
Synthesis of Reliable Digital Microfluidic Biochips using Monte Carlo
Simulation

Elena Maftei1, Paul Pop1, Florin Popenţiu Vl̆adicescu2
1Dept. of Informatics and Mathematical Modelling,
Technical Univ. of Denmark, DK-2800 Kgs. Lyngby, Denmark
em@imm.dtu.dk, paul.pop@imm.dtu.dk
2Faculty of Electrical Engineering and Information Technology,
Univ. of Oradea, RO-410087 Oradea, Romania
popentiu@imm.dtu.dk

ABSTRACT: Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able
to integrate on-chip all the necessary functions for biochemical analysis using microfluidics. The “digital mi-
crofluidic” biochips are based on the manipulation of liquids not as a continuous flow, but as discrete droplets
(hence the term “digital”), and thus are highly reconfigurable and scalable. We model a biochemical application
using an abstract model consisting of a sequencing graph. The digital biochip is modeled as a two-dimensional
array of cells, where each cell can hold a droplet. In this paper we propose an integer linear programming (ILP)
synthesis methodology that, starting from a biochemical application and a given biochip, determines the alloca-
tion, placement, resource binding, and scheduling of the operations in the application. Our goal is to find that
particular implementation of an application onto a biochip, which has the highest probability to be reconfigured
successfully in case of multiple faulty cells. We propose a fault model for biochips, and use Monte Carlo sim-
ulation to evaluate the probability of successful reconfiguration of each implementation in case of faults. The
proposed methodology has been evaluated using a real-life example.

1 INTRODUCTION
Microfluidic-based biochips (also referred to as lab-
on-a-chip) are replacing the conventional biochemical
analyzers, and are able to integrate on-chip all the nec-
essary functions for biochemical analysis using mi-
crofluidics, such as, transport, splitting, merging, dis-
pensing, mixing, and detection.

Applications areas of biochips include: clinical di-
agnostics, bio-defense applications, massively par-
allel DNA analysis and automated drug discovery
(Thorsen et al. 2002). Biochips are able to: pro-
vide miniaturization, thus enabling very small vol-
umes and speeding up chemical reactions and analyt-
ical detection; obtain higher throughput with minimal
human intervention; use smaller sample and reagent
consumption; provide higher sensitivity at signifi-
cantly lower costs per assay than the traditional meth-
ods; and increase productivity through automation
and parallelization (Thorsen et al. 2002).

There are two approaches to microfluidics. The
“first generation” is based on the continuous flow of
liquid through micro-channels using micropumps and
microvalves (Verpoorte and Rooij 2003) The second
approach, also called “second generation”, is based on
the manipulation of liquids not as a continuous flow,
but as discrete droplets (Pollack et al. 2002). Thus,
the second type of microfluidic biochips is also re-

ferred to as “digital microfluidics”, due to the analogy
between the droplets and the bits in a digital system.

Although the continuous-flow biochips have been
used for simple biochemical applications, due to
their lack of flexibility they are unsuitable for more
complex applications that require complicated fluid
manipulations (Zhang et al. 2002). Therefore, in
this paper, we are interested in droplet-based digital
biochips, which are highly reconfigurable and scal-
able.

1.1 Related Work
CAD tools for digital microfluidics are in their in-
fancy, and designers are using manual, bottom-up,
full-custom, design approaches to implement such
biochips (Chakrabarty and Zeng 2005). However, dig-
ital microfluidic biochips are becoming increasingly
complex, and are expected to be integrated with mi-
croelectronic components in next generation system-
on-chips. Consequently, the current bottom-up full-
custom design approach will not scale to the new de-
signs. Therefore, new top-down methods and tech-
niques are required, which can offer the same level of
support as the one taken for granted currently in the
semiconductors industry. Such techniques will reduce
the design cost and improve productivity, and are the
key to the further growth and market penetration of



biochips (Chakrabarty and Zeng 2005).
Considering their architecture and the design tasks

that have to be performed, the design of digital mi-
crofluidic biochips has similarities to high level syn-
thesis of VLSI systems (Gajski et al. 1992; Micheli
1994). Motivated by this similarity, a few researchers
have recently started to propose approaches for the
top-down design of such biochips. The following are
the main design tasks that have been addressed:

• During the design of a digital microfluidic
biochip, the bioassay protocols have to be
mapped to the on-chip modules. The proto-
cols aremodeledusing process graph models
(Chakrabarty and Su 2006), where each node is
an operation, and each edge represents a depen-
dency.

