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Summary

Microfluidic biochips are an alternative to conventional biochemical laboratories,
and are able to integrate on-chip all the necessary functions for biochemical
analysis. The “digital” biochips are manipulating liquids not as a continuous
flow, but as discrete droplets on a two-dimensional array of electrodes.

The main objective of this thesis is to develop top-down synthesis techniques
for digital microfluidic biochips. So far, researchers have assumed that opera-
tions are executing on virtual modules of rectangular shape, formed by grouping
adjacent electrodes, and which have a fixed placement on the microfluidic array.

However, operations can actually execute by routing the droplets on any se-
quence of electrodes on the biochip. Thus, we have proposed a routing-based
model of operation execution, and we have developed several associated synthe-
sis approaches, which progressively relax the assumption that operations execute
inside fixed rectangular modules.

The proposed synthesis approaches consider that i) modules can dynamically
move during their execution and ii) can have non-rectangular shapes. iii) We
have relaxed the assumption that all electrodes are occupied during the opera-
tion execution, by taking into account the position of droplets inside modules.
Finally, iv) we have eliminated the concept of virtual modules and have allowed
the droplets to move on the chip on any route. In this context, we have also
shown how contamination can be avoided.

We have extensively evaluated the proposed approaches using several real-life
case studies and synthetic benchmarks. The experiments show that by consider-
ing the dynamically reconfigurable nature of microfluidic operations, significant
improvements can be obtained, decreasing the biochemical application comple-
tion times, reducing thus the biochip area and implementation costs.
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Resumé

Lab-on-a-chip–et komplet biokemisk laboratorium p̊a en mikrochip, ogs̊a kaldet
en biochip - er et lovende alternativ til konventionelle biokemiske laboratorier.
“Digitale” biochips arbejder med væsker, ikke som en kontinuerlig strøm, men
som diskrete dr̊aber p̊a et todimensionelt gitter af elektroder.

Hovedmålet med denne afhandling er at udvikle top-down syntesetekniker til
digitale mikrofluidiske biochips. Indtil videre har forskere antaget, at opera-
tioner bliver udført p̊a virtuelle, rektangulære moduler, der bliver dannet ved
at gruppere naboelektroder, og som har en fast placering p̊a elektrodegitteret.

Dog kan operationer faktisk blive udført ved at dirigere dr̊aberne p̊a en hvilken
som helst sekvens af elektroder p̊a biochipen. Derfor har vi foresl̊aet en rute-
baseret model for udførelse af operationer, og vi har udviklet adskillige tilhørende
syntesemetoder, som progressivt g̊ar væk fra antagelsen om, at operationer
bliver udført af fastsatte, rektangulære moduler.

De foresl̊aede syntesemetoder tager i betragtning, at i) moduler kan flyttes
rundt dynamisk mens operationerne bliver udført og ii) moduler kan have ikke-
rektangulære former. iii) Vi er g̊aet væk fra antagelsen om, at alle elektroder
i modulet er i brug under udførelse af operationen ved at tage placeringen af
dr̊aber internt i modulerne i betragtning. Endeligt iv) er vi g̊aet væk fra kon-
ceptet med virtuelle moduler and har tilladt dr̊aberne at bevæge sig frit rundt
p̊a chipen. I denne sammenhæng har vi ogs̊a vist, hvordan kontaminering kan
undg̊as.

Vi har evalueret de foresl̊aede metoder ekstensivt ved brug af adskillige cases
og syntetiske benchmarks. Eksperimenter viser, at betydelige forbedringer kan
opn̊as ved at tage i betragtning, at biochips og tilhørende applikationer er af en
natur, der tillader og endda lægger op til dynamisk omkonfigurerbarhed. Herved
kan biokemiske applikationer udføres hurtigere, hvilket reducerer størrelsen p̊a
biochipsne og derved prisen p̊a en chip.
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Chapter 1

Introduction

According to “Moore’s law” [39] the number of transistors on an integrated cir-
cuit doubles approximately every two years. “More than Moore” explores new
applications in which such systems can be used, focusing on function diversifi-
cation rather than increasing density. An emerging field related to embedded
systems is the design of efficient, low-cost devices for the bio-medical area, which
has been highlighted by the International Technology Roadmap for Semiconduc-
tors 2007 [24] as an important system driver for the near-future [4].

The history of such devices, called biochips (also referred to as lab-on-chips),
started in the late 1980’s, being strongly connected to the progresses done in ge-
nomics. The possibility of analyzing and amplifying deoxyribonucleic acid (DNA)
fragments lead to the development of DNA microarrays, two-dimensional arrays
of biosensors on which genetic tests can be performed. On such devices thou-
sands of biosensors (DNA fragments) are affixed to a substrate (typically glass
or silicon) using photolithography or ink-jet printing, and their hybridization
process with fragments of target DNA is analyzed. DNA microarrays have
many applications, including genotyping, mutation analysis, disease diagnosis
and drug discovery [52].

The advances in genomics and the growing interest in biological systems have
lead in the late 1990s to the manufacturing of protein arrays. These devices are
created using a similar technology to DNA arrays, with thousands of proteins
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(a) Continuous-flow microfluidic biochip [44] (b) Digital microfluidic biochip [60]

Figure 1.1: Microfluidic biochips

being immobilised on a substrate and being exposed to different molecules (e.g.,
other proteins, peptides). As a result, the amount of specific proteins in biolog-
ical samples (e.g., blood) can be measured, which is particularly important in
fields such as clinical diagnosis and drug discovery [21].

A further step in the development of miniaturized laboratories has been the cre-
ation of microfluidic biochips, on which biochemical reactions involving liquids
can be performed. Such devices are able to integrate on-chip all the necessary
functions for biochemical analysis such as, transport, splitting, merging, dis-
pensing, mixing, and detection [11], using very small amount of fluids (micro-
or nanoliters).

There are two types of microfludic biochips. The first type is based on the manip-
ulation of continuous liquid through fabricated micro-channels, using external
pressure sources or integrated mechanical micro-pumps [63], see Figure 1.1a.
Although initially used for simple biochemical applications due to their com-
plexity, the advances made in soft lithography fabrication techniques have lead
to the microfluidic large-scale integration. This technology aims at increasing
significantly the number of assays that can be performed concurrently by in-
tegrating on the chip hundreds to thousands of micro-mechanical valves and
control components [35].

The second type is based on the manipulation of discrete, individually control-
lable droplets on a two-dimensional array of identical cells, see Figure 1.1b. The
actuation of droplets is performed without the need of micro-structures, by us-
ing software-driven electronic control [4]. This type is also referred to as “digital
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Figure 1.2: Digital biochip for malaria detection [8]

microfluidics”, due to the analogy between the droplets and the bits in a digital
system.

Biochips offer a number of advantages over conventional biochemical proce-
dures. The main problem in performing biochemical applications is the high
cost of reagents. By handling small amount of fluids, biochips provide higher
sensitivity while decreasing the reagent consumption and waste, hence reduc-
ing cost. Moreover, due to their miniaturization and automation, they can be
used as point-of-care devices, in areas that lack the infrastructure needed by
conventional laboratories [3].

Due to these advantages, biochips are expected to revolutionize clinical diagno-
sis, especially immediate point-of-care diagnosis of diseases. For example, the
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Figure 1.3: Advanced Liquid Logic’s chip for DNA sequencing [13]

digital microfluidic biochip (DMB) shown in Figure 1.2 was proposed for the
detection of Plasmodium parasites in human blood [8]. Such parasites are trans-
mitted via infected mosquitoes and lead to malaria, one of the most common
infectious diseases worldwide. The architecture of the designed chip is specific
to malaria detection, with 13 reservoirs containing the samples and reagents,
mixing and detection areas. A sequence of electrodes forming a bus are used for
transporting the droplets through the different areas of the biochip during the
assay. The advantages of such a miniaturized device compared to traditional
microscopy-detection are portability, easiness of use and faster detection.

This is one example where a biochip can be used as a point-of-care device,
with significant advantages over the standard diagnosis methodology. Another
example is the biochip presented in [51], which is able to measure the level of
glucose in human physiological fluids, and thus can be used by people suffering
of diabetes. The device is based on a digital microfluidic biochip on which an
optical detector consisting of a light emitting diode (LED) and a photodiode
is integrated. After the glucose sample and the reagents are mixed on the
microfluidic array the resulting droplet is brought to the optical detector, where
the concentration of glucose is measured using the LED-photodiode setup. Due
to the fast analysis time (less than 60 s) and the reduced amount of used reagents
this biochip can be used successfully to replace the conventional measurement
of glucose, using a spectrophotometer [51].
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Moreover, biochips can be used for chemical detection of explosives in soil or
water, in order to detect land mines and contamination of water with trinitro-
toluene (TNT). Preliminary results were obtained in [41] for the detection of
TNT, using a lab-on-a-chip device where the concentration of explosives was
measured using colorimetric detection.

It has been also shown that digital microfluidic biochips can be successfully used
in applications related to genetic engineering. Several biochips [65], [26], [42]
have been proposed for performing polymerase chain reaction (PCR), a key
technique in modern biology used for amplifying a piece of DNA. Biochips can
also be used for determining the order of nucleotides in DNA (DNA sequencing),
such an example being the chip developed by Advanced Liquid Logic and shown
in Figure 1.3.

Other emerging application areas for biochips including drug discovery and tis-
sue engineering [13]. Biochips can also be used in monitoring the quality of air
and water, through real-time detection of toxins [13].

This chapter presents the motivation behind our research, a brief introduction
to the considered problem and the contributions brought by this thesis. An
overview of the thesis is given in the end of the chapter.

1.1 Motivation

Due to their advantages compared to traditional laboratories, biochips are ex-
pected to revolutionize many fields of biotechnology, such as clinical diagnosis,
drug discovery, DNA analysis (e.g., polymerase chain reaction and nucleic acid
sequence analysis), protein and enzyme analysis and immuno-assays [3].

Considering the potential of such devices for the biotechnology industry, the
number of companies and research groups interested in biochips has increased
substantially in recent years. The market for biochips is expected to increase,
and reach US $3.4 billion by 2012, as stated by Global Industry Analysts, Inc.
United States [17]. However, there are still challenges to be met in order for
biochips to become widely commercialized. Most difficulties come from the com-
plexity of these devices, which are the product of different energy domains (e.g.,
fluidic, electric, thermal). This mixture of domains implies that the design
and test methods currently available for other devices (e.g., integrated circuits,
micro-electromechanical systems) cannot be used directly for biochips, which
exhibit unique characteristics and faults [4], [3]. Therefore, new methods are
required, which consider the constraints specific to this new technology. The
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complexity of biochips is expected to further increase, as the number of assays
performed concurrently on the chip is becoming more and more significant.

In order to support the increase in biochip complexity and therefore their mar-
ket growth, computer aided design (CAD) tools are required, which can offer
the same level of support as the one taken for granted currently in the semicon-
ductors industry. Initially, designers have used a bottom up approach for the
design of biochips, combining fluidic components to create specific-application
devices [11]. However, this bottom-up approach does not scale to the new
designs. Consequently, top-down design methods have been proposed in [5],
increasing the level of abstraction in biochip synthesis. Such techniques are nec-
essary in order to improve the design of biochips, and to hide the implementation
details of running biochemical assays from the users [3].

In this thesis we propose several top-down synthesis approaches for digital mi-
crofluidic biochips. Such techniques will reduce the design cost and improve
productivity, and are the key to the further growth and market penetration of
biochips [4].

1.2 Problem Formulation

A digital microfluidic biochip is composed of a two-dimensional array of elec-
trodes, together with reservoirs for storing the liquids. Basic operations, such as
mixing and dilution, are performed by routing the droplets on the microfluidic
array.

Considering the architecture of digital microfluidic biochips, the design tasks
that have to be performed during the synthesis problem have similarities to the
high-level synthesis of very large-scale integration (VLSI) systems. Motivated by
this similarity, researchers have started to propose approaches1 for the top-down
design of such biochips.

The following are the main design tasks that have been addressed:

• During the design of a digital microfluidic biochip, the bioassay protocols
have to be mapped to the on-chip modules. The protocols are modeled
using sequencing graph models, where each node is an operation, and
each edge represents a dependency.

1See Chapter 4 for a presentation of related work.
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• Once the protocol has been specified, the necessary modules for the im-
plementation of the protocol operations will be selected from a module
library. This is called the allocation step.

• As soon as the binding of operations to the allocated modules is decided,
the scheduling step determines the time duration for each bioassay oper-
ation, subject to resource constraints and precedence constraints imposed
by the protocol.

• Finally, the chip will be synthesized according to the constraints on the
types of resources, cost, area and protocol completion times. During the
chip synthesis, the placement of each module on the microfluidic array and
the routing of droplets from one module to another have to be determined.

• All of the presented design tasks have to take into account possible de-
fects during the fabrication of the microfluidic biochip. Thus, testing and
reconfiguration have to be performed.

The synthesis problem for digital microfluidic biochips can be formulated as
follows:

Given:

• a biochemical application containing the microfluidic operations to be per-
formed and modeled using a sequencing graph;

• the design specifications for a biochip (dimensions of the microfluidic ar-
ray, maximum number of reservoirs and optical detectors that can be
integrated on the chip); and

• a library characterizing the completion time of operations,

we are interested to synthesize an implementation consisting of the allocation,
binding, scheduling and placement such that the completion time of the bio-
chemical application is minimized.

Application completion time minimization is particularly important for appli-
cations such as environmental monitoring and clinical diagnostics. Moreover, it
reduces the effects that variations in the environment (e.g., temperature) can
have on the integrity of the used samples and reagents [4]. In addition, com-
pletion time minimization allows us to use smaller areas and thus, reduce costs.
Other objectives for the synthesis problem (not directly considered in this thesis)
may include area minimization and fault tolerance maximization [4].
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The synthesis problem and the corresponding design tasks will be explained in
detail in Chapter 3.

1.3 Contributions

All of the previous work (see Chapter 4 on related work) considers that op-
erations are performed on virtual devices (also called modules) of rectangular
shape, which have a fixed placement on the microfluidic array. All electrodes
of the device are considered occupied during the operation execution, although
the droplet uses only one electrode at a time.

However, as will be discussed in Chapter 2), the operations can actually execute
by routing the droplets on any sequence of electrodes on the microfluidic array.

• The main contribution of the thesis is a new model of operation execu-
tion (presented in Section 2.2.1), where we eliminate the concept of vir-
tual modules. Thus, during the execution of the operation, we allow the
droplets to move on the chip on any route (hence the name, routing-based
operation execution, as opposed to module-based operation execution).

• The completion times of module-based operations is determined experi-
mentally and stored in a library for each module dimension. However, for
routing-based operation execution, the completion times depend on the
route taken by the droplet. In Section 2.2.1 we have proposed an analyt-
ical method [31] for determining the percentage of operation completion
for any given route. Our method provides safe estimates by decomposing
the modules of a given module library determined experimentally.

• Using the routing-based model, in Chapter 8 we have proposed a routing-
based synthesis approach based on a Greedy Randomized Adaptive Search
Procedure (GRASP) [31]. We have shown that such a routing-based ap-
proach obtains the best application completion times across all the syn-
thesis methods, since it can best utilize the available chip area. The dis-
advantage of the routing-based synthesis is that it can contaminate larger
areas of the biochip (the potentially contaminating operation is not con-
tained to a fixed rectangular area as in the case of module-based operation
execution). However, we have shown in Section 8.3.2 how contamination
during routing-based synthesis can be successfully addressed.

• The routing-based model is very flexible and has allowed us to explore
other models of operation execution, in-between the two extremes: module-
based (least flexible) and routing-based (most flexible). Thus, in Chapter 7
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we have proposed a model where the routes are constrained inside a mod-
ule (called droplet-aware module-based execution) [34]. By knowing at
all times the positions of droplets inside a module we can relax the as-
sumption that all electrodes of the module are occupied during operation
execution, thus improving the utilization of the biochip area.

• The analytical method from Section 2.2.1 has allowed us to determine the
completion times of operations on non-rectangular devices (e.g., “L” or
“T” shapes). In Section 6.2 we have proposed a synthesis method using
non-rectangular modules [32], where although all electrodes of the module
are considered occupied throughout the execution, we can better utilize
the available, but fragmented, space on the biochip, during the application
execution.

• The synthesis approaches presented in Chapters 6 and 7 use a meta-
heuristic optimization called Tabu Search. In Chapter 5, we have pro-
posed a Tabu Search algorithm [30] for the original module-based synthe-
sis, which we have later extended in Chapter 6 and 7. We have shown that
our Tabu Search-based approach is able to outperform all other synthe-
sis approaches. Module-based synthesis assumes that modules are fixed
during their execution. A natural extension, presented in Section 6.1, is
to consider that modules can be moved during their execution to a new
location (but keeping the same shape). We have shown that this approach
reduces the biochip area fragmentation that occurs during the application
execution [30].

• The original module-based synthesis approach is formally presented in
Chapter 3, using an Integer Linear Programming (ILP) formulation [33].
The ILP formulation is useful in determining the optimal solutions and
reasoning about the synthesis problem complexity. Although the ILP
formulation can only handle small examples, we have used it to determine
the quality of the proposed Tabu Search.

1.4 Thesis Overview

This thesis contains nine chapters organized as follows:

• Chapter 2 introduces the architecture of digital microfluidic biochips,
as well as their domains of applicability. The main types of biochemical
operations are presented, and their execution on a DMB is discussed. We
introduce a new, routing-based, model of operation execution and propose
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an analytical method for determining the completion time of an operation
on any given route. Finally, the graph model describing a biochemical
application is introduced, and several examples of real-life applications
are presented.

• Chapter 3 contains a detailed formulation of the synthesis problem for
digital microfluidic biochips, modeled using integer linear programming.
The advantages of performing architectural level synthesis and placement
in an unified manner are also discussed in this chapter.

• Chapter 4 presents the related work in the area of synthesis approaches
for digital microfluidic biochips.

• In Chapter 5 we propose a Tabu Search-based algorithm for solving the
synthesis problem introduced in Chapter 3. The method assumes that
reconfigurable microfluidic operations are performed on virtual devices
whose location and shape remain fixed throughout the execution of oper-
ations.

• In Chapter 6 we modify the Tabu Search-based methodology to take
better advantage of the dynamic reconfigurability characteristics of DMBs.
Compared to the traditional operation execution (on fixed rectangular
modules), we evaluate the improvements brought by moving a module
and by changing the shape of the device on which an operation is bound
during its execution.

• InChapter 7 we present a module-based synthesis approach with droplet-
aware operation execution. We show that by considering the exact posi-
tions of droplets inside modules during operation execution we can better
utilize the chip area and hence, significantly reduce the application com-
pletion time.

• In the routing-based operation execution, we eliminate the concept of vir-
tual modules and allow the droplets to move on the chip on any route.
In Chapter 8 we propose a Greedy Randomized Adaptive Search Pro-
cedure (GRASP) algorithm for routing-based synthesis. The algorithm is
then extended to consider contamination avoidance during routing-based
synthesis. This is particularly important for applications involving liquids
that can contaminate the substrate on which they are transported.

• Chapter 9 presents the conclusions of this thesis and discusses future
ideas on how to extend the presented work.



Chapter 2

Biochip Architecture and

System Model

2.1 Biochip Architecture

A digital microfluidic biochip is typically composed of a microfluidic array of
electrodes, together with reservoirs for storing the samples and reagents. The
architecture of the array is dependent on the actuation mechanism used for cre-
ating and manipulating the droplets. The most used methods are dielectrophore-
sis (DEP) and electrowetting-on-dielectric (EWOD). Both methods are based on
electrical forces and can provide high transportation speeds for droplets, using
simple biochip architectures [5].

Dielectrophoresis [62] is a phenomenon that appears when a dielectric particle
is subjected to a non-uniform electric field. In the absence of a field, a particle
placed in vacuum contains dipoles that are randomly oriented in space. When
a non-uniform electric field is applied, the particle becomes polarized due to
the orientation of the dipoles parallel to the lines of the field. As a result
a DEP force appears, transporting the particle in the direction of maximum
or minimum electric field. The direction depends on the polarization of the
droplet with respect to the medium. If the particle is more polarizable, the
DEP force will transport it in the direction of the maximum field (positive
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(a) Positive DEP (b) Change of contact angle in EWOD

Figure 2.1: Actuation methods for DMBs

DEP, see Figure 2.1a). Otherwise, the particle is moved towards the minimum
of the electric field (negative DEP). Due to the dependency of the movement on
the particles’ properties, DEP is successfully used in applications that require
sorting particles with different characteristics [62].

In this thesis we consider digital microfluidic biochips based on the EWOD
actuation method.

Electrowetting-on-dielectric [62] is based on surface tension, a property of
liquids that becomes dominant in microfluidics, due to high surface-to-volume
ratios. Surface tension is a result of unbalanced cohesive forces at the surface
of a liquid. Because the surface molecules are subjected to cohesive forces only
from the interior of the liquid, they will be more attracted to their neighbors
and will assume a shape that has the least amount of surface area [62]. Let us
consider Figure 2.1b. Initially the droplet is resting on an electrode, the two
being separated by an insulator coated with a hydrophobic layer. Because the
liquid is repelled by the hydrophobic molecules, the droplet does not spread out
on the solid surface, assuming an almost spherical shape. Let us denote the
initial contact angle between the droplet and the surface by θ0. If a voltage
V is applied between the liquid and the electrode, the contact angle θ changes
according to the Lippmann-Young equation [43]:

cosθ = cosθ0 +
ǫ0ǫd

2dσLG

V 2 (2.1)

where ǫ0 is the permittivity of the medium, ǫd and d are the dielectric constant
and thickness of the insulating layer, respectively, and σLG is the surface tension
between the liquid and the medium.
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(a) Cell architecture (b) Biochip: array of cells

Figure 2.2: Biochip architecture

The change in the contact angle leads to a change in the wettability of the
droplet, which returns to its hydrophobic state when the voltage is removed.
If the voltage is applied to only one side of the droplet, the gradient in the
contact angle at the two edges of the liquid will cause a surface stress in the
direction of the applied voltage, leading to the movement of the droplet [43].
For example, turning off the middle control electrode and turning on the right
control electrode in Figure 2.2a will force the droplet to move to the right. To
avoid the unexpected mixing of liquids, fluidic constraints must be enforced,
ensuring that a minimum distance is kept between droplets executing on the
microfluidic array. Consider for example droplets d1 and d2 in Figure 2.3a. If
the two droplets are situated on adjacent electrodes (as shown in the figure),
they will tend to merge and form a single large droplet. If merging of the
liquids is to be avoided, a spacing of at least one cell must be kept between
the two droplets, at any time. A similar situation is presented in Figure 2.3b,
where droplets d1 and d2 are to be transported in the directions shown by the
arrows. Let us consider that the electrodes denoted in the figure by c1 and c2
are activated. Since droplet d2 has two adjacent activated electrodes (c1 and c2)
it will not move significantly, resulting in a merging with droplet d1. In order to
avoid such a situation, there must be only one activated neighboring electrode
for each droplet on the microfluidic array.

