

automotive 3 5 4 4 34.18

References

[1] N. Audsley and A. Wellings. Analysing APEX applications.
In Real-Time Systems Symp., pages 39 –44, 1996.

[2] S. K. Baruah, A. Burns, and R. I. Davis. Response-Time
Analysis for Mixed Criticality Systems. Proceedings of the
Real-Time Systems Symposium, pages 34–43, 2011.

[3] G. C. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, 1997.

[4] R. Dick. Embedded system synthesis benchmarks suite.
http://ziyang.eecs.umich.edu/d̃ickrp/e3s/.

[5] C. Fidge. Real-time schedulability tests for preemptive mul-
titasking. REAL-TIME SYSTEMS, 14(1):61–93, 1998.

[6] J. P. Kany and S. H. Madsen. Design optimisation of fault-
tolerant event-triggered embedded systems. Master’s thesis,
Dept. of Informatics and Mathematical Modelling, Technical
University of Denmark, 2007.

[7] H. Kopetz. Real-Time Systems-Design Principles for Dis-
tributed Embedded Applications. Kluwer Academic Publish-
ers, 1997.

[8] H. Lonn and J. Axelsson. A comparison of fixed-priority and
static cyclic scheduling for distributed automotive control ap-
plications. In Proceedings of the Euromicro Conference on
Real-Time Systems, pages 142–149. IEEE, 1999.

[9] J. Palencia and M. Harbour. Exploiting precedence relations
in the schedulability analysis of distributed real-time systems.
Proceedings - Real-Time Systems Symposium, pages 328–
339, 1999.

[10] T. Pop, P. Pop, P. Eles, and Z. Peng. Analysis and opti-
misation of hierarchically scheduled multiprocessor embed-
ded systems. International Journal of Parallel Programming,
36(1):37–67, 2008.

[11] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing anal-
ysis of the FlexRay communication protocol. Real-Time Sys-
tems, 39(1-3):205–235, 2008.

[12] O. Redell. Analysis of tree-shaped transactions in distributed
real-time systems. In Proceedings of the 16th Euromicro
Conference on Real-Time Systems, pages 239–248, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

[13] J. Rushby. Partitioning for avionics architectures: Require-
ments, mechanisms, and assurance. NASA Contractor Report
CR-1999-209347, NASA Langley Research Center, June
1999. Also to be issued by the FAA.

[14] D. Tămaş-Selicean and P. Pop. Design Optimiza-
tion of Mixed-Criticality Real-Time Applications on Cost-
Constrained Partitioned Architectures. In Proceedings of the
Real-Time Systems Symposium, pages 24–33, 2011.