• Once the protocol has been specified, the neces-
sary modules for the implementation of the pro-
tocol operations will be selected from a module
library (Su and Chakrabarty 2004). This is called
theallocationstep.

• As soon as thebinding of operations to the al-
located modules is decided (Su and Chakrabarty
2004), thescheduling(Su and Chakrabarty 2004;
Ricketts et al. 2006) step determines the time
duration for each bioassay operation, subject to
resource constraints and precedence constraints
imposed by the protocol.

• Finally, chip will be synthesized according to the
constraints on the types of resources, cost, area
and protocol completion times. During the chip
synthesis, theplacement(Su and Chakrabarty
2006) of each module on the microfluidic array
and therouting (Su et al. 2006; Cho and Pan
2008) of droplets from one module to another
have to be determined.

• All of the presented design tasks have to take into
account possible defects during the fabrication of
the microfluidic biochip. Thus,testing(Xu and
Chakrabarty 2007; Kerkhoff 2007) andreconfig-
uration (Su and Chakrabarty 2006) have to be
performed.

In this paper we propose an integer linear pro-
gramming (ILP) synthesis methodology that, starting
from a biochemical application modeled as a sequenc-
ing graph and a given biochip, determines the allo-
cation, placement, resource binding, and scheduling
of the operations in the application. Such a digital
microfluidic biochip is a dynamically reconfigurable
system. We have extended the model from (Su and
Chakrabarty 2004), which considers a given alloca-
tion and proposes an ILP model only for scheduling
and binding (i.e., without considering allocation and
placement), and without taking into account faulty
cells.

If multiple cells become faulty, the microfluidic op-
eration can be moved to another part of the array by
changing the control voltages applied on the elec-
trodes. Our goal is to find that particular implemen-
tation of an application onto an array, which has the
highest probability to be reconfigured successfully in
case of multiple faults. We propose a fault model for
biochips, and use Monte Carlo simulation to evaluate
the probability of successful reconfiguration of each
implementation in case of faults.

The paper is organized in six sections. Sections 2.1
and 2.2 present the model of the digital microfluidic
biochip and the fault model, respectively. We intro-
duce the sequencing graph model we use to capture a
biochemical application in Section 2.3. We formulate
the problem in Section 3 and illustrate the design tasks
using several examples. The proposed ILP model and
the Monte Carlo simulation approach used are pre-
sented in Section 4. The evaluation of the proposed
approach is performed in Section 5. The last section
presents our conclusions.

2 SYSTEM MODEL
2.1 Digital Microfluidic Biochip Architecture
In a digital microfluidic biochip the manipulation of
liquids is performed using discrete droplets. There
are several mechanisms for droplet manipulation
(Fair 2007). Our proposed research will consider
electrowetting-on-dielectric (EWD) (Pollack et al.
2002), but can be extended to handle other techniques
as well. EWD is the most promising technique, and
can provide high droplet speeds of up to 20 cm/s.

A biochip is composed of several cells, see Fig-
ure 1(b). Let us discuss first how a cell is functioning,
and then we will show how cells are put together to
form a chip.

The schematic of a cell is presented in Figure 1(a).
The droplet is sandwiched between two glass plates
(the top plate and the bottom plate), and moves within
a filler fluid. The top plate contains a single ground
electrode, while the bottom plate has several con-
trol electrodes. The electrodes are insulated from the
droplet trough an insulation material. Considering an
EWD approach, the movement of droplets is con-
trolled by applying voltages to the required elec-
trodes. For example, turning off the middle control
electrode and turning on the right control electrode in
Figure 1(a) will force the droplet to move to the right.
For the details of the EWD-based chip fabrication, the
reader is directed to (Pollack et al. 2002).