A DMB is typically composed of an array of electrodes, together with reservoirs
for storing the samples and reagents. The architecture of the biochip proposed in
Figure 1.2 is optimized for the protocol specific to malaria detection, containing
a general bus used for transporting droplets between the different components
of the chip (e.g., reservoirs, mixer, detector). However, as biochips are expected
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(a) Static fluidic constraint (b) Dynamic fluidic constraint (c) Droplet contamination

Figure 2.3: Examples of droplet contamination

to perform thousands of assays in parallel, their architecture will become less
application-specific. Throughout this thesis we assume a general architecture
of a DMB, in which operations are performed on a two-dimensional array of
electrodes.

The schematic of this general architecture is presented in Figure 2.2b. The chip
is composed of a microfluidic array of identical cells, together with reservoirs for
storing the liquid. Each cell is composed of two parallel glass plates, as shown
in Figure 2.2a. The top plate contains a single indium tin oxide (ITO) ground
electrode, while the bottom plate has several ITO control electrodes. The elec-
trodes are insulated from the droplet through an insulation layer of ParyleneC,
on which a thin film of Teflon-AF is added [50]. The role of the Teflon layer is to
provide a hydrophobic surface on which the droplet will move. The two parallel
plates are separated through a spacer, providing a fixed gap height. The droplet
moves between the two plates, in a filler fluid (e.g., silicone oil), used in order to
prevent evaporation and the adhesion of molecules on the surface of the chip [4].

Fabrication of digital microfluidic biochips

In order to decrease the cost of biochips, printed circuit board (PCB) technol-
ogy has been proposed recently as a substrate for building inexpensive biochips.
A typical PCB chip is built using copper layer for electrodes, solder mask as
the insulator and Teflon AF as the hydrophobic layer. Such devices can be
fabricated using existing PCB techniques and require higher operation voltages
than glass substrates, due to their rougher surfaces [19]. The main advantage
of PCB chips consists in the reduced fabrication costs, which makes them ideal
for applications which require disposable devices.

Initial designs have considered that each electrode is controlled individually,
using a dedicated pin. This direct-addressing scheme is still used successfully
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(a) Insulator degradation [61] (b) Imperfect splitting [12]

Figure 2.4: Examples of faults for DMBs

for small to medium-size electrode arrays. However, for large-size arrays (>
10 × 10 electrodes), the increase in the number of required pins leads to higher
wiring complexity and thus to higher costs [23]. Thus, several pin-addressing
schemes have been proposed recently for reducing the number of control pins.
For example, the cross-referencing scheme proposed in [48] allows the control
of a n × m microfluidic array using only n + m pins. A biochip using this
scheme is required to have electrode rows placed orthogonally on both glass
plates, a droplet being moved by activating either the top or the bottom row
of electrodes, depending on the direction of movement [48]. The disadvantage
of this scheme is the fact that it requires a special structure of the chip, with
electrode rows on both plates. Another scheme, proposed in [72] reduces the
number of control pins by connecting the ones with “compatible” actuation
sequence. The compatibility of pins is decided by analyzing the scheduling and
routing information for performing an application on the chip.

The details regarding droplet movement are stored in a microcontroller, which
coordinates the activation of the electrodes on the microfluidic array.

In this thesis we do not focus on pin-count reduction and hence we consider
direct-addressing biochips, in which each electrode is controlled individually.

Faults specific to digital microfluidic biochips

As biochips are expected to be used for safety-critical applications, it is impor-
tant that the faults that they can exhibit are well known and that the proper
actions are taken in order for the devices to function properly. There are two
types of faults that can appear in a digital microfluidic biochip [59]: catastrophic
and parametric.
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Catastrophic faults are generally caused by physical defects and lead to the
complete malfunctioning of part of the biochip. Some examples of causes leading
to catastrophic faults are given as follows [59]:

• Dielectric breakdown— occurs when a high voltage applied to an electrode
produces the breakdown of the dielectric, creating a short between the
electrode and the droplet. As a result, the movement of the droplet resting
on the corresponding electrode is affected.

• Degradation of the insulator (see Figure 2.4a)— happens gradually, during
the operation of the biochip. When the degradation level reaches a certain
threshold, the movement of the droplet from the corresponding electrode
is affected.

• Short between two adjacent electrodes — leads to the formation of one
large electrode, occupying the surface of the two electrodes. As the surface
of the newly create electrode is too big, the droplet resting on it is not
large enough to overlap with the adjacent electrodes. As a result, the
droplet can no longer be transported.

Parametric faults do not result in the malfunctioning of the biochip. Rather,
they affect the performance of the system. Examples of parametric faults in-
clude [59]:

• Increased viscosity of the fluid filler — can result in erroneous concentra-
tions in the case of mixing operations.

• Electrode contamination — caused by certain substances (e.g., proteins,
peptides) that tend to adsorb on the electrodes they are routed on. This
can lead to the contamination of the droplets that are transported on the
same surface, at a later time.

• Imperfect splitting — can be caused by the misalignment of the droplet
with the control electrode, during a split operation. Consequently, the
volumes of the two resulted droplets are unbalanced, as shown in Fig-
ure 2.4b. Such variability in droplet volume can propagate throughout
the execution of the application, resulting in an erroneous output of the
bioassay.

In this thesis we do not consider catastrophic faults that can appear during the
operation of a digital microfluidic biochips. Several methods for the detection
of catastrophic faults have been proposed by researchers, and can be used for
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ensuring the correct functioning of the microfluidic platform [60],[58]. However,
in Chapter 8 we propose a method for droplet contamination avoidance during
the synthesis of DMBs. This is a parametric fault that can appear during the
execution of a biochemical application, if the purity of a droplet is accidentally
affected.

In order for the outcome of a biochemical assay to be reliable it is important
that the samples and reagents are not accidentally contaminated throughout
the execution of operations. The outcome of a bioassay can be influenced by
modifications in the hydrophobic surface of the chip. Certain molecules used
in biochemical applications (e.g., lipids, proteins, DNA, peptides) can adsorb
onto hydrophobic surfaces, fouling them. Adsorption of such molecules must
be avoided, as it can contaminate the other liquids present on the microfluidic
array and it can even affect the actuation process [37]. Let us consider droplets
d1 and d2 in Figure 2.3c, which must be routed on the chip in the directions
shown by the arrows. We assume that droplet d1 contains protein molecules and
is routed first. As a result, molecules will adsorb to the device surface, leaving
traces on the cells on which droplet d1 is routed. Therefore, when droplet d2 is
transported over the cell denoted by c it is contaminated by the protein traces
left behind by d1. Such changes in the purity of samples and reagents must
be avoided, as they can affect the correct functioning of the whole assay. One
method of reducing surface fouling is by transporting droplets in an immiscible
medium (e.g., silicone or fluorinated oil), such that the fluids are not in direct
contact with the hydrophobic surface [14], [13]. When the immiscible liquid can
not completely avoid contamination, wash droplets are used for cleaning the
device surface during the execution of the bioassay [38].

2.2 Operation Execution: Module vs. Routing

Using the architecture in Figure 2.2, and changing correspondingly the control
voltages, all of the required operations, such as transport, splitting, dispensing,
mixing, and detection, can be performed.

For example, mixing is done by bringing two droplets to the same location and
merging them, followed by the transport of the resulted droplet over a series
of electrodes. By moving the droplet, external energy is introduced, creating
complex flow patterns (due to the formation of multilaminates), thus leading to a
faster mixing [40]. Mixing through diffusion, where the resulted droplet remains
on the same electrode, is very slow. The operation can be executed anywhere
on the microfluidic array and is not confined to a certain area, thus we say
that mixing is a “reconfigurable” operation. Another reconfigurable operation
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(a) Module-based operation (b) Routing-based operation

Figure 2.5: Execution of a mixing operation

is dilution, which consists of a sequence of mixing and splitting steps [46]. A
biochemical application may also contain “non-reconfigurable” operations, that
are executed on real devices, such as reservoirs or optical detectors.

So far, researchers have considered that reconfigurable operations are performed
inside virtual modules, created by grouping adjacent cells. Such a module is
shown in Figure 2.5a, where the droplet is routed circularly on a series of elec-
trodes until the mixing operation is completed. The trajectory of the droplet
inside the module is described by a movement pattern, represented by the arrows
inside the virtual module.

Table 2.1 presents the results of the experiments performed in [40], where sev-
eral mixing times were obtained for various areas, creating a module library.
One problem addressed by the experiments is flow reversibility, when complex
patterns inside the droplet are unfold into simpler ones when the direction in

Operation Area (cells) Time (s)
Mixing 2 × 4 2.9
Mixing 1 × 4 4.6
Mixing 2 × 3 6.1
Mixing 2 × 2 9.95

Dispensing – 2
Detection 1 × 1 30

Table 2.1: Module library
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which the droplet is transported is changed by 180◦. This is the case of linear
mixers (e.g., Figure 2.6b), where the motion of the droplet is bidirectional. One
solution to avoid flow reversibility is to transport the droplet in a circular mo-
tion, as in the 2 × 2 virtual module shown in Figure 2.6d. However, it has been
shown that since the droplet is rotating around the pivot point in the center of
the created module, part of the droplet remains unmixed and thus the operation
takes longer (9.95 s) to complete. In the 2 × 3 module shown in Figure 2.6c two
additional electrodes are introduced to eliminate the static pivot point present
in the 2 × 2 module, thus reducing the mixing time to 6.1 s. The mixing time
is further improved for the 2 × 4 mixer in Figure 2.6a, leading to a 2.9 s com-
pletion time. The experiments show that faster mixing is obtained by moving
the droplet linearly for as long as possible, reducing flow reversibility.

During module-based operation execution, all cells inside the module are con-
sidered occupied, although the droplet uses only one cell at a time. Thus, the
remaining cells cannot be used for other operations, which is inefficient since
it reduces the potential for parallelism. In addition, in order to prevent the
accidental merging of a droplet with another droplet in its vicinity, a minimum
distance must be kept between operations executing on the microfluidic array.
For example, in Figure 2.5a these fluidic constraints are enforced by surrounding
the module by a 1-cell segregation area (the hashed area), containing cells that
can not be used by other operations until mixing finishes.

An alternative to modules, proposed in this thesis, is routing-based operation
execution. As mixing is performed by routing, an operation can be executed
anywhere on the array, unconstrained by a rectangular shape representing a
virtual module. This characteristic of the mixing operation is shown in Fig. 2.5b,
where the droplet is routed freely on a sequence of electrodes, according to the
shown route.

2.2.1 Characterizing Routing-Based Operation Execution

A contribution of this thesis is the characterization of routing-based operation
execution. This characterization is used throughout the thesis to determine the
operation completion time for: modules with non-rectangular shape (Chapter 6),
modules with droplet-aware operation execution (Chapter 7) and operations
executing on any sequence of electrodes on the microfluidic array (Chapter 8).

We propose an analytical method for determining how the percentage of oper-
ation execution varies depending on the movement of the droplet. Our method
provides safe estimates by decomposing the devices from Table 2.1.
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(a) 2 × 4 module (b) 1 × 4 module (c) 2 × 3 module (d) 2 × 2 module

Figure 2.6: Characterization of module library

Let us consider that while mixing the droplet in Figure 2.5b reaches the cell c2
at time t. The previous movements for the droplet are as shown by the arrows.
We have five possibilities for t+ 1: routing the droplet to the left, to the right,
up, down or keeping the droplet on c2. Let us denote with p0 the percentage of
mixing obtained while routing the droplet on an electrode in a forward move-
ment (relative to the previous move), with p90 the percentage obtained from a
perpendicular movement of the droplet and with p180 the percentage of mixing
obtained from a backward movement, see Figure 2.5b.

Considering Table 2.1, we can estimate the percentage of mixing over one cell,
corresponding to each type of movement (forward, backward, perpendicular). In
this thesis we consider the data1 from [43], which allows us to approximate that
the time required to route the droplet one cell is 0.01 s. In order to approximate
p0, p90 and p180 we decompose the movement patterns from the module library
in Table 2.1 in a sequence of forward, backward and perpendicular motions,
as shown in Figure 2.6. For example, the 2 × 2 mixer in Figure 2.6d can be
decomposed in perpendicular movements, because after each move the droplet
changes its routing direction by 90◦. As shown in Table 2.1, the operation takes
9.95 s to execute inside the 2 × 2 module, thus we can safely approximate the
percentage of mixing p90 to 0.1%.

For the 2 × 3 module shown in Figure 2.6c, the movement pattern is composed of
forward and perpendicular movements. By considering the mixing time shown
in Table 2.1 and p90 = 0.1%, we obtain the percentage of mixing resulted from
one forward movement p0 = 0.29%. Note that by decomposing the 2 × 4 module
shown in Figure 2.6a, we obtain a different value for p0: 0.58%. This is because
the forward mixing percentage is not constant, but it depends on the number of
electrodes used. Therefore we consider that there are two values that estimate
the percentage of forward movement: p01, when the forward movement is con-
tinued only for one cell as in Figure 2.6c, and p02, when the forward movement
of the droplet is of at least two cells. This is a pessimistic approximation, since
the value of p0 will further increase if the droplet continues to move forward.

1Electrode pitch size = 1.5 mm, gap spacing = 0.3 mm, average linear velocity = 20 cm/s.
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Figure 2.7: Application graph

Considering the percentage of forward movement p02 in the decomposition of the
1 × 4 module in Figure 2.6b, we obtain the pessimistic percentage of mixing
performed during a backward motion: p180 = −0.5%. The negative mixing is
explained by the unfolding of patterns inside the droplet, i.e., the two droplets
tend to separate when moved backward.

Using these percentages, we can determine the operation completion time for
any given route. For example, in Figure 2.5b, we have 3.19% of the mixing
completed in 0.13 s.

2.3 Application Model

In order to perform a biochemical application on a biochip, its protocol must
be known, that is the sequence of basic operations (e.g., dispensing, mixing,
dilution, detection) composing the application. We assume that such protocols
will be provided by the users of the biochips, e.g., biochemists.

The protocol of a biochemical application can be modeled using an abstract
model consisting of a sequencing graph [6]. The graph G(V, E) is directed, acyclic
and polar (i.e., there is a source node, which is a node that has no predecessors
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and a sink node that has no successors). Each node Oi ∈ V represents one basic
microfluidic operation.

An edge ei,j ∈ E from Oi to Oj indicates that the output of operation Oi is the
input of Oj . An operation can be activated after all its inputs have arrived and
it issues its outputs when it terminates.

For example in Figure 2.7 we have an example of an application graph with
twelve operations, O1 to O12. The application consists of four mixing operations
(O7, O8, O10 and O12), one diluting operation (O9) and six input operations
(O1, O2, O3, O4, O5, O6 and O11).

In order to perform the operations, the required volumes for the correspond-
ing droplets must be known. In microfluidic biochips, these volumes are in the
range of nano- or microliters. As the actuation of liquids depends on the pa-
rameters of the biochip (e.g., electrode pitch, gap spacing), it must be ensured
that the volume of a droplet allows the liquid to be moved. For example, when
two droplets are mixed, it is likely that the resulted droplet is too large to be
transported on the microfluidic array. In such cases split operations must be
inserted, to adjust the volume of the droplet to an acceptable value. In this
thesis we assume that each mixing operation is followed by a split, in order to
maintain the droplet volume. The split operations are not explicitly shown in
the application graphs used throughout the thesis, however, we assume that the
time required for a split is included in the time for mixing execution.

The details of the execution of the operations on a biochip are the result of a
synthesis process, which decides when and where each operation is performed.

2.4 Case Studies

This section describes the modeling of three real-life biochemical assays, using
application graphs.

2.4.1 Mixing Stage of the Polymerase Chain Reaction

Figure 2.8 describes the mixing stage of the polymerase chain reaction (PCR/M),
a technique used for DNA analysis. In PCR, several thermal cycles are used to
replicate a piece of DNA, creating thousands of copies. This method is particu-
larly important when the quantity of existent material is too scarce in order to
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successfully analyze the initial DNA sample. The first step of the polymerase
chain reaction consists of seven mixing operations, denoted in Figure 2.8 by O1

to O7. The product resulted from this stage undergoes a series of temperature-
cycles, required for DNA amplification [27].

2.4.2 In-Vitro Diagnostics on Physiological Fluids

Figure 2.9 describes the protocol for an in-vitro diagnostics assay (IVD) in which
the level of different metabolites in human physiological fluids are measured.
The graph contains input operations for the samples (urine, plasma, and serum),
reagents (glucose oxidase, lactate oxidase) and buffer substance. The level of
glucose and oxidase are measured for each type of physiological fluid, using
detection operations.

2.4.3 Colorimetric Protein Assay

The application graph in Figure 2.10 describes a protein assay, a procedure
used for determining the concentration of a certain protein in a solution. The
protocol is based on a reaction between the protein of interest and a dye. The
concentration of the protein is determined by measuring the absorbance of a
particular wavelength in the resulted substance.

The protocol consists of 103 microfluidic operations and uses three types of
liquids: physiological fluid (sample containing the protein), Coomassie Bril-
liant Blue G-250 dye as reagent and NaOH as buffer substance. Before being
mixed with the dye, the sample is first diluted with the NaOH buffer using
the mixing-splitting scheme proposed in [46]. The protocol finishes with detec-
tion operations, in which the protein concentration for the resultant solution is
measured [56].
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Figure 2.8: Mixing Stage of the Polymerase Chain Reaction Assay

Figure 2.9: In-Vitro Diagnostics on Physiological Fluids



2.4 Case Studies 25

Figure 2.10: Colorimetric Protein Assay
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Chapter 3

Synthesis Problem and ILP

Formulation

This chapter presents the synthesis problem of digital microfluidic biochips in
the case when operations are performed inside rectangular virtual devices, which
have a fixed position throughout their execution. An ILP formulation of the
problem is given and the advantages of performing “unified” architectural-level
synthesis and placement are discussed.

3.1 Synthesis Problem

The module-based synthesis problem can be formulated as follows. Given:

• a biochemical application modeled as a graph G;

• a biochip consisting of a two-dimensional m × n array C of cells ; and

• a characterized module library L,

we are interested to synthesize that implementation Ψ, which minimizes the
schedule length δG (i.e., the completion time of the application, tfinishsink ). Syn-
thesizing an implementation Ψ = < A, B, S, P,R >, means deciding on:
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(a) Application graph (b) Biochip

Figure 3.1: Synthesis example

• the allocation A, which determines what modules from the library L
should be used;

• the binding B of each operation Oi ∈ V to a module Mk ∈ A;

• the schedule S of the operations, which contains the start time tstarti of
each operation Oi on its corresponding module; and

• the placement P containing the locations at which operations will be ex-
ecuted on the m × n array.

Routing determines the routes R taken by the droplets between modules and
between modules and input/output ports.

Since routing times are one order of magnitude smaller than operation times (see
the data in Section 2.2.1), routing has been considered so far as a post-synthesis
step following the allocation, binding, scheduling and placement of modules on
the microfluidic array.

In this chapter we focus on the architectural-level synthesis and placement for
digital microfluidic biochips. Similar to the previous approaches, we assume
that the routing of droplets will be determined during a separate step, following
the placement of devices on the array.

Let us use the graph shown in Figure 3.1a to explain the architectural-level
synthesis and placement for DMBs. We would like to implement the operations
on the 8 × 8 biochip from Figure 3.1b. We consider the current time step as
being t. We assume that a diluting operation from another application has been
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scheduled at an earlier time step on module Diluter1, has been placed on the
microfluidic array as shown1 in Figure 3.2c and will finish executing at t + 4.

The next subsections will illustrate the design tasks needed for synthesizing the
application on the chip. The presentation order does not necessarily correspond
to the order in which a synthesis approach performs these task.

3.1.1 Allocation and placement

The graph shown in Figure 3.1a contains two types of operations: non-reconfigu-
rable (input) and reconfigurable (mixing and dilution). The scheduling of input
operations is determined at the same time with the other operations, the fixed
number of reservoirs representing a constraint to the final completion time of
the application. However, as they execute outside the microfluidic array and do
not affect the placement of the other operations, for simplicity reasons we ignore
inputs in this example. We assume that the locations of reservoirs have been
decided during the fabrication of the chip and are as shown in Figure 3.1b. We
need to assign each input operation to a reservoir of the same type, e.g., O2 can
only be assigned to one of the buffer reservoirs B1 and B2. Let us consider that
the input operations are assigned to the input ports as follows: O1 to S1, O2 to
B1, O3 to S2, O4 to R1, O8 to S3, O9 to B1, O10 to R2 and O11 to B2. The
synthesis approach will have to decide the scheduling of the input operations
and make sure that each reservoir is used by at most one input operation at
each time step.

For the other operations in Figure 3.1a, the mixing operations (O6 and O7)
and the dilution operations (O5, O12 and O13) our synthesis approach will have
to allocate the appropriate modules, bind operations to them and perform the
placement and scheduling.

Let us assume that the available module library is the one captured by Ta-
ble 3.1. We have to select modules from the library while trying to minimize

1In the figures we denote Mixeri with Mi and Diluteri with Di.

Operation Area (cells) Time (s)
Mixing 2 × 4 3
Mixing 2 × 2 4
Dilution 2 × 4 4
Dilution 2 × 2 5

Table 3.1: Module library



30 Synthesis Problem and ILP Formulation

(a) Schedule under area con-
straints

(b) Schedule with placement

(c) Placement at t (d) t + 4

(e) t + 7 (f) t + 8

Figure 3.2: Implementation example

the application completion time and place them on the 8 × 8 chip. We ignore
the position of droplets inside modules, and we wrap devices with segregation
cells, as explained in Chapter 2.

A simplification to the problem consists in separating the architectural-level and
physical-level steps during the synthesis process. This is the approach taken
in [53]. In this case, the allocation is only constrained by the chip area, 8 × 8
= 64 in our example. For our example, separating the two steps will lead to
the allocation in Figure 3.2a (see the list of devices to the left of the schedule),
where the following modules are used: one 2 × 2 mixer (4 × 4 with segregation
area), one 2 × 4 mixer (4 × 6 with segregation area) and three 2 × 4 diluters
(4 × 6 with segregation area). This allocation leads to the shortest completion
time of the application, given the module library and the area constraints. Since
4 × 4 + 4 × 6 + 4 × 6 = 64, the architectural synthesis will wrongly assume
that Diluter2 and Mixer1 can be placed concurrently on the array, at the
same time with Diluter1, which has already been placed at a previous time
step. The resulted schedule is shown in Figure 3.2a. However, Diluter2 and
Mixer1 cannot be placed on the chip at the same time with Diluter1 without
overlapping, and thus, during the placement step, the schedule will have to be
modified. This will lead to the schedule in Figure 3.2b, where O5 and O6 will
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be delayed until t + 4, when there is enough space on the microfluidic array to
accommodate both Diluter2 and Mixer1. The schedule is depicted as a Gantt
chart, where, for each module, we represent the operations as rectangles with
their length corresponding to the duration of that operation on the module. The
placement for this allocation is as indicated in Figure 3.2c–f.