Several cells are put together to form a two-
dimensional array (an example architecture is pre-
sented in Figure 1(b)). Using EWD manipulation,
droplets can be moved to any location without the
need for pumps and valves, which are required in a
continuous-flow biochip. Besides the basic cell dis-



(a) Cell architecture (b) Biochip: array of cells

Operation Area (cells) Time (s)
Mixing 2x2 6
Mixing 2x3 5
Mixing 2x4 4
Dilution 2x2 6
Dilution 2x3 5
Dilution 2x4 4
Detection 1x1 10
Storage 1x1 –

(c) Module library

Figure 1: Biochip architecture

cussed previously, the chip typically contains input
and output ports and detectors. The detection can be
done by using, for example, a LED beneath the bot-
tom plate and a photodiode on the top plate.

Using this architecture, and changing correspond-
ingly the control voltages, several operations, such as
transport, splitting, merging, dispensing, mixing, and
detection, can be performed. For example, mixing is
done by transporting two droplets to the same loca-
tion, and then moving them next to each other on a
circular path within a delimited cell block. Any cells
in the chip can be used for such an operation, thus, we
say that the chip is “reconfigurable”. This property is
particulary useful in case certain cells are faulty, be-
cause the operation can be simply moved to another
part of the chip.

As is the case with digital circuits, we consider that
designers will build and characterize a module library
L , where for each operation there are several options
varying in terms of area and execution time, see Fig-
ure 1(c).

2.2 Fault Model
The types of faults for a microelectronic chip are
well known. However, biochips belong to the class
of Micro-Electro-Mechanical Systems (MEMS), and
thus exhibit different types of faults (Deb and Blanton
2000).

In this paper we will concentrate on permanent
faults, where a cell is simply no longer capable of
droplet manipulation, as opposed to parametric faults,
which cause deviations in the system performance.
Let us illustrate on type of permanent fault using Fig-
ure 1(a), where we depict the architecture of a cell.
Suppose there is a short between two adjacent elec-
trodes. In this case, the two electrodes will practically
form one larger electrode. When a droplet is moved
to this electrode, it is no longer large enough to cover
the inter-electrode gap, and hence further movement

to another cell is not possible.
In this paper, we will not present all the possible

faults. For an in-depth discussion, the reader is di-
rected to (Xu and Chakrabarty 2007). A summary of
the types of permanent faults and corresponding er-
rors that can affect digital microfluidic biochips is pre-
sented in Table 1, using the terminology from (Avizie-
nis et al. 2001).

Table 1: Fault types (adapted from Xu 2007)

Cause Fault Fault Model Error
Excessive
voltage
applied to
electrode

Dielectric
breakdown

Droplet-electrode
short (a short be-
tween the droplet
and the electrode)

Droplet undergoes
electrolysis, which
prevents its further
transportation

Electrode
actuation
for
excessive
duration

Irreversible
charge
concentration
on an
electrode

Electrode-stuck-
on (the electrode
remains
constantly
activated)

Unintentional
droplet operations or
stuck droplets

Excessive
mechanical
force
applied to
the chip

Misalignment
of parallel
plates
(electrodes
and ground
plane)

Pressure gradient
(net static
pressure in some
direction)

Droplet trans-
portation without
activation voltage

Coating
failure

Non-uniform
dielectric layer

Dielectric islands
(islands of Teflon
coating)

Fragmentation of
droplets and their
motion is prevented

Abnormal
metal layer
deposition
and etch
variation
during
fabrication

Grounding
Failure

Floating droplets
(droplets are not
anchored)

Failure of droplet
transportation

Broken wire to
control source

Electrode open
(electrode
actuation is not
possible)

Failure to activate
the electrode for
droplet transporta-
tion

Metal
connection
between two
adjacent
electrodes

Electrode short
(short between
electrodes)

A droplet resides in
the middle of two
shorted electrodes,
and its transport
along one or more
directions cannot be
achieved

Particle
contamina-
tion or
liquid
residue

A particle that
connects two
adjacent
electrodes

Electrode short

Our fault model considers multiple faults. Mi-
crofluidic chips have not yet been manufactured in



Figure 2: Example application

large quantities, and thus there are no statistics re-
garding failure probabilities. Since cells are identical,
we think is reasonable to assume that each cell has
the same failure probability,Qcell. Our synthesis ap-
proach can use as an input any updated fault model,
when the data becomes available.