The placement problem of DMBs can also include finding the location of non-
reconfigurable devices (e.g., reservoirs, optical detectors), whose number is con-
strained by the design specifications. As input operations are executed outside
the microfluidic array, the positions of reservoirs can be determined manually,
after the placement of the other devices. The locations of optical detectors on
the array are decided during the placement step of the synthesis process and
remain fixed throughout the execution of the application. If the synthesis pro-
cess decides the mapping of a biochemical application to an already fabricated
biochip, then the locations of non-reconfigurable devices are given as part of the
input specifications.

3.1.2 Binding and Scheduling

Once the modules have been allocated and placed on the microfluidic array,
we have to decide on which modules to execute the operations (binding) and
in which order (scheduling), such that the application completion time is mini-
mized.

Considering the graph in Figure 3.1a with the allocation presented in Fig-
ure 3.2a, Figure 3.2b presents the optimal schedule for the case when the place-
ment is not considered during the architectural-level synthesis. For example,
operation O7 is bound to module Mixer2, starts immediately after the diluting
operation O5 (i.e, t

start
7 = t + 8) and takes 4 s, finishing at time tfinish7 = t + 12.

We consider that the schedule is divided in time steps of one second, and we
capture the set of time steps with T .

Note that special “store” modules have to be allocated if a droplet has to wait
before being processed. In general, if there exists an edge ei,j from Oi to Oj

such that Oj is not immediately scheduled after Oi (i.e., there is a delay between
the finishing time of Oi and the start time of Oj) then we will have to allocate
a storage cell for ei,j . Hence, the allocation of storage cells depends on how the
schedule is constructed. In Figure 3.2b the droplet resulted from the mixing
operation O6 has to be stored until the dilution operation O7 finishes executing.
The placement in Figure 3.2e shows the 1 × 1 (3 × 3 with segregation cells)
storage module. Any available cell on the microfluidic array can be used for
temporarily storing the droplet.
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(a) ImprovSed schedule (b) Placement at t

(c) t + 4 (d) t + 8

Figure 3.3: Unified allocation and placement

3.1.3 Unified Architectural-Level Synthesis and Placement

The schedule in Figure 3.2b can be improved if we consider placement at the
same time with architectural-level synthesis, and not as a separate phase. This
will lead to the allocation in Figure 3.3a, where the following modules are used:
one 2 × 2 mixer (4 × 4 with segregation area), one 2 × 4 mixer (4 × 6 with
segregation area), one 2 × 4 diluter (4 × 6 with segregation area) and two
2 × 2 diluters (4 × 4 with segregation area). As we can see from Figure 3.3a,
considering a unified architectural-synthesis and placement approach leads to
an improvement in the schedule length of the application, t + 11 s, as compared
to t + 12 s in Figure 3.2b.

The next section presents an ILP formulation of the unified architectural-level
and placement problem for digital microfluidic biochips.
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3.2 ILP Formulation

In an ILP model a system is described by a minimization objective and a set of
constraints which define valid conditions for the system variables. A solution to
the modeled problem is an enumeration of all system variables, such that the
constraints are satisfied. The optimization objective is specified as minimizing
the completion time of the application,

minimize tfinishsink , (3.1)

where tfinishsink is the finishing time of the sink node of the application graph.

The module library L is defined as a set of modules, each having a type (e.g.,
mix, dilute, store) and different characteristics in terms of area and execution
time. The binding of operations to modules in the architecture is captured by
the function B : V → A, where A is the list of allocated modules from the
given library L. We denote the execution time of an operation Oi on module
Mk = B(Oi) where it is assigned for execution, by CMk

i .

During the iterations performed for finding the optimal solution, the ILP will
bind each operation that needs to be scheduled to a module of the same type. As
there can be more than one module of the same type defined in the library (e.g.,
a 2 × 2 mixer, a 2 × 4 mixer), the same operation can be bound to different
modules during different ILP iterations.

Let us denote by V+ the set of all the operations to be performed during the
execution of the application. Then V+ needs to contain not only the operations
Oi ∈ V, but also additional operations of type storage. Let us denote by St
the set of storage operations. We associate one storage to each operation in the
graph. The rest of the operations in V+ are divided into two sets: reconfigurable
Vreconf and non-reconfigurable operations VnonReconf .

The constraints fall under the following categories: i) scheduling and precedence;
ii) resource constraints; iii) placement constraints. In order to be able to express
them, a binary variable is defined as follows:

zi,j,k,l =















1, if operation Oi starts executing at
time step j on module Mk placed
with its bottom-left corner over cell cl

0, otherwise

Such a variable captures the allocation and binding (operation Oi is executing
on module Mk), the scheduling (Oi starts to execute at time step j, with a
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duration of CMk

i ) and the placement (the bottom-left corner of module Mk is
placed over cell cl).

By using the defined variable, the start time of an operation Oi ∈ V+ becomes:

tstarti =
∑

j

∑

k

∑

l

j × zi,j,k,l ∀Oi ∈ V+, (3.2)

where j represents the time step when the operation starts executing.

3.2.1 Scheduling and Precedence Constraints

The scheduling constraint requires that an operation Oi be scheduled only once:

∑

j

∑

k

∑

l

zi,j,k,l = 1, ∀Oi ∈ V+. (3.3)

For each edge in the application graph we have to introduce a precedence con-
straint. Consider the operations Oi and On ∈ V for which there exists a de-
pendency ei,n ∈ E in the sequencing graph G. Then On must be scheduled for
execution only after the completion of Oi:

tstarti +
∑

j

∑

k

∑

l

(

CMk

i × zi,j,k,l

)

≤ tstartn , ∀Oi and On such that ∃ei,n ∈ E .

(3.4)

If On is not scheduled immediately after the completion of Oi then a storage
module is required. The number of such storage modules during a time step j is
important in defining the placement constraints for the model, since the storage
modules also occupy chip area. Using a binary variable mi,j defined as:

mi,j =

{

1, if a storage unit is needed for Oi at time step j

0, otherwise

we can capture if a storage is required for operation Oi at time step j. The
binary variable associated with the edge between Oi and On is expressed as:

j−C
Mk
i

∑

h=1

∑

k

∑

l

zi,h,k,l −

j
∑

h=1

∑

k

∑

l

zn,h,k,l = mi,j ,

∀j ∈ T , ∀Oi, On ∈ V such that ∃ei,n ∈ E

(3.5)
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Variable mi,j will have the value 1 at that time step j when Oi has finished
executing (first sum of the equation equals 1), but Oj has not started yet (second
term of the equation is 0). Let us define sj as the number of storages that need
to be placed at time step j.

Based on the variable mi,j we can express the synthesis of storage operations
at time step j as follows:

zi,j,k,l = mi,j , ∀Oi ∈ St, ∀j ∈ T . (3.6)

Therefore, an additional operation will be activated at time step j only if the
operation in V to which it is associated requires a storage unit.

However, defining a storage for each operation in the graph leads to an explosion
of the ILP exploration space. In order to reduce the time taken by the ILP
in obtaining the optimal solution, we have used a simplified synthesis of the
storage operations in our experimental results. We have reduced the number
of additional operations defined in St to an upper boundary determined by the
number of operations in the graph and the biochip specifications.

At each time step we can determine the number of storages that need to be
scheduled and placed on the array, sj as:

sj =
∑

i

mi,j , ∀Oi ∈ V. (3.7)

Knowing the number of storages, we know how many additional operations need
to be executed at time step t:

zi,j,k,l = 1, ∀Oi ∈ St such that i ≤ sj , ∀j ∈ T . (3.8)

thus only the first sj operations in the set St will be scheduled for execution.

Each store operation will be bound to a 1 × 1 module (3 × 3 with segregation
area).
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3.2.2 Resource constraints

Considering the fact that two non-reconfigurable operations of the same type
can be bound to the same resource, a constraint must be expressed to prevent
the overlapping of these operations during their execution. An operation Oi ∈
VnonReconf is executing at time step j if:

j
∑

h=j−C
Mk
i

+1

∑

k

∑

l

zi,h,k,l = 1, ∀Oi ∈ VnonReconf .

Thus, at any time step j ∈ T there most be at most one non-reconfigurable
operation Oi executing on module Mk:

∑

i

j
∑

h=j−C
Mk
i

+1

∑

l

zi,h,k,l ≤ 1, ∀Mk ∈ L,j ∈ T . (3.9)

3.2.3 Placement Constraints

We consider two different constraints for the placement problem. The first con-
straint (represented by equation 3.10) can be used for simplified placement when
separating the architectural-level and placement steps during the synthesis pro-
cess, as explained in Section 3.1.1. The constraint can be used as guidance
while performing the allocation, binding and scheduling steps during the syn-
thesis process. At each time step j, the sum of the modules scheduled to be
placed should not exceed the total area size of the array, m × n. As input ports
are placed outside the microfluidic array we consider their dimensions (width
and length) as zero during the placement step.

∑

i

j
∑

h=j−C
Mk
i

+1

∑

k

∑

l

zi,h,k,l × Lk ×Wk ≤ m× n, ∀j ∈ T (3.10)

where Oi ∈ V+ and Lk and Wk are the length and width of module Mk, respec-
tively, measured in number of cells.

However, this constraint does not ensure that all the modules bound to opera-
tions scheduled at a time step t can be placed on the microfluidic array without
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overlapping. Thus, equation 3.10 can only be used as an estimate of the area
occupied by modules in the case when architectural-level synthesis is performed
before the placement step.

For unified architectural-level synthesis and placement equation 3.11 must be
used. In order to ensure that all the modules bound to operations scheduled
at time step t can be placed on the biochip without overlapping we place the
constraint that a cell cl on the array can be occupied by at most one module
during time step tj .

Let us consider a cell cr (with coordinates xr and yr) which is the bottom-left
corner of module Mk. If cell cl is within the rectangle formed by Mk, i.e.,
xr ≤ xl ≤ xr + Lk − 1 and yr ≤ yl ≤ yr +Wk − 1, then we have to impose the
restriction that no other module is active during this time interval:

∑

i

j
∑

h=j−C
Mk
i

+1

∑

k

∑

r

zi,h,k,r ≤ 1, ∀j ∈ T , ∀cl (3.11)

where Oi ∈ V+.

The complexity of the ILP formulation is O(|V+| |L| |T |mn) in the number
of variables and O(mn |T | + |T | |E| + 3 |V+| + |E| + 2 |T |) in the number of
constraints, where V+ is the set of all operations to be scheduled, L represents
the module library, T is the set of time steps, E is the set of dependencies
between the operations in the graph and m and n represent the two dimensions
of the microfluidic array.

3.3 Experimental Evaluation

We have used the ILP formulation presented in Section 3.2 to evaluate the
advantages of performing unified architectural-level synthesis and placement.
For this purpose, we used two real-life examples: 1) In-vitro diagnostics on
human physiological fluids (IVD) (see Section 2.4.2)2 2) The mixing stage of a
polymerase chain reaction application (PCR/M), see Section 2.4.1.

We have solved the ILP model with GAMS 21.5 using the CPLEX 9.130 solver.
All the experiments were ran on Sun Fire v440 computers with 4 UltraSPARC
IIIi CPUs at 1,062 MHz and 8 GB of RAM. The results are presented in Ta-
ble 3.3.

2The input and detection operations were ignored.
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Operation Area (cells) Time (s)
Mixing 2 × 5 2
Mixing 2 × 4 3
Mixing 1 × 3 5
Mixing 3 × 3 7
Mixing 2 × 2 10
Dilution 2 × 5 4
Dilution 2 × 4 5
Dilution 1 × 3 7
Dilution 3 × 3 10
Dilution 2 × 2 12
Detection 1 × 1 30
Dispensing - 7
Storage 1 × 1 -

Table 3.2: Table for experimental evaluation

For each application, we have considered the library from Table 3.2 and three,
progressively smaller, area constraints (second column of Table 3.3). We have
performed the allocation, binding, scheduling and placement such that the ap-
plication completion time is minimized. We used two approaches to derive the
implementations:

1. The straight-forward approach (SF) does architectural synthesis (alloca-
tion, binding and scheduling) separately from placement. First, an imple-
mentation Ψ0 is derived using our ILP model, limited by the total chip
area, but without the placement constraints. Next, we attempt the place-
ment of Ψ0 on the available area, modifying the scheduling, if required to
fit the modules, thus obtaining the final implementation Ψ. For both of
these steps we have obtained the optimal solutions. The schedule length
of Ψ is presented in column 3.

2. The Optimal Synthesis approach (OS) performs unified architectural-level
synthesis and placement. The schedule length for OS is presented in col-
umn 4, with the execution time required by the CPLEX solver to produce
the optimal solution shown in column 5.

As we can see from Table 3.3, considering placement at the same time with ar-
chitectural synthesis (OS) can lead to significant improvements over SF, which
does not take into account placement. On average, we have obtained an 11.8%
improvement on the bio-applications completion times, with up to 18.75% im-
provement for the IVD application on a 7 × 9 array.
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Application Area SF OS Execution Time
8 × 9 14 s 13 s 90 min

IVD 7 × 9 16 s 13 s 258 min
7 × 8 14 s 14 s 78 min
8 × 9 11 s 9 s 84 min

PCR/M 7 × 9 11 s 10 s 47 min
7 × 7 17 s 14 s 78 min

Table 3.3: Comparison of SF and OS approaches

The synthesis problem presented in this chapter is NP-complete. Scheduling
in even simpler contexts is NP-complete [64]. In addition, the placement is
equivalent to a sequence of 2D packing problems, known to be NP-complete [16].
Using ILP, we have not been able to synthesize larger examples than IVD and
PCR/M. Even for these two cases, the runtime of the solver has been quite
large, see the last column in Table 3.3. The reason is that the ILP formulation
searches for the optimal solution, and considering the complexity of the synthesis
problem, this is not feasible for larger examples.

This has motivated us to use instead a metaheuristic such as Tabu Search as
the basis for our synthesis strategies presented in this thesis.



40 Synthesis Problem and ILP Formulation



Chapter 4

Related Work

In the recent years there has been a growing interest in the development of
CAD tools for digital microfluidic biochips. As the complexity of such devices
increases, with more and more operations being executed concurrently on the
chip, top-down synthesis approaches are required. Although design automation
techniques are essential for the further development of biochips, CAD tools for
such devices are still in their infancy. This chapter presents a brief overview of
the related research on the digital microfluidic biochips, with an emphasis on
architectural and physical-level synthesis of direct-addressable chips.

4.1 Architectural-Level Synthesis and Placement

Researchers have initially addressed separately architectural- and physical-level
synthesis of DMBs. In one of the first papers on this topic Ding et al. [10]
have proposed an architectural design and optimization method for performing
biochemical assays on a digital biochip. The method is based on ILP and it
aims at improving scheduling by extracting the parallelism from a biochemical
application, thus performing several operations in parallel.

In [53] Su et al. have proposed an ILP and two heuristic techniques (a modified
List Scheduling algorithm and a Genetic Algorithm) for the architectural-level
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synthesis of biochips. The proposed methods are considering the problem of
scheduling under resource constraints. The number of reconfigurable devices
that can be placed on the array concurrently is roughly estimated by a simplified
placement, as explained in Chapter 3.

The results in [53] have been improved by Ricketts et al. [47], by using a hybrid
Genetic Algorithm for scheduling operations under resource constraints. In
their work, the operations that are bound to the same device are considered to
form a group, competing for the access to the same resource. Conflicts between
operations are handled by reserving a resource to the highest priority operation
ready to execute.

A Simulated Annealing-based method which can determine the locations of the
devices on the microfluidic array has been proposed by Su et al. in [55]. The
algorithm follows architectural-level synthesis, thus the binding of operations
to modules and the schedule of operations are given as an input. As detailed
placement information is not considered during the scheduling step, there is no
guarantee that all modules can be placed at time t without overlapping. There-
fore, the algorithm seeks to optimize the design metrics (area of the microfluidic
array and fault-tolerance) while minimizing the overlapping of modules.

Although it reduces the complexity of the synthesis problem, the separation of
architectural and physical-level synthesis has disadvantages, leading in many
cases to a longer completion time of the applications on the biochips (see Chap-
ter 3). Therefore, the next step taken by researchers was considering a unified
approach for the architectural-level synthesis and placement for digital microflu-
idic biochips.

The first unified high-level synthesis and module placement methodology has
been proposed by Su et al. in [54], by using a combination of Simulated Anneal-
ing and Genetic Algorithms. In their work, the characteristics of a candidate
solution is encoded in a chromosome, where each operation is randomly bound
to a device in the module library. The schedule of operations is determined
using a List Scheduling algorithm while the placement of modules on the array
is performed in a greedy fashion. The focus of the developed methodology has
been on deriving an implementation that can tolerate faulty electrodes.

The results obtained in [54] have been improved by using another unified ap-
proach, proposed by Yuh et al. [74]. The algorithm is based on the T-Tree, a
data structure in which each node represents an operation and has at most three
children. The order of the nodes in the tree is based on a geometric relationship
between the operations, e.g., if a node ni is the left child of node nj then the
module Mi will be placed adjacent to module Mj . In order to improve the com-
pletion time of the application Simulated Annealing is used to perturb the initial
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T-Tree and to explore the search space for better solutions. The floorplanning
algorithm is also extended to take into account the reconfigurability of biochips
in case of defective electrodes. In Chapter 5 we have proposed a Tabu Search-
based algorithm for the unified synthesis problem. Our method can produce
improvements of up to 22% compared to the T-Tree approach from [74].

Xu et al. [70] have extended the work done by [54], by incorporating routing-
awareness during the architectural-level synthesis and placement of modules.
Droplet routability is defined by the ease with which routing can be performed
once the placement of the modules on the array has been determined. Although
it does not offer detailed routing information, the aim of this approach is to
construct synthesis solutions that lead to simpler droplet routes. For example,
if a droplet needs to be routed between two modules, it is desirable that the
modules are placed such that the route is minimized. In their work, the route
is estimated as the shortest distance between modules, assuming no obstacles
between them. Overall, routability is evaluated by estimating the average length
of all the droplet routes for a given chip.

4.2 Routing

Another important step during the synthesis problem is determining the droplet
routes between modules and between I/O ports and modules. Due to the com-
plexity of the problem and long operation execution times, routing has been
addressed so far as a post-synthesis step, following the placement of modules
on the array. Several techniques have been proposed for finding the routes on
which droplets are transported.

In [2] Bohringer et al. have presented a methodology for routing droplets be-
tween two given points, in the shortest number of steps. The proposed algorithm
is based on a graph data structure, where a node represents the state of the mi-
crofluidic array at time t. Therefore, routing is transformed into a standard
graph search problem, where the start and goal states are given. A prioritized
A* search algorithm is used for determining the routes, at each step the optimal
motion plan being performed for the droplet with the highest priority.

In [57], a two-stage routing algorithm has been proposed by Su et al. Following
the module placement step, routing is decomposed into a series of sub-problems,
in which droplet paths must be determined. During the first stage a set of
alternative routes are generated for each net using a modified Lee algorithm,
while in the second stage a single route is randomly selected. Routes are checked
for fluidic constraints in order to ensure that the droplets will not accidentally
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merge during the routing step. The output of the algorithm consists in a set of
routes with minimum lengths, which ensure the fluidic constraints.

Griffith et al. have proposed a routing method based on the Open Shortest
Path First network protocol [20]. In their approach the microfluidic array is
partitioned into virtual components (e.g., work area = mixers, source = input
points for reservoirs), each performing a specific set of operations. In order
to determine droplet routes between components, the proposed algorithm uses
routing tables, computed using Dijkstra’s shortest path algorithm.

A network-flow based method for the routing problem has been proposed by Yuh
et al. in [73]. The algorithm consists in three steps: 1) determining the criticality
of each net; 2) finding a rough routing path for each droplet; and 3) routing the
droplets in the decreasing order of their criticality. During the second step the
microfluidic array is divided into a set of global electrodes (obtained by grouping
together 3 × 3 basic electrodes), on which the flow network is constructed.

The results obtained in [73] have been improved by Cho et al. in [7] by per-
forming bypassability analysis while routing. Each droplet is assigned a priority,
which indicates how likely it is that its routing will block the movement of other
droplets on the array. The droplets with higher bypassability are routed first,
decreasing the chances of deadlocks. If, however, a deadlock is created, the
algorithm uses concession zones in which droplets can be moved in order to
eliminate deadlock.

In [66] a routing algorithm for cross-referencing biochips has been proposed
by Xiao et al. The routing paths are determined by using a weighted maze
framework, which determines for each droplet a valid shortest path. If no valid
route can be found, backtracking and re-routing are considered. The voltage
assignment for controlling the electrodes is performed based on the routing
result.

All of the synthesis approaches developed so far have considered that modules
are fixed during their execution and have a rectangular shape. In Chapters 6–8
we have relaxed this assumption, and have presented synthesis approaches which
are based on a routing model, where the operation execution is seen as a “route”,
even for the case where it is constrained to fixed rectangular shapes (Chapter 7).

We have shown that significant improvements can be gained by using such a
routing-based model of operation execution. All the synthesis methods pre-
sented in Chapters 6–8 are able to improve on the results in Chapter 5.



4.3 Cross-Contamination Avoidance 45

4.3 Cross-Contamination Avoidance

As explained in Chapter 2, the contamination of the microfluidic array can
have serious consequences on the output of a biochemical application. Several
algorithms for cross-contamination avoidance have been recently proposed by
researchers.

The first routing method which considers cross-contamination avoidance has
been proposed in [75] by Zhao et al. The routing problem is divided into a set
of sub-problems, based on the results from the placement step. The algorithm
tries to minimize contamination in a sub-problem by finding disjoint droplet
routes. As contamination can also occur between successive sub-problems, wash
droplets are introduced after each sub-problem to remove the residue left on
electrodes. An optimization method is presented to minimize the number of
used wash droplets.

Huang et al. have proposed in [22] a contamination-aware droplet routing algo-
rithm. The method minimizes the contaminated spots by constructing preferred
routing tracks on which droplets are routed. A minimum cost circulation algo-
rithm is used for simultaneously cleaning the contaminated electrodes inside a
sub-problem and between successive sub-problems.

Another method for cross-contamination avoidance routing has been presented
by Zhao et al. in [76]. The algorithm improves on the results obtained in [75] by
integrating the required washing operations in each sub-problem. The routing
time is reduced by synchronizing the arrival time of wash droplets and other
droplets on the array to the contaminated spots.

A design flow that considers the cross-contamination problem on pin-constrained
biochips has been proposed by Lin et al. in [28]. The reduction in droplet move-
ment flexibility compared to direct-addressing biochips adds to the complexity
of contamination avoidance on such chips. Compared to previous works, the
authors consider crossing minimization earlier in the synthesis process, during
the placement step. The insertion of wash droplets for cleaning contaminated
electrodes is done using only one extra control pin.

Several other techniques for pin-constrained microfluidic biochips [23],[67], [68],
[72], [29] and testing [59], [60], [61], [58], [25], [69], [71], have been proposed
recently. However, these topics are not part of the research work presented in
this thesis. For further details the reader is directed to the cited publications.

In Chapter 8 we show how contamination avoidance can be taken into account
during routing-based synthesis.
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Chapter 5

Module-Based Synthesis

Although capable of producing an optimal solution, the ILP-based method pre-
sented in Chapter 3 becomes unfeasible for complex synthesis problems, where
the increase in the search space leads to a prohibitively large execution time of
the program. Therefore, in this chapter we present a methodology based on the
Tabu Search (TS) metaheuristic, capable of solving complex synthesis problems.
Similar to Chapter 3, we consider that reconfigurable operations are performed
inside fixed rectangular modules.

Our synthesis strategy, presented in Figure 5.1, takes as input the application
graph G(V, E), the given biochip cell array C and the module library L and
produces that implementation Ψ = < A, B, S, P > consisting of, respectively,
the allocation A, binding B, scheduling S and placement P, which minimizes the
schedule length δG on the given biochip C. A Tabu Search metaheuristic [18]

DMBSynthesis(G, C, L)

1 < A◦,B◦ > = InitialSolution(G, L)
2 Π◦ = CriticalPath(G, A◦, B◦)
3 < A,B,Π > = TabuSearch(G, C, L, A◦, B◦, Π◦)
4 return Ψ = < A, B, S, P >

Figure 5.1: Synthesis algorithm for DMBs
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is used for deciding the allocation A and binding B of operations (line 3 in
Figure 5.1). For a given allocation and binding decided by TS, we use a List
Scheduling (LS) heuristic [36] to decide the schedule S of the operations. LS
uses the priorities Π (assigned to each operation) to decide which operation to
schedule at a given time step, out of several “ready” operations competing for
the same resource. Our TS also decides the priorities Π for the operations. TS
starts from an initial solution, where we consider that each operation Oi ∈ V
is bound to a randomly chosen module B(Oi) ∈ L (line 1 in Figure 5.1). The
initial execution priorities, Π◦, are given according to the bottom-level values
of the nodes in the graph (line 2) [49]. According to these, the priority of an
operation is defined as the length of the longest path from the operation to the
sink node of the graph.

5.1 List Scheduling

Inside TS, we use the ScheduleAndPlace function in Figure 5.2 to determine the
schedule S and placement P for an implementation Ψ. Our scheduling is based
on a List Scheduling heuristic, takes as input the application graph G(V, E),
the cell array C, the allocation A, binding B and priorities Π and returns the
scheduling S and placement P. The List Scheduling heuristic is based on a
sorted priority list, Lready, containing the operations Oi ∈ V which are ready
to be scheduled. The start and finish times of all the operations are initialized
to 0 in the beginning of the algorithm (lines 2 and 3 in Figure 5.2). A list
Lexecute which contains the operations that are executing at the current time
step is created in the beginning of the algorithm (line 4). Initially, Lready will
contain those operations in the graph that do not have any predecessors (line 5
in Figure 5.2). We do not consider input operations as part of the ready list. As
they do not have any precedence constraints, input operations can be executed
at any time step. However, it is important that inputs and their successors are
performed sequentially, in order to avoid storing the dispensed droplets. Let
us consider time tcurrent during the execution of the application. For all the
operations that finish executing at tcurrent we check if their successors are ready
to be scheduled (line 14 in Figure 5.2). An operation is considered to be ready if
all its predecessors (except input operations) have finished executing. Next, we
try and schedule the ready operations, starting with the operation Oj having
the highest priority (line 17 in Figure 5.2). Before Oj can be scheduled, its
input constraints must be checked. If Oj has as predecessor an input operation

Ok, we try to schedule Ok such that tfinishk = tstartj = tcurrent. However, as
reservoirs/dispensing ports are non-reconfigurable devices, their number is con-
strained during design specifications. That is, operation Oj can be scheduled at
time step t only if at time t − Creservoir

k there is an available reservoir/dispensing
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ScheduleAndPlace(G, C, A, B, Π)

1 tcurrent = 0
2 tstarti = 0, ∀Oi ∈ G

3 tfinishi = 0, ∀Oi ∈ G
4 Lexecute = ∅
5 Lready = ConstructReadyList(G, Π)
6 // schedule and place operations

7 while ∃ Oi ∈ G ∧ tfinishi = 0 do
8 // for finishing operations

9 for all Oj ∈ Lexecute such that tfinishj = tcurrent do
10 // update placement
11 UpdatePlacement(C, P, B(Oj))
12 RemoveFromExecuteList(Oj , Lexecute)
13 // add ready successors to Lready

14 AddReadySuccessorToList(Oj , Lready)
15 end for
16 // schedule ready operations
17 for all Oj ∈ Lready do
18 placed = Placement(C, P, B(Oj))
19 if placed then
20 // set the start and finish times
21 tstartj = tcurrent

22 tfinishj = tstartj + C
B(Oj)
j

23 RemoveFromReadyList(Oj , Lready)
24 AddOperationToExecuteList(Oj , Lexecute)
25 end if
26 end for
27 tcurrent = tcurrent + 1
28 end while
29 return < S,P >

Figure 5.2: List scheduling algorithm for DMBs
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port on which Ok can be executed. Otherwise, Oj will be delayed and the next
highest priority operation is considered for execution. If all the constraints re-
lated to Oj are satisfied, its corresponding module, B(Oj), is placed on the
microfluidic array (line 18 in Figure 5.2) and the start and finish times of the
operation are updated (lines 21–22). If there exists a placed storage module
associated with the operation Oj , the storage is removed and the placement is
updated.

The combined scheduling and placement is implemented by the ScheduleAnd-
Place function (Figure 5.2), which calls the Placement function from Figure 5.3.
Once an operation is scheduled it is removed from Lready and added to Lexecute.
Before the end of the iteration, the storage constraints are considered. For all
the operations that finished at tcurrent the placement of the microfluidic array
must be updated, by removing the modules to which they are bound (line 11 in
Figure 5.2). Also, if their successors have not yet been scheduled for execution,
a storage unit is placed on the microfluidic array.

5.2 Placement Algorithm

We have used the online placement algorithm from Bazargan et al. [1] for DR-
FPGAs to handle the placement of modules in DMBs. Although the algorithm
was proposed for online placement, we can use it offline, since we know before-
hand all the operations that have to be executed. The algorithm from [1] has
two parts: i) a free space manager which divides the free space on the biochip
into a list of overlapping rectangles, Lrect; and ii) a search engine which se-
lects an empty rectangle from Lrect that best accommodates the module Mi

to be placed, according to a given criteria, such as “best fit”. Each rectangle

Placement(C, P, Mi)

1 // construct list of empty rectangles
2 Lrect = ConstructRectList(C)
3 // search for Ri ∈ Lrect that best fits Mi

4 Ri = SelectRectangle(Lrect, Mi)
5 if ∃ Ri then
6 placed = UpdatePlacement(P, Ri, Mi)
7 UpdateFreeSpace(Lrect)
8 end if
9 return placed

Figure 5.3: Placement algorithm for DMBs
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(a) Placing Diluter2 (b) Placement at t

Figure 5.4: Placement example

is represented by the coordinates of its left bottom and right upper corners,
(xl, yl, xr, yr). Our proposed algorithm, Placement, is presented in Figure 5.3.
The placement algorithm takes as input the m × n matrix C of cells, the current
placement of modules P and the module Mi to be placed, updates the array
and returns a Boolean value stating if the accommodation of module Mi on
the array was successful. If no rectangle is found, LS will have to delay the
operation corresponding to Mi.

Let us illustrate the placement algorithm by using the same example as in
Section 3.1.3. Consider the current time step t. The ready list consists of all
the operations in the graph that are ready to be scheduled, hence Lready =
{O5, O6, O12, O13}. Let us assume the same binding for the reconfigurable
operations as the one shown in Figure 3.3, thus O5 is bound to a 2 × 4 diluter,
O6 to a 2 × 2 mixer, O7 to a 2 × 4 mixer and O12 and O13 to 2 × 2 diluters.
Then the priorities of the operations ready to be scheduled are computed as
follows: πO5

= πO6
= max(CDiluter2

O5
, CMixer1

O6
) + CMixer2

O7
= 4 + 3 = 7, πO12

= CDiluter3
O12

= 5, πO13
= CDiluter4

O13
= 5.

Accordingly, the LS algorithm will select O5 and will try and schedule its prede-
cessor input operations, O1 and O2 such that they finish executing at the current
time step. As there are available reservoirs on which O1 and O2 can be executed,
LS will schedule O5 and will call Placement to place Diluter2 on the biochip
array. The module Diluter1, which is currently executing at time t, divides
the free space into three overlapping rectangles Lrect = {Rect1 = (0, 0, 3, 8),
Rect2 = (0, 4, 8, 8), Rect3 = (7, 0, 8, 8)}, see Figure 5.4a (line 2 in Figure 5.3).
As rectangle Rect2 = (0, 4, 8, 8) is the only one sufficiently large to accommo-
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date the 2 × 4 module (line 4), Diluter2 will be placed at its bottom corner
(line 6 in Figure 5.3). Consequently, in line 7, the free space will be updated to
Lrect = {Rect1 = (0, 0, 3, 4), Rect2 = (6, 4, 8, 8), Rect3 = (7, 0, 8, 8)} as depicted
in Figure 5.4b.

After the scheduling and placement of O5, the next operation to be considered
for scheduling at time t is O6. Because of space fragmentation, no free rectangle
can accommodate the 2 × 2 mixer currently assigned to O6 and the operation
will have to be delayed until t + 4 (see Figure 3.3a), when the module denoted
by D1 is removed from the array.

Placement of Non-Reconfigurable Devices

The placement of a non-reconfigurable device (e.g., an optical detector) on the
microfluidic array is similar to that of a reconfigurable module. However, once
decided, the location of the device remains fixed throughout the execution of
the application. Therefore, our algorithm maintains a list of locations at which
non-reconfigurable operations of each type (e.g., detection operations) can be
performed, LnonReconf . These locations are established during the execution of
the placement algorithm. The size of the list is constrained by the maximum
number of devices of the given type that can be integrated on the chip, given
as an input during design specifications. Let us consider that at time t a non-
reconfigurable detection operation is ready to be scheduled. We try and place
the 3 × 3 detector at one of the locations in Ldetect. If no locations have
been established previously or if they are all occupied but we can still integrate
detectors on the array, we use the algorithm in Figure 5.3 to find a new detector
location. If a free rectangle that can accommodate the 3 × 3 module is found,
the operation is scheduled at time step t and the point corresponding to the
left bottom corner of the rectangle is added to Ldetect. Otherwise the detection
operation can not be scheduled at time t. Just as in the case of reconfigurable
modules, non-reconfigurable devices can not overlap with other modules placed
on the chip.

5.3 Tabu Search

Tabu Search [18] is a metaheuristic based on a neighborhood search technique
which uses design transformations (moves) applied to the current solution,
Ψcurrent, to generate a set of neighboring solutions, N , that can be further
explored by the algorithm. Our TS implementation performs two types of trans-
formations: i) rebinding moves and ii) priority swapping moves. A rebinding
move consists in the rebinding of a randomly chosen operation, Oi, currently
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executing on module Mi, to another module Mj . Such a move will take care
of the allocation, e.g., removing Mi and allocating Mj . A priority swapping
move consists in swapping the priorities of two randomly chosen operations in
the graph.

In order to efficiently perform the search, TS uses memory structures, main-
taining a history of the recent visited solutions (a “tabu” list). By labeling the
entries in the list as tabu (i.e., forbidden), the algorithm limits the possibility
of duplicating a previous neighborhood upon revisiting a solution.

However, in order not to prohibit attractive moves, an “aspiration criteria” may
be used, allowing tabu moves that result in solutions better than the currently
best known one. Moreover, in order to avoid getting stuck in a local optima, TS
uses “diversification”. This involves incorporating new elements that were not
previously included in the solution, in order to diversify the search space and
force the algorithm to look in previously unexplored areas.

Our algorithm uses two tabu lists, one for each type of move. These are con-
structed as attribute-based memory structures, containing the relevant modified
attributes. Hence, if an operation Oi is rebound to a module Mj as result of a
rebinding move, the change of the solution will be recorded in the corresponding
tabu list as a pair of the form (Oi,Mj) and if the priorities of two operations
Oi and Oj are swapped as part of the diversification process, the move will
be recorded as an entry of the form (Oi, Oj). Based on experiments, we have
decided to use priority swapping as a diversification move, only when the best
known solution does not improve for a defined number of iterations, numdiv,
determined experimentally.

The TS algorithm presented in Figure 5.5 takes as input the application graph G,
the biochip array C, the module library L and the initial allocation A◦, binding
B◦ and priorities Π◦ and returns the best implementation Ψbest found over a
number of iterations. TS starts from an initial solution Ψ◦ where each operation
is bound to a randomly chosen module and has a priority given according to the
bottom-level value of the corresponding node in the graph. The schedule S◦ and
placement P◦ for the initial solution are obtained by using the ScheduleAndPlace
function (line 1). Knowing the schedule S◦, the initial schedule length, δ◦G can
be determined (line 3). Two tabu lists, tabuListdev and tabuListprio are used for
recording the rebinding moves, respectively the priority swapping moves. Each
list has a given size, tabuSizedev and tabuSizeprio correspondingly, specifying
the maximum number of moves that can be recorded. Initially, the lists are
empty (lines 4–5). A variable numiter is used to keep track of the number of
iterations passed without the improvement of the best solution, Ψbest

G (line 6).
The algorithm is based on a number of iterations (lines 7–29 in Figure 5.5) during
which the aim is improving the overall best solution Ψbest

G . In each iteration, a set
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TabuSearch(G, C, L, A◦, B◦, Π◦)

1 < S◦,P◦ > = ScheduleAndPlace(G, C, A◦, B◦, Π◦)
2 Ψbest = Ψcurrent = Ψ◦ = < A◦,B◦,S◦,P◦ >
3 δbestG = δcurrentG = δ◦G = GetCompletionTime(S◦)
4 tabuListdev = ∅
5 tabuListprio = ∅
6 numiter = 0
7 while timeLimit not reached do
8 N = GenerateNeighborhood(Ψcurrent, L)
9 Ñ = SelectAllowedMoves(N)

10 (Oi,B(Oi)) = SelectBestMove(Ñ)
11 PerformBestMove(Ψcurrent, Oi,B(Oi))
12 RecordRebindMove(Oi, B(Oi), tabuListdev)
13 δcurrentG = GetCompletionTime(Scurrent)
14 if δcurrentG < δbestG then
15 Ψbest = Ψcurrent; δbestG = δcurrentG

16 else
17 numiter = numiter + 1
18 if numiter = numdiv then
19 (Oi, Oj) = SelectSwapMove(G,Πcurrent, tabuListprio)
20 PerformSwapMove(Ψcurrent, Oi, Oj)
21 RecordSwapMove(Oi, Oj , tabuListprio)
22 δcurrentG = GetCompletionTime(Scurrent)
23 if δcurrentG < δbestG then
24 Ψbest = Ψcurrent; δbestG = δcurrentG

25 end if
26 numiter = 0
27 end if
28 end if
29 end while
30 return Ψbest

Figure 5.5: Tabu Search algorithm for DMBs
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(a) Current solution (b) Rebind O5 to a 2 × 5 module

(c) Rebind O4 to a 1 × 3 module (d) Rebind O7 to a 1 × 3 module

Figure 5.6: Tabu Search neighborhood

of possible candidates N is obtained by applying moves to the current solution,
Ψcurrent (line 8). However, N might contain solutions that are disallowed by
TS. According to the aspiration criteria, a tabu move (Oi,Mj) ∈ tabuListdev
is only allowed if it leads to a solution better than the currently best known
one. Therefore, all the tabu moves resulting in solutions with schedule lengths
δcurrentG worse than the currently best one are removed from N and thus, the

set Ñ of allowed moves is created (line 9). The ScheduleAndPlace function
is used for determining the move (Oi,Mj) ∈ Ñ leading to the solution with

the shortest schedule length δcurrentG among all the moves in Ñ . The move
is selected and marked as tabu (lines 10–12). If the obtained solution has a
better schedule length that the currently known one, the best-so-far solution is
updated (lines 14–15). When the best known solution does not improve for a
given number of iterations numdiv a diversification move is considered (line 18),
forcing the search into unexplored areas of the search space. The move consists
in swapping the priorities of two randomly selected operations Oi and Oj , with
(Oi, Oj) /∈ TabuListprio. If the move results in a new best known solution,
Ψbest is updated to Ψcurrent (line 23). Finally, the variable numiter is reset to
0 (line 26).
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Let us use the mixing stage of the polymerase chain reaction (see Section 2.4.1
for details), and the module library in Table 3.2 to illustrate how TS works.
Consider the current solution as being the one represented by the schedule in
Figure 5.6a. The current tabu list tabuListdev, presented to the right, contains
the recently performed transformations. As all operations are mixing operations,
we will denote a module by its area, e.g. O1 is bound to a mixing module of
2 × 2 cells. Starting from this solution, TS uses rebinding moves to generate
the neighbor solutions (line 8 in Figure 5.5). We consider that the number of
elements in the neighborhood equals the number of operations in the application
graph G(V,E). Out of the possible neighboring solutions we present three in
Figure 5.6b–d. The solution in Figure 5.6b is tabu and the one in Figure 5.6c
is worse than the current solution (which is the best so far). In the solution
in Figure 5.6d O7 is rebound to a new, 1 × 3 mixer, which results in a non-
tabu solution better than the current one. However, TS will select the move in
Figure 5.6b, that would change the 1 × 3 mixer in Figure 5.6a for O5 to a 2 × 5
mixer module. Although the move (O5, 2 × 5) is marked as being tabu, it leads
to a better result than the currently best known one and thus, according to the
aspiration criteria, it is accepted. The new solution is evaluated by using the
unified scheduling and placement algorithm presented before which determines
the completion time δG of the application graph G. The algorithm terminates
when a given time-limit for performing the search has been reached.

5.4 Experimental Evaluation

In order to evaluate our proposed approach we have implemented the Tabu
Search-based algorithm1 in Java (JDK 1.6), running on SunFire v440 computers
with UltraSPARC IIIi CPUs at 1,062 GHz and 8 GB of RAM.

In our first set of experiments we were interested to determine the quality of
our TS approach. Using the ILP formulation proposed in Section 3.2, we were
able to obtain the optimal solutions for two small real-life applications: the
in-vitro diagnostics on human physiological fluids, IVD (see Section 2.4.2) and
the mixing stage of a polymerase chain reaction, PCR/M, (see Section 2.4.1).
Table 5.1 presents the schedule lengths δTS and δILP obtained for the TS ap-
proach, respectively ILP, for the PCR/M and IVD examples, using the module
library in Table 3.2. For the comparison we have considered three areas, from
Area1 (largest) to Area3 (smallest). As it can be seen, our Tabu Search-based
approach is capable of obtaining the optimal solutions for both applications
within 1 minute CPU time limit.

1Values for TS parameters determined experimentally: nodiv=7, length of the tabu lists=8.
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Application Area δILP δTS TS exec.time
8 × 9 13 s 13 s 1 min

IVD 7 × 9 13 s 13 s 1 min
7 × 8 14 s 14 s 1 min
8 × 9 9 s 9 s 1 min

PCR/M 7 × 9 10 s 10 s 1 min
7 × 7 14 s 14 s 1 min

Table 5.1: Comparison of ILP and TS approaches

In our second set of experiments we measured the quality of the TS implemen-
tation, that is, how consistently it produces good quality solutions. Hence, we
used our TS-based approach for synthesizing a large real-life application im-
plementing a colorimetric protein assay (see Section 2.4.3). The module library
used for these experiments is shown in Figure 3.2. Regarding non-reconfigurable
constraints, we have considered that at most four optical detectors can be inte-
grated on the chip, together with one reservoir for sample liquid, two for buffer
and two for reagent liquid.

Table 5.2 presents the results obtained by synthesizing the protein application on
three progressively smaller microfluidic arrays. We present the best solution (in
terms of schedule length), the average and the standard deviation obtained after
50 runs of the TS algorithm. Let us first concentrate on the results obtained for
the case when we have used a time limit of 60 minutes for the TS. As we can see,
the standard deviation is quite small, which indicates that TS consistently finds
solutions which are very close to the best solution found over the 50 runs, which
will explore differently the solution space, resulting thus in different solutions.

Area Time limit Best Average Standard dev.
60 min 182 189.88 2.90

13 × 13 10 min 182 192.00 3.64
1 min 191 199.20 4.70
60 min 182 190.86 3.20

12 × 12 10 min 185 197.73 6.50
1 min 193 212.62 10.97
60 min 184 192.50 3.78

11 × 12 10 min 194 211.72 14.37
1 min 226 252.19 15.76

Table 5.2: Results for the colorimetric protein assay
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Operation Area (cells) Time (s)
Mix 2 × 4 3
Mix 2 × 3 6
Mix 2 × 2 10
Mix 1 × 4 5

Dilution 2 × 4 5
Dilution 2 × 3 8
Dilution 2 × 2 12
Dilution 1 × 4 7

Dispensing – 7
Detection 1 × 1 30

Table 5.3: Module library for the colorimetric protein assay

Moreover, the quality of the solutions does not degrade significantly if we reduce
the time limit from 60 minutes to 10 minutes and 1 minute. This is important,
since we envision using TS for architecture exploration, where several biochip
architectures have to be quickly evaluated in the early design phases (consider-
ing not only different areas, but also different placement of non-reconfigurable
resources such as reservoirs or detectors).

In the third set of experiments we have compared our TS-approach with the cur-
rent state of art for the architectural-level synthesis and placement of DMBs,
the T-Tree topological representation [74]. Note that both implementations con-
sider the synthesis of all types of basic microfluidic operations (input, detection,
mixing, dilution). We use the same design specifications (resource constraints)
as in [74] for the synthesis of two bioassays: the colorimetric protein assay and
the in-vitro diagnosis. The module libraries used for the comparison are shown
in Tables 5.3 and 5.4. Just like in [74] we assume that for the colorimetric
protein assay at most four optical detectors can be integrated on the chip, to-
gether with one reservoir for sample liquid, two for buffer and two for reagent
liquid. For IVD four samples (S1 = plasma, S2 = serum, S3 = urine and S4 =
saliva) and four reagents (R1 = glucose, R2 = lactate, R3 = pyruvate and R4

= glutamate) are considered.