In addition, we assume that, after fabrication, the
faulty cells are detected with a technique such as the
one described in (Xu and Chakrabarty 2007). If mul-
tiple cells are identified as faulty, the microfluidic op-
eration can be moved to another part of the array
by changing the control voltages applied on the elec-
trodes, as described in Section 3.3.

2.3 Biochemical Application Model
We model a biochemical application using an abstract
model consisting of a sequencing graph (Chakrabarty
and Zeng 2005). The graphG(V ,E) is directed,
acyclic and polar (i.e., there is asource node, which is
a node that has no predecessors and asink nodethat
has no successors). Each nodeOi ∈ V represents one
operation. The binding of operations to modules in the
architecture is captured by the functionB : V → A ,
whereA ⊂ L is the set of allocated modules from the
given libraryL .

An edgeei, j ∈ E from Oi to O j indicates that the
output of operationOi is the input ofO j . An operation
can be activated after all its inputs have arrived and it
issues its outputs when it terminates. Operations are
non-preemptable and thus cannot be interrupted dur-
ing their execution.

We assume that, for each operationOi , we know the
execution timeCMk

i on moduleMk = B(Oi) where it is
assigned for execution. Currently, the routing time be-
tween two operations is an order of magnitude smaller
compared to the operation time. Hence, we consider
the routing time to be part of the operation execution
time and do not model it explicitly.

3 PROBLEM FORMULATION
The problem we are addressing in this paper can be
formulated as follows. Given (1) a biochemical appli-
cation modeled as a graphG , (2) a biochip consisting
of a two-dimensionalm×n array of cells, (3) a char-
acterized module libraryL and (4) a time constraint
δG by which the application has to finish, we are in-
terested to synthesize that implementationΨ, which
minimizes the completion time of the application (i.e.,
finishing time of the sink node,t f inish

sink < δG ) and has
the highest probability that it will be reconfigured suc-
cessfully in case of multiple faulty cells.

Synthesizing an implementationΨ = < A , P , B,
S > means deciding on: (1) the allocationA ⊂ L ,
which determines what modules from the libraryL
should be used, (2) the placementP of the modules
on them×n array, (3) the bindingB of each opera-
tion Oi ∈ V to a moduleMk ∈ A , and the scheduleS
of the operations, which contains the start timetstart

i
of each operationOi on its corresponding module.

The next subsections will illustrate each of these
subproblems.

3.1 Allocation and placement
Let us consider the application graphG in Figure 2,
where we have ten operations,O1 to O10. We would
like to implement this application on the 8x8 biochip
from Figure 1(b). The input and detection operations
are already assigned to the corresponding input ports
and detection module, respectively. Thus,O1 is as-
signed to the input portS1, O2 to R1, O5 to S2, O6
to B andO8 to R2. The detection operationsO4 and
O10 will be performed by the on-chip detector, and
then the droplet will be moved to the waste reservoir
through the output portW. However, for the mixing
operations (O3 andO9) and the dilution operationO7
our synthesis approach will have to allocate the ap-
propriate modules.

Let us assume that the available module library is
the one captured by Figure 1(c). We have to select
those modules that will lead to the minimum applica-
tion completion time and place them on the 8x8 chip
in such a way that, if multiple cells become faulty,
there is a high chance that the placement of these
modules can be changed to avoid the faulty cells. The
optimal solution to the allocation and placement prob-
lem is presented in Figure 3(a), where the follow-
ing modules are used: two 2x4 mixers (Mixer1 and
Mixer2), one 2x4 diluter and one 1x1 “store” module.

Note that special “store” modules have to be allo-
cated if a droplet has to wait before being processed.
Consider the detector module. We have to perform
two detection operations,O4 andO10. If the second
droplet is routed to the detector before the first detec-
tion finishes, a 1x1 storage cell is required to store the
droplet before it can be moved to the detector. In gen-



(a) No faults (b) Reconfiguration (c) Schedule

Figure 3: Implementation example

eral, if there exists an edgeei, j from Oi to O j such that
O j is not immediately scheduled afterOi (i.e., there is
a delay between the finishing time ofOi and the start
time ofO j ) then we will have to allocate a storage cell
for ei, j . Hence, the allocation of storage cells depends
on how the schedule is constructed.

The placement for the discussed solution is as indi-
cated in Figure 3(a), where we can notice that mod-
ules occupy a space larger than their size (the hashed
area corresponding to each module). This is to avoid
droplet-merging and contamination. If two droplets
are next to each other on two adjacent cells, they will
tend to merge to form one single droplet. Therefore,
we consider for each module a border of one-cell size.
For example,Mixer1 which has a size of 2x4 will oc-
cupy 4x6 cells.

The main difference between our placement prob-
lem and the placement for microelectronic chips
(Gajski et al. 1992; Micheli 1994) is that, in our case,
modules can physically overlap on-chip as long as
they do not overlap in time, i.e., they are used during
different time intervals. This property is due to the re-
configurability of the digital microfluidic biochip. Af-
ter an operation has finished executing on a module,
we can reuse the same cells as part of another module.

3.2 Binding and Scheduling
Once the modules have been allocated and placed on
the cell array, we have to decide where to execute
the operations (binding) and in which order (schedul-
ing), such that the application completion time is min-
imized.

Considering the graph in Figure 2 and the mod-
ules in Figure 3(a), Figure 3(c) presents the optimal
schedule. The schedule is depicted as a Gantt chart,
where, for each module, we represent the operations
as rectangles with their length corresponding to the
duration of that operation on the module. For exam-
ple, operationO9 is bound to moduleMixer2 (i.e.,
B(O9) = Mixer2). O9 starts immediately after the di-

lution operationO7 (i.e, tstart
9 = 4) and takes 4 s, fin-

ishing at timet f inish
9 = 8 s. The total schedule length

will be 24 s. We consider that the schedule is divided
in time-steps of one second, and we capture the set of
time-steps withT .

Note that a new operation has been introduced,O11,
which corresponds to the storing of the second droplet
before undergoing detection.

3.3 Reconfiguration in Case of Faults
In this paper we are interested in that implementation
Ψ which, not only minimizes the schedule length, but
also has a high chance to be reconfigured successfully
in case of faults. For a given fault scenario, we denote
the set of faults withF . Let us assume that there is a
fault in cell number 8 (counted from the top-left cor-
ner) of the biochip, as depicted with a lightning sym-
bol in Figure 3(b), i.e.,F = {c8}.

In this case, we would have to reconfigure the chip
such that it does not use the faulty cell. The affected
module in this case isMixer2, and it can be reconfig-
ured as presented in the Figure 3(b).

4 ILP-BASED SYNTHESIS
The problem presented in the previous section is NP-
complete (scheduling in even simpler contexts is NP-
complete (Ullman 1975)). Our general strategy is to
split this problem into two steps:

1. In the first step we generate several solutionsΨi
for different area constraintsm×n and time con-
straintsδG imposed by the designer. Each so-
lution has the minimum schedule length for the
imposed area constraints, but will have different
allocation, binding and placement of modules.
We have developed an ILP model, which is pre-
sented in Section 4. Using this model we use an
ILP solver to obtain those implementations that
minimize the schedule length under the imposed
constraints. Let us call this step ILP/S.



2. Given an implementationΨi , we evaluate its suc-
cessful reconfiguration probability as follows.
We generate several faulty cells using MCS. For
each fault scenarioF , we attempt to reconfigure
the chip such that it will not use these. We do
not change the allocation in the implementation
Ψi under evaluation (i.e., the same modules have
to be used), but we allow the changing of allo-
cation, binding, placement and schedule, under
the constraint that the schedule length ofΨi does
not exceed the imposed timing constraint. This
reconfiguration is also performed using the ILP
solver, similar to the previously outlined syn-
thesis step. We name this reconfiguration step
ILP/R.

4.1 ILP Model
In this section an integer linear programming (ILP)
approach for solving the problem is presented. Thus, a
system is described by a minimization objective and a
set of constraints which define valid conditions for the
system variables. A solution to the modeled problem
is an enumeration of all system variables, such that
the constraints are satisfied.