Three tests (IV D1, IV D2 and IV D3) are performed, using a different set of
samples and reagents, as shown in the first column of Table 5.5. We follow the
specifications in [74] and assume that for performing IVD there is one reservoir
for each type of samples and reagents and one optical detector for each enzy-
matic assay. In order to provide a fair comparison, we also consider only one
segregation cell between adjacent modules. As [74] considers the area of the
biochip as a parameter in the optimization process, we fix the dimensions of
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Operation Area (cells) Time (s)
Mix (plasma) 2 × 4 3
Mix (plasma) 2 × 3 6
Mix (plasma) 2 × 2 10
Mix (plasma) 1 × 4 5
Mix (serum) 2 × 4 2
Mix (serum) 2 × 3 4
Mix (serum) 2 × 2 6
Mix (serum) 1 × 4 3
Mix (urine) 2 × 4 3
Mix (urine) 2 × 3 5
Mix (urine) 2 × 2 8
Mix (urine) 1 × 4 4
Mix (saliva) 2 × 4 4
Mix (saliva) 2 × 3 8
Mix (saliva) 2 × 2 12
Mix (saliva) 1 × 4 6
Dispensing – 2

Detection glucose 1 × 1 10
Detection lactate 1 × 1 8
Detection pyruvate 1 × 1 12
Detection glutamate 1 × 1 10

Table 5.4: Module library for in-vitro diagnosis
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Application Area δTS δT−Tree Execution time limit
IV D1 6 × 9 58 67 9.12

samples: S1, S2, S3, S4 6 × 4 92 98 13.22
reagents: R1, R2, R3, R4 7 × 4 72 96 10.17

IV D2 5 × 4 64 74 7
samples: S1, S2, S3 6 × 4 52 62 8.28

reagents: R1, R2, R3, R4 5 × 4 65 73 10.14
IV D3 4 × 4 51 60 3.63

samples: S1, S2, S3 4 × 4 52 61 4.78
reagents: R1, R2, R3 4 × 4 60 64 1.72

9 × 9 187 241 78.03
Protein assay 10 × 9 187 211 57.27

10 × 10 187 221 68.32
9 × 9 185 240 65.21

Table 5.5: Comparison of TS and T-Tree approaches

the microfluidic array and the CPU time to the ones reported by them. Ta-
ble 5.5 presents the comparison between the TS-based approach and the T-Tree
representation for the colorimetric protein and IVD assays. Similar to the exper-
imental setup in [74], the results reported represent the best completion times
obtained out of 50 runs for each application. As it can be seen, our TS approach
can obtain results up to 22.91% better than the T-Tree representation, for the
same design specifications.



Chapter 6

Module-Based Synthesis with

Reconfigurable Operation

Execution

The algorithms proposed so far for the synthesis problem of digital microflu-
idic biochips have assumed that reconfigurable operations are performed inside
rectangular modules whose location and shape remain fixed throughout the
execution of operations. However, as discussed in Section 2.2, reconfigurable
operations can be performed anywhere on the array, by simply routing the cor-
responding droplets on a sequence of electrodes. In this chapter we propose two
models for operation execution inside virtual devices, which take into consid-
eration the reconfigurability of microfluidic operations. These models aim at
reducing the fragmentation of the free space on the microfluidic array during
the placement step of the synthesis process.

6.1 Synthesis with Dynamic Virtual Devices

In the first model we consider that reconfigurable devices can be moved during
operation execution, as shown in the following motivational example.



62 Module-Based Synthesis with Reconfigurable Operation Execution

6.1.1 Motivational Example

Let us consider the unified architectural-level synthesis and placement example
presented in Chapter 3. The schedule shown in Figure 3.3a is optimal for the
case of fixed virtual modules. However, this schedule can be further improved
by taking advantage of the property of dynamic reconfiguration of the digital
biochip. Consider the placement in Figure 3.3b. Even though the number of
free cells on the microfluidic array at time t is higher than the number of cells
in Mixer1, the fragmentation of the space makes the placement of Mixer1
impossible. Hence, the operation has to wait until t + 4, in Figure 3.3c, when
Diluter1 and Diluter2 finish executing, and there are enough free adjacent cells
for accommodating the 2 × 2 mixing module.

However, this delay can be avoided by “shifting” Diluter1 to another location
such that the space fragmentation is minimized. For example, by moving the
module three cells to the left as in Figure 6.1b, we can place Mixer1 at time
t, obtaining the improved schedule in Figure 6.1a. Shifting is done by chang-
ing the activation sequence of the electrodes, such that the droplet is routed to
the new position, where it continues moving according to the movement pat-
tern. The moving overhead is equal to the routing time to the new destination.
We assume that the time required to route the droplet one cell is 0.01 s (see
Section 2.2.1). Under this assumption the routing time required for shifting
Diluter1 is 3 × 0.01 s. As moving a module requires establishing the route that
the droplet is taking between the two destinations, the moving overhead will
add to the complexity of the post-synthesis routing step.

Although routing times are an order of magnitude faster than operation times,
complex routes will lead to overhead. For example, for the colorimetric protein

(a) Dynamic schedule (b) Placement at t (c) t + 4

Figure 6.1: Dynamic placement
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assay case study (see Figure 2.10), for which we have obtained an application
completion time of 179 s on a 13 × 13 array, without considering routing (see
Table 6.1), the number of cells reported in [73] as being used for routing is 939.
Without considering contention for the routes, this means a routing overhead
of 9.39 s. This overhead is for the case when modules are fixed. However, if
the location of the modules can be changed unconstrained in every time step,
the routing overhead may increase too much. Therefore, constraints have to be
imposed on the dynamic placement in order to reduce the routing overhead.

In our placement approach presented in Section 6.1.2, we place the following
constraints in order to limit the amount of additional routing caused by dynamic
reconfiguration: i) moving a module to a new location is allowed only if there
is a route on which the droplet can be transported during the shifting of the
device; ii) moves are performed only if defragmentation is required, in order to
accommodate a new module; and iii) the routing overhead performed in order
to accommodate one device should not exceed a given threshold, Overheadmax.

6.1.2 Algorithm for Synthesis with Dynamic Devices

We extend the Tabu Search-based algorithm proposed in Chapter 5 to consider
that modules are allowed to move during operation execution. The new place-
ment algorithm, which considers the dynamic character of reconfigurable devices
is presented in Figure 6.2. The DynamicPlacement algorithm takes as input the
biochip array consisting of the set of cells C, the current placement P and the
module Mi that has to be placed.

Let us consider the example given in Section 6.1.1 for describing the changes
made to the placement algorithm in Figure 5.3. As shown in Figure 6.3a, al-
though O6 is ready to be executed at time t, the space fragmentation on the
microfluidic array makes the placement of the 2 × 2 mixer bound to O6 impos-
sible. Therefore, in the case of fixed modules the operation has to be delayed
until t+ 4, as shown in Figure 3.3c.

However, when no suitable rectangle can be found for accommodating a device,
our modified placement algorithm (presented in Figure 6.2) will try to decrease
the space fragmentation on the microfluidic array by moving the modules during
their operation (lines 8–28).

We use a greedy approach to decide on which modules to move, until there is
space for the current module Mi or a routing time limit is reached. In each
iteration of the while loop (lines 12–23) we perform the following steps:
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DynamicPlacement(C, P, Mi)

1 // construct list of empty rectangles
2 Lrect = ConstructRectList(C)
3 // search for Ri ∈ Lrect that best fits Mi

4 Ri = SelectRectangle(Lrect, Mi)
5 if ∃ Ri then
6 placed = UpdatePlacement(P, Ri, Mi)
7 UpdateFreeSpace(Lrect)
8 else
9 RoutingOverhead = 0

10 MovesList = ∅
11 // dynamically reconfigure already placed modules
12 while ∄ Ri ∧ RoutingOverhead ≤ Overheadmax do
13 Ri = EvaluatePossibleMoves(C,P, Lrect,Mi)
14 if ∃Ri then
15 placed = UpdatePlacement(P, Ri, Mi)
16 UpdateFreeSpace(Lrect)
17 else
18 BestMove = SelectBestMove(C, P, Lrect)
19 PerformMove(BestMove, P, Lrect)
20 RecordMove(MovesList, BestMove)
21 RoutingOverhead = RoutingOverhead + DeterminePerformedRout-

ing(BestMove)
22 end if
23 end while
24 // no placement has been found, restore the original P
25 if ∄Ri then
26 UndoMoves(P, Lrect, MovesList)
27 end if
28 end if
29 return placed

Figure 6.2: Dynamic placement algorithm for DMBs
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(a) Initial placement (b) Dynamic reconfigurability

Figure 6.3: Dynamic placement example

1. for each module Mj present on the microfluidic array we evaluate the free
space obtained by moving the module in the possible directions (line 13).
If one of these moves leads to enough free adjacent space for accommodat-
ing the module Mi then the placement is updated by moving Mj in the
corresponding direction and placing Mi on the array (lines 14–16).

2. if module Mi has not been placed, the best move evaluated in step 1 is
performed (line 19), recorded in a list of moves MovesList (line 20) and
the algorithm returns to step 1. The best move during an iteration is
considered the one which brings two rectangles as close as possible (min-
imizing the Manhattan distance1 between the upper left corners) and at
the same time increases the number of free adjacent cells that would be
obtained by merging them (line 18). As moving a device requires routing
the droplet from the initial position to another one on the array, we place
a constraint on the increase in routing time due to moving devices inside
the while loop (lines 12–23), of one time step, i.e., Overheadmax is one
second. Therefore, after each move, the variable RoutingOverhead, cap-
turing the extra routing required for moving the droplet between the two
locations is updated (line 21). The routing distance is calculated based on
the Manhattan distance between the left top corners of the old position
and the new position of the module considered for moving. In order to
have an accurate approximation of the routing overhead, we consider that
a module can be moved only if there are no other modules blocking the

1The Manhattan distance between two points with the coordinates (x1, y1) and (x2, y2),
respectively is defined as dM = |x1 − x2|+ |y1 − y2|.
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path between the two locations. If not enough free space is thus created
for Mi, we restore the previous placement (lines 25–27).

For example, in Figure 6.3a we consider all the possible moves that can be
performed on the currently placed modules, Diluter1 and Diluter2 ∈ P. As we
can see, Diluter1 can be moved at most one cell to the right and three to the
left, while Diluter2 can be moved at most two cells to the right. The algorithm
will choose to shift Diluter1 three cells to the left, which is the best move: after
the move, the Manhattan distance between Rect1 and Rect2 is 6 and the two
rectangles contain 24 cells, corresponding to a cost of 30. The existing free space
will be updated to Lrect = {Rect1 = (4, 0, 8, 4), Rect2 = (6, 0, 8, 8)}. As there
are now enough adjacent cells, Mixer1 will be placed on the microfluidic array
at the bottom of Rect1 and the placement algorithm will terminate.

6.2 Synthesis with Non-Rectangular Devices

In the model presented in Section 6.1 we decreased the space fragmentation
on the microfluidic array by dynamically moving the modules while operations
are executing. In the second model, we try to further exploit the dynamic
reconfigurability of digital biochips by considering changing the shape of the
device to which an operation is bound during its execution. As devices are
formed by grouping adjacent electrodes, we consider that they can change their
size and they can have any shapes, not necessarily rectangular.

Let us consider the example in Figure 6.4a, with the module library shown in
Figure 2.1. We assume that 2 s after the mixing operation started executing
on the 2 × 4 virtual module, with the droplet being on the cell denoted by
c1, we decide to change the position at which the operation is performed and
the number of electrodes used for mixing. In our example, the droplet will be
routed to the nearest position belonging to the new group of cells, c2, where
it will continue executing. As the operation was executed for only 2 s out of
the 2.9 s required for completion on the 2 × 4 module (see Table 2.1), only
68.96% of the mixing was performed (see Section 2.2.1 on how this percentage
is calculated). Next, the operation will continue to execute on the new 2 × 2
group of cells, until the mixing is complete. Considering the completion time
of the mixing operation on a 2 × 2 module of 9.95 s as shown in Table 2.1,
the remaining 31.04% of the mixing is obtained by routing the droplet inside
the 2 × 2 module for 3.08 s. In the end, the overall completion time for the
operation is 5.08 s.
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(a) Mixing operation (b) L-shaped mixer (c) Movement pattern

Figure 6.4: Execution of a mixing operation

6.2.1 Characterizing Non-Rectangular Modules

Table 2.1 gives completion times for performing reconfigurable operations on
various areas. The experiments have considered a limited set of devices, of rect-
angular shape. However, reconfigurable operations can be executed by routing
the droplet on any route, as shown in Figure 6.4b, where a mixing operation is
executed on a “L-shaped” virtual module. Since the virtual modules can con-
sist of a varying number of electrodes, arranged in any form, characterizing all
devices through experiments is time consuming. Moreover, the completion time
of an operation is also influenced by the route taken by the droplet, inside the
module, during the execution of the operation. Therefore, we use the analyt-
ical method proposed in Section 2.2.1 to determine the completion time of an
operation on a module of non-rectangular shape.

For example, for the L-shaped module in Figure 6.4c, routing the droplet once
according to the mixing pattern shown by the arrows leads to 8.72% of mixing.
Therefore, in order to complete the mixing operation on the L-shaped module,
the droplet will be circularly routed on the showned path 11.46 times, leading
to a total time of 2.17 s.

6.2.2 Motivational example

Let us consider the graph shown in Figure 6.5. We would like to implement
the operations on the 9 × 9 biochip in Figure 6.6b. We consider the current
time as being t. We consider that the input operations are already assigned
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Figure 6.5: Application graph

to the corresponding ports. Thus, O1 is assigned to the input port B, O2 to
S2, O4 to S1, O5 to R1, O6 to S2, O7 to R2. For simplicity reasons we ignore
inputs in this example. However, for the mixing operations (O8, O9 and O10)
and the dilution operation (O3) our synthesis approach will have to allocate the
appropriate modules, bind operations to them and perform the placement and
scheduling.

Let us assume that the available module library is the one captured by Table 2.1.
We consider the same execution time for mixing and dilution operations. We
have to select modules from the library while trying to minimize the application
completion time and place them on the 9 × 9 chip. A solution to the problem
is presented in Figure 6.6b–d, where the following modules are used: one 2 × 2
mixer (Mixer1), one 2 × 3 mixer (Mixer2), one 2 × 4 mixer (Mixer3) and one
1 × 4 diluter (Diluter1).

Considering the graph in Figure 6.5 with the allocation presented above, Fig-
ure 6.6a presents the optimal schedule in the case of static rectangular virtual
modules whose locations and shapes remain the same throughout their opera-
tion.

Although the schedule presented in Figure 6.6a is optimal for the given allocation
and binding, just like in Section 6.1 it can be further improved by reducing
the space fragmentation on the microfluidic array. Consider the placement in
Figure 6.6c. In order to avoid postponing the execution of O10 until t + 9.95,
we can increase the number of adjacent free cells on the array by changing the
location and the shape of the module Mixer1. For example, by re-assigning
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(a) Schedule (b) Placement at t

(c) t+4.6 (d) t+9.95

Figure 6.6: Implementation example

the operation to the “L-shaped” device shown in Figure 6.7c and moving the
droplet to the new location, we can place Mixer3 at time t+4.6, obtaining the
schedule in Figure 6.7a. Shifting is done by changing the activation sequence
of the electrodes, such that the droplet is routed to the new position, where it
continues moving according to the movement pattern. Considering that at time
t+4.6 the mixing operation still had 5.35 s to execute on the 2 × 2 module out
of the total 9.95 s, the rest 53.76% of mixing will be executed on the “L-shaped”
mixer. Using the method proposed in Section 6.2.1, the completion time of an
operation on the “L-shaped” module is 2.89 s, thus the mixing will complete at
time t+ 6.15.
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(a) Schedule (b) Placement at t (c) Dynamic reconfigurability at
t+4.6

Figure 6.7: Motivational example

6.2.3 Algorithm for Non-Rectangular Modules

Let us use Figure 6.8 to describe the changes to the placement algorithm in
Section 5.2 if we consider that modules can dynamically change their shape and
location during the operation execution.

Considering the placement in Figure 6.8a, we are trying to decrease the space
fragmentation on the array in order to place at the current time the 2 × 4 mod-
ule Mixer3, bound to operation O10 which is ready for execution. As shown in
the figure, Mixer1 can be moved at most three cells to the left and two to the
right while Mixer2 can be moved at most four cells to the right and one up. In
order to choose the best move we evaluate all moves that can be performed in
a greedy fashion: i) we check if the new placement obtained after performing
one move while maintaining the initial binding can accommodate Mixer3; ii) if
not, we characterize the free space existent on the microfluidic array after the
move, considered as a device, and change the shape of the moved device to the
new created one; iii) if no space could be created for accommodating Mixer3
we perform the best move possible, the one minimizing the fragmentation of
the space. The moving and, if necessary, re-assigning of operations to modules
continues until the routing constraint is violated (the routing overhead is ex-
ceeded). If not enough adjacent cells have been obtained for placing Mi, the
initial placement is restored.

In order to be able to accommodate on the microfluidic array modules of any
possible shape, we allow the search engine to group a set of overlapping free
rectangles in the case of non-rectangular devices. For example, while evaluating
the moves that can be performed on Mixer1 in Figure 6.8a, the algorithm moves
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(a) Placing Mixer2 (b) Dynamic reconfigurability

Figure 6.8: Dynamic placement example

Mixer1 two cells to the right. As the move is not sufficient for accommodating
Mixer3, we change the module on which Mixer1 is executing. By grouping
the free space in the overlapping rectangles Rect2 = (5, 4, 9, 9) and Rect3 =
(7, 0, 9, 9) we create a new “L-shaped” device, on whichMixer1 can be executed.
We assume that the completion time for non-rectangular modules, such as the
“L-shape”, are computed during the synthesis process, as shown in Section 6.2.1.
Once characterized, the devices are added to the given module library for later
use. After the re-assignment of Mixer1 to the “L-shape”, the free space consists
of two rectangles, Rect1 = (0, 0, 6, 4) and Rect2 = (0, 8, 5, 9). As there are now
enough adjacent cells in Rect1, Mixer3 will be placed on the microfluidic array
and the placement algorithm will terminate.

Similar to Section 6.1, we limit the routing overhead performed in order to
accommodate a device to a given threshold, Overheadmax.

6.3 Experimental Evaluation

In this section we present the benefits brought by exploiting the dynamic re-
configurability of operation execution during the synthesis process of DMBs.
We have modified the Tabu Search-based algorithm presented in Chapter 5 to
consider:
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Operation Area (cells) Time (s)

Mixing 2 × 5 2
Mixing 2 × 4 3
Mixing 1 × 3 5
Mixing 3 × 3 7
Mixing 2 × 2 10
Dilution 2 × 5 4
Dilution 2 × 4 5
Dilution 1 × 3 7
Dilution 3 × 3 10
Dilution 2 × 2 12

Dispensing – 7
Detection 1 × 1 30

(a) Module library for the experimental eval-
uation

Operation Label Area (cells) Time (s)

Mixing L1 4 × 2 × 1 1.92
Mixing L2 5 × 2 × 1 1.78
Mixing T 4 × 3 × 1 2.14
Mixing 1 × 5 1.60
Mixing 1 × 6 1.53
Dilution L1 4 × 2 × 1 3.78
Dilution L2 5 × 2 × 1 3.57
Dilution T 4 × 3 × 1 4.10
Dilution 1 × 5 3.22
Dilution 1 × 6 3.12

(b) Library of characterized modules

Figure 6.9: Experimental evaluation

• changing the location of modules during operation execution. This is the
approach presented in Section 6.1. We denote the corresponding modified
Tabu Search implementation by TS+.

• changing the location and shape of modules during their execution, as
presented in Section 6.2. The completion time of operations on modules
of irregular shapes was computed using the analytical approach described
in 2.2.1. We denote the implementation of this approach by TS++.

In order to evaluate the impact of our approaches on the completion time of
applications, we use the colorimetric protein assay (see Section 2.4.3) and ten
synthetic benchmarks. The module library used for all the experiments is shown
in Figure 6.9a. For simplicity, we have considered in the implementation of
TS++ that the characterization of new modules is done offline. For example,
Figure 6.9b contains a set of devices of different shapes, characterized from
the given module library in Figure 6.9a. The non-rectangular devices (having
“L” and “T” shapes) are described by the lengths of the two segments and
the thickness. During the synthesis process, the operations can be re-bound
to one of the other devices in Figure 6.9a or to a new device characterized in
Figure 6.9b.

For the first set of experiments we were interested in the gains that can be
obtained by allowing the dynamic reconfiguration of the devices during their
execution. Table 6.1 presents the comparison between the TS implementation
for static modules (TS), the one for moving modules (TS+) and the one for
non-rectangular modules (TS++) for the protein application (see Section 2.4.3).



6.3 Experimental Evaluation 73

As we can see, taking into account the dynamic reconfigurability property of
the biochip, significant improvements can be gained in terms of schedule length,
allowing us to use smaller areas and thus reduce costs. For example, in the most
constrained case, a 11 × 12 array, using the TS++ approach, we have obtained
an improvement of 10.73% in the average completion time compared with the
static modules implementation TS , for the same limit of time, 1 minute.

In a second set of experiments we have evaluated our proposed method on
ten synthetic applications. Due to the lack of biochemical application bench-
marks, we have generated a set of synthetic graphs using Task Graphs For Free
(TGFF) [9]. We have manually modified the graphs in order to capture the
characteristics of biochemical applications. The applications are composed of
10 up to 100 operations and the results in Tables 6.2 and 6.3 show the best and
the average completion time obtained out of 50 runs of TS and TS+, respectively
TS and TS++ using a time limit of 10 minutes.