The optimization objective is specified as minimiz-
ing the completion time of the application,

minimizet f inish
sink , (1)

wheret f inish
sink is the finishing time of the sink node of

the application.
The constraints fall under the following categories:

(i) scheduling and precedence, (ii) resource, (iii)
placement and (iv) fault-tolerance constraints. In or-
der to be able to express them, a binary variable is
defined as follows:

zi, j ,k,l =



















1, if operationOi starts executing at
time-stepj on moduleMk placed
with its top-left corner over cellcl

0, otherwise

Such a variable captures the allocation and bind-
ing (operationOi is executing on moduleMk), the
scheduling (Oi starts to execute at time-stepj, with a
duration ofCMk

i ) and the placement (the top-left cor-
ner of moduleMk is placed over cellcl ). For example,
considering the dilution operation implemented as in
Figure 3(a) the binary variable will be expressed as:

zi, j ,k,l =

{

1, if i=7, j=1, k=Diluter, l=33
0, otherwise

By using the defined variable, the start time of an
operationOi ∈ V becomes:

tstart
i = ∑

j
∑
k

∑
l

j ×zi, j ,k,l , ∀Oi ∈ V , (2)

where j represents the time-step when the operation
starts executing.

4.1.1 Scheduling and precedence constraints
The scheduling constraint requires that every opera-
tion Oi be scheduled only once:

∑
j
∑
k

∑
l

zi, j ,k,l = 1, ∀Oi ∈ V . (3)

For each edge in the application graph we have to
introduce a precedence constraint. Consider the oper-
ationsOi andOn ∈ V for which there exists a depen-
dencyei,n ∈ E in the sequencing graphG . ThenOn
must be scheduled for execution only after the com-
pletion ofOi:

tstart
i +∑

j
∑
k

∑
l

(

CMk
i ×zi, j ,k,l

)

≤ tstart
n ,

∀Oi andOn such that∃ei,n ∈ E .

(4)

For example, considering operationsO9 and O10
in Figure 2, with O10 depending onO9, we have
t f inish
9 ≤ tstart

10 . If On is not scheduled immediately af-
ter the completion ofOi then a storage module is re-
quired. The number of such storage modules during
a time-stepj is important in defining the placement
constraints for the model, since the storage modules
also occupy chip area. Using a binary variablemi, j
defined as:

mi, j =

{

1, if a storage unit is needed forOi in step j
0, otherwise

we can capture the number of storage units required
during a time-stepj. Thus, at time-stepj, the binary
variable associated with the edge between operations
Oi andOn is expressed as:

j−C
Mk
i

∑
h=1

∑
k

∑
l

zi,h,k,l −
j

∑
h=1

∑
k

∑
l

zn,h,k,l = mi, j ,

∀ j ∈ T ,∀Oi ,On ∈ V such that∃ei,n ∈ E

(5)

Variablemi, j will have the value 1 at that time-step
j when Oi has finished executing (first sum of the
equation equals 1), butO j has not started yet (second
term of the equation equals 0).

4.1.2 Resource constraints
Considering the fact that two operations of the same
type can be bound to the same resource, a constraint
must be expressed to prevent the overlapping of these
operations during their execution. An operationOi is
executing at time-stepj if:

j

∑
h= j−C

Mk
i +1

∑
k

∑
l

zi,h,k,l = 1, ∀Oi ∈ V .



Thus, at any time-stepj ∈ T and for any module
Mk ∈ L there must be at most one operation that is
executing:

∑
i

j

∑
h= j−C

Mk
i +1

∑
l

zi,h,k,l ≤ 1., ∀Mk ∈ L , j ∈ T . (6)

4.1.3 Placement constraints
The allocated modules have to be placed on-chip such
that they do notphysicallyoverlap. However, since a
biochip is reconfigurable, the same cell area can be
used by two different modules as long as they do not
overlapin time. Hence, the placement constraints will
be expressed as a function of time, considering each
time-stepj in the schedule.

The first constraint to be considered is the size of
the microfluidic array of the biochip. At each time
step j, the sum of the modules that are placed on the
array should not exceed the total area size,m×n:

∑
i

j

∑
h= j−C

Mk
i +1

∑
k

∑
l

zi,h,k,l ×Lk×Wk ≤ m×n,∀ j ∈ T

(7)

whereLk andWk are the length and width of module
Mk, respectively, measured in number of cells.

The second constraint captures that no modules
should overlap, i.e., a cellcl on the array can be occu-
pied by at most one module during time stept j .

Let as consider a cellcr (with coordinatesxr andyr )
which is the top-left corner of moduleMk. If cell cl is
within the rectangle formed byMk, i.e.,xl −Lk +1≤
xr ≤ xl and yl −Wk + 1 ≤ yr ≤ yl , then we have to
impose the restriction that no other module is active
during this time interval:

∑
i

k

∑
h= j−C

Mk
i +1

∑
k

∑
r

zi,h,k,r ≤ 1. (8)

4.1.4 Fault tolerance constraints
In step two of our general synthesis strategy outlined
at the beginning of this section, we are interested to
synthesise a reconfigured implementation such that
the setF of faulty cells is excluded during placement.
The reconfiguration of an implementationΨi is per-
formed using the same ILP-based approach presented
so far. The only difference is that we are constrained
by using the same allocation asΨi , and by the fault-
tolerance constraint:

∑
i

∑
j
∑
k

∑
r

zi, j ,k,r = 0, (9)

wherexl −Lk + 1 ≤ xr ≤ xl andyl −Wk + 1 ≤ yr ≤
yl ,∀cl ∈ F .

5 EXPERIMENTAL EVALUATION
We were interested to evaluate the ILP-based ap-
proach proposed in the previous section. For this pur-
pose, we have used a real-life example consisting of
the mixing stage of a polymerase chain reaction ap-
plication (PCR/M), which is one of the most com-
mon techniques for DNA analysis. Researchers have
shown how PCR can be implemented using digital
microfluidic biochips, such as the ones considered in
this paper (Chakrabarty and Su 2006).

We have solved the ILP model with GAMS 21.5
using the CPLEX 9.130 solver, running on Sun Fire
v440 computers with 4 UltraSPARC IIIi CPUs at
1,062 MHz and 8 GB of RAM. We have considered
four area constraints, 5x5, 6x6, 7x7 and 8x8 and the
module library in Figure 1(c). The time-limit imposed
on the application completion time wasδG = 13 s. We
have implemented the PCR/M application on these ar-
chitectures using the ILP/S approach proposed in the
previous section. The optimum schedule lengths ob-
tained for each area constraint are presented in Ta-
ble 2, second column. We can see that the timing con-
straint δG is not met for the small area size of 5x5
cells. This is because the small chip size does not al-
low the placement of enough mixers to explore the
parallelism in PCR/M.

Table 2: Experimental results for PCR/M
Area δOptimum % reconfig. Avg. exec. time
5x5 15 s – –
6x6 13 s 48.40 19 min 50 s
7x7 13 s 86.96 36 min 50 s
8x8 13 s 96.25 61 min 12 s

Out of these four implementations, we were inter-
ested, in the next experiments, to determine which one
has the highest probability to be reconfigured success-
fully in case of faults. Thus, we have generated fault
scenariosF using Monte Carlo Simulation, consider-
ing 5,000 runs and a cell reliability ofRcell = 0.999.
The reconfiguration in case of a fault scenario consist-
ing of the setF of faults has been performed using
the ILP/R, presented in the previous section. ILP/R
considers the following constraints: (i) the same allo-
cation has to be used as determined by ILP/S for the
chip, (ii) the set of faulty cellsF cannot be used dur-
ing placement and (iii) the imposed time-limit on the
application time isδG = 13 s.

The percentage of successful reconfigurations is
presented in column three of Table 2, while the last
column presents the average execution time of ILP/R.
We have not performed reconfigurations for the 5x5
area, since we were not able to meet the timing con-
straint in case of no-faults. We can see that as the
area constraint is relaxed, we are able to increase the
reconfiguration probability from 48.40% to 96.25%.
Note that for the 8x8 area, we were not able to obtain



100% reconfigurability because in 3.75% of cases the
solver has reached its iteration limit and no implemen-
tation was produced.

Using this proposed ILP framework, the designer
will be able to explore several design alternatives, and
to chose that particular implementation which has the
desired area, schedule length and successful reconfig-
uration probability. For PCR/M, the implementation
with the area of 7x7 and an application completion
time of 13 s looks most promising, since the area
is smaller than 8x8, with the same application com-
pletion time and with a comparable reconfigurability
probability of 86.96%.