For each synthetic application we have considered three areas, from Area1
(largest) to Area3 (smallest). The results confirm the conclusion from Table 6.1:
as the area decreases, considering dynamic reconfiguration becomes more im-
portant, and leads to significant improvements. For example, for the synthetic
application with 50 operations, in the most constrained case, a 9 × 9 array,
using the TS+ implementation we have obtained an improvement of 11.18%
in the average completion time compared with TS. Moreover, allowing devices
to change their shape during execution further increases this improvement to
24.52%.
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Area Time limit Best Average Standard dev.
TS++ TS+ TS TS++ TS+ TS TS++ TS+ TS

60 min 178.49 179 182 182.03 187.58 189.88 2.53 2.68 2.90
13 × 13 10 min 178.49 179 182 188.42 187.89 192.00 4.53 3.55 3.64

1 min 187.49 185 191 194.09 195.13 199.20 4.07 4.27 4.70
60 min 178.49 183 182 183.38 189.76 190.86 3.09 3.01 3.20

12 × 12 10 min 178.49 185 185 189.99 191.84 197.73 4.41 2.87 6.50
1 min 190.50 187 193 195.13 206.80 212.62 8.97 7.74 10.97
60 min 178.49 182 184 189.18 191.48 192.50 5.50 3.63 3.78

11 × 12 10 min 178.49 186 194 193.85 200.40 211.72 4.90 10.20 14.37
1 min 191.50 204 226 225.13 232.80 252.19 9.27 11.34 15.76

Table 6.1: Comparison between TS++, TS+ and TS for the colorimetric protein assay
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Nodes Area1 Best1 Average1 Area2 Best2 Average2 Area3 Best3 Average3
TS+ TS TS+ TS TS+ TS TS+ TS TS+ TS TS+ TS

10 9×7 20 20 21.94 24.00 7×8 19 20 22.56 25.19 8×6 27 27 29.12 32.58

20 8×7 55 55 55.06 55.16 7×7 58 58 58.53 58.61 6×7 61 67 62.07 67.33

30 10×11 39 41 52.23 56.00 10×10 41 41 55.35 60.78 9×11 46 54 59.60 66.52

40 10×11 56 58 63.82 68.58 10×10 56 58 69.48 76.50 9×10 66 67 76.92 86.37

50 10×10 103 104 107.24 117.78 8×11 111 112 123.70 132.44 9×9 109 119 127.50 143.56

60 11×12 107 110 111.24 113.50 10×11 109 112 112.38 115.40 9×10 112 118 117.94 125.58

70 12×12 121 121 127.69 131.87 11×12 122 123 129.72 137.66 10×11 129 136 143.44 159.72

80 12×12 151 154 159.40 161.60 11×11 165 165 186.54 192.86 10×11 165 168 196.60 210.90

90 15×15 120 120 127.64 128.02 14×14 120 127 131.96 135.68 13×13 133 142 153.86 164.20

100 15×15 163 163 175.04 178.36 14×14 161 170 175.66 179.90 13×13 170 175 175.42 183.84

Table 6.2: Comparison between TS+ and TS for synthetic benchmarks
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Nodes Area1 Best1 (s) Average1 (s) Area2 Best2 (s) Average2 (s) Area3 Best3 (s) Average3 (s)
TS++ TS TS++ TS TS++ TS TS++ TS TS++ TS TS++ TS

10 9 × 7 15.10 20 20.23 24.00 7 × 8 16.19 20 21.39 25.19 8 × 6 24.20 27 28.60 32.58

20 8 × 7 51.82 55 54.37 55.16 7 × 7 54.12 58 55.72 58.61 6 × 7 60.48 67 63.86 67.33

30 10 × 11 37.20 41 46.47 56.00 10 × 10 37.30 41 53.93 60.78 9 × 11 44.49 54 56.10 66.52

40 10 × 11 49.49 58 53.55 68.58 10 × 10 53.59 58 58.81 76.50 9 × 10 54.59 67 66.25 86.37

50 10 × 10 97.89 104 101.54 117.78 8 × 11 98.97 112 107.85 132.44 9 × 9 99.69 119 108.35 143.56

60 11 × 12 106.69 110 111.56 113.50 10 × 11 106.69 112 111.84 115.40 9 × 10 112.09 118 117.77 125.58

70 12 × 12 119.99 121 123.01 131.87 11 × 12 120.09 123 125.09 137.66 10 × 11 123.39 136 143.43 159.72

80 12 × 12 144.39 154 146.80 161.60 11 × 11 153.12 165 176.23 192.86 10 × 11 155.79 168 187.72 210.90

90 15 × 15 114.79 120 127.72 128.02 14 × 14 120.01 127 129.67 135.68 13 × 13 137.29 142 149.76 164.20

100 15 × 15 157.59 163 165.29 178.36 14 × 14 159.49 170 165.81 179.90 13 × 13 159.69 175 166.68 183.84

Table 6.3: Comparison between TS++ and TS for synthetic benchmarks



Chapter 7

Module-Based Synthesis with

Droplet-Aware Operation

Execution

So far researchers have assumed that during operation execution in module-
based synthesis the droplet repeatedly follows the same pattern inside the vir-
tual module, leading to an operation completion time determined through ex-
periments. The actual position of the droplet inside the virtual device has been
ignored, considering that all the electrodes forming the device are occupied
throughout the operation execution. In order to avoid the accidental merging
of droplets, it was considered that a device is surrounded by a 1-cell segregation
area (see Figure 7.1a).

In this chapter we consider a droplet-aware execution of microfluidic operations,
which means that we know the exact position of droplets inside the modules
at each time step, and we can control them to avoid accidental merging, if
necessary. This allows us to utilize better the chip area, since no segregation
cells are needed to separate the modules, and improve the routing step, since
now the routes can cross over modules, if needed. Another advantage of droplet-
aware operation execution, is that it allows the partial overlapping of modules,
which can increase parallelism. However, in this chapter we do not consider
module overlapping, which is left for future work.
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(a) Black-box modules (b) Droplet-aware modules (c) Routing with black-box modules

Figure 7.1: Reconfigurable operation execution

Segregation cells have been used so far for ensuring the fluidic constraints during
module-based synthesis. However, these cells can be eliminated if we take into
account the position of droplets inside modules during operation execution. Let
us consider the two mixers in Figure 7.1a. Each mixer is composed of a 1 × 4
functional area, surrounded by segregation cells to avoid accidental merging. We
eliminate the segregation area and consider that the corresponding cells become
part of the virtual device (e.g., Mixer1 transforms from a 1 × 4 to a 3 × 6
device). We can prevent the accidental merging of the droplets by knowing
their locations inside the devices at any time step. For example, considering
the initial positions of the two droplets as shown in Figure 7.1b, the mixing
operations can be performed by repeatedly routing the droplets according to
the movement patterns described by the arrows. The droplets are never too
close to each other during execution, so the fluidic constraints are enforced.
Such a synchronization of droplets to avoid accidental merging is not always
possible.

However, since we know the positions of the droplets we can decide to stop
a droplet or change its movement pattern inside a module, to enforce fluidic
constraints.

Knowing the locations of droplets inside modules can also be an advantage
during the post-synthesis routing step. Let us consider that during the routing
step a droplet d must be routed from the cell denoted to c1 to the cell denoted by
c2 (see Figure 7.1c). The post-synthesis routing algorithms proposed so far have
considered devices placed on the chip as obstacles in defining the routes between
two modules or between modules and reservoirs, and that the initial placement
has to be adjusted in order to introduce the three-cell width paths necessary for
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routing, as shown in Figure 7.1c. However, droplets can be routed through the
functional area of a module, as long as accidental merging is avoided. Let us
assume that at time t the droplets inside the mixers are positioned as shown in
Figure 7.1b and are moved according to the pattern shown by the arrows in the
mixers. Then droplet d can be routed from the start cell c1 to the destination cell
c2 on the shortest route possible (shown by the arrow between c1 and c2), using
electrodes belonging to Mixer1, as long as we ensure the fluidic constraints.
For example, in order to avoid the accidental merging inside Mixer1 we can
stop the mixer droplet for four time steps on its current position (we mark the
stopping place by an “X” on the corresponding electrode). This will allow the
routed droplet d to be transported on its optimal path to the electrode denoted
by c2. Due to the fact that the droplets in Mixer1 and Mixer2 are no longer
synchronized, we can not continue moving the droplet in Mixer2 according to
its original movement pattern, as this would result in an accidental merging
with the stopped mixing droplet in Mixer1. Thus, in order to enforce fluidic
constraints, we can deviate the movement pattern for the droplet in Mixer2, as
shown with dashed arrows in Figure 7.1b.

Changing this movement will result in an irregular pattern, and lead to non-
standard operation completion times (i.e., we cannot use numbers such as the
ones in Table 2.1, which assume a certain fixed movement pattern). Hence,
we use instead the execution time calculation method proposed by us in Sec-
tion 2.2.1 to compute the completion time of an operation on a droplet-aware
device.

The analytical method in Section 2.2.1 takes into account the exact movement
pattern of a droplet inside a device to give a safe conservative estimate of the
operation completion time. We use the routing approach presented in Chapter 8
to decide the initial location of droplets inside modules.

7.1 Motivational example

Let us consider the graph shown in Figure 7.2b. We would like to implement
the operations on a 8 × 8 biochip shown in Figure 7.2a. We assume that the
locations of reservoirs have been decided during the fabrication of the chip and
are as shown in Figure 7.2a. We need to assign each input operation to a
reservoir of the same type, e.g., O2 can only be assigned to one of the buffer
reservoirs B1 and B2. Let us consider that the input operations are assigned to
the input ports as follows: O1 to the input port S1, O2 to B1, O3 to S2, O4 to
R1, O8 to S3, O9 to B1, O10 to R2 and O11 to B2.
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(a) Microfluidic array (b) Application graph

Figure 7.2: Microfluidic array and application graph

Let us assume that the available module library is the one captured by Table 2.1.
We consider the same execution time for mixing and dilution operations. We
have to select modules from the library while trying to minimize the application
completion time and place them on the 8 × 8 chip. We ignore the position of
droplets inside modules, and we wrap the modules in segregation cells.

One solution to the problem when considering black-box operation execution is
presented in Figure 7.3, where the following modules are used: one 2 × 4 mixer
(4 × 6 with segregation area), one 2 × 4 diluter (4 × 6 with segregation area),
one 1 × 4 mixer (3 × 6 with segregation area) and two 2 × 3 diluters (4 × 5
with segregation area). The resulted schedule for this allocation is shown in
Figure 7.3a.

Considering the graph in Figure 7.2b and the allocation presented above, Fig-
ure 7.3a presents the optimal schedule in the case when do not consider the
position of droplets inside the virtual modules. We consider that input opera-
tions are scheduled for execution as follows: Ostart

1 = Ostart
2 = Ostart

3 = Ostart
4

= 0 s, Ostart
8 = Ostart

9 = Ostart
10 = Ostart

11 = 2.9 s. For space reasons, we do not
show the schedule of input operations, however the starting times of the recon-
figurable operations shown in Figure 7.3a do take into consideration the time
required for dispensing the droplets on the microfluidic array. The placement
for the allocation and schedule is as indicated in Figures 7.3b–c.

The schedule presented in Figure 7.3a is optimal for the given allocation consid-
ering that the positions of droplets inside modules are unknown during operation
execution. Therefore, modules are surrounded by segregation cells which ensure
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(a) Schedule with segregation
cells

(b) Placement at t = 0 (c) t = 4.9

Figure 7.3: Black-box operation execution example

that the fluidic constraints are satisfied at each time step. However, the schedule
can be further improved (see Figure 7.4a) by taking into account the location
of droplets inside virtual modules. Consider the same synthesis example as in
Section 3.1.1, with the allocation presented in Figure 7.3a. At time t = 2 op-
erations O5 and O6 are scheduled, and modules D1 and M1 are placed on the
chip. Let us assume that the droplets corresponding to the two operations are
routed to the positions shown in the Figure 7.4b, where the dilution and mixing
operations start executing, according to the shown movement patterns.

We eliminate the segregation cells, and consider them as part of the functional
areas of the devices. For example, operation O5 who was initially bound to
a 2 × 4 device can now be executed by routing the corresponding droplet on
a 4 × 6 area. The area occupied for performing O5 remains the same as in
Figure 7.3, however, all the cells in the device can now be used for operation
execution. By routing the droplets corresponding to O5 and O6 as shown in
Figure 7.4b, the droplets are never too close and therefore the fluidic constraints
are enforced. The same situation is shown in Figure 7.4c, where operations O7,
O12 and O13 are repeatedly routed from their initial positions, according to the
depicted movement patterns, without the need of segregation cells.

The completion times for the droplet-aware operations shown in Figure 7.4 are
computed using the analytical method proposed in Section 2.2.1. Although
for simplicity reasons the movement patterns of the droplets in Figure 7.4 are
synchronized, this is not always possible due to fluidic constraints. Our approach
takes this into consideration by allowing a flexible movement pattern of the
droplets during operation execution. In order to avoid accidental merging, a
droplet can be deviated from its pre-established movement pattern according to
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(a) Improved schedule (b) Placement at t = 0 (c) t = 4.17

Figure 7.4: Droplet-aware operation execution example

the characterized module library (see Figure 7.6d) or can be kept at the same
location on the chip for several time steps (see Figure 7.6f).

The exact routes taken by droplets inside a module during operation execution
are determined offline and are stored in the memory of a microcontroller, which
coordinates the activation of the electrodes on the microfluidic array. In order to
minimize memory requirements we consider that only the pre-established routes
and the deviations of the droplets from these routes will be recorded in memory,
in a compressed form.

7.2 Algorithm for Droplet-Aware Operation Ex-

ecution

We use the Tabu Search-based algorithm proposed in Chapter 5 to solve the
module-based synthesis problem with droplet-aware operation execution. The
combined scheduling and placement during operation execution is implemented
by the ScheduleAndPlace function (Figure 5.2). In order to determine the rout-
ing during operation execution, ScheduleAndPlace calls the RunOperationsOne-
TimeStep function from Figure 7.5, before the end of each iteration.

The RunOperationsOneTimeStep algorithm takes as input the list of operations
executing at tcurrent, Lexecute, the m × n matrix C of cells, the current place-
ment of modules P, the partial routes R of droplets inside devices up to time
tcurrent, the module library L, and the current time step tcurrent. For each op-
eration Oi under execution at tcurrent, the algorithm decides the movement of
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RunOperationsOneTimeStep(Lexecute, C,P,R,L, tcurrent)

1 for all Oi ∈ Lexecute do
2 for all direction ∈ {left, right, up, down, stop} do
3 EvaluateMove(C, P, R, L, Oi, direction)
4 end for
5 directionbest = GetBestMove(C,P,R,L, Lexecute, Oi)
6 PerformBestMove(Oi, directionbest, C,R)
7 UpdateOperationCompletion(Oi, Ri)
8 if Oi finished executing then
9 tfinishi = tcurrent

10 end if
11 end for
12 return R

Figure 7.5: Droplet-Aware Operation Execution Algorithm for DMBs

the corresponding droplet inside the module Mk = B(Oi) the operation is bound
to, for the next time step. Compared to previous approaches, we consider that
the movement pattern followed by a droplet during operation execution can be
dynamically changed, in order to ensure fluidic constraints, and at the same
time minimize the completion time of the operation.

The analytical method proposed in Section 2.2.1 is used for characterizing the ex-
ecution of operations, decomposing the basic modules of a given module library
L. According to this method, any route can be decomposed into a sequence of
forward, backward and perpendicular moves. In order to determine the comple-
tion time of an operation following an irregular movement pattern, we need to
approximate the percentage of execution performed over one cell, correspond-
ing to each type of move. The method proposed in Section 2.2.1 provides safe
estimates of completion percentages, by decomposing the modules in the given
module library, which have pre-established movement patterns and known com-
pletion times, determined through experiments. As a result, the method can be
used to approximate the amount of operation completion for any given droplet,
during operation execution.

Let us consider the example in Figure 7.6a, at time tcurrent. There are three
operations executing on the array: O7, bound to a 3 × 6 mixer module and
O12 and O13, bound to 4 × 5 diluters. Let us consider that the previous three
moves for the operations are as indicated in Figure 7.6b, by the position of the
droplets, and the corresponding connecting arrows. We use a greedy approach
for deciding the directions in which the droplets are moved at the current time
step. For each droplet we consider all the possible directions in which it can
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(a) Placement for tcurrent ∈ (9.17,
11.42]

(b) Placement at tcurrent (c) Choosing a move for O7

(d) Choosing a move for O12 (e) Choosing a move for O13 (f) Placement at tcurrent + 1

Figure 7.6: Running operations O7, O12 and O13 for one time step

be moved inside its device, while ensuring that the accidental merging with
neighboring droplets is avoided (lines 2–4 in Figure 7.5). The percentages of
operation completion gained by performing each of the moves, µdirection, are
evaluated using the method from Section 2.2.1. Consequently, according to our
greedy approach, the droplet is moved in the direction which leads to the highest
percentage µbest (line 6) and the current completion percentage of the operation
is updated correspondingly (line 7). If the operation finished executing (i.e, its
completion percentage reached 100%) then its finishing time is also updated
(lines 8–10).

Let us consider that the first droplet to be moved in Figure 7.6 is the one cor-
responding to the mixing operation O7. The droplet can be moved downwards,
backwards or it can remain at the current position, see Figure 7.6c. Based on
the droplet characterization in Section 2.2.1, the droplet is routed downwards,
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as this leads to the most mixing out of the feasible moves. After O7 is routed,
the next droplet to be moved is O12. The droplet cannot continue its movement
upwards, as it risks to accidentally merge with O7 (see Figure 7.6d). Hence, as
shown in Figure 7.6e, O12 is transported to the right compared to its current
position, which is the best possible move. Finally, the algorithm chooses to keep
O13 on the current position, as moving it backwards leads to negative mixing
and moving it downwards breaks the fluidic constraints (accidental mixing with
O7). Figure 7.6f shows the positions of the droplets at time tcurrent + 1, after
the moves have been performed.

7.3 Experimental Evaluation

In order to evaluate our droplet-aware operation execution approach, we have
used two real-life applications and three synthetic TGFF-generated benchmarks.
The Tabu Search algorithm was implemented in Java (JDK 1.6), running on
Intel Core i7 860 at 2.8 GHz with 8 GB of RAM. The droplet movement charac-
terization of operation execution is based on the decomposition of devices shown
in Table 2.1, using the analytical method proposed in Section 2.2.1.

In our experiments we were interested to determine the improvement in comple-
tion time that can be obtained by eliminating segregation cells and considering
the position of droplets inside devices. Thus, we consider two approaches to
the synthesis problem: a droplet-aware operation execution approach (Droplet-
Aware Synthesis, DAS) and a black-box operation execution approach, which is
the TS approach proposed in Chapter 5.

In order to determine the initial positions of droplets inside modules during
droplet-aware operation execution, we have used the GRASP routing method
from Chapter 8.

Table 7.1 presents the results obtained by using DAS and TS for the synthesis of
two real-life applications: In-vitro diagnostics on human physiological fluids (see
Section 2.4.2) and the colorimetric protein assay (see Section 2.4.3). Columns 3
and 4 in the table represent the best solution out of 50 runs (in terms of the
application completion time δG) for the droplet-aware approach and black-box
approach, respectively. The average and standard deviation over the 50 runs
compared to the best application completion time are also reported in Table 7.1.
The comparison is made for three progressively smaller areas. In Chapter 5 we
have shown that the quality of solutions produced by the TS implementation
does not degrade significantly if we reduce the time limit from 60 minutes to 10
minutes. Hence, we have decided to use a time limit of 10 minutes for all the
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Application Area Best Average Standard dev.
DAS TS DAS TS DAS TS

8 × 9 69.83 70.40 72.41 75.72 1.86 3.01
In-vitro 8 × 8 71.69 82.43 83.67 91.31 11.73 9.63

7 × 8 74.13 86.82 82.93 95.73 8.01 8.69
15 × 15 96.60 102.20 99.66 112.22 1.07 4.63

Proteins 14 × 14 95.63 107.12 99.68 116.78 1.12 5.34
13 × 13 98.76 117.25 101 128.75 0.65 6.46

Table 7.1: Results for the real-life applications

experiments in this chapter. A fast exploration is important since we envision
using DAS for architecture exploration, where several biochip architectures have
to be quickly evaluated in the early design phase (considering not only different
areas, but also different placement of non-reconfigurable resources).

As we can see, controlling the movement of droplets inside devices can lead
to improvements in terms of application completion time. For example, in the
most constrained case for the colorimetric protein assay (the 13 × 13 array in
Table 7.1), we have obtained an improvement of 15.76% in the best schedule
length and 21.55% in the average schedule length. Note that the comparison
between DAS and TS is unfair towards DAS. In DAS, the completion times
presented in the table include routing times (moving the droplets between the
devices). There are no routing times in the results reported for TS, where
we consider that routing is done as a post-synthesis step, which will introduce
additional delays.

A measure of the quality of a Tabu Search implementation is how consistently it
produces good quality solutions. The results shown in Table 7.1 were obtained
for 50 runs of the DAS and TS approaches. The standard deviations over the
50 runs compared to the best application completion times δG are reported in
columns 7 and 8, respectively. As we can notice the standard deviation with
DAS is small, which indicated that DAS consistently finds solutions which are
very close to the best solution found over the 50 runs (each run will explore
differently the solution space, resulting thus in different solutions).

In a second set of experiments, we have compared DAS with TS on three syn-
thetic applications. The graphs are composed of 20, 40 and 60 operations and
the results in Table 7.2 show the best and the average completion time, as well
as the standard deviation obtained out of 50 runs for DAS and TS, using a time
limit of 10 minutes.
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Operations Area Best Average Standard dev.
DAS TS DAS TS DAS TS

8 × 8 40.99 45.01 41.79 47.63 0.8 2.01
20 7 × 8 41.32 45.75 43.15 50.46 0.98 2.64

7 × 7 42.15 47.81 46.23 56.77 1.50 6.14
9 × 10 46.85 49.60 47.25 53.93 0.17 2.58

40 9 × 9 47.38 51.10 47.76 55.49 0.25 2.60
8 × 8 47.47 83.83 55.16 92.35 12.27 4.47
9 × 10 82.69 84.00 84.88 89.07 1.26 3.11

60 9 × 9 82.40 85.43 85.27 95.14 1.40 5.02
8 × 9 87.54 100.56 95.87 111.89 4.19 7.18

Table 7.2: Results for the synthetic benchmarks

For each synthetic application we have considered three progressively smaller
areas. As shown in Table 7.2 the DAS approach leads to significant improve-
ments in the average completion time, compared to the black-box approach. For
example we have obtained an improvement of 40.27% in the average schedule
length for the application with 40 operations, in the case of the 8 × 8 array.
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Chapter 8

Routing-Based Synthesis

In this chapter we remove the concept of “virtual device” and allow operations
to execute by routing the droplets on any sequence of electrodes on the array.
We call this approach routing-based operation execution.

Similar to the problem formulation for module-based synthesis, during routing-
based synthesis we want to synthesize an implementation Ψ =< A,B,S,P,R >,
deciding the allocation, binding, scheduling, placement and routing. However,
there are differences when performing routing-based synthesis. The allocation,
binding and placement need to be performed only for non-reconfigurable oper-
ations, such as input and detection operations. For reconfigurable operations,
such as mixing and dilution, the synthesis is determined by the routes R. For
each reconfigurable operation Oi we have to determine a time-ordered list con-
taining electrodes on which Oi is executed (i.e., a route). Thus, for reconfig-
urable operations, the synthesis problem is transformed into a routing problem.

8.1 Motivational Example

Let us consider the synthesis problem of the application shown in Figure 8.1 on
a 7 × 7 array. We consider the current time step as being t = 0. For simplicity,
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Figure 8.1: Application graph

in this example, we consider that the input operations are already assigned to
the corresponding input ports. Thus, O1 is assigned to the input port S1, O2

to R1, O3 to S2, O4 to R2, O5 to S3, O6 to B and O11 to R1. Let us assume
that the available module library is the one captured by Table 2.1. We consider
the same execution time for mixing and dilution operations. We have to select
modules from the library while trying to minimize the application completion
time and place them on the 7 × 7 chip.