6 CONCLUSION
In this paper we have addressed the synthesis of
microfluidic-based biochips, which are based on the
manipulation of liquids not as a continuous flow, but
as discrete droplets, and hence are highly reconfig-
urable and scalable.

We have modeled a biochemical application using
a acyclic polar graph, where each node is an operation
and the edges represent dependencies between the
operations. We have proposed an ILP-based synthe-
sis methodology for the allocation, placement, bind-
ing and scheduling of operations on the biochip. Us-
ing a polymerase chain reaction application we have
shown that our ILP-based approach can successfully
synthesize the application and find the optimal sched-
ule length under given area constraints.

We have considered multiple faults in the biochip,
and we have used Monte Carlo simulation to deter-
mine the probability of successful reconfigurability of
a certain implementation, such that the faulty cells are
not used and the area and timing constraints are satis-
fied. As the experimental section has shown, our ILP-
approach methodology is able to successfully recon-
figure the chip with a high probability.

REFERENCES
Avizienis, A., J.-C. Laprie, and B. Randell (2001).

Fundamental concepts of dependability. Tech-
nical Report 1145, LAAS-CNRS.

Chakrabarty, K. and F. Su (2006).Digital Microflu-
idic Biochips: Synthesis, Testing, and Recon-
figuration Techniques. Boca Raton, FL: CRC
Press.

Chakrabarty, K. and J. Zeng (2005). Design
automation for microfluidics-based biochips.
ACM J. on Emerging Technologies in Comput.
Syst. 1(3), 186–223.

Cho, M. and D. Z. Pan (2008). A high-performance
droplet router for digital microfluidic biochips.
In Proc. Int. Symp. Phys. Des. (in press).

Deb, N. and R. D. Blanton (2000). Analysis of fail-

ure sources in surface-micromachined mems.
In Proc. Int. Test Conf., pp. 739–749.

Fair, R. B. (2007). Digital microfluidics: is a
true lab-on-a-chip possible?Microfluidics and
Nanofluidics 3(3), 245–281.

Gajski, D. D., N. Dutt, and S. L. A. Wu (1992).
High-Level Synthesis: Introduction to Chip and
System Des.Kluwer Academic Publishers.

Kerkhoff, H. G. (2007). Testing microelectronic
biofluidic systems. IEEE Des. Test Com-
put. 24(1), 72–82.

Micheli, G. D. (1994).Synthesis and Optimization
of Digital Circuits. McGraw-Hill Science.

Pollack, M. G., A. D. Shenderov, and R. B.
Fair (2002). Electrowetting-based actuation of
droplets for integrated microfluidics.Lab Chip
J. 2, 96–101.

Ricketts, A., K. Irick, N. Vijaykrishnan, and
M. Irwin (2006). Priority scheduling in digi-
tal microfluidics-based biochips. InProc. Des.,
Automat. and Test in Europe Conf., Volume 1,
pp. 1–6.

Su, F. and K. Chakrabarty (2004). Architectural-
level synthesis of digital microfluidics-based
biochips. In Proc. Int. Conf. Comput. Aided
Des., pp. 223–228.

Su, F. and K. Chakrabarty (2006). Module place-
ment for fault-tolerant microfluidics-based
biochips.ACM Trans. Des. Automat. Electron.
Syst. 11(3), 682–710.

Su, F., W. Hwang, and K. Chakrabarty (2006).
Droplet routing in the synthesis of digital mi-
crofluidic biochips. InProc. Des., Automat.
and Test in Europe Conf., Volume 1, pp. 73–
78.

Thorsen, T., S. Maerkl, and S. Quake (2002). Mi-
crofluidic largescale integration.Sci. 298, 580–
584.

Ullman, D. (1975). Np-complete scheduling prob-
lems.J. Comput. Syst. Sci. 10, 384–393.

Verpoorte, E. and N. F. D. Rooij (2003). Microflu-
idics meets mems.Proc. IEEE 91, 930–953.

Xu, T. and K. Chakrabarty (2007). Functional test-
ing of digital microfluidic biochips. InProc.
Int. Test Conf., pp. 1–10.

Zhang, T., K. Chakrabarty, and R. B. Fair (2002).
Microelectrofluidic Systems: Modeling and
Simulation. Boca Raton, FL: CRC Press.