Let us first consider the case of module-based synthesis, as presented in Chap-
ter 5. The optimal solution to the problem is presented in Figure 8.2, where the
following modules are used: three 1 × 4 mixers (Mixer1, Mixer2, Mixer3), one
2 × 4 mixer (Mixer4) and one 2 × 4 diluter (Diluter1). Due to space reasons
the schedule presented in Figure 8.2a does not include input operations, how-
ever, the starting times for the shown operations consider the time it takes to
dispense droplets on the microfluidic array. The routing times needed for merg-
ing the inputs of the operations are also included, being represented as hashed
rectangles in the schedule. For example, operation O12 is bound to module
Mixer4, starts after the dilution operation O9 is completed (tfinish9 = 9.57) and
after its inputs are merged on the microfluidic array, thus tstart12 = 9.60. The

operation takes 2.9 s, finishing at time tfinish12 = 12.50 s.

The placement for the solution is as indicated in Figure 8.2b–d. Note that only
two virtual devices can be placed on the biochip due to space constraints, thus
only two operations can execute in parallel. In our case O7, O8 and O9 could
potentially be executed in parallel. If we decide to select smaller areas to increase
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(a) Schedule (b) Placement for t ∈ (2.04, 6.64]

(c) t ∈ (6.67, 9.57] (d) t ∈ (9.60, 12.50]

Figure 8.2: Module-based synthesis example

parallelism, such as a 2 × 2, the execution time is much larger, e.g., 9.95 s for
a 2 × 2, which eliminates the potential gain obtained through parallelism.

Let us now consider the same problem in the case of routing-based synthesis. We
assume the characterization of operation execution as discussed in Section 2.2.1.
We have to find the routes R for all the reconfigurable operations such that the
application completion time δG is minimized.

Figure 8.3 shows a complete solution for synthesizing the application G in Fig-
ure 8.1 on a 7 × 7 chip. Before the reconfigurable operations O7, O8 and O9

can start, we route their inputs to the locations depicted in Figure 8.3b. In
order to simplify the visual representation of the solution, we assume a repet-
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(a) Schedule

(b) Placement at t = 2.03 (c) t ∈ (2.03, 4.20]

(d) t = 4.28 (e) t ∈ (4.28, 6.34]

Figure 8.3: Routing-based synthesis example

itive route for the operations: the droplets corresponding to O7, O8 and O9

in Figure 8.3c are repeatedly routed on the shown paths 13.58 times, until the
mixing is completed.

After completion, the droplets resulted from the mixing operations O7 and O8

are routed to a common location on the chip, where they merge, forming the
droplet corresponding to operation O10 (Figure 8.3d). The dilution operation
O9 continues by splitting the mixed droplet into two droplets of intermediate
concentration and equal volume, corresponding to e9,12 and the output operation
O13.
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Because of simplicity reasons, in this example, the paths on which the droplets
are routed while operations are executed are of rectangular shape. However, in
routing-based synthesis any sequence of electrodes can be used as a path, as
shown in Figure 2.5b.

The schedule of the operations is presented in Figure 8.3a, where we notice that
the completion time of the application is significantly reduced compared to the
module-based schedule presented in Figure 8.2a, 6.34 s compared to 12.50 s.

There are several reasons for this reduction. Compared to the solution in Fig-
ure 8.2, operation O9 can be executed in parallel with O7 and O8 in Figure 8.3c.
Routing-based synthesis leads to an increase in parallelism due to a more efficient
use of the microfluidic array. In module-based synthesis the entire module area,
including the segregation borders, is considered occupied by the operation. In
routing-based operation execution we know the actual position of the droplets,
therefore all the other cells can be used, as long as the droplets are not too close
to each other (i.e., the microfluidic constraints are enforced). For example, in
Figure 8.3d the droplet corresponding to O7 must be kept on the initial position
shown from time 2.20 s until time 2.23 s, in order to prevent the accidental
merging with the droplet discarded to the output reservoir (corresponding to
the operation O13).

Another reason for the reduction of δG is the increase in the number of electrodes
used for forward movement. As discussed in Section 2.2, forward movement
reduces flow reversibility inside the droplet, leading to a faster completion of
the reconfigurable operations, such as mixing and dilution.

8.2 Algorithm for Routing-Based Synthesis

The routing-based synthesis problem is NP-complete [7]. Several methods have
been proposed for routing droplets on the microfluidic array during module-
based synthesis, see Chapter 4. However, all these methods consider that rout-
ing is performed between virtual devices whose position on the microfluidic
array is fixed and determined during the placement step, thus the routes have
predefined fixed start- and end-points. In addition, the assumption is that the
operation is executed within the virtual device. In our routing-based synthesis
approach we eliminate the concept of virtual devices and perform operations
while routing, and thus there are no fixed start- and end-points for the routes.
Also, to guarantee operation completion, we are not interested in minimizing
the routes, but we have to construct routes of a given length. Therefore, the
existing algorithms are not directly applicable in our context.
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The strategy we use is based on Greedy Randomized Adaptive Search Pro-
cedure (GRASP) [15] and decides the routes R taken by droplets during the
execution of reconfigurable operations. The allocation, binding and scheduling
for non-reconfigurable operations are decided using a greedy approach when
these operations are needed by reconfigurable operations.

The proposed algorithm is presented in Figure 8.4 and takes as input the ap-
plication graph G, the biochip array C and the percentages of mixing during
droplet movement µ = {p01, p

0
2, p

90, p180}, and produces an implementation Ψ
= < A, B, S, P,R >, which minimizes the schedule length δG .

Let us first discuss the synthesis of routesR for the reconfigurable operations. At
each time t, a set of droplets corresponding to currently executing reconfigurable
operations are present on the microfluidic array. A droplet can be in one of the
two states: 1) merge—when it needs to come into contact with another droplet;
and 2) mix—when it performs a mixing or dilution operation. For example,
the droplets corresponding to operations O3 and O4 in Figure 8.3b are in the
merge state, as they need to be routed to a common location on the array in
order to form the droplet corresponding to the operation O8. Once it is formed,
the O8 droplet is routed on a sequence of electrodes until the mixing operation
is completed. Thus, we say that in Figure 8.3c the droplet corresponding to
operation O8 is in the mix state.

We use two lists, Lmerge and Lmix, to capture the operations that are performed
on the microfluidic array at time t and that are in the merge and mix states,
respectively. Lmerge is initialized by considering the operations in the graph
that are ready to be scheduled for execution (line 4). The list Lmix is initially
empty (line 5).

The main part of the algorithm is the while loop, lines 6–32, which terminates
when all operations have finished. In each iteration, we increment the current
time tcurrent (line 31) and perform the following three steps:

1. We decide the new positions of the droplets present on the chip at tcurrent,
i.e., Oi ∈ Lmerge ∪ Lmix (lines 7–10);

2. In the second step, we introduce droplets on the array in the mix state,
in case their predecessor droplets have merged on the chip (lines 11–19);
and

3. Finally, when the reconfigurable operations have finished executing (the
droplets are mixed or diluted), we remember the finishing time (line 22)
and put the resulting droplets in the merge state (line 29).
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RoutingBasedSynthesis(G, C, µ)

1 tcurrent = 0
2 tstartOi

= 0, ∀Oi ∈ G

3 tfinishOi
= 0, ∀Oi ∈ G

4 Lmerge = ConstructMergeList(G)
5 Lmix = ∅
6 while ∃Oi ∈ G ∧ tfinishOi

= 0 do
7 // Step 1: move droplets present on the array
8 for all Oi ∈ Lmerge ∪ Lmix do
9 PerformMove(Oi, C, R)

10 end for
11 // Step 2: if droplet finished merging
12 for all Oi ∈ Lmerge ∧Oi is merged do
13 // update Lmerge

14 Remove(Oi, Lmerge)
15 // schedule successors
16 ScheduleSuccessors(Oi)
17 // update Lmix

18 Add(Oi, Lmix)
19 end for
20 // Step 3: if droplet finished mixing
21 for all Oi ∈ Lmix ∧Oi is mixed do
22 tfinishOi

= tcurrent
23 // update Lmix

24 Remove(Oi, Lmix)
25 if Oi is a dilution operation then
26 ScheduleSuccessors(Oi)
27 end if
28 // update Lmerge

29 Add(Oi, Lmerge)
30 end for
31 tcurrent = tcurrent + 1
32 end while
33 return Ψ

Figure 8.4: Routing-based synthesis for DMBs
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Let us present each step in more detail.

1. In step 1, for each droplet present on the microfluidic array, we have to
decide the next position (line 9). There is a large number of position
combinations that has to be considered. We take the decision individually
for each droplet, using the PerformMove function which takes as input the
reconfigurable operation Oi, the biochip array C and the current routes R.
We use a randomized greedy approach similar to GRASP: for each droplet
we construct a Restricted Candidate List (RCL), containing the three best
feasible moves to be performed. Then, a move from the RCL is randomly
selected and the droplet is transported in the corresponding direction. We
use probabilities to favour the candidates from RCL which have a greater
cost function. Thus, there is a probability of 50% of choosing the best
candidate from the RCL, 33.3% of choosing the second best candidate and
16.6% for the third best feasible move. Two cost functions are considered
for determining the quality of the moves, depending on the state of the
droplets. For a droplet in the mix state, the quality of a move is given
by the percentage of mixing performed while transporting the droplet in
the given direction calculated based on the set µ, see Section 2.2.1. For
a droplet in the merge state, the quality of a move is determined by the
distance between the two droplets that need to be merged, measured by
the Manhattan distance.

Let us use Figure 8.5a to illustrate how we determine the directions in
which the droplets are moved. We consider that at time tcurrent there are
three operations executing on the array: the operations O1 and O2, that
need to be merged, and the mixing operation O3, thus Lmerge = {O1, O2}
and Lmix = {O3}. As discussed in Section 2.2.1, for an operation executing
by routing, the amount of mixing performed during one move depends on
the previous path on which the droplet was transported. The previous
two moves for mixing operation O3 are as indicated in Figure 8.5a, by the
position of the O3 droplet, and the corresponding connecting arrows. For
each of the droplets on the array we have a number of feasible moves that
can be performed at the current time step. In Figure 8.5a the feasible
moves are depicted with thick arrows. The set of feasible moves includes
also the decision of keeping the droplet on the same position, illustrated
with an “X” under the droplet. When considering the feasible moves set
we enforce the microfluidic constraints, which prevent the droplets from
getting too close to each other and accidentally merge. For example the
move of droplet O1 up is not permitted, since doing so would cause it to
merge with droplet O3.

The operations in Lmerge are considered first. For the droplet correspond-
ing to operation O1 we have three possible moves: to the right, down
or maintaining the droplet at the current location. We evaluate each of



8.2 Algorithm for Routing-Based Synthesis 97

(a) Choosing moves for Lmerge (b) Choosing a move for Lmix (c) Placement at tcurrent + 1

Figure 8.5: Performing droplet moves

the possible directions, by computing the Manhattan distance between
the new feasible position of O1 and the position of the droplet that O1

has to merge with, O2. The current positions of the O1 and O2 droplets
are (0,2) and (3,4) respectively, thus the initial Manhattan distance is
5, as shown in Figure 8.5a. By moving O1 to the right the new loca-
tion of the droplet is (1,2), therefore the Manhattan distance between
O1 and O2 is reduced to 4. Similarly, the Manhattan distance obtained
by moving the droplet O1 down and maintaining it at the current lo-
cation are 6 and 5, respectively. Thus, moving O1 to the right is the
best decision, as it brings the droplets O1 and O2 closer to each other.
The RCL is constructed by considering only the three best moves, thus
RCLO1

= {right,maintain, down}. A move is randomly chosen from the
RCL and the placement of the droplet on the chip is updated. Let us
consider for example that the droplet is moved to the right. Similarly
we construct RCLO2

= {down,maintain, right} and randomly choose to
maintain the droplet corresponding to O2 at the current location. Fig-
ure 8.5b shows the updated placement on the microfluidic array after the
two moves are performed.

Next, the mixing operation O3 is considered. The feasible directions in
which the droplet can be routed are to the left, up or maintaining the
droplet on the current position. Moving the droplet in a forward direc-
tion is not possible, as this could lead to an accidental merge with the
droplet corresponding to O1 (see Figure 8.5b). As moving the droplet to
the left would result in a perpendicular move compared to the previous
one, the percentage of obtained mixing according to Section 2.2.1 is p90

= 0.10%, while moving it backwards (up) would result in a negative mix-
ing, p180 = −0.5%. We consider mixing by pure diffusion negligible, thus
no mixing is performed while the droplet remains at the same location.
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Therefore, RCLO3
= {left,maintain, up}. We assume the droplet is ran-

domly moved to the left, resulting in the placement shown in Figure 8.5c.

2. In Step 2, for all the droplets in Lmerge that have been brought to a com-
mon location at time tcurrent, their successors are activated and inserted
into the corresponding lists. Their tstart is set to tcurrent(line 16) and
their positions are at the same location where the droplets have met. For
example, when O1 and O2 in Figure 8.3b are merged at time t = 2.03,
the mixing operation O7 is placed on the array and starts executing, thus
tstartO7

= 2.03.

3. In Step 3, all the mixing operations completed at time tcurrent and having
successors are promoted to the merge state (lines 20–30). For example,
at time t = 4.20, the state of the operation O7 in Figure 8.3d is changed
from mix to merge, as O7 needs to be merged with O8 in order to form the
droplet corresponding to the operation O10. If the completed operation is
of type dilution, then the droplet is split into two droplets of equal volumes,
see the dilution operation O9 in Figure 8.3d. The droplets resulting from
the split operation are scheduled (line 26) and their locations on the array
are determined by their predecessor’s final position.

Regarding non-reconfigurable operations, such as dispensing from input reser-
voirs and detection using optical devices, we consider that their allocation A and
placement P are fixed and given as part of the biochip architecture model. How-
ever, we decide the binding B ∈ Ψ and scheduling S ∈ Ψ of non-reconfigurable
devices as part of the synthesis process. Thus, if a droplet corresponding to an
input operation is needed on the microfluidic array at tcurrent, we schedule the
dispensing of the droplet such that it finishes at time tcurrent, and not earlier.
This is in order to avoid storing the dispensed droplets on the array, until they
are needed by other operations, as they will otherwise occupy space required
for performing other operations. Because of the constraint on the number of
available reservoirs on a given chip, creating a dispensed droplet at tcurrent is
not always possible. In this case, the input operation is bound using a greedy
approach to the reservoir that will be available at the earliest time. We use the
same approach for determining the binding of detection operations to optical
devices.

Due to its randomized nature, the algorithm in Figure 8.4 might produce differ-
ent results for different runs, with the same inputs. The algorithm terminates
when all operations have been synthesized, and returns the solution Ψ (line 33).
Our route-based synthesis approach is given a time limit, and runs repeatedly
RoutingBasedSynthesis from Figure 8.4 until the time limit is reached, collecting
the best solution Ψ in terms of the application completion time δG .
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8.3 Routing-Based Synthesis with Contamina-

tion Avoidance

The synthesis approaches we have proposed so far do not address the problem
of cross-contamination of samples during the biochemical application execution.
However, as discussed in Chapter 2, some biochemical applications contain liq-
uids that adsorb on the substrate on which they are transported. Consequently,
the purity of the droplets routed on the microfluidic array can be affected by
the contaminated electrodes and this may lead to an erroneous outcome of the
performed biochemical assay. Even though the use of silicon oil minimizes the
risk of surface fouling, the complete avoidance of cross-contamination of sam-
ples becomes a key challenge when performing critical biochemical applications.
Wash droplets are typically used in such cases to clean contaminated sites on
the chip, between successive transportations of droplets.

Contamination avoidance increases the complexity of the synthesis problem due
to the following reasons:

• additional wash droplets must be scheduled and transported on the con-
taminated sites on the chip in order to remove the existent residue.

• the flexibility of droplet movement on the microfluidic array is reduced,
as contaminated electrodes cannot be used as part of droplets routes.

Several techniques (see Chapter 4) have been proposed so far for contamination
avoidance during the synthesis problem of direct addressing biochips. All these
methods consider that reconfigurable operations are performed inside modules,
ignoring the positions of droplets during operation execution.

In this and the next sections we present two approaches for contamination avoid-
ance during routing-based synthesis. Since in routing-based operation execution
we consider that operations are performed by transporting the corresponding
droplets on any sequence of electrodes on the microfluidic array, the potential to
contaminate is quite large. The first proposed method, presented in this section,
is based on extending the GRASP algorithm from Section 8.2.
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8.3.1 Contamination Avoidance in Routing- vs. Module-

Based Synthesis

The main advantage of routing-based operation execution is the increase in
parallelism, since the same electrode can be used in the routing paths of several
executing operations. However, this flexibility in droplet movement can become
a disadvantage when contamination is a concern.

Let us consider the example in Figure 8.6a, where a dilution operation O1 is
performed on the microfluidic array by routing the corresponding droplet. If the
sequence of electrodes on which the operation is executed is unconstrained, the
droplet can be moved on the chip on a free pattern, such as the one shown in
Figure 8.6a. However, if substances composing the droplet are adsorbed on the
surface of the microfluidic array, the unrestricted route of the droplet can lead
to a high number of contaminated electrodes, as shown in Figure 8.6a. In this
case it is important that the contaminated sites are cleaned as soon as possible,
in order not the block the execution of other operations that are performed
concurrently on the chip.

Consider the same example in the case when the execution of the operation is
constrained to a specific area. We assume that the dilution operation O1 is
performed by routing the droplet inside a 3 × 6 area, such as the one shown in
Figure 8.6b. Since the droplet is repeatedly transported over the same sequence
of electrodes, the contamination is limited to the module area.

(a) Routing-based operation execution (b) Area-constrained operation execution

Figure 8.6: Contamination during operation execution
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The advantage of this approach is the reduced number of electrodes contami-
nated during the execution of the operation. Moreover, if the areas on which
operations are performed on the chip are not overlapping, it is only necessary to
clean the contaminated electrodes after the operations performed on them have
finished executing.

8.3.2 Algorithm for Routing-Based Synthesis with Con-

tamination Avoidance

This section presents the algorithm for contamination aware routing-based syn-
thesis. The method is based on the partitioning of the chip in a number npart of
smaller, equal areas. For example, the microfluidic array shown in Figure 8.7a is
divided into two equal partitions: Partition1, represented by the rectangle (0,
0, 8, 4), and Partition2, represented by (0, 4, 8, 8). Each partition on the chip is
assigned a wash droplet, denoted in Figure 8.7a by w1 and w2, respectively, re-
sponsible of cleaning the contaminated electrodes inside the corresponding area.
For example, considering the microfluidic array in Figure 8.7a, w1 is responsible
of cleaning the set of electrodes {(5, 0), (6, 0), (6, 1), (6, 2), (5, 2), (5, 3), (6,
3)} and w2 for the set {(2, 4), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5)}. Similar
to the previous related work, we consider that the purity of a wash droplet is
reduced with the number of cleaned electrodes. We denote by maxelectrodes the
maximum number of contaminated electrodes that can be cleaned by a wash
droplet. We consider that maxelectrodes will be given as an input in the design
specifications.

(a) Microfluidic array at tcurrent (b) Microfluidic array at tcurrent + 1

Figure 8.7: Routing-based operation execution with contamination avoidance
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We extend the GRASP-based algorithm proposed in Section 8.2 to take into
account the contamination problem during routing-based synthesis. The algo-
rithm is shown in Figure 8.8. The input consists of the application graph G,
the biochip array C, the module library L, the maximum number of electrodes
maxelectrodes that a wash droplet can clean, and the number of partitions nopart,
and the output is an implementation Ψ = < A, B, S, P,R >, which minimizes
the schedule length δG , such that the contamination is avoided.

The algorithm starts with the partitioning of the microfluidic array in a number
nopart of smaller areas. A list Lwash is used to keep track of the wash droplets
on the array at time tcurrent. The list is initialized in line 2 of the algorithm,
by creating a number of wash droplets equal to the number of partitions on the
chip. Each droplet is assigned a partition and a maximum number of electrodes
that it can clean, equal to maxelectrodes. The characterization of droplet move-
ment is performed by decomposing the given module library L into the set of
operation execution percentages µ, based on the analytical method proposed in
Section 2.2.1 (line 3).

Compared to the algorithm presented in Section 8.2 we introduce a new state in
which a droplet on the microfluidic array can be at time tcurrent: the wash state.
This state is reserved for wash operations that are active on the microfluidic ar-
ray (i.e., they can still clean contaminated electrodes). The routing of droplets
in merge and mix state is done as explained in Section 8.2. However, we con-
sider that if a droplet has the potential of contaminating the surface of the chip,
all electrodes on which it is routed will be marked as contaminated (lines 12–14
in Figure 8.8). These electrodes are then assigned to be cleaned by the droplet
attached to the partition the electrodes belong to (line 13). Consider the exam-
ple in Figure 8.7a. We assume that at time tcurrent the dilution operation O1 is
moved to the right compared to its previous position, as shown in Figure 8.7b.
Since the new contaminated electrode at location (7, 5) belongs to Partition2,
it will be added to the list of sites to be cleaned by wash droplet w2.

At each time step our algorithm decides the new locations for all the droplets
present on the chip. We integrate the decision for operations in the wash state in
our GRASP approach presented in Section 8.2. Let us consider the wash droplet
w1 in Figure 8.7a. The droplet can be moved to the left, to the right, upwards,
downwards or it can be maintained on the same electrode compared to its current
position. For a droplet in the wash state the quality of the move is given by the
Manhattan distance between the new feasible location of the droplet and the
location of the first electrode to be cleaned. For example, for w1 the best move
to be performed is to the right or downwards, as it brings droplet w1 closer to the
first electrode to be cleaned, at location (5, 0). By evaluating all the feasible
moves the candidate list RCLw1

= {right, down, maintain} is constructed,
containing the best three moves for wash droplet w1. According to GRASP,
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ContaminationAwareRBS(G, C,L,maxelectrodes, nopart)

1 PartitionChip(C, nopart)
2 Lwash = ConstructWashList(maxelectrodes, nopart)
3 µ = CharacterizeMovement(L)
4 tcurrent = 0
5 tstartOi

= 0 ∀Oi ∈ G

6 tfinishOi
= 0, ∀Oi ∈ G

7 Lmerge = ConstructMergeList(G)
8 Lmix = ∅
9 while ∃Oi ∈ G ∧ tfinishOi

= 0 do
10 for all Oi ∈ Lmerge ∪ Lmix do
11 Ri = PerformMove(Oi, C, R)
12 if Oi contaminates then
13 SetElectrodeContaminated(Oi, Ri, Lwash)
14 end if
15 end for
16 for all Oi ∈ Lmerge ∧Oi is merged do
17 Remove(Oi, Lmerge)
18 ScheduleSuccessors(Oi)
19 Add(Oi, Lmix)
20 end for
21 for all Oi ∈ Lmix ∧Oi is mixed do
22 tfinishOi

= tcurrent
23 Remove(Oi, Lmix)
24 if Oi is a dilution operation then
25 ScheduleSuccessors(Oi)
26 end if
27 Add(Oi, Lmerge)
28 end for
29 for all Oi ∈ Lwash do
30 Ri = PerformMove(Oi, C, R)
31 if Ri is contaminated then
32 SetElectrodeCleaned(Ri, Lwash)
33 UpdateWashCapabilities(Oi)
34 if Oi can not clean anymore then
35 RemoveFromWashList(Oi, Lwash)
36 CreateWashDroplet(Oi, Lwash)
37 end if
38 end if
39 end for
40 tcurrent = tcurrent + 1
41 end while
42 return Ψ

Figure 8.8: Contamination-aware routing-based synthesis for DMBs
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a move is randomly chosen from RCLw1
and the droplet is transported in the

corresponding direction. Let us assume that the droplet is moved downwards,
as shown in Figure 8.7b. Similarly, the ready candidate list for the wash droplet
w2 is constructed RCLw2

= {left, maintain, upwards}. Let us consider that the
droplet is transported upwards, see Figure 8.7b. Because the electrode (3, 5)
on which the wash droplet has been moved is contaminated, the site is marked
as cleaned (line 32) and the wash capabilities of w2 are updated (line 33). If
the wash droplet has reached the limit of maxelectrodes cleaned electrodes, we
consider that its purity has decreased to a point where it can not be used
anymore. Therefore, the droplet is sent to the waste reservoir and another wash
droplet is dispensed and assigned to the corresponding partition (lines 35–36).

The algorithm terminates when all the operations in the biochemical applica-
tions have finished executing.

8.4 Area-Constrained Routing for Contamina-

tion Avoidance

In the algorithm presented in the previous section we have considered that
operations are executed by transporting the corresponding droplets on any route
on the microfluidic array. However, by constraining the execution of operations
to a certain area on the microfluidic array, the contamination can be decreased.
Therefore, in this section we present an approach in which droplet routes are
constrained to a given area during operation execution.

Consider the example presented in Section 8.1 where the mixing operations
O7, O8, O10 and O12 and the dilution operation O9 must be performed on the
microfluidic array. We consider that the movement of a droplet in the merge
state is decided by the GRASP algorithm, as presented in Section 8.2. However,
for a droplet in the “mix” state, we constrain the route to a certain area on
the microfluidic array, as shown in Figure 8.9. We use the Tabu Search-based
algorithm presented in Figure 7.5 to determine for each executing operation the
area in which it will be performed and the route of the droplet during execution.

For example, in Figure 8.9 the operations are performed by transporting the
droplets as follows: O7, O8 and O9 inside 3 × 4 modules, O10 and O12 inside
3 × 6 modules. The routes during operation execution are decided in a greedy
fashion, using the approach proposed in Section 7.2. The analytical method
presented in Section 2.2.1 is used to determine the execution time of an op-
eration inside the area where it is executed. In our example, considering the
shown movement patterns, Figure 8.9a presents the schedule obtained for area-
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(a) Schedule (b) t ∈ (2.06, 5.09] (c) t ∈ (5.18, 7.67]

Figure 8.9: Area-constrained operation execution

constrained routing. The schedule includes the routing times of operations in
the merge state, determined using the GRASP algorithm.

8.5 Experimental Evaluation

In order to evaluate our routing-based proposed approach proposed in Sec-
tion 8.2, we have used two-real life examples and ten synthetic benchmarks.
The GRASP-derived algorithm was implemented in Java (JDK 1.6), running
on SunFire v440 computers with UltraSPARC IIIi CPUs at 1,062 GHz and 8
GB of RAM. The module library used for all the experiments is shown in Ta-
ble 2.1. For the following set of experiments we do not consider contamination
avoidance.

In our first experiments we were interested to determine the improvement that
can be obtained by using Routing-Based Synthesis (RBS) compared to the
module-based synthesis approach (MBS) using the Tabu Search from Chap-
ter 5.

Table 8.1 presents the results obtained by using RBS and MBS for two real-life
applications: 1) In-vitro diagnosis on human physiological fluids (IVD) (see Sec-
tion 2.4.2), and 2) the colorimetric protein assay (see Section 2.4.3). Table 8.1
presents the best solution (in terms of the application completion time δG), in
columns 3 and 4. The comparison is made for three progressively smaller ar-
eas for both approaches, using a time limit of 10 minutes for both synthesis
approaches.
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As we can see, eliminating the concept of “virtual modules” and allowing the
operations to perform on any route on the microfluidic array can lead to sig-
nificant improvements in terms of application completion time, allowing us to
use smaller areas and thus reduce costs. Using routing-based synthesis is par-
ticularly important for more constrained synthesis problems, when knowing the
exact location of all droplets on the array, leads to more efficient space usage.
For example, in the most constrained case for the colorimetric protein assay,
the 10 × 10 array, we have obtained an improvement of 44.95% in the schedule
length.

Moreover, the routing-based approach determines a complete solution for the
problem, while for the module-based synthesis a post-synthesis step is necessary
to determine the routing, which means additional delays.

Both RBS and MBS implementations are stochastic: random decisions during
the exploration process can lead to slightly different results. To determine the
quality of the RBS implementation, we have run RBS and the Tabu Search-
based MBS 50 times. The best results for RBS and MBS, presented in columns
3 and 4 in Table 8.1, respectively, are collected after 50 runs. The average and
standard deviation over the 50 runs compared to the best application completion
time δG are also reported in Table 8.1. As we can see, the difference between
RBS and MBS is larger in the average case, and the standard deviation with
RBS is very small, which means that RBS consistently finds solutions which are
very close to the best solution found over the 50 runs.

In a second set of experiments we have compared RBS with MBS on ten syn-
thetic applications, generated using TGFF. The graphs are composed of 10 up
to 100 operations and the results in Table 8.2 show the best and the average
completion time obtained out of 50 runs for RBS and MBS, using a time limit
of 10 minutes.

Application Area Best Average Standard dev.
RBS MBS RBS MBS RBS MBS

8 × 9 68.43 72.94 68.77 77.81 0.16 2.12
In-vitro 8 × 8 68.87 82.12 69.13 102.37 0.14 13.58

(28 operations) 7 × 8 69.12 87.33 69.46 111.18 0.17 12.26
11 × 11 113.63 184.06 117.51 205.30 4.65 8.38

Proteins 11×10 114.33 185.91 119.62 202.14 6.63 8.84
(103 operations) 10 × 10 115.65 208.90 120.65 219.17 7.73 7.89

Table 8.1: Results for the real-life applications
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Operations Area1 Best1 Average1 Area2 Best2 Average2 Area3 Best3 Average3
RBS MBS RBS MBS RBS MBS RBS MBS RBS MBS RBS MBS

10 6 × 6 39.12 42.61 39.92 42.61 5 × 7 39.55 76.1 39.95 76.1 5 × 6 40.46 102.9 40.97 102.9
20 8 × 8 49.73 52.71 50.18 52.71 7 × 8 50.5 49.01 50.95 53.62 7 × 7 51.19 49.81 51.74 60.06
30 8 × 8 64.73 67 65.96 72.84 7 × 8 66.92 76.4 67.79 84.08 7 × 7 68.42 82.49 69.68 95.54
40 8 × 8 61.18 91.97 61.93 102.69 7 × 8 63.01 98.25 63.74 111.47 7 × 7 64.75 99.29 65.85 131.63
50 9 × 10 83.27 82.4 83.89 86.99 9 × 9 84.02 87.21 84.76 93.5 8 × 9 85.37 87.03 86.34 101.59
60 9 × 9 93.82 89.90 94.98 100.44 8 × 10 94.34 95.70 95.15 104.80 8 × 9 94.39 106.7 95.85 122.42
70 10 × 10 140.4 153.8 179.97 194.91 9 × 11 155.93 164.01 197.05 182.99 9 × 10 147.39 162.41 186.02 233.57
80 10 × 10 112.38 113.4 112.98 124.98 9 × 10 112.43 124.75 113.48 139.26 9 × 9 113.6 133.87 114.23 147.86
90 11 × 11 128.08 127.41 139.33 180.64 10 × 10 131.32 149.68 144.23 215.76 9 × 10 136.94 156.31 148.59 227.02
100 11 × 11 153.06 285.05 172.15 325.57 10 × 10 154.09 255.97 172.46 321.87 9 × 11 153.08 278.63 170.17 325.66

Table 8.2: Results for synthetic benchmarks
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For each synthetic application we have considered three progressively smaller
areas. The results in Table 8.2 confirm the conclusion from Table 8.1: as the area
decreases, performing routing-based synthesis becomes more important, and
leads to significant improvements. For example, for the synthetic application
with 100 operations, in the case of the 9 × 11 array, we have obtained an
improvement of 47.74% in the average completion time compared with module-
based synthesis.

In the previous set of experiments we have considered that droplets do not
contaminate the surface of the microfluidic array during their transportation.
As shown from the results, routing the droplets on any route during operation
execution leads to significant improvements, due to a better utilization of the
microfluidic array. However, as discussed in Chapter 2, some biochemical appli-
cations contain liquids that are adsorbed onto the surface of the chip, leading to
a possible contamination of the droplets. In such cases contamination avoidance
must be ensured, to provide correct outcomes for the performed applications.
Thus, in the next experiments we consider the case of cross-contamination avoid-
ance during the synthesis problem. For this, we evaluate our GRASP algorithm1

presented in Section 8.3.2 on one real-life application and three synthetic TGFF-
generated benchmarks.

In our experiments we were interested to determine the suitability of routing-
based synthesis when contamination is a concern. Therefore, we have considered
two approaches to the synthesis problem with cross-contamination avoidance: a
routing-based synthesis in which droplets are moved freely during operation ex-
ecution (Routing Based Synthesis with Contamination avoidance, RBSC, pre-
sented in Section 8.3.2) and an area-constrained routing-based synthesis (Area-
Constrained Synthesis with Contamination avoidance, ACSC, presented in Sec-
tion 8.4). Similar to RBSC, in ACSC we have also considered that the chip
is partitioned into a number of equal areas, with a wash droplet assigned to
each partition. However, compared to RBSC, the execution of an operation
is constrained to an area on the chip, which is cleaned only the operation is
completed.

The module library used for all experiments is shown in Table 2.1. Due to the
large number of required wash droplets, we have considered that the method
proposed in [45] will be used for dispensing droplets from the wash reservoirs.
This method uses capacitance metering during the dispensing process, to pro-
duce up to 120 droplets per minute, while maintaining the reproducibility rate
in a range of 10%. For sample and reagent liquids creating droplets with exact
volume is important, as varying volumes can affect the integrity of the obtained
result. However, as wash droplets are used just for cleaning the surface of the

1Values for the parameters: nopart=3, maxelectrodes=50.
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Area Best Average Standard dev.
RBSC ACSC RBSC ACSC RBSC ACSC

15 × 15 173.79 155.81 198.31 186.67 14.45 11.40
14 × 14 188.31 162.25 203.43 180.65 6.24 10.39
13 × 13 188.15 188.92 204.39 194.86 8.38 3.57

Table 8.3: Results for the colorimetric protein assay

chip, we assume that a 10% variation in volume is acceptable. Therefore, we
consider that the dispensing of a wash droplet takes 0.5 s. For the rest of the
liquids, the dispensing time has been set to 2 s, as shown in Table 2.1.

For all the experiments we have considered that at most four optical detectors
can be integrated on the chip, together with one reservoir for sample liquid,
two for buffer, two for reagent liquid and three for wash droplets. We have
assumed that all operations except for the inputs containing buffer liquid will
contaminate the surface of the biochip.

Table 8.3 presents the results obtained by using RBSC and ACSC for the synthe-
sis of the colorimetric protein assay (see Section 2.4.3). Columns 2 and 3 in the
table represent the best solution out of 50 runs (in terms of the application com-
pletion time δG) for RBSC and ACSC, respectively. The average and standard
deviation over the 50 runs compared to the best application completion time
are also reported in Table 8.3. The comparison is made for three progressively
smaller areas. A time limit of 10 minutes was set for all experiments.

As we can see, when synthesizing applications in which contamination avoidance
must be ensured, area-constrained routing leads to better results than transport-
ing the droplets freely on the array. For example, in the case of the 14 × 14
array, constraining the movement of the operations to a group of electrodes
leads to an improvement of 13.83% for the best schedule and 11.19% for the
average length schedule obtained out of 50 runs. The main reason is the large
number of electrodes contaminated during RBSC, when droplets are allowed to
move on any route on the microfluidic array. This also leads to a high demand
on the number of dispensed wash droplets, as contaminated electrodes must be
cleaned as soon as possible in order not be block the execution of operations
on the array. In contrast, in area-constrained synthesis a significantly smaller
number of electrodes are contaminated while an operation is performed, and we
can postpone cleaning these electrodes until the operation finishes executing.

In a second set of experiments we have compared RBSC with ACSC on three
synthetic applications. The graphs are composed of 20, 40 and 60 operations
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Operations Area Best Average Standard dev.
RBSC ACSC RBSC ACSC RBSC ACSC

8 × 8 65.15 43.61 68.12 46.52 1.64 1.80
20 7 × 8 71.09 46.90 76.62 50.55 2.14 2.14

7 × 7 88.84 51.71 97.92 60.53 3.93 5.30
9 × 10 88.26 54.93 91.59 60.89 1.30 5.58

40 9 × 9 91.28 57.01 97.78 65.42 1.80 5.06
8 × 8 113.51 95.16 120.33 111.89 2.52 14.48
9 × 10 142.30 99.12 148.73 115.32 2.42 7.89

60 9 × 9 151.80 110.27 158.20 127.54 2.75 10.87
8 × 9 163.21 110 175.37 154.95 3.89 22.96

Table 8.4: Results for the synthetic benchmarks

and the results in Table 8.4 show the best and the average completion time, as
well as the standard deviation obtained out of 50 runs for RBSC and ACSC,
using a time limit of 10 minutes.

For each synthetic application we have considered three progressively smaller
areas. The results shown in Table 8.4 confirm the conclusion from Table 8.3:
when contamination is a concern, constraining the execution of operations to
specific areas leads to better results in the average completion time. For example
we have obtained an improvement of 38.18% in the average schedule length for
the application with 20 operations, in the case of the 7 × 7 array.



Chapter 9

Conclusions and Future

Directions

This chapter presents the conclusions of the thesis and discusses possible direc-
tions in which the proposed synthesis approaches can be extended.

9.1 Conclusions

In this thesis we have proposed several top-down synthesis techniques for digital
microfluidic biochips. On such devices, biochemical operations such a mixing
and dilution are performed on an array of electrodes, by routing the correspond-
ing droplets. All previous work has assumed that an operation is constrained to
a rectangular group of adjacent electrodes, forming a virtual device. All elec-
trodes composing the module have been considered occupied throughout the
execution of the operation, although the droplet uses one electrode at a time.
However, an operation can be performed by transporting the corresponding
droplet on any route on the microfluidic array.

The synthesis techniques proposed in this thesis are able to optimize the com-
pletion time of a biochemical application on a digital biochip, by considering the
characteristic of dynamic reconfiguration of microfluidic operations. One of the
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main conclusions of the thesis is that by relaxing the assumption that operation
execution is constrained to fixed rectangular devices, significant improvements
can be obtained, allowing us to use smaller biochips and thus reduce costs.
The presented methods have been extensively evaluated using several real-life
applications and synthetic benchmarks.

The conclusions are presented as follows.

• In Chapter 2 we have proposed an analytical method for determining
the completion time of an operation on any given route. The method is
based on the decomposition of a module library determined experimen-
tally. The approach has been used throughout the thesis for determining
completion times for non-rectangular devices (Section 6.2), devices with
droplet-aware operation execution (Chapter 7) and operations executing
on any route (Chapter 8).

• In Chapter 3 we have presented an Integer Linear Programming formu-
lation for the problem of architectural-level synthesis and placement of
DMBs, with fixed rectangular devices. Using two real-life examples, we
have shown that our ILP-based approach can successfully synthesize small
applications and find the optimal completion times, under given area con-
straints. Moreover, according to the results, considering placement at
the same time with architectural-level synthesis leads to significant im-
provements in the completion time, compared to performing the two steps
separately.

• In Chapter 5 we have presented a Tabu Search-based technique for the
synthesis of digital microfluidic biochips. The proposed algorithm con-
siders the unified architectural (allocation, binding and scheduling) and
physical design (placement of operations on a microfluidic array). Ac-
cording to our evaluation, our approach can quickly obtain the optimal
results for small-size applications and it can successfully synthesize larger
applications, such as the colorimetric protein assay. We have compared
our TS algorithm with the state of the art, the T-Tree topological rep-
resentation [74] and we have shown that our approach can obtain better
results, for the same design specifications.

• The Tabu Search algorithm was extended in Section 6.1 by considering
that virtual devices can be moved during the execution of their opera-
tions. We have shown that by exploiting the dynamic reconfigurability of
digital microfluidic biochips we can decrease the space fragmentation on
the microfluidic array, improving the completion time of applications.

• In Section 6.2 we have further relaxed the assumption of virtual rectan-
gular fixed devices by using modules of non-rectangular shape (e.g., “L”
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shape). The effectiveness of this approach was evaluated using a real-life
example as well as ten synthetic benchmarks. According to the obtained
results, the space fragmentation on the microfluidic array is further re-
duced by allowing operations to execute on non-rectangular devices. More-
over, as the area decreases, considering dynamic reconfiguration becomes
more important, and leads to significant improvements.

• In Chapter 7 we have proposed a module-based synthesis algorithm in
which the positions of droplets inside devices are known at all times.
This approach allows up to utilize better the chip area, since the acci-
dental merging of droplets can be avoided without using segregation cells.
We have evaluated our droplet-aware method using two real-life applica-
tions and three synthetic benchmarks and we have shown that controlling
droplet movement during operation execution leads to a decrease in the
application completion time, compared to the black-box approach.

• In Chapter 8 we have eliminated the concept of “virtual modules” and con-
sidered that operations can be performed on any route on the microfluidic
array. The advantage of this routing-based approach is the increase in
the parallelism, due to the fact that the same electrode can be used by
several operations executing concurrently on the chip. According to the
experiments, routing-based synthesis leads to significant improvements in
terms of application completion time, compared to module-based synthe-
sis. Moreover, routing-based synthesis is particularly important for more
constrained synthesis problems. We have also shown that although the
contamination problem can be successfully addressed for routing-based
synthesis, constraining operation execution to a given area is to be pre-
ferred in this case.

9.2 Future Directions

The work presented in this thesis can be further extended to consider other
challenges that remain to be tackled in the design of digital microfluidic biochips.
Some of the directions in which the work can be extended are presented as
follows.

9.2.1 Routing-Based Synthesis for Pin-Constrained DMBs

The algorithms presented in this thesis target direct addressing biochips, in
which each electrode can be activated individually. However, as discussed in
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Chapter 2, for larger biochips the increase in the number of required pins leads
to high wiring complexity and increased fabrication costs. Several algorithms
have been proposed so far for the synthesis problem of pin-constrained digital mi-
crofluidic biochips [23], [77], [28]. These algorithms consider that operations are
executed inside rectangular virtual devices. As future work, the routing-based
synthesis method proposed in Chapter 8 can be extended for pin-constrained
biochips, by incorporating additional limitations regarding droplet movement.
In the case of a pin-constrained biochip, several electrodes are activated using
the same pin. Therefore, the decision regarding the direction in which a droplet
is to be moved at time tcurrent can no longer be made individually, as groups
of droplets will be transported in the same direction with the activation of only
one control pin. The modified algorithm must consider this additional constraint
during the synthesis process.

9.2.2 Module-Based Synthesis with Overlapping Opera-

tions

The methods presented so far for module-based synthesis of DMBs have con-
sidered that devices placed on the microfluidic array cannot overlap.

We have shown in Chapter 7 that considering a droplet-aware operation execu-
tion approach leads to faster completion time of applications, due to a better
utilization of the space on the microfluidic array. This can be further exploited
by allowing devices on the microfluidic array to partially or even completely
overlap. Let us consider the example in Figure 9.1b. The two mixers placed on

(a) Modules with segregation cells (b) Overlapping modules

Figure 9.1: Module-based synthesis with overlapping devices
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the array are sharing part of the electrodes composing the devices. However,
we can avoid the accidental merging of the two droplets by controlling their
movement at each step. This approach can be evaluated by extending the
droplet-aware module-based synthesis proposed in Chapter 7 to consider the
overlapping of devices during the operation execution.

9.2.3 Fault-Tolerant Module-Based Synthesis with

Droplet-Aware Operation Execution

As discussed in Chapter 2, there are several types of faults that can affect the
execution of a biochemical application on a digital biochip. For example, ab-
normal metal deposition during the fabrication process can lead to a failure
in activating one or more electrodes on the microfluidic array, hindering the
movement of droplets [69]. Therefore, testing methods such as the one pro-
posed in [59] must be used in order to detect cells that have become faulty after
the fabrication or during the operation of the biochip. Several fault-tolerant
algorithms for module-based synthesis have been proposed so far [55], [70], [74].
These algorithms are based on partial reconfiguration, relocating modules, if
needed, in order to avoid faulty cells. However, the disadvantage of reconfigura-
tion during module-based synthesis is the fact that faulty cells can significantly
increase the level of free space fragmentation on the microfluidic array.

Let us consider the example in Figure 9.2, where, at the current time-step t,
three mixing operations O1, O2 and O3 are scheduled to be executed on the
microfluidic array. We assume that the operations are bound to the modules as
follows: O1 is bound to a 2 × 4 device, O2 to a 2 × 3 device and O3 to a 1 × 4

(a) Initial placement (b) Faulty cell (c) Droplet-aware synthesis

Figure 9.2: Fault tolerance during droplet-aware module-based synthesis
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device. We ignore the positions of droplets inside the modules and wrap the
devices in segregation cells, to avoid accidental mixing. If there are no defective
electrodes on the array, the three mixers can be placed on the array at the same
time, as shown in Figure 9.2a. However, let us assume that a faulty electrode has
been detected, see Figure 9.2b. The fault-tolerant techniques proposed so far
have considered faulty cells as obstacles during the placement of devices. Due
to the fact that in black-box operation execution the position of droplets during
execution is ignored, it has been considered that devices placed on the array can
not overlap with faulty cells. This constraint guarantees that no operation will
be executed on a defective cell. In case of Figure 9.2b this will lead to a delay in
performing the mixing operation O3, as the 1 × 4 module can not be placed on
the array at time t such that it completely avoids the faulty cell. However, this
delay can be avoided if we consider a module-based approach with droplet-aware
operation execution. For example, in Figure 9.2c all the three mixing operations
are executed concurrently. Even though the 1 × 4 module bound to operation
O3 contains the faulty cell, we can avoid using it by controlling the movement
of the droplet inside the device at each time step.

Therefore, we believe that considering the positions of all droplets on the mi-
crofluidic array at each time step can improve the completion time of applica-
tions in the case of biochips with faulty electrodes. We consider the evaluation
of this approach as a future work.
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